The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 503
Back to Result List

Geomechanical and petrological characterisation of exposed slip zones, Alpine Fault, New Zealand

Geomechanische und petrologische Charakterisierung aufgeschlossener Gleithorizonte, Alpine Fault, Neuseeland

  • The Alpine Fault is a large, plate-bounding, strike-slip fault extending along the north-western edge of the Southern Alps, South Island, New Zealand. It regularly accommodates large (MW > 8) earthquakes and has a high statistical probability of failure in the near future, i.e., is late in its seismic cycle. This pending earthquake and associated co-seismic landslides are expected to cause severe infrastructural damage that would affect thousands of people, so it presents a substantial geohazard. The interdisciplinary study presented here aims to characterise the fault zone’s 4D (space and time) architecture, because this provides information about its rheological properties that will enable better assessment of the hazard the fault poses. The studies undertaken include field investigations of principal slip zone fault gouges exposed along strike of the fault, and subsequent laboratory analyses of these outcrop and additional borehole samples. These observations have provided new information on (I) characteristic microstructuresThe Alpine Fault is a large, plate-bounding, strike-slip fault extending along the north-western edge of the Southern Alps, South Island, New Zealand. It regularly accommodates large (MW > 8) earthquakes and has a high statistical probability of failure in the near future, i.e., is late in its seismic cycle. This pending earthquake and associated co-seismic landslides are expected to cause severe infrastructural damage that would affect thousands of people, so it presents a substantial geohazard. The interdisciplinary study presented here aims to characterise the fault zone’s 4D (space and time) architecture, because this provides information about its rheological properties that will enable better assessment of the hazard the fault poses. The studies undertaken include field investigations of principal slip zone fault gouges exposed along strike of the fault, and subsequent laboratory analyses of these outcrop and additional borehole samples. These observations have provided new information on (I) characteristic microstructures down to the nanoscale that indicate which deformation mechanisms operated within the rocks, (II) mineralogical information that constrains the fault’s geomechanical behaviour and (III) geochemical compositional information that allows the influence of fluid- related alteration processes on material properties to be unraveled. Results show that along-strike variations of fault rock properties such as microstructures and mineralogical composition are minor and / or do not substantially influence fault zone architecture. They furthermore provide evidence that the architecture of the fault zone, particularly its fault core, is more complex than previously considered, and also more complex than expected for this sort of mature fault cutting quartzofeldspathic rocks. In particular our results strongly suggest that the fault has more than one principal slip zone, and that these form an anastomosing network extending into the basement below the cover of Quaternary sediments. The observations detailed in this thesis highlight that two major processes, (I) cataclasis and (II) authigenic mineral formation, are the major controls on the rheology of the Alpine Fault. The velocity-weakening behaviour of its fault gouge is favoured by abundant nanoparticles promoting powder lubrication and grain rolling rather than frictional sliding. Wall-rock fragmentation is accompanied by co-seismic, fluid-assisted dilatancy that is recorded by calcite cementation. This mineralisation, along with authigenic formation of phyllosilicates, quickly alters the petrophysical fault zone properties after each rupture, restoring fault competency. Dense networks of anastomosing and mutually cross-cutting calcite veins and intensively reworked gouge matrix demonstrate that strain repeatedly localised within the narrow fault gouge. Abundantly undeformed euhedral chlorite crystallites and calcite veins cross-cutting both fault gouge and gravels that overlie basement on the fault’s footwall provide evidence that the processes of authigenic phyllosilicate growth, fluid-assisted dilatancy and associated fault healing are processes active particularly close to the Earth’s surface in this fault zone. Exposed Alpine Fault rocks are subject to intense weathering as direct consequence of abundant orogenic rainfall associated with the fault’s location at the base of the Southern Alps. Furthermore, fault rock rheology is substantially affected by shallow-depth conditions such as the juxtaposition of competent hanging wall fault rocks on poorly consolidated footwall sediments. This means microstructural, mineralogical and geochemical properties of the exposed fault rocks may differ substantially from those at deeper levels, and thus are not characteristic of the majority of the fault rocks’ history. Examples are (I) frictionally weak smectites found within the fault gouges being artefacts formed at temperature conditions, and imparting petrophysical properties that are not typical for most of fault rocks of the Alpine Fault, (II) grain-scale dissolution resulting from subaerial weathering rather than deformation by pressure-solution processes and (III) fault gouge geometries being more complex than expected for deeper counterparts. The methodological approaches deployed in analyses of this, and other fault zones, and the major results of this study are finally discussed in order to contextualize slip zone investigations of fault zones and landslides. Like faults, landslides are major geohazards, which highlights the importance of characterising their geomechanical properties. Similarities between faults, especially those exposed to subaerial processes, and landslides, include mineralogical composition and geomechanical behaviour. Together, this ensures failure occurs predominantly by cataclastic processes, although aseismic creep promoted by weak phyllosilicates is not uncommon. Consequently, the multidisciplinary approach commonly used to investigate fault zones may contribute to increase the understanding of landslide faulting processes and the assessment of their hazard potential.show moreshow less
  • Die Alpine Fault ist eine große Plattengrenze mit lateralem Versatz, die sich entlang des nordwestlichen Fußes der Südalpen, Südinsel Neuseeland, erstreckt. Regelmäßig ereignen sich große (MW > 8) Erdbeben und gegenwärtig befindet sich die Störung am Ende ihres Erdbebenzyklus, so dass ein baldiges Beben sehr wahrscheinlich ist. Die Alpine Fault stellt eine bedeutende Naturgefahr dar und so wird davon ausgegangen, dass tausende Menschen von dem anstehenden Erdbeben, ko-seismischen Hangrutschungen und den damit einhergehenden großen Schäden an der Infrastruktur betroffen sein werden. Daher zielt die hier vorgestellte interdisziplinäre Studie darauf ab, den Aufbau der Störungszone in 4D (räumlich und zeitlich) zu charakterisieren, weil dies Aufschluss über ihre rheologischen Eigenschaften liefert und damit einen Beitrag zur Einschätzung der von der Störung ausgehenden Gefahr leisten wird. Die durchgeführten Arbeiten umfassen Felduntersuchungen der entlang der Störung aufge- schlossenen Hauptscherzone und sich daran anschließendeDie Alpine Fault ist eine große Plattengrenze mit lateralem Versatz, die sich entlang des nordwestlichen Fußes der Südalpen, Südinsel Neuseeland, erstreckt. Regelmäßig ereignen sich große (MW > 8) Erdbeben und gegenwärtig befindet sich die Störung am Ende ihres Erdbebenzyklus, so dass ein baldiges Beben sehr wahrscheinlich ist. Die Alpine Fault stellt eine bedeutende Naturgefahr dar und so wird davon ausgegangen, dass tausende Menschen von dem anstehenden Erdbeben, ko-seismischen Hangrutschungen und den damit einhergehenden großen Schäden an der Infrastruktur betroffen sein werden. Daher zielt die hier vorgestellte interdisziplinäre Studie darauf ab, den Aufbau der Störungszone in 4D (räumlich und zeitlich) zu charakterisieren, weil dies Aufschluss über ihre rheologischen Eigenschaften liefert und damit einen Beitrag zur Einschätzung der von der Störung ausgehenden Gefahr leisten wird. Die durchgeführten Arbeiten umfassen Felduntersuchungen der entlang der Störung aufge- schlossenen Hauptscherzone und sich daran anschließende Laboruntersuchungen dieser Auf- schluss- und zusätzlicher Bohrlochproben. Diese geben Aufschluss über (I) charakteristis- che Mikrostrukturen bis in den Nanometerbereich, was erlaubt Deformationsmechanismen abzuleiten, (II) die Mineralogie und ihren Einfluss auf das geomechanische Verhalten und (III) die geochemische Zusammensetzung, die es ermöglicht, den Einfluss fluid-bezogener Alterationsprozesse auf Materialeigenschaften besser zu verstehen. Die Ergebnisse zeigen, dass Variationen der Eigenschaften der Störungsgesteine, wie Mikrostrukturen und mineralogische Zusammensetzung, entlang der Störung nur untergeord- net auftreten und den Aufbau der Störungszone nicht oder nur unwesentlich beeinflussen. Darüber hinaus zeigen sie, dass der Aufbau der Störungszone, vor allem ihres Kerns, komplexer ist als bisher angenommen. Dies ist unerwartet für eine Störung in quartz- und feldspatreichem Gestein dieses Alters. Diese Sicht wird von Ergebnissen gestützt, die nahelegen, dass die Störung mehr als eine Hauptscherzone hat und dass diese ein anastomisierendes Netzwerk bilden, das sich bis in das Festgestein unterhalb der Deckschicht aus quartären Sedimenten erstreckt. Die Beobachtungen dieser Arbeit zeigen, dass zwei Prozesse, (I) Kataklase und (II) au- thigenes Mineralwachstum, den größten Einfluss auf die Rheologie der Alpine Fault haben. Das “velocity-weakening”-Verhalten der Hauptscherzonen und ihres Gesteinsmehls wird durch die große Anzahl von Nanopartikeln begünstigt, die das Rollen der Partikel zu Ungunsten von Gleitreibungsrutschen fördern. Die Zerstückelung des Umgebungsgesteins geht mit ko- seismischer, fluid-unterstützter Dilatanz einher, die die anschließende Zementierung durch Kalzit begünstigt. Diese, in Kombination mit authigenen Schichtsilikaten, stellt die petro- physikalischen Eigenschaften der Störungszone nach jedem Erdbeben schnell wieder her. Dichte Netzwerke anastomisierender und sich gegenseitig durchschlagender Kalzitadern und umfassend aufgearbeitetes Gesteinsmehl belegen, dass Verformung wiederholt in den dünnen Hauptscherbahnen lokalisiert wurde. Kalzitadern durschlagen sowohl das Gesteinsmehl der Hauptscherbahnen als auch das Geröll, das die oberflächennahe Sedimentabdeckung des Festgesteins im Liegenden darstellt. Dies und allgegenwärtige, undeformierte, euhedrale Chlorit-Kristalle belegen, dass authigenes Schichtsilikatwachstum, fluid-unterstütze Dilatanz und das damit einhergehende Heilen der Störung Prozesse sind, die auch nahe der Erdoberfläche wirken. Freigelegte Gesteine der Alpine Fault sind intensiver Verwitterung als direkter Folge des reichlich vorhandenen Steigungsregens, der sich aus der Lage der Störung am Fuß der Südalpen ergibt, ausgesetzt. Darüber hinaus wird die Rheologie der Störungsgesteine erheblich durch oberflächennahen Randbedingungen wie die Gegenüberstellung kompetenter Störungsgesteine des Hangenden mit wenig-konsolidierten Sedimenten des Liegenden beeinflusst. Dies hat zur Folge, dass sich mikrostrukturelle, mineralogische und geochemische Eigenschaften der freigelegten Störungsgesteine erheblich von denen in größeren Tiefen unterscheiden können und folglich nicht charakteristisch für den Großteil der Deformationsgeschichte sind. Beispiele hierfür sind (I) Smektitphasen in den Hauptscherzonen, die einen niedrigen Reibungskoeffizien- ten aufweisen, allerdings Artefakte von für die Mehrheit der Gesteine dieser Störung atypischer Temperaturen und petrophysikalischer Eigenschaften sind, (II) angelöste Minerale als Ergebnis oberflächennaher Verwitterung und nicht von Drucklösung und (III) ein interner Aufbau des Gesteinsmehls der Hauptscherbahnen, der komplexerer ist, als dies für das Äquivalent in größerer Tiefe zu erwarten wäre. Schließlich werden die Ergebnisse dieser Arbeit gemeinsam mit den Hauptbefunden und methodischen Ansätzen anderer Studien zu Störungszonen diskutiert und in Kontext zu Analysen von Scherzonen in Störungen und Hangrutschungen gestellt. Hangrutschungen sind, wie Störungen, bedeutende Naturgefahren, was die Notwendigkeit, ihre geomechanischen Eigenschaften zu charakterisieren, herausstreicht. Störungen, vor allem jene, die Ober- flächenprozessen ausgesetzt sind, und Hangrutschungen teilen viele Gemeinsamkeiten wie mineralogische Zusammensetzung und geomechanisches Verhalten, was vor allem zu Versagen mittels kataklastischer Mechanismen führt; allerdings ist aseismisches Kriechen, befördert durch Schichtsilikate mit niedrigem Reibungskoeffizienten, nicht ungewöhnlich. Folglich könnte der multidisziplinäre Ansatz, der in der Regel zur Untersuchung von Störungszonen herangezogen wird, dazu beitragen das Verständnis von Hangrutschungen zu verbessern und ihr Gefährdungspotential abzuschätzen.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Bernhard SchuckORCiD
URN:urn:nbn:de:kobv:517-opus4-446129
DOI:https://doi.org/10.25932/publishup-44612
Supervisor(s):Georg Dresen, Virginia G. Toy
Publication type:Doctoral Thesis
Language:English
Publication year:2020
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2020/01/17
Release date:2020/03/31
Tag:Alpine Fault; Deformationsmechanismen; Erdrutsche; Fault Healing; Fluid-Gesteins-Wechselwirkung; Lokalisierung von Verformung; Mikrostrukturen; Mineralzusammensetzung; Störungszonenarchitektur; Verwerfungen; authigene Mineralbildung; spröde Deformation
Alpine Fault; authigenic mineral formation; brittle deformation; deformation mechanisms; fault healing; fault zone architecture; faults; fluid rock interaction; landslides; microstructures; mineral composition; strain localization
Number of pages:XVII, 143
RVK - Regensburg classification:TG 3300, TP 9200
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoCC-BY-NC-ND - Namensnennung, nicht kommerziell, keine Bearbeitungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.