The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 20569
Back to Result List

The Mass Inflow and Outflow Rates of the Milky Way

  • We present new calculations of the mass inflow and outflow rates around the Milky Way (MW), derived from a catalog of ultraviolet metal-line high-velocity clouds (HVCs). These calculations are conducted by transforming the HVC velocities into the Galactic standard of rest (GSR) reference frame, identifying inflowing (vGSR.<.0 km s(-1)) and outflowing (vGSR > 0 km s(-1)) populations, and using observational constraints on the distance, metallicity, dust content, covering fractions, and total silicon column density of each population. After removing HVCs associated with the Magellanic Stream and the Fermi Bubbles, we find inflow and outflow rates in cool (T similar to 10(4) K) ionized gas of dM(in)/dt greater than or similar to.(0.53 +/- 0.23)(d/12 kpc)(Z/0.2Z(circle dot))-1M(circle dot) yr(-1) and dM(out)/dt greater than or similar to (0.16 +/- 0.07)(d/12 kpc)(Z/0.5Z(circle dot))M--1(circle dot) yr(-1). The apparent excess of inflowing over outflowing gas suggests that the MW is currently in an inflow-dominated phase, but the presenceWe present new calculations of the mass inflow and outflow rates around the Milky Way (MW), derived from a catalog of ultraviolet metal-line high-velocity clouds (HVCs). These calculations are conducted by transforming the HVC velocities into the Galactic standard of rest (GSR) reference frame, identifying inflowing (vGSR.<.0 km s(-1)) and outflowing (vGSR > 0 km s(-1)) populations, and using observational constraints on the distance, metallicity, dust content, covering fractions, and total silicon column density of each population. After removing HVCs associated with the Magellanic Stream and the Fermi Bubbles, we find inflow and outflow rates in cool (T similar to 10(4) K) ionized gas of dM(in)/dt greater than or similar to.(0.53 +/- 0.23)(d/12 kpc)(Z/0.2Z(circle dot))-1M(circle dot) yr(-1) and dM(out)/dt greater than or similar to (0.16 +/- 0.07)(d/12 kpc)(Z/0.5Z(circle dot))M--1(circle dot) yr(-1). The apparent excess of inflowing over outflowing gas suggests that the MW is currently in an inflow-dominated phase, but the presence of substantial mass flux in both directions supports a Galactic fountain model, in which gas is constantly recycled between the disk and the halo. We also find that the metal flux in both directions (in and out) is indistinguishable. By comparing the outflow rate to the Galactic star formation rate, we present the first estimate of the mass loading factor (eta(HVC)) of the disk-wide MW wind, finding eta(HVC) greater than or similar to (0.10 +/- 0.06)(d/12 kpc)(Z/0.5Z(circle dot))(-1). Including the contributions from low- and intermediatevelocity clouds and from hot gas would increase these inflow and outflow estimates.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Andrew J. FoxORCiD, Philipp RichterORCiDGND, Trisha AshleyORCiD, Timothy M. HeckmanORCiD, Nicolas LehnerORCiD, Jessica K. WerkORCiD, Rongmon BordoloiORCiD, Molly S. PeeplesORCiD
DOI:https://doi.org/10.3847/1538-4357/ab40ad
ISSN:0004-637X
ISSN:1538-4357
Title of parent work (English):The astrophysical journal : an international review of spectroscopy and astronomical physics
Publisher:IOP Publ. Ltd.
Place of publishing:Bristol
Publication type:Article
Language:English
Year of first publication:2019
Publication year:2019
Release date:2020/10/27
Volume:884
Issue:1
Number of pages:7
Funding institution:NASA through grants from the Space Telescope Science InstituteSpace Telescope Science Institute [15020]; NASANational Aeronautics & Space Administration (NASA) [NAS 5-26555]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Peer review:Referiert
Publishing method:Open Access
Open Access / Green Open-Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.