The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 9
Back to Result List

Quantifying lithogenic inputs to the North Pacific Ocean using the long-lived thorium isotopes

  • Dissolved Th-232 is added to the ocean though the partial dissolution of lithogenic materials such as aerosol dust in the same way as other lithogenically sourced and more biologically important trace metals such as Fe. Oceanic Th-230, on the other hand, is sourced primarily from the highly predictable decay of dissolved U-234. The rate at which dissolved Th-232 is released by mineral dissolution can be constrained by a Th removal rate derived from Th-230:U-234 disequilibria, assuming steady-state. Calculated fluxes of dissolved Th-232 can in turn be used to estimate fluxes of other lithogenically sourced dissolved metals as well as the original lithogenic supplies, such as aerosol dust deposition, given the concentration and fractional solubility of Th (or other metals) in the lithogenic material. This method is applied to 7 water column profiles from the Innovative North Pacific Experiment (INOPEX) cruise of 2009 and 2 sites from the subtropical North Pacific. The structure of shallow depth profiles suggests rapid scavenging at theDissolved Th-232 is added to the ocean though the partial dissolution of lithogenic materials such as aerosol dust in the same way as other lithogenically sourced and more biologically important trace metals such as Fe. Oceanic Th-230, on the other hand, is sourced primarily from the highly predictable decay of dissolved U-234. The rate at which dissolved Th-232 is released by mineral dissolution can be constrained by a Th removal rate derived from Th-230:U-234 disequilibria, assuming steady-state. Calculated fluxes of dissolved Th-232 can in turn be used to estimate fluxes of other lithogenically sourced dissolved metals as well as the original lithogenic supplies, such as aerosol dust deposition, given the concentration and fractional solubility of Th (or other metals) in the lithogenic material. This method is applied to 7 water column profiles from the Innovative North Pacific Experiment (INOPEX) cruise of 2009 and 2 sites from the subtropical North Pacific. The structure of shallow depth profiles suggests rapid scavenging at the surface and at least partial regeneration of dissolved Th-232 at 100-200 m depth. This rapid cycling could involve colloidal Th generated during mineral dissolution, which may not be subject to the same removal rates as the more truly dissolved Th-230. An additional deep source of Th-232 was revealed in deep waters, most likely dissolution of seafloor sediments, and offers a constraint on dissolved trace element supply due to boundary exchange. (C) 2013 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christopher T. Hayes, Robert F. Anderson, Martin Q. Fleisher, Sascha Serno, Gisela Winckler, Rainer Gersonde
DOI:https://doi.org/10.1016/j.epsl.2013.09.025
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:GEOTRACES compliant; North Pacific Ocean; aerosols; boundary exchange; dust; thorium
Volume:383
Issue:12
Number of pages:10
First page:16
Last Page:25
Funding institution:German Ministry of Education and Research (BmBF); U.S. National Science Foundation [1029211]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.