The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 7
Back to Result List

The tailspike protein of Shigella phage Sf6 : a structural homolog of Salmonella phage P22 tailspike protein without sequence similarity in the beta-helix domain

  • Bacteriophage Sf6 tailspike protein is functionally equivalent to the well characterized tailspike ofSalmonella phage P22, mediating attachment of the viral particle to host cell-surface polysaccharide. However, there is significant sequence similarity between the two 70-kDa polypeptides only in the N-terminal putative capsid-binding domains. The major, central part of P22 tailspike protein, which forms a parallel ;-helix and is responsible for saccharide binding and hydrolysis, lacks detectable sequence homology to the Sf6 protein. After recombinant expression in Escherichia coli as a soluble protein, the Sf6 protein was purified to homogeneity. As shown by circular dichroism and Fourier transform infrared spectroscopy, the secondary structure contents of Sf6 and P22 tailspike proteins are very similar. Both tailspikes are thermostable homotrimers and resist denaturation by SDS at room temperature. The specific endorhamnosidase activities of Sf6 tailspike protein toward fluorescence-labeled dodeca-, deca-, and octasaccharideBacteriophage Sf6 tailspike protein is functionally equivalent to the well characterized tailspike ofSalmonella phage P22, mediating attachment of the viral particle to host cell-surface polysaccharide. However, there is significant sequence similarity between the two 70-kDa polypeptides only in the N-terminal putative capsid-binding domains. The major, central part of P22 tailspike protein, which forms a parallel ;-helix and is responsible for saccharide binding and hydrolysis, lacks detectable sequence homology to the Sf6 protein. After recombinant expression in Escherichia coli as a soluble protein, the Sf6 protein was purified to homogeneity. As shown by circular dichroism and Fourier transform infrared spectroscopy, the secondary structure contents of Sf6 and P22 tailspike proteins are very similar. Both tailspikes are thermostable homotrimers and resist denaturation by SDS at room temperature. The specific endorhamnosidase activities of Sf6 tailspike protein toward fluorescence-labeled dodeca-, deca-, and octasaccharide fragments of Shigella O-antigen suggest a similar active site topology of both proteins. Upon deletion of the N-terminal putative capsid-binding domain, the protein still forms a thermostable, SDS-resistant trimer that has been crystallized. The observations strongly suggest that the tailspike of phage Sf6 is a trimeric parallel ;-helix protein with high structural similarity to its functional homolog from phage P22.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Alexander Freiberg, Renato Morona, Luisa Van den Bosch, Christiane Jung, Joachim Behlke, Nung Carlin, Robert SecklerORCiDGND, Ulrich BaxaORCiD
URL:http://www.jbc.org/content/278/3/1542.full
ISSN:0021-9258
Publication type:Article
Language:English
Year of first publication:2003
Publication year:2003
Release date:2017/03/25
Source:Journal of biological chemistry : JBC. - ISSN 0021-9258. - 278 (2003), 3, S. 1542 - 1548
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.