• search hit 2 of 8
Back to Result List

The nature and size of the optical continuum source in QSO 2237+0305

  • From the peak of a gravitational microlensing high-magnification event in the A component of QSO 2237+0305, which was accurately monitored by the Gravitational Lenses International Time Project collaboration, we derived new information on the nature and size of the optical V-band and R-band sources in the distant quasar. If the microlensing peak is caused by a microcaustic crossing, we first obtain that the standard accretion disk is a scenario more reliable/ feasible than other typical axially symmetric models. Moreover, the standard scenario fits both the V-band and R-band observations with reduced ?2 values very close to 1. Taking into account all these results, a standard accretion disk around a supermassive black hole is a good candidate for the optical continuum main source in QSO 2237+0305. Second, using the standard source model and a robust upper limit on the transverse galactic velocity, we infer that 90% of the V- band and R-band luminosities are emitted from a region with a radial size less than 1.2×10-2 pc (=3.7×1016 cm,From the peak of a gravitational microlensing high-magnification event in the A component of QSO 2237+0305, which was accurately monitored by the Gravitational Lenses International Time Project collaboration, we derived new information on the nature and size of the optical V-band and R-band sources in the distant quasar. If the microlensing peak is caused by a microcaustic crossing, we first obtain that the standard accretion disk is a scenario more reliable/ feasible than other typical axially symmetric models. Moreover, the standard scenario fits both the V-band and R-band observations with reduced ?2 values very close to 1. Taking into account all these results, a standard accretion disk around a supermassive black hole is a good candidate for the optical continuum main source in QSO 2237+0305. Second, using the standard source model and a robust upper limit on the transverse galactic velocity, we infer that 90% of the V- band and R-band luminosities are emitted from a region with a radial size less than 1.2×10-2 pc (=3.7×1016 cm, at a 2 ? confidence level).show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Luis Julian Goicoechea, D. Alcalde, E. Mediavilla, J. A. Munoz, Rodrigo Gil-Merino
Document Type:Article
Language:English
Year of first Publication:2002
Year of Completion:2002
Release Date:2017/03/24
Source:The Astrophysical Journal. - 579 (2002), 1, S. 127 - 135
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Institution name at the time of publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik