Effects of Neuromuscular Fatigue on Eccentric Strength and Electromechanical Delay of the Knee Flexors

  • Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤Purpose: To examine the effects of fatiguing isometric contractions on maximal eccentric strength and electromechanical delay (EMD) of the knee flexors in healthy young adults of different training status. Methods: Seventy-five male participants (27.7 ± 5.0 years) were enrolled in this study and allocated to three experimental groups according to their training status: athletes (ATH, n = 25), physically active adults (ACT, n = 25), and sedentary participants (SED, n = 25). The fatigue protocol comprised intermittent isometric knee flexions (6-s contraction, 4-s rest) at 60% of the maximum voluntary contraction until failure. Pre- and post-fatigue, maximal eccentric knee flexor strength and EMDs of the biceps femoris, semimembranosus, and semitendinosus muscles were assessed during maximal eccentric knee flexor actions at 60, 180, and 300°/s angular velocity. An analysis of covariance was computed with baseline (unfatigued) data included as a covariate. Results: Significant and large-sized main effects of group (p ≤ 0.017, 0.87 ≤ d ≤ 3.69) and/or angular velocity (p < 0.001, d = 1.81) were observed. Post hoc tests indicated that regardless of angular velocity, maximal eccentric knee flexor strength was lower and EMD was longer in SED compared with ATH and ACT (p ≤ 0.025, 0.76 ≤ d ≤ 1.82) and in ACT compared with ATH (p = ≤0.025, 0.76 ≤ d ≤ 1.82). Additionally, EMD at post-test was significantly longer at 300°/s compared with 60 and 180°/s (p < 0.001, 2.95 ≤ d ≤ 4.64) and at 180°/s compared with 60°/s (p < 0.001, d = 2.56), irrespective of training status. Conclusion: The main outcomes revealed significantly higher maximal eccentric strength and shorter eccentric EMDs of knee flexors in individuals with higher training status (i.e., athletes) following fatiguing exercises. Therefore, higher training status is associated with better neuromuscular functioning (i.e., strength, EMD) of the hamstring muscles in fatigued condition. Future longitudinal studies are needed to substantiate the clinical relevance of these findings.show moreshow less

Download full text files

  • phr562.pdfeng
    (912KB)

    SHA-1: 611bc199bf2abf3c8c5556b522aa6491232b4af7

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Said El-AshkerORCiD, Helmi ChaabeneORCiDGND, Olaf PrieskeORCiDGND, Ashraf AbdelkafyORCiD, Mohamed A. Ahmed, Qassim I. MuaidiORCiD, Urs GranacherORCiDGND
URN:urn:nbn:de:kobv:517-opus4-435863
DOI:https://doi.org/10.25932/publishup-43586
ISSN:1866-8364
Parent Title (German):Postprints der Universität Potsdam Humanwissenschaftliche Reihe
Subtitle (English):The Role of Training Status
Series (Serial Number):Postprints der Universität Potsdam : Humanwissenschaftliche Reihe (562)
Document Type:Postprint
Language:English
Date of first Publication:2019/10/07
Year of Completion:2019
Publishing Institution:Universität Potsdam
Release Date:2019/10/07
Tag:hamstring muscles; injury risk; latency; muscle activation; physical fitness expertise
Issue:562
Pagenumber:9
Source:Frontiers in Physiology 10 (2019) Art. 782 DOI: 10.3389/fphys.2019.00782
Organizational units:Humanwissenschaftliche Fakultät / Strukturbereich Kognitionswissenschaften
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Peer Review:Referiert
Publication Way:Open Access
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:Bibliographieeintrag der Originalveröffentlichung/Quelle