A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memoization

Ein neuer Algorithmus für die quantifizierte Aussagenlogik, basierend auf Zero-suppressed BDDs und Memoization

  • Quantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existingQuantified Boolean formulas (QBFs) play an important role in theoretical computer science. QBF extends propositional logic in such a way that many advanced forms of reasoning can be easily formulated and evaluated. In this dissertation we present our ZQSAT, which is an algorithm for evaluating quantified Boolean formulas. ZQSAT is based on ZBDD: Zero-Suppressed Binary Decision Diagram , which is a variant of BDD, and an adopted version of the DPLL algorithm. It has been implemented in C using the CUDD: Colorado University Decision Diagram package. The capability of ZBDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF very compactly and let us to embed the notion of memoization to the DPLL algorithm. These points led us to implement the search algorithm in such a way that we could store and reuse the results of all previously solved subformulas with a little overheads. ZQSAT can solve some sets of standard QBF benchmark problems (known to be hard for DPLL based algorithms) faster than the best existing solvers. In addition to prenex-CNF, ZQSAT accepts prenex-NNF formulas. We show and prove how this capability can be exponentially beneficial.show moreshow less
  • In der Dissertation stellen wir einen neuen Algorithmus vor, welcher Formeln der quantifizierten Aussagenlogik (engl. Quantified Boolean formula, kurz QBF) löst. QBFs sind eine Erweiterung der klassischen Aussagenlogik um die Quantifizierung über aussagenlogische Variablen. Die quantifizierte Aussagenlogik ist dabei eine konservative Erweiterung der Aussagenlogik, d.h. es können nicht mehr Theoreme nachgewiesen werden als in der gewöhnlichen Aussagenlogik. Der Vorteil der Verwendung von QBFs ergibt sich durch die Möglichkeit, Sachverhalte kompakter zu repräsentieren. SAT (die Frage nach der Erfüllbarkeit einer Formel der Aussagenlogik) und QSAT (die Frage nach der Erfüllbarkeit einer QBF) sind zentrale Probleme in der Informatik mit einer Fülle von Anwendungen, wie zum Beispiel in der Graphentheorie, bei Planungsproblemen, nichtmonotonen Logiken oder bei der Verifikation. Insbesondere die Verifikation von Hard- und Software ist ein sehr aktuelles und wichtiges Forschungsgebiet in der Informatik. Unser Algorithmus zur Lösung von QBFsIn der Dissertation stellen wir einen neuen Algorithmus vor, welcher Formeln der quantifizierten Aussagenlogik (engl. Quantified Boolean formula, kurz QBF) löst. QBFs sind eine Erweiterung der klassischen Aussagenlogik um die Quantifizierung über aussagenlogische Variablen. Die quantifizierte Aussagenlogik ist dabei eine konservative Erweiterung der Aussagenlogik, d.h. es können nicht mehr Theoreme nachgewiesen werden als in der gewöhnlichen Aussagenlogik. Der Vorteil der Verwendung von QBFs ergibt sich durch die Möglichkeit, Sachverhalte kompakter zu repräsentieren. SAT (die Frage nach der Erfüllbarkeit einer Formel der Aussagenlogik) und QSAT (die Frage nach der Erfüllbarkeit einer QBF) sind zentrale Probleme in der Informatik mit einer Fülle von Anwendungen, wie zum Beispiel in der Graphentheorie, bei Planungsproblemen, nichtmonotonen Logiken oder bei der Verifikation. Insbesondere die Verifikation von Hard- und Software ist ein sehr aktuelles und wichtiges Forschungsgebiet in der Informatik. Unser Algorithmus zur Lösung von QBFs basiert auf sogenannten ZBDDs (engl. Zero-suppressed Binary decision Diagrams), welche eine Variante der BDDs (engl. Binary decision Diagrams) sind. BDDs sind eine kompakte Repräsentation von Formeln der Aussagenlogik. Der Algorithmus kombiniert nun bekannte Techniken zum Lösen von QBFs mit der ZBDD-Darstellung unter Verwendung geeigneter Heuristiken und Memoization. Memoization ermöglicht dabei das einfache Wiederverwenden bereits gelöster Teilprobleme. Der Algorithmus wurde unter Verwendung des CUDD-Paketes (Colorado University Decision Diagram) implementiert und unter dem Namen ZQSAT veröffentlicht. In Tests konnten wir nachweisen, dass ZQSAT konkurrenzfähig zu existierenden QBF-Beweisern ist, in einigen Fällen sogar bessere Resultate liefern kann.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Mohammad Ghasemzadeh
URN:urn:nbn:de:kobv:517-opus-6378
Advisor:Christoph Meinel
Document Type:Doctoral Thesis
Language:English
Year of Completion:2005
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2005/11/30
Release Date:2006/01/27
Tag:DPLL; Erfüllbarkeit einer Formel der Aussagenlogik; Formeln der quantifizierten Aussagenlogik; ZQSA; Zero-Suppressed Binary Decision Diagram (ZDD)
DPLL; Quantified Boolean Formula (QBF); Satisfiability; ZQSAT; Zero-Suppressed Binary Decision Diagram (ZDD)
GND Keyword:Binäres Entscheidungsdiagramm; Erfüllbarkeitsproblem
RVK - Regensburg Classification:ST 134
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik