• search hit 1 of 15
Back to Result List

Synthese von thermoplastisch verarbeitbaren Fettsäure-Acylderivaten der Stärke und Proteine

Synthesis of thermoplastic processable fatty acid acyl derivatives of starch and proteins

  • In den vergangenen Jahren wurden stetig wachsende Produktionskapazitäten von Biokunststoffen aus nachwachsenden Rohstoffe nverzeichnet. Trotz großer Produktionskapazitäten und einem geeigneten Eigenschaftsprofil findet Stärke nur als hydrophile, mit Weichmachern verarbeitete thermoplastische Stärke (TPS) in Form von Blends mit z. B. Polyestern Anwendung. Gleiches gilt für Kunststoffe auf Proteinbasis. Die vorliegende Arbeit hat die Entwicklung von Biokunststoffen auf Stärkebasis zum Ziel, welche ohne externe Weichmacher thermoplastisch verarbeitbar und hydrophob sind sowie ein mechanisches Eigenschaftsprofil aufweisen, welches ein Potenzial zur Herstellung von Materialien für eine Anwendung als Verpackungsmittel bietet. Um die Rohstoffbasis für Biokunststoffe zu erweitern, soll das erarbeitete Konzept auf zwei industriell verfügbare Proteintypen, Zein und Molkenproteinisolat (WPI), übertragen werden. Als geeignete Materialklasse wurden Fettsäureester der Stärke herausgearbeitet. Zunächst fand ein Vergleich der Säurechlorid-VeresterungIn den vergangenen Jahren wurden stetig wachsende Produktionskapazitäten von Biokunststoffen aus nachwachsenden Rohstoffe nverzeichnet. Trotz großer Produktionskapazitäten und einem geeigneten Eigenschaftsprofil findet Stärke nur als hydrophile, mit Weichmachern verarbeitete thermoplastische Stärke (TPS) in Form von Blends mit z. B. Polyestern Anwendung. Gleiches gilt für Kunststoffe auf Proteinbasis. Die vorliegende Arbeit hat die Entwicklung von Biokunststoffen auf Stärkebasis zum Ziel, welche ohne externe Weichmacher thermoplastisch verarbeitbar und hydrophob sind sowie ein mechanisches Eigenschaftsprofil aufweisen, welches ein Potenzial zur Herstellung von Materialien für eine Anwendung als Verpackungsmittel bietet. Um die Rohstoffbasis für Biokunststoffe zu erweitern, soll das erarbeitete Konzept auf zwei industriell verfügbare Proteintypen, Zein und Molkenproteinisolat (WPI), übertragen werden. Als geeignete Materialklasse wurden Fettsäureester der Stärke herausgearbeitet. Zunächst fand ein Vergleich der Säurechlorid-Veresterung und der Umesterung von Fettsäurevinylestern statt, woraus letztere als geeignetere Methode hervorging. Durch Variation der Reaktionsparameter konnte diese optimiert und auf eine Serie der Fettsäurevinylester von Butanoat bis Stearat für DS-Werte bis zu 2,2-2,6 angewandt werden. Möglich war somit eine systematische Studie unter Variation der veresterten Fettsäure sowie des Substitutionsgrades (DS). Sämtliche Produkte mit einem DS ab 1,5 wiesen eine ausgprägte Löslichkeit in organischen Lösungsmitteln auf wodurch sowohl die Aufnahme von NMR-Spektren als auch Molmassenbestimmung mittels Größenausschlusschromatographie mit gekoppelter Mehrwinkel-Laserlichtstreuung (GPC-MALLS) möglich waren. Durch dynamische Lichtstreuung (DLS) wurde das Löslichkeitsverhalten veranschaulicht. Sämtliche Produkte konnten zu Filmen verarbeitet werden, wobei Materialien mit DS 1,5-1,7 hohe Zugfestigkeiten (bis zu 42 MPa) und Elastizitätsmodule (bis 1390 MPa) aufwiesen. Insbesondere Stärkehexanoat mit DS <2 sowie Stärkebutanoat mit DS >2 hatten ein mechanisches Eigenschaftsprofil, welches insbesondere in Bezug auf die Festigkeit/Steifigkeit vergleichbar mit Verpackungsmaterialien wie Polyethylen war (Zugfestigkeit: 15-32 MPa, E-Modul: 300-1300 MPa). Zugfestigkeit und Elastizitätsmodul nahmen mit steigender Kettenlänge der veresterten Fettsäure ab. Ester längerkettiger Fettsäuren (C16-C18) waren spröde. Über Weitwinkel-Röntgenstreuung (WAXS) und Infrarotspektroskopie (ATR-FTIR) konnte der Verlauf der Festigkeiten mit einer zunehmenden Distanz der Stärke im Material begründet werden. Es konnten von DS und Kettenlänge abhängige Glasübergänge detektiert werden, die kristallinen Strukturen der langkettigen Fettsäuren zeigten einen Schmelzpeak. Die Hydrophobie der Filme wurde anhand von Kontaktwinkeln >95° gegen Wasser dargestellt. Blends mit biobasierten Polyterpenen sowie den in der Arbeit hergestellten Zein-Acylderivaten ermöglichten eine weitere Verbesserung der Zugfestigkeit bzw. des Elastizitätsmoduls hochsubstituierter Produkte. Eine thermoplastische Verarbeitung mittels Spritzgießen war sowohl für Produkte mit hohem als auch mittlerem DS-Wert ohne jeglichen Zusatz von Weichmachern möglich. Es entstanden homogene, transparente Prüfstäbe. Untersuchungen der Härte ergaben auch hier für Stärkehexanoat und –butanoat mit Polyethylen vergleichbare Werte. Ausgewählte Produkte wurden zu Fasern nach dem Schmelzspinnverfahren verarbeitet. Hierbei wurden insbesondere für hochsubstituierte Derivate homogenen Fasern erstellt, welche im Vergleich zur Gießfolie signifikant höhere Zugfestigkeiten aufwiesen. Stärkeester mit mittlerem DS ließen sich ebenfalls verarbeiten. Zunächst wurden für eine Übertragung des Konzeptes auf die Proteine Zein und WPI verschiedene Synthesemethoden verglichen. Die Veresterung mit Säurechloriden ergab hierbei die höchsten Werte. Im Hinblick auf eine gute Löslichkeit in organischen Lösungsmitteln wurde für WPI die Veresterung mit carbonyldiimidazol (CDI)-aktivierten Fettsäuren in DMSO und für Zein die Veresterung mit Säu-rechloriden in Pyridin bevorzugt. Es stellte sich heraus, dass acyliertes WPI zwar hydrophob, jedoch ohne Weichmacher nicht thermoplastisch verarbeitet werden konnte. Die Erstellung von Gießfolien führte zu Sprödbruchverhalten. Unter Zugabe der biobasierten Ölsäure wurde die Anwendung von acyliertem WPI als thermoplastischer Filler z. B. in Blends mit Stärkeestern dargestellt. Im Gegensatz hierzu zeigte acyliertes Zein Glasübergänge <100 °C bei ausreichender Stabilität (150-200 °C). Zeinoleat konnte ohne Weichmacher zu einer transparenten Gießfolie verarbeitet werden. Sämtliche Derivate erwiesen sich als ausgeprägt hydrophob. Zeinoleat konnte über das Schmelzspinnverfahren zu thermoplastischen Fasern verarbeitet werden.show moreshow less
  • In recent years, a steadily growing production capacity of bioplastic based on renewable resources was noticed. Despite its huge production capacities and an appropriate property profile (ubiquitous occurrence, easy extraction), starch is only applied in addition of plasticizers in a hydrophilic, thermoplastic form in blends with e. g. polyesters. The same applies to bioplastics based on proteins. The actual study has the aim to develop starch-based bioplastics, which are hydrophobic, thermoplastic without the addition of any plasticizer and have mechanical properties to be a suitable alternative material in the area of food packaging. To obtain a variation of the raw materials for bioplastics, the concept shall be applied to two types of industrial available proteins, whey protein isolate (WPI) and Zein. Fatty acid esters of starch came out to be a suitable class of materials. Initially, the methods of esterifying acid chlorides and the transesterification of fatty acid vinyl esters were compared with the latter being moreIn recent years, a steadily growing production capacity of bioplastic based on renewable resources was noticed. Despite its huge production capacities and an appropriate property profile (ubiquitous occurrence, easy extraction), starch is only applied in addition of plasticizers in a hydrophilic, thermoplastic form in blends with e. g. polyesters. The same applies to bioplastics based on proteins. The actual study has the aim to develop starch-based bioplastics, which are hydrophobic, thermoplastic without the addition of any plasticizer and have mechanical properties to be a suitable alternative material in the area of food packaging. To obtain a variation of the raw materials for bioplastics, the concept shall be applied to two types of industrial available proteins, whey protein isolate (WPI) and Zein. Fatty acid esters of starch came out to be a suitable class of materials. Initially, the methods of esterifying acid chlorides and the transesterification of fatty acid vinyl esters were compared with the latter being more appropriate. Reaction parameters of this method were optimized and it was applied to a complete series of vinyl ester reagents (butanoate to stearate), leading to degree of substitution (DS)-values up to 2.2-2.6. With that, a systematic study of the variation of the fatty acid ester chain as well as the DS became possible. It came out that all products with a DS >1.5 showed a well-marked solubility in organic solvents, whereby solution NMR-studies as well as measurements of the molecular weight distributions by using size exclusion chroma-tography with multi-angle laser light scattering (SEC-MALLS) were possible. The different solution behavior was studied by dynamic light scattering (DLS). All soluble products could be formed into films via casting, where materials with a DS of 1.5-1.7 showed the highest values concerning tensile strength (up to 42 MPa) and Youngs modulus (up to 1390 MPa). Especially starch hexanoate with DS <2 and starch butanoate with a DS >2 revealed mechanical properties which are comparable to usually applied polymers for food packaging, e. g. polyethylene (tensile strength: 15-20 MPa, E-Mod: 300-1300 MPa). Tensile strength and Youngs modulus were reduced with increasing length of the esterified fatty acid. Wide-angle X-Ray scattering (WAXS) and infrared spectroscopy (ATR-FTIR) explained this tendency by an increasing intermolecular distance of the starch in the material. Glassy transitions of the materials were detected and showed a dependency on the type of esterified fatty acid and the DS. The crystalline structures of the esterified long-chain fatty acids revealed a melting peak. All films came out to be hydrophobic with contact angles against water >95°. The tensile strength and the Youngs modulus of the highly substituted products could be further improved by blending them with biobased polyterpenes as well as the acylated Zein. A thermoplastic processing without the use of any plasticizer additives was possible for products with a medium and high DS. Homogeneous, transparent testing specimens were obtained. The specific mechanical values were comparable with the casted films, although the highest values for the tensile strength and the elongation were lower. Investigations of the hardness showed comparable values to polyethylene. Selected samples were further processed to fibers by melt spinning. Especially starch esters with high DS revealed homogeneous fibers with a significant increase in the tensile strength compared to the film or testing specimen. Even fatty acid starch esters with a medium DS were processed by the melt-spinning, but their higher glassy transition lead to a reduced softening behavior. To transfer this concept to the class of proteins, different methods of synthesis were studied in the first step, which differed in their amount of acylation. The acylation using fatty acid chlorides lead to highest values. With regard to a well-marked organic solvent solubility, in the case of WPI the acylation with carbonyldiimidazol (CDI)-activated fatty acid was established. For Zein, the acid chloride acylation in pyridine gave the desired results. It came out the fatty acid acylated soluble WPI could not be thermoplastic processed without additional plasticizers. By using biobased oleic acid as additive, the potential of acylated WPI as a thermoplastic filler in blends with e. g. fatty acid esters of starch was shown. In contrast, fatty acid acyl derivatives of Zein revealed well marked glassy transitions <100 °C with an adequate thermal stability. While Zeinoleate could be formed into transparent films via solvent casting without any plasticizer additives, low amounts of tall oil enabled film-forming in the case of acyl derivatives with shorter fatty acids as well. All derivatives revealed a well-marked hydrophobicity. Finally, Zeinoleate was thermoplastically processed into fibers by melt-spinning without any further additives.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Henning Winkler
URN:urn:nbn:de:kobv:517-opus-71089
Supervisor(s):Joachim Koetz
Publication type:Doctoral Thesis
Language:German
Publication year:2013
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2014/05/20
Release date:2014/07/22
Tag:Fasern; Gießfolien; Proteine; Stärke; thermoplastisch
casted-films; fibres; films; proteins; starch; thermoplastic
RVK - Regensburg classification:VK 8587
RVK - Regensburg classification:VK 8567
RVK - Regensburg classification:VN 9507
RVK - Regensburg classification:VN 5070
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.