The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 6 of 27
Back to Result List

Direct hysteresis measurements on ferroelectret films by means of a modified Sawyer-Tower circuit

  • Ferro- and piezo-electrets are non-polar polymer foams or film systems with internally charged cavities. Since their invention more than two decades ago, ferroelectrets have become a welcome addition to the range of piezo-, pyro-, and ferro-electric materials available for device applications. A polarization-versus-electric-field hysteresis is an essential feature of a ferroelectric material and may also be used for determining some of its main properties. Here, a modified Sawyer-Tower circuit and a combination of unipolar and bipolar voltage waveforms are employed to record hysteresis curves on cellular-foam polypropylene ferroelectret films and on tubular-channel fluoroethylenepropylene copolymer ferroelectret film systems. Internal dielectric barrier discharges (DBDs) are required for depositing the internal charges in ferroelectrets. The true amount of charge transferred during the internal DBDs is obtained from voltage measurements on a standard capacitor connected in series with the sample, but with a much larger capacitanceFerro- and piezo-electrets are non-polar polymer foams or film systems with internally charged cavities. Since their invention more than two decades ago, ferroelectrets have become a welcome addition to the range of piezo-, pyro-, and ferro-electric materials available for device applications. A polarization-versus-electric-field hysteresis is an essential feature of a ferroelectric material and may also be used for determining some of its main properties. Here, a modified Sawyer-Tower circuit and a combination of unipolar and bipolar voltage waveforms are employed to record hysteresis curves on cellular-foam polypropylene ferroelectret films and on tubular-channel fluoroethylenepropylene copolymer ferroelectret film systems. Internal dielectric barrier discharges (DBDs) are required for depositing the internal charges in ferroelectrets. The true amount of charge transferred during the internal DBDs is obtained from voltage measurements on a standard capacitor connected in series with the sample, but with a much larger capacitance than the sample. Another standard capacitor with a much smaller capacitance-which is, however, still considerably larger than the sample capacitance-is also connected in series as a high-voltage divider protecting the electrometer against destructive breakdown. It is shown how the DBDs inside the polymer cavities lead to phenomenological hysteresis curves that cannot be distinguished from the hysteresis loops found on other ferroic materials. The physical mechanisms behind the hysteresis behavior are described and discussed.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Xunlin QiuORCiDGND, Lars Holländer, Werner WirgesORCiD, Reimund GerhardORCiDGND, Heitor Cury Basso
DOI:https://doi.org/10.1063/1.4809556
ISSN:0021-8979
Title of parent work (English):Journal of applied physics
Publisher:American Institute of Physics
Place of publishing:Melville
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Volume:113
Issue:22
Number of pages:8
Funding institution:CAPES (Brazil) [54392969]; DAAD (Germany) (PROBRAL Project) [316/09]; European Union
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.