• search hit 1 of 1
Back to Result List

From phantom blocks to denudational noise

  • Knowing the rates and mechanisms of geomorphic process that shape the Earth’s surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth’s evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for theKnowing the rates and mechanisms of geomorphic process that shape the Earth’s surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth’s evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for the spatiotemporal variability of denudation processes, this thesis addresses landscape downwearing on three distinctly different spatial scales, starting off at the local scale of individual hillslopes where considerable amounts of debris are generated from rock instantaneously: Rocksliding in active mountains is a major impetus of landscape downwearing. Study I provides a systematic overview of the internal sedimentology of giant rockslide deposits and thus meets the challenge of distinguishing them from macroscopically and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias. This distinction is important to avoid erroneous or misleading deduction of paleoclimatic or tectonic implications. -> Grain size analysis shows that rockslide-derived micro-breccia closely resemble those from meteorite impact or tectonic faults. -> Frictionite may occur more frequently that previously assumed. -> Mössbauer-spectroscopy derived results indicate basal rock melting in the absence of water, involving short-term temperatures of >1500°C. Zooming out, Study II tracks the fate of these sediments, using the example of the upper Indus River, NW India. There we use river sand samples from the Indus and its tributaries to estimate basin-averaged denudation rates along a ~320-km reach across the Tibetan Plateau margin, to answer the question whether incision into the western Tibetan Plateau margin is currently active or not. -> We find an about one-order-of-magnitude upstream decay—from 110 to 10 mm kyr^-1—of cosmogenic Be-10-derived basin-wide denudation rates across the morphological knickpoint that marks the transition from the Transhimalayan ranges to the Tibetan Plateau. This trend is corroborated by independent bulk petrographic and heavy mineral analysis of the same samples. -> From the observation that tributary-derived basin-wide denudation rates do not increase markedly until ~150–200 km downstream of the topographic plateau margin we conclude that incision into the Tibetan Plateau is inactive. -> Comparing our postglacial Be-10-derived denudation rates to long-term (>10^6 yr) estimates from low-temperature thermochronometry, ranging from 100 to 750 mm kyr^-1, points to an order- of-magnitude decay of rates of landscape downwearing towards present. We infer that denudation rates must have been higher in the Quaternary, probably promoted by the interplay of glacial and interglacial stages. Our investigation of regional denudation patterns in the upper Indus finally is an integral part of Study III that synthesizes denudation of the Himalaya-Tibet orogen. In order to identify general and time-invariant predictors for Be-10-derived denudation rates we analyze tectonic, climatic and topographic metrics from an inventory of 297 drainage basins from various parts of the orogen. Aiming to get insight to the full response distributions of denudation rate to tectonic, climatic and topographic candidate predictors, we apply quantile regression instead of ordinary least squares regression, which has been standard analysis tool in previous studies that looked for denudation rate predictors. -> We use principal component analysis to reduce our set of 26 candidate predictors, ending up with just three out of these: Aridity Index, topographic steepness index, and precipitation of the coldest quarter of the year. -> Topographic steepness index proves to perform best during additive quantile regression. Our consequent prediction of denudation rates on the basin scale involves prediction errors that remain between 5 and 10 mm kyr^-1. -> We conclude that while topographic metrics such as river-channel steepness and slope gradient—being representative on timescales that our cosmogenic Be-10-derived denudation rates integrate over—generally appear to be more suited as predictors than climatic and tectonic metrics based on decadal records.show moreshow less
  • Die Kenntnis von Raten und Mechanismen geomorphologischer Prozesse, die die Erdoberfläche gestalten, ist entscheidend für das Verständnis von quartärer Landschaftsgeschichte. Denudationsraten sind dabei das Mittel zur Quantifizierung und zum Vergleich von Oberflächenabtrag; hinweg über zeitliche und räumliche Größenordnungen – von den optisch unversehrten, jedoch durchgehend zerrütteten “Phantom Blocks” der basalen Fazies katastrophaler Bergstürze bis hin zum “Denudational Noise”, dem durchaus informativen Rauschen in Datensätzen, die über ganze Orogene und tausende Jahre von Landschaftsgeschichte integrieren. Diese große räumlich-zeitliche Variabilität von Denudationsprozessen ist Chance und Herausforderung zugleich. Zum einen können Denudationsprozesse weit in der Zeit zurückverfolgt werden, was hilft, Landschaftsgeschichte nachzuvollziehen. Andererseits hat es sich gezeigt, dass geomorphologische Prozessraten mit dem Zeitraum ihrer Beobachtung skalieren, was einen Vergleich über zeitliche Größenordnungen hinweg erschwert. DieseDie Kenntnis von Raten und Mechanismen geomorphologischer Prozesse, die die Erdoberfläche gestalten, ist entscheidend für das Verständnis von quartärer Landschaftsgeschichte. Denudationsraten sind dabei das Mittel zur Quantifizierung und zum Vergleich von Oberflächenabtrag; hinweg über zeitliche und räumliche Größenordnungen – von den optisch unversehrten, jedoch durchgehend zerrütteten “Phantom Blocks” der basalen Fazies katastrophaler Bergstürze bis hin zum “Denudational Noise”, dem durchaus informativen Rauschen in Datensätzen, die über ganze Orogene und tausende Jahre von Landschaftsgeschichte integrieren. Diese große räumlich-zeitliche Variabilität von Denudationsprozessen ist Chance und Herausforderung zugleich. Zum einen können Denudationsprozesse weit in der Zeit zurückverfolgt werden, was hilft, Landschaftsgeschichte nachzuvollziehen. Andererseits hat es sich gezeigt, dass geomorphologische Prozessraten mit dem Zeitraum ihrer Beobachtung skalieren, was einen Vergleich über zeitliche Größenordnungen hinweg erschwert. Diese Dissertation untersucht in drei Studien die Mechanismen, Muster und Raten von Denudation im Himalaja-Tibet Orogen. Der räumlichen (und zeitlichen) Variabilität von Denudationsprozessen folgend beginnt diese Arbeit dort, wo bedeutende Mengen von Festgestein schlagartig in erodierbaren Schutt umgewandelt werden: Bergstürze sind ein Hauptantrieb der Abtragung von aktiven Gebirgen. Studie I systematisiert die interne Sedimentologie gigantischer Bergsturzablagerungen. Sie adressiert damit Herausforderungen durch die makro- und mikroskopische Ähnlichkeit von Bergsturzablagerungen mit glazialen Ablagerungen, tektonischen Störungsbrekkzien und Impaktbrekkzien. Ziel einer solchen Systematisierung ist die Vermeidung fehlerhafter paläoklimatischer oder -tektonischer Interpretationen. -> Bergsturzbrekkzien sind auf mikroskopischer Ebene nicht von tektonischen oder Impaktbrekkzien unterscheidbar. -> Friktionit könnte weit häufiger vorkommen, als bisher angenommen. -> Mössbauer-Spektroskopie deutet auf Temperaturen ≥ 1500° C sowie die Abwesenheit von Wasser als Schmiermittel hin. Auf der mesoskaligen Ebene von Einzugsgebieten verfolgt Studie II, am Beispiel des oberen Indus in NW Indien den Weg dieser Sedimente, denn sie geben Auskunft über beckenweite Denudationsraten, sowie Pfade und Muster des Sedimenttransports am westlichen Tibetplateaurand. Diese Informationen sollen helfen, die Mechanismen der Einschneidung großer Flüsse in das Tibetplateau, sowie den gegenwärtigen erosionalen Status des Plateaurandes zu verstehen. -> Die beckenweiten Denudationsraten in den Tributären des Indus nehmen stromabwärts – und damit über den morphologischen Tibetplateaurand hinweg – von 10 auf 110 mm kyr^-1 zu. Dieser Trend wird durch unabhängige Petrographie- und Schwermineralanalysen aus denselben Proben nachgezeichnet. -> Es zeigt sich allerdings, dass der morphologische Plateaurand und der hierfür erwartbare Anstieg der Denudationsraten um ~150–200 km versetzt sind. Hieraus schließen wir, dass der westliche Rand des Tibetischen Plateaus rezent nicht maßgeblich erodiert wird. -> Ein Vergleich unserer postglazialen Denudationsraten von kosmogenem Be-10 mit Langzeit- (>10^6 yr)-Thermochronometriedaten von 100 bis 750 mm kyr^-1 deutet auf einen spätquartären Rückgang von Denudationsraten im Transhimalaya hin. Folglich muss es früher während des Quartärs Zeiten höherer erosionaler Effizienz gegeben haben. Studie III fokussiert schließlich, in einer Analyse beckenweiter Be-10-Denudationsraten, auf Denudationsmuster und -mechanismen für das gesamte Himalaja-Tibet Orogen. Auf der Suche nach zeit-invarianten tektonischen, klimatischen oder topographischen Prädiktoren für Denudationsraten wird ein Datensatz von 297 orogenweit verteilten Einzugsgebieten untersucht. Um Einblicke in die gesamte Response-Verteilung zwischen Denudationsrate und Prädiktor zu erhalten nutzen wir – anstelle der in diesem Zusammenhang vielbenutzten Methode der kleinsten Quadrate – Quantil-Regression. -> Dafür reduzieren wir einen Satz von 26 möglichen Prädiktoren, unter Nutzung der Hauptkomponentenanalyse, auf drei Prädiktoren: Ariditätsindex, topographischer Steilheitsindex und Niederschlag des kältesten Quartals. -> Die additive Quantil-Regression dieser drei Prädiktoren zeigt, dass der Steilheitsindex die besten Ergebnisse im Sinne einer zeit-invarianten Beziehung zwischen Denudationsrate und Prädiktoren liefert. -> Zusammenfassend zeigt sich, dass topographisch basierte Prädiktoren geeigneter für die Vorhersage von kosmogenen beckenweiten Denudationsraten sind als klimatische oder tektonische Prädiktoren. Wir erklären dieses Resultat mit den jeweils über Jahrtausende integrierenden Maßzahlen für Topographie und kosmogenen Denudationsraten, und der daraus folgenden Inkompatibilität der kosmogenen Denudationsraten mit den tektonischen und klimatischen Prädiktoren, die lediglich auf Jahrzehnten von Messungen beruhen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Henry Munack
URN:urn:nbn:de:kobv:517-opus4-72629
Subtitle (English):downwearing of the Himalaya-Tibet orogen from a multi-scale perspective
Subtitle (German):die Abtragung des Himalaya-Tibet Orogens aus multiskaliger Perspektive
Title Additional (German):Von Phantomblöcken zu Denudationsrauschen
Advisor:Oliver Korup
Document Type:Doctoral Thesis
Language:English
Year of Completion:2014
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2014/12/17
Release Date:2015/03/03
Tag:Bergsturz; Denudation; Geomorphologie; Himalaya-Tibet Orogen; Quartär; kosmogene Nuklide
Himalaya-Tibet orogen; cosmogenic nuclides; denudation; geomorphology; quaternary; rockslide
Pagenumber:xvii, 172
RVK - Regensburg Classification:TF 04999, TG 3130, TP 6860, TP 06860
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoCreative Commons - Namensnennung, Weitergabe zu gleichen Bedingungen 4.0 International