Dubrovin–rings and their connection to Hughes–free skew fields of fractions

Dubrovinringe und ihre Verbindung zu Hughes-freien Quotientenschiefkörpern

  • One method of embedding groups into skew fields was introduced by A. I. Mal'tsev and B. H. Neumann (cf. [18, 19]). If G is an ordered group and F is a skew field, the set F((G)) of formal power series over F in G with well-ordered support forms a skew field into which the group ring F[G] can be embedded. Unfortunately it is not suficient that G is left-ordered since F((G)) is only an F-vector space in this case as there is no natural way to define a multiplication on F((G)). One way to extend the original idea onto left-ordered groups is to examine the endomorphism ring of F((G)) as explored by N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F[G; η, σ] into the endomorphism ring of F((G)) such that each non-zero element of F[G; η, σ] defines an automorphism of F((G)) (cf. [5, 10]). Thus, the rational closure of F[G; η, σ] in the endomorphism ring of F((G)), which we will call the Dubrovin-ring of F[G; η, σ], is a potential candidate for a skew field of fractions of F[G; η, σ]. The methods of N. I.One method of embedding groups into skew fields was introduced by A. I. Mal'tsev and B. H. Neumann (cf. [18, 19]). If G is an ordered group and F is a skew field, the set F((G)) of formal power series over F in G with well-ordered support forms a skew field into which the group ring F[G] can be embedded. Unfortunately it is not suficient that G is left-ordered since F((G)) is only an F-vector space in this case as there is no natural way to define a multiplication on F((G)). One way to extend the original idea onto left-ordered groups is to examine the endomorphism ring of F((G)) as explored by N. I. Dubrovin (cf. [5, 6]). It is possible to embed any crossed product ring F[G; η, σ] into the endomorphism ring of F((G)) such that each non-zero element of F[G; η, σ] defines an automorphism of F((G)) (cf. [5, 10]). Thus, the rational closure of F[G; η, σ] in the endomorphism ring of F((G)), which we will call the Dubrovin-ring of F[G; η, σ], is a potential candidate for a skew field of fractions of F[G; η, σ]. The methods of N. I. Dubrovin allowed to show that specific classes of groups can be embedded into a skew field. For example, N. I. Dubrovin contrived some special criteria, which are applicable on the universal covering group of SL(2, R). These methods have also been explored by J. Gräter and R. P. Sperner (cf. [10]) as well as N.H. Halimi and T. Ito (cf. [11]). Furthermore, it is of interest to know if skew fields of fractions are unique. For example, left and right Ore domains have unique skew fields of fractions (cf. [2]). This is not the general case as for example the free group with 2 generators can be embedded into non-isomorphic skew fields of fractions (cf. [12]). It seems likely that Ore domains are the most general case for which unique skew fields of fractions exist. One approach to gain uniqueness is to restrict the search to skew fields of fractions with additional properties. I. Hughes has defined skew fields of fractions of crossed product rings F[G; η, σ] with locally indicable G which fulfill a special condition. These are called Hughes-free skew fields of fractions and I. Hughes has proven that they are unique if they exist [13, 14]. This thesis will connect the ideas of N. I. Dubrovin and I. Hughes. The first chapter contains the basic terminology and concepts used in this thesis. We present methods provided by N. I. Dubrovin such as the complexity of elements in rational closures and special properties of endomorphisms of the vector space of formal power series F((G)). To combine the ideas of N.I. Dubrovin and I. Hughes we introduce Conradian left-ordered groups of maximal rank and examine their connection to locally indicable groups. Furthermore we provide notations for crossed product rings, skew fields of fractions as well as Dubrovin-rings and prove some technical statements which are used in later parts. The second chapter focuses on Hughes-free skew fields of fractions and their connection to Dubrovin-rings. For that purpose we introduce series representations to interpret elements of Hughes-free skew fields of fractions as skew formal Laurent series. This 1 Introduction allows us to prove that for Conradian left-ordered groups G of maximal rank the statement "F[G; η, σ] has a Hughes-free skew field of fractions" implies "The Dubrovin ring of F [G; η, σ] is a skew field". We will also prove the reverse and apply the results to give a new prove of Theorem 1 in [13]. Furthermore we will show how to extend injective ring homomorphisms of some crossed product rings onto their Hughes-free skew fields of fractions. At last we will be able to answer the open question whether Hughes--free skew fields are strongly Hughes-free (cf. [17, page 53]).show moreshow less
  • In dieser Arbeit beschäftigen wir uns mit Quotientenschiefkörpern von verschränkten Produkten F [G; η, σ], wobei G eine Gruppe und F ein Schiefkörper ist. Eine Methode Gruppen in Schiefkörper einzubetten stammt von A. I. Mal’tsev und B. H. Neumann. Ist G eine beidseitig geordnete Gruppe, so lässt sich die Menge der formalen Potenzreihen F ((G)) über F in G mit wohlgeordnetem Träger als Schiefkörper interpretieren. In diesen lässt sich jedes verschränkte Produkt F [G; η, σ] einbetten. Möchte man die Klasse der einzubettenden Gruppen erweitern, so bieten sich links–geordnete Gruppen an. In diesem Fall hat F ((G)) keine natürliche Ringstruktur, aber man kann nutzen, dass F ((G)) ein rechter F–Vektorraum ist und seinen Endomorphismenring untersuchen. Jedes Verschränkte Produkt F [G; η, σ] lässt sich derart in den Endomorphismenring einbetten, dass die zugehörigen von Null verschiedenen Endomorphismen Automorphismen sind. Der rationale Abschluss von F [G; η, σ] in End(F ((G))), den wir Dubrovinring von F [G; η, σ] nennen, ist somit einIn dieser Arbeit beschäftigen wir uns mit Quotientenschiefkörpern von verschränkten Produkten F [G; η, σ], wobei G eine Gruppe und F ein Schiefkörper ist. Eine Methode Gruppen in Schiefkörper einzubetten stammt von A. I. Mal’tsev und B. H. Neumann. Ist G eine beidseitig geordnete Gruppe, so lässt sich die Menge der formalen Potenzreihen F ((G)) über F in G mit wohlgeordnetem Träger als Schiefkörper interpretieren. In diesen lässt sich jedes verschränkte Produkt F [G; η, σ] einbetten. Möchte man die Klasse der einzubettenden Gruppen erweitern, so bieten sich links–geordnete Gruppen an. In diesem Fall hat F ((G)) keine natürliche Ringstruktur, aber man kann nutzen, dass F ((G)) ein rechter F–Vektorraum ist und seinen Endomorphismenring untersuchen. Jedes Verschränkte Produkt F [G; η, σ] lässt sich derart in den Endomorphismenring einbetten, dass die zugehörigen von Null verschiedenen Endomorphismen Automorphismen sind. Der rationale Abschluss von F [G; η, σ] in End(F ((G))), den wir Dubrovinring von F [G; η, σ] nennen, ist somit ein potentieller Quotientenschiefkörper von F [G; η, σ]. Neben der Existenz von Quotientenschiefkörpern ist deren Eindeutigkeit (bis auf Isomorphie) von Interesse. Im Gegensatz zum kommutativen Fall sind Quotientenschiefkörper im Allgemeinen nicht eindeutig. So lässt sich beispielsweise die freie Gruppe mit zwei Erzeugenden in nicht–isomorphe Quotientenschiefkörper einbetten. Eine große Klasse an Ringen, die eindeutige Quotientenschiefkörper besitzen, sind Ore–Bereiche. Vermutlich lässt sich diese Klasse nicht erweitern, ohne zusätzliche Eigenschaften der Quotientenschiefkörper zu verlangen. Eine solche Eigenschaft, im Folgenden Hughes–frei genannt, wurde von I. Hughes vorgeschlagen. Er konnte beweisen, dass Hughes–freie Quotientenschiefkörper eindeutig sind, wenn sie existieren. In dieser Arbeit verbinden wir die Ideen von I. Hughes und N. I. Dubrovin. Wir zeigen, dass die Elemente von Hughes–freien Quotientenschiefkörpern als formale schiefe Laurent–Reihen dargestellt werden können und dass diese Darstellungen in gewisser Weise eindeutig sind. Dieses Ergebnis nutzen wir um zu beweisen, dass die Aussagen “F [G; η, σ] besitzt einen Hughes–freien Quotientenschiefkörper” und “Der Dubrovinring von F [G; η, σ] ist ein Schiefkörper” äquivalent sind, wenn G eine links–geordnete Gruppe von Conrad–Typ mit maximalem Rang ist. Wir stellen den nötigen Begriffsapparat zur Verfügung. Dieser basiert vorwiegend auf den Arbeiten von N. I. Dubrovin und umfasst spezielle Eigenschaften der Endomorphismen von F ((G)) sowie die Komplexität von Elementen in rationalen Abschlüssen. Des Weiteren gehen wir auf links–geordnete Gruppen von Conrad–Typ ein und untersuchen ihren Zusammenhang mit lokal indizierbaren Gruppen, die eine grundlegende Rolle für Hughes–freie Quotientenschiefkörper spielen. Wir werden zeigen können, dass Dubrovinringe, die Schiefkörper sind, stark Hughes–freie Quotientenschiefkörper sind, was die offene Frage beantwortet, ob Hughes–freie Quotientenschiefkörper stark Hughes–frei sind. Außerdem werden wir einen alternativen Beweis der Eindeutigkeit von Hughes–freien Quotientenschiefkörpern präsentieren und die Fortsetzbarkeit von Automorphismen eines verschränkten Produkts auf Hughes–freie Quotientenschiefkörper untersuchen.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Friedrich JakobsORCiD
URN:urn:nbn:de:kobv:517-opus4-435561
DOI:https://doi.org/10.25932/publishup-43556
Referee:Joachim GräterGND, Nikolay I. Dubrovin, Günter TörnerGND
Advisor:Joachim Gräter
Document Type:Doctoral Thesis
Language:English
Year of Completion:2019
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2019/09/09
Release Date:2019/10/07
Tag:Dubrovinring; Hughes-frei; Quotientenschiefkörper; Reihendarstellungen; geordnete Gruppen von Conrad-Typ; linksgeordnete Gruppen; lokal indizierbar; stark Hughes-frei
Conradian ordered groups; Dubrovinring; Hughes-free; left ordered groups; locally indicable; series representation; skew field of fraction; strongly Hughes-free
Pagenumber:ix, 62
RVK - Regensburg Classification:SK 230
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC Classification:16-XX ASSOCIATIVE RINGS AND ALGEBRAS (For the commutative case, see 13-XX)
Licence (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 4.0 International