Capabilities of selenoneine to cross the in vitro blood-brain barrier model

  • The naturally occurring selenoneine (SeN), the selenium analogue of the sulfur-containing antioxidant ergothioneine, can be found in high abundance in several marine fish species. However, data on biological properties of SeN and its relevance for human health are still scarce. This study aims to investigate the transfer and presystemic metabolism of SeN in a well-established in vitro model of the blood-brain barrier (BBB). Therefore, SeN and the reference Se species selenite and Se-methylselenocysteine (MeSeCys) were applied to primary porcine brain capillary endothelial cells (PBCECs). Se content of culture media and cell lysateswas measured via ICP-MS/MS. Speciation analysis was conducted by HPLC-ICP-MS. Barrier integrity was shown to be unaffected during transfer experiments. SeN demonstrated the lowest transfer rates and permeability coefficient (6.7 x 10(-7) cm s(-1)) in comparison to selenite and MeSeCys. No side-directed accumulation was observed after both-sided application of SeN. However, concentration-dependent transfer ofThe naturally occurring selenoneine (SeN), the selenium analogue of the sulfur-containing antioxidant ergothioneine, can be found in high abundance in several marine fish species. However, data on biological properties of SeN and its relevance for human health are still scarce. This study aims to investigate the transfer and presystemic metabolism of SeN in a well-established in vitro model of the blood-brain barrier (BBB). Therefore, SeN and the reference Se species selenite and Se-methylselenocysteine (MeSeCys) were applied to primary porcine brain capillary endothelial cells (PBCECs). Se content of culture media and cell lysateswas measured via ICP-MS/MS. Speciation analysis was conducted by HPLC-ICP-MS. Barrier integrity was shown to be unaffected during transfer experiments. SeN demonstrated the lowest transfer rates and permeability coefficient (6.7 x 10(-7) cm s(-1)) in comparison to selenite and MeSeCys. No side-directed accumulation was observed after both-sided application of SeN. However, concentration-dependent transfer of SeN indicated possible presence of transporters on both sides of the barrier. Speciation analysis demonstrated no methylation of SeN by the PBCECs. Several derivatives of SeN detected in the media of the BBB model were also found in cell-free media containing SeN and hence not considered to be true metabolites of the PBCECs. In concluding, SeN is likely to have a slow transfer rate to the brain and not being metabolized by the brain endothelial cells. Since this study demonstrates that SeN may reach the brain tissue, further studies are needed to investigate possible health-promoting effects of SeN in humans.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Evgenii DrobyshevORCiDGND, Stefanie RaschkeORCiDGND, Ronald A. GlabonjatORCiD, Julia BornhorstORCiDGND, Franziska EbertORCiDGND, Doris KuehneltORCiD, Tanja SchwerdtleORCiDGND
DOI:https://doi.org/10.1093/mtomcs/mfaa007
ISSN:1756-5901
ISSN:1756-591X
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/33570138
Title of parent work (English):Metallomics : integrated biometal science
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2021/01/01
Publication year:2021
Release date:2024/09/30
Tag:HPLC-ESI-Orbitrap-MS; HPLC-ICP-MS; Se-methylselenocysteine; bioavailability; blood-brain barrier; selenoneine
Volume:13
Issue:1
Article number:mfaa007
Number of pages:9
Funding institution:German Research Foundation (DFG)German Research Foundation (DFG) [SCHW 903/9-1]; Austrian Science Fund (FWF)Austrian Science Fund (FWF) [I 2262-N28]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.