• search hit 1 of 25
Back to Result List

Aromatic poly(1,3,4-oxadiazole)s as advanced materials

  • Poly(1,3,4-oxadiazole)s have been the focus of considerable interest with regard to the- production of high- performance materials, particularly owing to their high thermal stability in oxidative atmosphere and specific properties determined by the structure of 1,3,4-oxadiazole ring, which, from the spectral and electronic points of view, is similar to a p-phenylene structure.[1] Besides their excellent resistance to high temperature, polyoxadiazoles have many desirable characteristics, such as good hydrolytic stability, high glass transition temperatures, low dielectric constants, and tough mechanical properties. Some polyoxadiazoles have semiconductive properties, other structures can be electrochemically doped and thus made conductive, and other have liquid-crystalline properties, which make them very attractive for a wide range of high-performance applications. They exhibit excellent fiber- and film-forming capabilities, thus being considered for use as heat-resistant reinforcing fibers for advanced composite materials, highlyPoly(1,3,4-oxadiazole)s have been the focus of considerable interest with regard to the- production of high- performance materials, particularly owing to their high thermal stability in oxidative atmosphere and specific properties determined by the structure of 1,3,4-oxadiazole ring, which, from the spectral and electronic points of view, is similar to a p-phenylene structure.[1] Besides their excellent resistance to high temperature, polyoxadiazoles have many desirable characteristics, such as good hydrolytic stability, high glass transition temperatures, low dielectric constants, and tough mechanical properties. Some polyoxadiazoles have semiconductive properties, other structures can be electrochemically doped and thus made conductive, and other have liquid-crystalline properties, which make them very attractive for a wide range of high-performance applications. They exhibit excellent fiber- and film-forming capabilities, thus being considered for use as heat-resistant reinforcing fibers for advanced composite materials, highly resistant fabrics for the filtration of hot gases, special membranes for gas separation or reverse osmosis, precursors for highly oriented graphite fibers, films, and blocks to be used in the construction of electronic instruments based on X-rays, neutron beams, or a-particles, or in the construction of nuclear reactor walls. Since they were first reported in 1961,[2] a wide variety of polymers containing 1,3,4-oxadiazole rings have been synthesized, and their preparation, characterization, and physico-mechanical properties have been periodically reviewed .[3-8] This article will present a general overview of this class of polymers and will refer to the work carried out by different researchers in the last ten years with the emphasis on the potential uses of such polymers as advanced materials.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Burkhard SchulzORCiDGND, Maria Bruma, Ludwig BrehmerGND
Document Type:Article
Language:English
Year of first Publication:1997
Year of Completion:1997
Release Date:2017/03/24
Source:Advanced materials. - 9 (1997), 8, S. 601 - 613
Organizational units:Zentrale und wissenschaftliche Einrichtungen / Interdisziplinäres Zentrum für Dünne Organische und Biochemische Schichten