• search hit 3 of 14
Back to Result List

Source process of the 1911 M8.0 Chon-Kemin earthquake: investigation results by analogue seismic records

  • Several destructive earthquakes have occurred in Tien-Shan region at the beginning of 20th century. However, the detailed seismological characteristics, especially source parameters of those earthquakes are still poorly investigated. The Chon-Kemin earthquake is the strongest instrumentally recorded earthquake in the Tien-Shan region. This earthquake has produced an approximately 200 km long system of surface ruptures along Kemin-Chilik fault zone and killed about similar to 400 people. Several studies presented the different information on the earthquake epicentre location and magnitude, and two different focal mechanisms were also published. The reason for the limited knowledge of the source parameters for the Chon-Kemin earthquake is the complexity of old analogue records processing, digitization and analysis. In this study the data from 23 seismic stations worldwide were collected and digitized. The earthquake epicentre was relocated to 42.996NA degrees and 77.367EA degrees, the hypocentre depth is estimated between 10 and 20 km.Several destructive earthquakes have occurred in Tien-Shan region at the beginning of 20th century. However, the detailed seismological characteristics, especially source parameters of those earthquakes are still poorly investigated. The Chon-Kemin earthquake is the strongest instrumentally recorded earthquake in the Tien-Shan region. This earthquake has produced an approximately 200 km long system of surface ruptures along Kemin-Chilik fault zone and killed about similar to 400 people. Several studies presented the different information on the earthquake epicentre location and magnitude, and two different focal mechanisms were also published. The reason for the limited knowledge of the source parameters for the Chon-Kemin earthquake is the complexity of old analogue records processing, digitization and analysis. In this study the data from 23 seismic stations worldwide were collected and digitized. The earthquake epicentre was relocated to 42.996NA degrees and 77.367EA degrees, the hypocentre depth is estimated between 10 and 20 km. The magnitude was recalculated to m(B) 8.05, M-s 7.94 and M-w 8.02. The focal mechanism, determined from amplitude ratios comparison of the observed and synthetic seismograms, was: str = 264A degrees, dip = 52A degrees, rake = 98A degrees. The apparent source time duration was between similar to 45 and similar to 70 s, the maximum slip occurred 25 s after the beginning of the rupture. Two subevents were clearly detected from the waveforms with the scalar moment ratio between them of about 1/3, the third subevent was also detected with less certainty. Taking into account surface rupture information, the fault geometry model with three patches was proposed. Based on scaling relations we conclude that the total rupture length was between similar to 260 and 300 km and a maximum rupture width could reach similar to 70 km.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Galina Kulikova, Frank Krüger
DOI:https://doi.org/10.1093/gji/ggv091
ISSN:0956-540X (print)
ISSN:1365-246X (online)
Parent Title (English):Geophysical journal international
Publisher:Oxford Univ. Press
Place of publication:Oxford
Document Type:Article
Language:English
Year of first Publication:2015
Year of Completion:2015
Release Date:2017/03/27
Tag:Body waves; Earthquake source observations; Seismicity and tectonics; Theoretical seismology
Volume:201
Issue:3
Pagenumber:21
First Page:1891
Last Page:1911
Funder:German Federal Ministry of Education and Research
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Peer Review:Referiert