Reaction lumping in metabolic networks for application with thermodynamic metabolic flux analysis
- Thermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. The latter are often not available due to unknown Gibbs free energy change of formation ,Delta fG0, of metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction lumping has been proposed to eliminate metabolites with unknown Delta fG0. However, the lumping procedure has not been formalized nor implemented for systematic identification of lumped reactions. Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to genome-scale metabolic models. It is based on identification of groups of metabolites with unknown Delta fG0 whose elimination can be conducted independently of the others via: (1) group implementation, aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to ensure that a maximal number of metabolites with unknownThermodynamic metabolic flux analysis (TMFA) can narrow down the space of steady-state flux distributions, but requires knowledge of the standard Gibbs free energy for the modelled reactions. The latter are often not available due to unknown Gibbs free energy change of formation ,Delta fG0, of metabolites. To optimize the usage of data on thermodynamics in constraining a model, reaction lumping has been proposed to eliminate metabolites with unknown Delta fG0. However, the lumping procedure has not been formalized nor implemented for systematic identification of lumped reactions. Here, we propose, implement, and test a combined procedure for reaction lumping, applicable to genome-scale metabolic models. It is based on identification of groups of metabolites with unknown Delta fG0 whose elimination can be conducted independently of the others via: (1) group implementation, aiming to eliminate an entire such group, and, if this is infeasible, (2) a sequential implementation to ensure that a maximal number of metabolites with unknown Delta fG0 are eliminated. Our comparative analysis with genome-scale metabolic models of Escherichia coli, Bacillus subtilis, and Homo sapiens shows that the combined procedure provides an efficient means for systematic identification of lumped reactions. We also demonstrate that TMFA applied to models with reactions lumped according to the proposed procedure lead to more precise predictions in comparison to the original models. The provided implementation thus ensures the reproducibility of the findings and their application with standard TMFA.…
Author details: | Lea SeepORCiD, Zahra Razaghi-Moghadam, Zoran NikoloskiORCiDGND |
---|---|
DOI: | https://doi.org/10.1038/s41598-021-87643-8 |
ISSN: | 2045-2322 |
Pubmed ID: | https://pubmed.ncbi.nlm.nih.gov/33879809 |
Title of parent work (English): | Scientific reports |
Publisher: | Macmillan Publishers Limited, part of Springer Nature |
Place of publishing: | London |
Publication type: | Article |
Language: | English |
Date of first publication: | 2021/04/20 |
Publication year: | 2021 |
Release date: | 2023/09/06 |
Volume: | 11 |
Issue: | 1 |
Article number: | 8544 |
Number of pages: | 11 |
Funding institution: | Max Planck Society Max Planck Society Foundation CELLEX [031B0358B]; German Federal Ministry of Science and Education |
Organizational units: | Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie |
DDC classification: | 5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik |
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie | |
Peer review: | Referiert |
Publishing method: | Open Access / Gold Open-Access |
License (German): | ![]() |