A Lefschetz fixed point formula for elliptic quasicomplexes

  • In a recent paper, the Lefschetz number for endomorphisms (modulo trace class operators) of sequences of trace class curvature was introduced. We show that this is a well defined, canonical extension of the classical Lefschetz number and establish the homotopy invariance of this number. Moreover, we apply the results to show that the Lefschetz fixed point formula holds for geometric quasiendomorphisms of elliptic quasicomplexes.

Download full text files

  • SHA-1: 3363efd67613cd0d43eaba17fc927564f2b1f0f3

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Daniel WallentaGND
URN:urn:nbn:de:kobv:517-opus4-435471
DOI:https://doi.org/10.25932/publishup-43547
ISSN:0378-620X
Parent Title (German):Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (885)
Document Type:Postprint
Language:English
Date of first Publication:2020/04/20
Year of Completion:2014
Publishing Institution:Universität Potsdam
Release Date:2020/04/20
Tag:Fredholm complexes; Lefschetz number; elliptic complexes
Issue:885
Pagenumber:13
First Page:577
Last Page:587
Source:Integral Equations and Operator Theory 78 (2014) 577–587 DOI: 10.1007/s00020-014-2122-4
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Peer Review:Referiert
Publication Way:Open Access
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht