• search hit 1 of 10
Back to Result List

A biochemical explanation for the success of the mixotrophy in the flagellate Ochromonas sp.

  • We report the influence of different nutritional modes-autotrophy, mixotrophy, and heterotrophy-on the fatty acid and sterol composition of the freshwater flagellate Ochromonas sp. and discuss the ecological significance of our results with respect to the resource competition theory (rct). Polyunsaturated fatty acids (PUFAs) are the most efficient biochemical variable distinguishing between nutritional modes of Ochromonas sp. Decreasing concentrations of PUFAs were observed in the order autotrophs, mixotrophs, heterotrophs. In mixotrophs and heterotrophs, concentrations of saturated fatty acids were higher than those of monounsaturated fatty acids and PUFAs as a result of bacterivory. Stigmasterol was the main sterol in Ochromonas sp., regardless of nutritional mode. Mixotrophs showed higher growth rates than heterotrophs, which could not be explained by rct. Heterotrophs, in turn, exhibited higher growth rates than autotrophs, which were cultured under the same light conditions as mixotrophs. Mixotrophs can synthesize PUFAs, whichWe report the influence of different nutritional modes-autotrophy, mixotrophy, and heterotrophy-on the fatty acid and sterol composition of the freshwater flagellate Ochromonas sp. and discuss the ecological significance of our results with respect to the resource competition theory (rct). Polyunsaturated fatty acids (PUFAs) are the most efficient biochemical variable distinguishing between nutritional modes of Ochromonas sp. Decreasing concentrations of PUFAs were observed in the order autotrophs, mixotrophs, heterotrophs. In mixotrophs and heterotrophs, concentrations of saturated fatty acids were higher than those of monounsaturated fatty acids and PUFAs as a result of bacterivory. Stigmasterol was the main sterol in Ochromonas sp., regardless of nutritional mode. Mixotrophs showed higher growth rates than heterotrophs, which could not be explained by rct. Heterotrophs, in turn, exhibited higher growth rates than autotrophs, which were cultured under the same light conditions as mixotrophs. Mixotrophs can synthesize PUFAs, which are important for many physiological functions such as membrane permeability and growth. Thus, mixotrophy facilitated efficient growth as well as the ability to synthesize complex and essential biomolecules. These strong synergetic effects are due to the combination of biochemical benefits of heterotrophic and autotrophic metabolic pathways and cannot be predicted by rct.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Iola G. Boëchat, Guntram WeithoffORCiDGND, Angela Krüger, Björn Gücker, Rita AdrianORCiDGND
URL:http://www.aslo.org/lo/
DOI:https://doi.org/10.4319/lo.2007.52.4.1624
ISSN:0024-3590
Publication type:Article
Language:English
Year of first publication:2007
Publication year:2007
Release date:2017/03/25
Source:Limnology and oceanography. - ISSN 0024-3590. - 52 (2007), 4, S. 1624 - 1632
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.