Hybrid imaging spectroscopy approaches for open pit mining

Hybride Ansätze der bildgebenden Spektroskopie für offene Tagebauten

  • This work develops hybrid methods of imaging spectroscopy for open pit mining and examines their feasibility compared with state-of-the-art. The material distribution within a mine face differs in the small scale and within daily assigned extraction segments. These changes can be relevant to subsequent processing steps but are not always visually identifiable prior to the extraction. Misclassifications that cause false allocations of extracted material need to be minimized in order to reduce energy-intensive material re-handling. The use of imaging spectroscopy aspires to the allocation of relevant deposit-specific materials before extraction, and allows for efficient material handling after extraction. The aim of this work is the parameterization of imaging spectroscopy for pit mining applications and the development and evaluation of a workflow for a mine face, ground- based, spectral characterization. In this work, an application-based sensor adaptation is proposed. The sensor complexity is reduced by down-sampling the spectralThis work develops hybrid methods of imaging spectroscopy for open pit mining and examines their feasibility compared with state-of-the-art. The material distribution within a mine face differs in the small scale and within daily assigned extraction segments. These changes can be relevant to subsequent processing steps but are not always visually identifiable prior to the extraction. Misclassifications that cause false allocations of extracted material need to be minimized in order to reduce energy-intensive material re-handling. The use of imaging spectroscopy aspires to the allocation of relevant deposit-specific materials before extraction, and allows for efficient material handling after extraction. The aim of this work is the parameterization of imaging spectroscopy for pit mining applications and the development and evaluation of a workflow for a mine face, ground- based, spectral characterization. In this work, an application-based sensor adaptation is proposed. The sensor complexity is reduced by down-sampling the spectral resolution of the system based on the samples’ spectral characteristics. This was achieved by the evaluation of existing hyperspectral outcrop analysis approaches based on laboratory sample scans from the iron quadrangle in Minas Gerais, Brazil and by the development of a spectral mine face monitoring workflow which was tested for both an operating and an inactive open pit copper mine in the Republic of Cyprus. The workflow presented here is applied to three regional data sets: 1) Iron ore samples from Brazil, (laboratory); 2) Samples and hyperspectral mine face imagery from the copper-gold-pyrite mine Apliki, Republic of Cyprus (laboratory and mine face data); and 3) Samples and hyperspectral mine face imagery from the copper-gold-pyrite deposit Three Hills, Republic of Cyprus (laboratory and mine face data). The hyperspectral laboratory dataset of fifteen Brazilian iron ore samples was used to evaluate different analysis methods and different sensor models. Nineteen commonly used methods to analyze and map hyperspectral data were compared regarding the methods’ resulting data products and the accuracy of the mapping and the analysis computation time. Four of the evaluated methods were determined for subsequent analyses to determine the best-performing algorithms: The spectral angle mapper (SAM), a support vector machine algorithm (SVM), the binary feature fitting algorithm (BFF) and the EnMap geological mapper (EnGeoMap). Next, commercially available imaging spectroscopy sensors were evaluated for their usability in open pit mining conditions. Step-wise downsampling of the data - the reduction of the number of bands with an increase of each band’s bandwidth - was performed to investigate the possible simplification and ruggedization of a sensor without a quality fall-off of the mapping results. The impact of the atmosphere visible in the spectrum between 1300–2010nm was reduced by excluding the spectral range from the data for mapping. This tested the feasibility of the method under realistic open pit data conditions. Thirteen datasets based on the different, downsampled sensors were analyzed with the four predetermined methods. The optimum sensor for spectral mine face material distinction was determined as a VNIR-SWIR sensor with 40nm bandwidths in the VNIR and 15nm bandwidths in the SWIR spectral range and excluding the atmospherically impacted bands. The Apliki mine sample dataset was used for the application of the found optimal analyses and sensors. Thirty-six samples were analyzed geochemically and mineralogically. The sample spectra were compiled to two spectral libraries, both distinguishing between seven different geochemical-spectral clusters. The reflectance dataset was downsampled to five different sensors. The five different datasets were mapped with the SAM, BFF and SVM method achieving mapping accuracies of 85-72%, 85-76% and 57-46% respectively. One mine face scan of Apliki was used for the application of the developed workflow. The mapping results were validated against the geochemistry and mineralogy of thirty-six documented field sampling points and a zonation map of the mine face which is based on sixty-six samples and field mapping. The mine face was analyzed with SAM and BFF. The analysis maps were visualized on top of a Structure-from-Motion derived 3D model of the open pit. The mapped geological units and zones correlate well with the expected zonation of the mine face. The third set of hyperspectral imagery from Three Hills was available for applying the fully-developed workflow. Geochemical sample analyses and laboratory spectral data of fifteen different samples from the Three Hills mine, Republic of Cyprus, were used to analyse a downsampled mine face scan of the open pit. Here, areas of low, medium and high ore content were identified. The developed workflow is successfully applied to the open pit mines Apliki and Three Hills and the spectral maps reflect the prevailing geological conditions. This work leads through the acquisition, preparation and processing of imaging spectroscopy data, the optimum choice of analysis methodology, and the utilization of simplified, robust sensors that meet the requirements of open pit mining conditions. It accentuates the importance of a site-specific and deposit-specific spectral library for the mine face analysis and underlines the need for geological and spectral analysis experts to successfully implement imaging spectroscopy in the field of open pit mining.show moreshow less
  • In dieser Dissertation wird die Machbarkeit und Anwendung moderner und eines eigen entwickelten Hybridverfahrens in der bildgebenden Spektroskopie für den Tagebau untersucht. Die Materialverteilung innerhalb einer Abbaufront unterscheidet sich oft innerhalb eines kleinen Maßstabs und variiert zudem innerhalb täglich zugeordneter Abbausegmente. Diese Veränderungen können für nachfolgende Verarbeitungsschritte relevant sein, sind aber vor dem Abbau nicht immer visuell erkennbar. Falsche Klassifizierungen des Materials führen zu Fehlverteilungen des abgebauten Materials, die minimiert werden müssen, um den energie-intensiven Materialtransport zu reduzieren. Mit Hilfe der bildgebenden Spektroskopie wird angestrebt, relevante Lagerstättenspezifische Materialien vor der Extraktion korrekt zuzuordnen und ein effizientes Materialhandling nach der Extraktion zu ermöglichen. Ziel dieser Arbeit ist die Parametrisierung der bildgebenden Spektroskopie für den Bergbau und die Entwicklung und Evaluierung eines Workflows zur spektralenIn dieser Dissertation wird die Machbarkeit und Anwendung moderner und eines eigen entwickelten Hybridverfahrens in der bildgebenden Spektroskopie für den Tagebau untersucht. Die Materialverteilung innerhalb einer Abbaufront unterscheidet sich oft innerhalb eines kleinen Maßstabs und variiert zudem innerhalb täglich zugeordneter Abbausegmente. Diese Veränderungen können für nachfolgende Verarbeitungsschritte relevant sein, sind aber vor dem Abbau nicht immer visuell erkennbar. Falsche Klassifizierungen des Materials führen zu Fehlverteilungen des abgebauten Materials, die minimiert werden müssen, um den energie-intensiven Materialtransport zu reduzieren. Mit Hilfe der bildgebenden Spektroskopie wird angestrebt, relevante Lagerstättenspezifische Materialien vor der Extraktion korrekt zuzuordnen und ein effizientes Materialhandling nach der Extraktion zu ermöglichen. Ziel dieser Arbeit ist die Parametrisierung der bildgebenden Spektroskopie für den Bergbau und die Entwicklung und Evaluierung eines Workflows zur spektralen Charakterisierung von offenem Bergbau mittels bodengebundener Sensorik. Dies wurde durch die Evaluierung bestehender Ansätze zur hyperspektralen Aufschlussanalyse erreicht, die auf Grundlage von Laborscans von Proben aus dem Eisernen Vierecks in Minas Gerais, Brasilien, durchgeführt wurde. Eine spektralen Abbaufrontanalyse wurde mithilfe von Daten eines aktiven und eines inaktiven Kupfer-Tagebaus in der Republik Zypern entwickelt. Der in dieser Arbeit vorgestellte Arbeitsablauf wird auf drei regionale Datensätze angewandt: 1) Eisenerzproben aus Brasilien (Labordaten); 2) Proben und hyperspektrale bildgebende Daten der Abbaufront aus dem Kupfer-Gold-Pyrit-Tagebau Apliki, Republik Zypern (Labor- und Abbaufrontdaten); und 3) Proben und hyperspektrale bildgebende Daten der Abbaufront aus der Kupfer-Gold-Pyrit-Lagerstätte Three Hills, Republik Zypern (Labor- und Abbaufrontdaten). Der hyperspektrale Labordatensatz von fünfzehn brasilianischen Eisenerzproben wurde zur Evaluierung verschiedener Analysemethoden und verschiedener Sensormodelle verwendet. Neunzehn gebräuchliche Methoden zur Analyse und Kartierung hyperspektraler Daten wurden im Hinblick auf ihre resultierenden Datenprodukte, die Genauigkeit der Kartierung und die Berechnungszeit der Analyse verglichen. Vier der evaluierten Methoden wurden für nachfolgende Analysen bestimmt: Der Spectral Angle Mapper (SAM), ein Support Vector Machine Algorithmus (SVM), der Binary Feature Fitting Algorithmus (BFF) und der EnMap Geological Mapper (EnGeoMap). Als nächstes wurden kommerziell erhältliche bildgebende Spektroskopiesensoren auf ihre Verwendbarkeit unter Tagebaubedingungen evaluiert. Ein schrittweises Reduzieren der Datenkomplexität, das sog. “downsampling” (die Verringerung der Anzahl der Bänder und gleichzeitige Erhöhung der Bandbreite jedes Bandes), wurde durchgeführt, um eine Vereinfachung der Sensorkomplexität ohne Qualitätseinbußen der Kartierungsergebnisse zu untersuchen. Der Einfluss der Atmosphäre, die im Spektrum zwischen 1300-2010nm sichtbar ist, wurde reduziert, indem der Spektralbereich aus den Daten für die Kartierung ausgeschlossen wurde. Dadurch wurde die Durchführbarkeit der Methode unter realistischen Tagebaubedingungen getestet. Dreizehn Datensätze, die auf den verschiedenen Sensoren basierten, wurden mit den vier vorher benannten Methoden analysiert. Der optimale Sensor für die spektrale Unterscheidung von Abbaufrontmaterial wurde als VNIR-SWIR-Sensor mit 40nm Bandbreite im VNIR- und 15nm Bandbreite im SWIR-Spektralbereich bestimmt, der atmosphärisch beeinflusste Spektralbereich wurde ausgeschlossen. Nun wurde der Datensatz von der Mine in Apliki verwendet, um die vorher bestimmten Analysen und Sensoren anzuwenden. Sechsunddreißig Proben wurden geochemisch und mineralogisch analysiert. Die Probenspektren wurden zu zwei Spektralbibliotheken zusammengestellt, die beide zwischen sieben verschiedenen geochemisch-spektralen Clustern unterscheiden. Die Reflexionsdaten wurden auf fünf verschiedene Sensoren heruntergerechnet. Diese fünf verschiedenen Datensätze wurden mit der SAM-, BFF- und SVM-Methode kartiert, wobei entsprechende Kartierungsgenauigkeiten von 85-72%, 85-76% bzw. 57-46% erreicht wurden. Ein Scan der Abbaufront von Apliki wurde verwendet, um den entwickelten Arbeitsablauf auf Daten unter realistische Bedingungen anzuwenden. Die Kartierungsergebnisse wurden auf der Grundlage der Feldbeprobung und einer geologischen Zonierungskarte der Abbaufront validiert. Die Abbaufront wurde mit SAM und BFF analysiert und die Analysekarten wurden auf einem von „Structure-from-Motion“ abgeleiteten 3D-Modell des Tagebaus visualisiert. Die kartographierten geologischen Einheiten und Zonen korrelierten gut mit der erwarteten Zonierung der Abbaufront. Ein dritter Datensatz stand für die Anwendung des entwickelten Arbeitsablaufs zur Verfügung. Geochemische Probenanalysen und Laborspektraldaten von fünfzehn verschiedenen Proben aus dem offenen Tagebau Three Hills in der Republik Zypern wurden zur Analyse eines Datensatzes der Abbaufron des Tagebaus verwendet. Dabei wurden Bereiche mit niedrigem, mittlerem und hohem Erzgehalt identifiziert. Der in der Arbeit entwickelte Arbeitsablauf konnte erfolgreich für die offenen Tagebaue Apliki und Three Hills angewandt werden. Die errechneten Spektralgeologischen Karten stellen die örtliche geologische Situation korrekt dar. Der entwickelte Arbeitsablauf erläutert die Erfassung, Aufbereitung und Verarbeitung von Daten aus der bildgebenden Spektroskopie und beschreibt die Wahl der Analysemethodik sowie die Verwendung robuster Sensoren, die den Anforderungen der Tagebaubedingungen entsprechen. Sie hebt die Bedeutung einer standort- und lagerstättenspezifischen Spektralbibliothek für die Analyse von Abbaufronten hervor und unterstreicht die nötige Einbindung von Experten im Bereich der Geologie und der Spektralanalyse für eine erfolgreiche Implementierung der bildgebenden Spektroskopie im Kontext des Abbaus von Material in offenen Tagebauten.show moreshow less

Download full text files

  • SHA-512:f680cea29b6ce88ea4fbd83dad58bff74f3d26f5823eaf309ed35287f792a42e299bc0725de4804d519c3066bae879aa33e6b420a49cec7b36eef8d647ea0859

Export metadata

Metadaten
Author details:Friederike Magdalena KoertingORCiD
URN:urn:nbn:de:kobv:517-opus4-499091
DOI:https://doi.org/10.25932/publishup-49909
Subtitle (English):applications for virtual mine face geology
Subtitle (German):Anwendungen für die virtuelle geologische Kartierung von Abbaufronten
Reviewer(s):Uwe AltenbergerORCiDGND, Konstantinos Nikolakopoulos, Christian RogassORCiD
Supervisor(s):Uwe Altenberger, Helmut Echtler
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/03/24
Completion year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/03/04
Release date:2021/03/24
Tag:Abbaufrontkartierung; Abbildende Spektroskopie; Porphyrische Kupferlagerstätte; hyperspektral; offener Tagebau
hyperspectral; imaging spectroscopy; mine face mapping; open pit mining; porphyry copper deposit
Number of pages:xxix, 269
RVK - Regensburg classification:TZ 8540, UT 2750
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES / 92Fxx Other natural sciences (should also be assigned at least one other classification number in this section) / 92F05 Other natural sciences (should also be assigned at least one other classification number in section 92)
JEL classification:Q Agricultural and Natural Resource Economics; Environmental and Ecological Economics / Q3 Nonrenewable Resources and Conservation / Q32 Exhaustible Resources and Economic Development
License (German):License LogoCC BY - Namensnennung, 4.0 International