Modeling approaches to characterize the disposition of monoclonal antibodies

Modellierungsansätze zur Charakterisierung der Verteilung und Eliminierung monoklonaler Antikörper

  • Monoclonal antibodies (mAbs) are engineered immunoglobulins G (IgG) used for more than 20 years as targeted therapy in oncology, infectious diseases and (auto-)immune disorders. Their protein nature greatly influences their pharmacokinetics (PK), presenting typical linear and non-linear behaviors. While it is common to use empirical modeling to analyze clinical PK data of mAbs, there is neither clear consensus nor guidance to, on one hand, select the structure of classical compartment models and on the other hand, interpret mechanistically PK parameters. The mechanistic knowledge present in physiologically-based PK (PBPK) models is likely to support rational classical model selection and thus, a methodology to link empirical and PBPK models is desirable. However, published PBPK models for mAbs are quite diverse in respect to the physiology of distribution spaces and the parameterization of the non-specific elimination involving the neonatal Fc receptor (FcRn) and endogenous IgG (IgGendo). The remarkable discrepancy between theMonoclonal antibodies (mAbs) are engineered immunoglobulins G (IgG) used for more than 20 years as targeted therapy in oncology, infectious diseases and (auto-)immune disorders. Their protein nature greatly influences their pharmacokinetics (PK), presenting typical linear and non-linear behaviors. While it is common to use empirical modeling to analyze clinical PK data of mAbs, there is neither clear consensus nor guidance to, on one hand, select the structure of classical compartment models and on the other hand, interpret mechanistically PK parameters. The mechanistic knowledge present in physiologically-based PK (PBPK) models is likely to support rational classical model selection and thus, a methodology to link empirical and PBPK models is desirable. However, published PBPK models for mAbs are quite diverse in respect to the physiology of distribution spaces and the parameterization of the non-specific elimination involving the neonatal Fc receptor (FcRn) and endogenous IgG (IgGendo). The remarkable discrepancy between the simplicity of biodistribution data and the complexity of published PBPK models translates in parameter identifiability issues. In this thesis, we address this problem with a simplified PBPK model—derived from a hierarchy of more detailed PBPK models and based on simplifications of tissue distribution model. With the novel tissue model, we are breaking new grounds in mechanistic modeling of mAbs disposition: We demonstrate that binding to FcRn is indeed linear and that it is not possible to infer which tissues are involved in the unspecific elimination of wild-type mAbs. We also provide a new approach to predict tissue partition coefficients based on mechanistic insights: We directly link tissue partition coefficients (Ktis) to data-driven and species-independent published antibody biodistribution coefficients (ABCtis) and thus, we ensure the extrapolation from pre-clinical species to human with the simplified PBPK model. We further extend the simplified PBPK model to account for a target, relevant to characterize the non-linear clearance due to mAb-target interaction. With model reduction techniques, we reduce the dimensionality of the simplified PBPK model to design 2-compartment models, thus guiding classical model development with physiological and mechanistic interpretation of the PK parameters. We finally derive a new scaling approach for anatomical and physiological parameters in PBPK models that translates the inter-individual variability into the design of mechanistic covariate models with direct link to classical compartment models, specially useful for PK population analysis during clinical development.show moreshow less
  • Monoklonale Antikörper (mAbs) sind gentechnisch hergestellte Immunglobuline G (IgG), die seit mehr als 20 Jahren therapeutisch gezielt gegen spezifische Antigene eingesetzt werden. Die Hauptindikationen sind vor allem die Gebiete Onkologie, Infektions- und (Auto-)Immun-Erkrankungen. Monoklonale Antikörper sind hydrophile und geladene Moleküle mit hoher Affinität und Selektivität für ihr Target. Diese Eigenschaften haben einen groçen Einfluss auf die Pharmacokinetik (PK), wobei oft lineares und nicht-lineares Verhalten beobachtet wird. Mathematische Modelle, wie zum Beispiel empirische Modelle, werden routinemässig in der Forschung und Entwicklung verwendet, um die PK für mAbs zu charakterisieren. Hingegen sind physiologisch-basierte PK (PBPK) Modelle für mAbs nur begrenzt einsetzbar. Zur Identifikation und Quantifizierung der Variabilität in klinischen PK-Daten werden meistens empirische 2-Kompartiment Modelle für populationspharmakokinetischen Analysen eingesetzt. Allerdings gibt es weder einen klaren Konsens nochMonoklonale Antikörper (mAbs) sind gentechnisch hergestellte Immunglobuline G (IgG), die seit mehr als 20 Jahren therapeutisch gezielt gegen spezifische Antigene eingesetzt werden. Die Hauptindikationen sind vor allem die Gebiete Onkologie, Infektions- und (Auto-)Immun-Erkrankungen. Monoklonale Antikörper sind hydrophile und geladene Moleküle mit hoher Affinität und Selektivität für ihr Target. Diese Eigenschaften haben einen groçen Einfluss auf die Pharmacokinetik (PK), wobei oft lineares und nicht-lineares Verhalten beobachtet wird. Mathematische Modelle, wie zum Beispiel empirische Modelle, werden routinemässig in der Forschung und Entwicklung verwendet, um die PK für mAbs zu charakterisieren. Hingegen sind physiologisch-basierte PK (PBPK) Modelle für mAbs nur begrenzt einsetzbar. Zur Identifikation und Quantifizierung der Variabilität in klinischen PK-Daten werden meistens empirische 2-Kompartiment Modelle für populationspharmakokinetischen Analysen eingesetzt. Allerdings gibt es weder einen klaren Konsens noch Richtlinien, um lineare und nicht-lineare Clearances zu erklären und um physiologische und mechanistische PK-Parameter zu interpretieren. Prädiktive PBPK-Modelle, die für mAbs publiziert wurden, sind sehr unterschiedlich in Bezug auf die betrachteten Verteilungsvolumina (vaskulär, interstitiell, endosomal) und die Parametrisierung der nicht-spezifischen Elimination durch den neonatalen Fc-Rezeptor und endogenes IgG. Je detaillierter die Beschreibung dieser Prozesse ist, desto mehr Parameter werden benötigt. Allerdings sind deren Werte oftmals nicht bekannt. Dies führt zu Problemen in der Identifizierbarkeit bei den üblicherweise zur Verfügung stehenden in vivo Verteilungsdaten. In der vorliegenden Doktorarbeit präsentieren wir hierarchisch aufgebaute PBPK Modelle für mAbs. Dazu gehören detaillierte, intermediäre und vereinfachte Modelle, deren Ableitungen auf Simplifizierungen des Gewebe-Verteilungs-Modells basieren. Mit dem neuen, vereinfachten PBPK Modell können wir einen Einblick in die mechanistische Interpretation von Gewebe-Verteilungskoeffizienten geben. Diese können mit publizierten, auf Daten basierenden Antikörper Biodistributions Koeffizienten verglichen werden. Weiterhin erlaubt ein simplifiziertes Modell Parameter Identifizierbarkeit und die Auswahl an Gewebe, die bei der nicht-spezifischen Eliminierung der mAbs eine Rolle spielen. Das vereinfachte PBPK Modell kann nach Bedarf um ein Target erweitert werden, das relevant ist für die nicht-lineare Clearance in Folge einer mAb-Target Interaktion zu erklären. Mit Hilfe von Techniken zur Modell-Reduktion reduzieren wir das vereinfachte PBPK Modell, um Kompartiment-Modelle mit niedriger Dimensionalität zu entwickeln. Dadurch wird die physiologische und mechanistische Interpretation der PK Parameter garantiert. Zuletzt leiten wir eine neue Skalierungsmethode für anatomische und physiologische Parameter ab. Sie ermöglicht die Translation der inter-individuellen Variabilität in das Design eines mechanistischen Covariat-Models mit direktem Link zu klassischen Kompartiment-Modellen. Dies ist vor allem für populationspharmakokinetischen Analysen wÃdhrend der klinischen Entwicklung hilfreich.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Ludivine Fronton
URN:urn:nbn:de:kobv:517-opus4-76537
Subtitle (English):from detailed PBPK models to classical compartment models
Subtitle (German):vom detaillierten PBPK-Model zum klassischen Kompartiment-Model
Advisor:Wilhelm Huisinga
Document Type:Doctoral Thesis
Language:English
Year of Completion:2014
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2015/02/12
Release Date:2015/06/08
Tag:Extravasation-rate limited Gewebemodelle; Kompartiment-Modelle; PBPK; mAb Disposition
PBPK; classical compartment model; extravasation-rate limited tissue model; mAb disposition
Pagenumber:xxi, 133
RVK - Regensburg Classification:WD 9200, VX 8550, WF 9900
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht