Bayesian estimation of self-similarity exponent

Bayessche Schätzung des selbstählichen Exponenten

  • Estimation of the self-similarity exponent has attracted growing interest in recent decades and became a research subject in various fields and disciplines. Real-world data exhibiting self-similar behavior and/or parametrized by self-similarity exponent (in particular Hurst exponent) have been collected in different fields ranging from finance and human sciencies to hydrologic and traffic networks. Such rich classes of possible applications obligates researchers to investigate qualitatively new methods for estimation of the self-similarity exponent as well as identification of long-range dependencies (or long memory). In this thesis I present the Bayesian estimation of the Hurst exponent. In contrast to previous methods, the Bayesian approach allows the possibility to calculate the point estimator and confidence intervals at the same time, bringing significant advantages in data-analysis as discussed in this thesis. Moreover, it is also applicable to short data and unevenly sampled data, thus broadening the range of systems where theEstimation of the self-similarity exponent has attracted growing interest in recent decades and became a research subject in various fields and disciplines. Real-world data exhibiting self-similar behavior and/or parametrized by self-similarity exponent (in particular Hurst exponent) have been collected in different fields ranging from finance and human sciencies to hydrologic and traffic networks. Such rich classes of possible applications obligates researchers to investigate qualitatively new methods for estimation of the self-similarity exponent as well as identification of long-range dependencies (or long memory). In this thesis I present the Bayesian estimation of the Hurst exponent. In contrast to previous methods, the Bayesian approach allows the possibility to calculate the point estimator and confidence intervals at the same time, bringing significant advantages in data-analysis as discussed in this thesis. Moreover, it is also applicable to short data and unevenly sampled data, thus broadening the range of systems where the estimation of the Hurst exponent is possible. Taking into account that one of the substantial classes of great interest in modeling is the class of Gaussian self-similar processes, this thesis considers the realizations of the processes of fractional Brownian motion and fractional Gaussian noise. Additionally, applications to real-world data, such as the data of water level of the Nile River and fixational eye movements are also discussed.show moreshow less
  • Die Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-zehnten an Aufmerksamkeit gewonnen und ist in vielen wissenschaftlichen Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden. Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähnlichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwissenschaften über Humanwissenschaften bis zu Netzwerken in der Hydrologie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendungen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähnlichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erkennen. In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herangehensweise die Berechnung von Punktschätzungen zusammen mit Konfidenzintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in der Arbeit diskutiert wird. ZudemDie Abschätzung des Selbstähnlichkeitsexponenten hat in den letzten Jahr-zehnten an Aufmerksamkeit gewonnen und ist in vielen wissenschaftlichen Gebieten und Disziplinen zu einem intensiven Forschungsthema geworden. Reelle Daten, die selbsähnliches Verhalten zeigen und/oder durch den Selbstähnlichkeitsexponenten (insbesondere durch den Hurst-Exponenten) parametrisiert werden, wurden in verschiedenen Gebieten gesammelt, die von Finanzwissenschaften über Humanwissenschaften bis zu Netzwerken in der Hydrologie und dem Verkehr reichen. Diese reiche Anzahl an möglichen Anwendungen verlangt von Forschern, neue Methoden zu entwickeln, um den Selbstähnlichkeitsexponenten abzuschätzen, sowie großskalige Abhängigkeiten zu erkennen. In dieser Arbeit stelle ich die Bayessche Schätzung des Hurst-Exponenten vor. Im Unterschied zu früheren Methoden, erlaubt die Bayessche Herangehensweise die Berechnung von Punktschätzungen zusammen mit Konfidenzintervallen, was von bedeutendem Vorteil in der Datenanalyse ist, wie in der Arbeit diskutiert wird. Zudem ist diese Methode anwendbar auf kurze und unregelmäßig verteilte Datensätze, wodurch die Auswahl der möglichen Anwendung, wo der Hurst-Exponent geschätzt werden soll, stark erweitert wird. Unter Berücksichtigung der Tatsache, dass der Gauß'sche selbstähnliche Prozess von bedeutender Interesse in der Modellierung ist, werden in dieser Arbeit Realisierungen der Prozesse der fraktionalen Brown'schen Bewegung und des fraktionalen Gauß'schen Rauschens untersucht. Zusätzlich werden Anwendungen auf reelle Daten, wie Wasserstände des Nil und fixierte Augenbewegungen, diskutiert.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Natallia Makarava
URN:urn:nbn:de:kobv:517-opus-64099
Advisor:Matthias Holschneider
Document Type:Doctoral Thesis
Language:English
Year of Completion:2012
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2012/12/18
Release Date:2013/02/07
Tag:Bayessche Statistik; Hurst-Exponent; fixierte Augenbewegungen; fraktionale Brown'schen Bewegung; fraktionales Gauß'sches Rauschen
Bayesian inference; Hurst exponent; fixational eye movements; fractional Brownian motion; fractional Gaussian noise
RVK - Regensburg Classification:SK 830
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS Classification:00.00.00 GENERAL / 02.00.00 Mathematical methods in physics / 02.50.-r Probability theory, stochastic processes, and statistics (see also section 05 Statistical physics, thermodynamics, and nonlinear dynamical systems) / 02.50.Cw Probability theory
00.00.00 GENERAL / 05.00.00 Statistical physics, thermodynamics, and nonlinear dynamical systems (see also 02.50.-r Probability theory, stochastic processes, and statistics) / 05.10.-a Computational methods in statistical physics and nonlinear dynamics (see also 02.70.-c in mathematical methods in physics)
00.00.00 GENERAL / 05.00.00 Statistical physics, thermodynamics, and nonlinear dynamical systems (see also 02.50.-r Probability theory, stochastic processes, and statistics) / 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion (for fluctuations in superconductivity, see 74.40.+k; for statistical theory and fluctuations in nuclear reactions, see 24.60.-k; for fluctuations in plasma, see 52.25.Gj) / 05.40.Jc Brownian motion
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 87.00.00 Biological and medical physics / 87.19.-j Properties of higher organisms / 87.19.L- Neuroscience / 87.19.lt Sensory systems: visual, auditory, tactile, taste, and olfaction (for Neurophysiology of speech perception, see 43.71.Qr and 43.72.Qr Auditory synthesis and recognition in Acoustics Appendix; 42.66.-p Physiological optics)
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 89.00.00 Other areas of applied and interdisciplinary physics / 89.75.-k Complex systems / 89.75.Da Systems obeying scaling laws
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht
Notes extern:Potsdam, Univ., Diss., 2012