• search hit 1 of 2
Back to Result List

Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects

  • Glucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (similar to)0.9% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4 mg dexamethasone (+20 mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q < 0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed andGlucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (similar to)0.9% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4 mg dexamethasone (+20 mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q < 0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed and deregulated by dexamethasone. The results draw a holistic picture of the severe metabolic deregulation induced by single-dose, short-term glucocorticoid application. The observed metabolic changes suggest a potential for early detection of severe side effects, raising hope for personalized early countermeasures increasing quality of life and reducing health care costs.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Natalie Bordag, Sebastian Klie, Kathrin Jürchott, Janine Vierheller, Hajo Schiewe, Valerie Albrecht, Jörg-Christian Tonn, Christoph Schwartz, Christian Schichor, Joachim SelbigGND
DOI:https://doi.org/10.1038/srep15954
ISSN:2045-2322
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/26526738
Title of parent work (English):Scientific reports
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:5
Number of pages:12
Funding institution:German Federal Ministry of Education and Research [BMBF0315005A]; EU ERA net bilateral INREMOS project on Systems Biology Tools development for Cell Therapy and Drug Development/SYSTHER - German Federal Ministry of Education and Research [3211-06-000539]; EU ERA net bilateral INREMOS project on Systems Biology Tools development for Cell Therapy and Drug Development/SYSTHER - Slovenian Federal Ministry of Education and Research [3211-06-000539]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.