Proceedings of the Master seminar on event processing systems for business process management systems

Berichte des Masterseminars über Systeme zur Ereignisverarbeitung im Bereich des Geschäftsprozessmanagements

  • Traditionally, business process management systems only execute and monitor business process instances based on events that originate from the process engine itself or from connected client applications. However, environmental events may also influence business process execution. Recent research shows how the technological improvements in both areas, business process management and complex event processing, can be combined and harmonized. The series of technical reports included in this collection provides insights in that combination with respect to technical feasibility and improvements based on real-world use cases originating from the EU-funded GET Service project – a project targeting transport optimization and green-house gas reduction in the logistics domain. Each report is complemented by a working prototype. This collection introduces six use cases from the logistics domain. Multiple transports – each being a single process instance – may be affected by the same events at the same point in time because of (partly) using theTraditionally, business process management systems only execute and monitor business process instances based on events that originate from the process engine itself or from connected client applications. However, environmental events may also influence business process execution. Recent research shows how the technological improvements in both areas, business process management and complex event processing, can be combined and harmonized. The series of technical reports included in this collection provides insights in that combination with respect to technical feasibility and improvements based on real-world use cases originating from the EU-funded GET Service project – a project targeting transport optimization and green-house gas reduction in the logistics domain. Each report is complemented by a working prototype. This collection introduces six use cases from the logistics domain. Multiple transports – each being a single process instance – may be affected by the same events at the same point in time because of (partly) using the same transportation route, transportation vehicle or transportation mode (e.g. containers from multiple process instances on the same ship) such that these instances can be (partly) treated as batch. Thus, the first use case shows the influence of events to process instances processed in a batch. The case of sharing the entire route may be, for instance, due to origin from the same business process (e.g. transport three containers, where each is treated as single process instance because of being transported on three trucks) resulting in multi-instance process executions. The second use case shows how to handle monitoring and progress calculation in this context. Crucial to transportation processes are frequent changes of deadlines. The third use case shows how to deal with such frequent process changes in terms of propagating the changes along and beyond the process scope to identify probable deadline violations. While monitoring transport processes, disruptions may be detected which introduce some delay. Use case four shows how to propagate such delay in a non-linear fashion along the process instance to predict the end time of the instance. Non-linearity is crucial in logistics because of buffer times and missed connection on intermodal transports (a one-hour delay may result in a missed ship which is not going every hour). Finally, use cases five and six show the utilization of location-based process monitoring. Use case five enriches transport processes with real-time route and traffic event information to improve monitoring and planning capabilities. Use case six shows the inclusion of spatio-temporal events on the example of unexpected weather events.show moreshow less
  • Traditionell basiert die Ausführung und Überwachung von Prozessinstanzen durch Business Process Management Systeme auf Ereignissen, die von der Prozessengine selbst oder aus damit verbundenen Applikationen stammen. Allerdings können weitere Einflüsse aus der Umgebung die Ausführung ebenfalls beeinflussen. Hierzu zeigen aktuelle Forschungsarbeiten wie Geschäftsprozessmanagement und Ereignisverarbeitung zusammengebracht werden können. Die technischen Reports als Teil dieses Sammelbandes zeigen die technische Machbarkeit dieser Kombination und daraus resultierende Verbesserungen basierend auf echten Anwendungsfällen aus dem EU-geförderten GET Service Forschungsprojekt, ein Projekt mit dem Ziel Transportprozesse zu optimieren und CO2-Emissionen zu reduzieren. Jeder Anwendungsfall wird mit einem lauffähigen Prototyp evaluiert. Dieser Sammelband umfasst sechs Anwendungsfälle aus dem Bereich der Logistik. Mehrere Transporte – jeder hiervon ist eine eigene Prozessinstanz – können durch die gleichen Ereignisse beeinflusst werden, wenn sieTraditionell basiert die Ausführung und Überwachung von Prozessinstanzen durch Business Process Management Systeme auf Ereignissen, die von der Prozessengine selbst oder aus damit verbundenen Applikationen stammen. Allerdings können weitere Einflüsse aus der Umgebung die Ausführung ebenfalls beeinflussen. Hierzu zeigen aktuelle Forschungsarbeiten wie Geschäftsprozessmanagement und Ereignisverarbeitung zusammengebracht werden können. Die technischen Reports als Teil dieses Sammelbandes zeigen die technische Machbarkeit dieser Kombination und daraus resultierende Verbesserungen basierend auf echten Anwendungsfällen aus dem EU-geförderten GET Service Forschungsprojekt, ein Projekt mit dem Ziel Transportprozesse zu optimieren und CO2-Emissionen zu reduzieren. Jeder Anwendungsfall wird mit einem lauffähigen Prototyp evaluiert. Dieser Sammelband umfasst sechs Anwendungsfälle aus dem Bereich der Logistik. Mehrere Transporte – jeder hiervon ist eine eigene Prozessinstanz – können durch die gleichen Ereignisse beeinflusst werden, wenn sie (teilweise) die gleiche Transportroute, Transportvehikel oder Transportmodalität verwenden, so dass diese Instanzen (teilweise) kombiniert ausgeführt werden können – als Batch (z.B. mehrere Container auf dem gleichen Schiff). Daher zeigt der erste Anwendungsfall den Einfluss von Ereignissen auf Prozessinstanzen, die als Batch ausgeführt werden. Eine Übereinstimmung der Route kann auch auf die Korrelation zum gleichen Geschäftsprozess zurückgeführt werden (z.B. Transport von drei Containern auf drei LKWs). Dies führt zu Multi-Instanz-Ausführungen. Der zweite Anwendungsfall zeigt wie Transportüberwachung und Prozessfortschrittsberechnung in diesem Kontext aussehen können. In Transportprozessen treten oftmals kurzfristige Änderungen von Deadlines auf. Anwendungsfall drei zeigt wie die Überwachung in diesen Fällen verbessert werden kann. Die Deadline-Änderungen werden entlang der Prozesskette und über den Kontext eines Prozesses hinausgetragen, um etwaige Deadline-Verstöße zu identifizieren. Während der Überwachung von Transportprozessen lassen sich Störungen identifizieren, welche Verzögerungen nach sich ziehen können. Anwendungsfall vier zeigt wie solche Verzögerungen nichtlinear über die Transportkette propagiert werden können, um den Abschluss der Prozessinstanz vorherzusagen. Aufgrund von Pufferzeiten und dem Verpassen eines Anschlusses auf intermodalen Transporten in der Logistik ist hierbei die nichtlineare Verbreitung der Verzögerung besonders wichtig. Eine Verzögerung von einer Stunde kann zum Verpassen eines Schiffes führen, welches wiederum nicht stündlich die benötigte Strecke zurücklegt. Abschließend zeigen die Anwendungsfälle fünf und sechs die Verwendung von ortsbasierter Prozessüberwachung. Anwendungsfall fünf reichert den Transportprozess mit Echtzeitinformationen über Routen und Verkehr an, um Überwachungs- und Planungsaktivitäten zu verbessern. Anwendungsfall sechs zeigt die Einbindung von Ereignissen auf räumlich-zeitlicher Ebene am Beispiel von unerwarteten Wetterereignissen.show moreshow less

Download full text files

  • tbhpi102.pdfeng
    (6343KB)

    SHA-1:cc3856cac0d24b1e781f7d03007d42e4c10aa26d

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
URN:urn:nbn:de:kobv:517-opus4-83819
ISBN:978-3-86956-347-3
ISSN:1613-5652 (print)
ISSN:2191-1665 (online)
Series (Serial Number):Technische Berichte des Hasso-Plattner-Instituts für Digital Engineering an der Universität Potsdam (102)
Publisher:Universitätsverlag Potsdam
Place of publication:Potsdam
Editor:Anne Baumgraß, Andreas Meyer, Mathias Weske
Document Type:Monograph/Edited Volume
Language:English
Year of first Publication:2015
Year of Completion:2015
Publishing Institution:Universität Potsdam
Publishing Institution:Universitätsverlag Potsdam
Release Date:2016/09/29
Tag:BPM; Batchprozesse; CEP; Deadline-Verbreitung; Ereignisse; Geschäftsprozesse; Multi-Instanzen; Verzögerungs-Verbreitung; orts-basiert; Überwachung
BPM; CEP; batch processing; business processes; deadline propagation; delay propagation; events; location-based; monitoring; multi-instances
Issue:102
Pagenumber:vii, 67
Organizational units:An-Institute / Hasso-Plattner-Institut für Digital Engineering gGmbH
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Publication Way:Universitätsverlag Potsdam
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:
In Printform erschienen im Universitätsverlag Potsdam:

Proceedings of the Master seminar on event processing systems for business process management systems / Anne Baumgraß, Andreas Meyer, Mathias Weske. – Potsdam: Universitätsverlag Potsdam, 2016. – vii, 67 S. : Ill., graph. Darst.
(Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam ; 102)
ISSN (print) 1613-5652
ISSN (online) 2191-1665
ISBN 978-3-86956-347-3
--> bestellen