E-lecture material enhancement based on automatic multimedia analysis

Online-Vorlesung Materialverbesserung basierend auf automatischer Multimedia-Analyse

  • In this era of high-speed informatization and globalization, online education is no longer an exquisite concept in the ivory tower, but a rapidly developing industry closely relevant to people's daily lives. Numerous lectures are recorded in form of multimedia data, uploaded to the Internet and made publicly accessible from anywhere in this world. These lectures are generally addressed as e-lectures. In recent year, a new popular form of e-lectures, the Massive Open Online Courses (MOOCs), boosts the growth of online education industry and somehow turns "learning online" into a fashion. As an e-learning provider, besides to keep improving the quality of e-lecture content, to provide better learning environment for online learners is also a highly important task. This task can be preceded in various ways, and one of them is to enhance and upgrade the learning materials provided: e-lectures could be more than videos. Moreover, this process of enhancement or upgrading should be done automatically, without giving extra burdens to theIn this era of high-speed informatization and globalization, online education is no longer an exquisite concept in the ivory tower, but a rapidly developing industry closely relevant to people's daily lives. Numerous lectures are recorded in form of multimedia data, uploaded to the Internet and made publicly accessible from anywhere in this world. These lectures are generally addressed as e-lectures. In recent year, a new popular form of e-lectures, the Massive Open Online Courses (MOOCs), boosts the growth of online education industry and somehow turns "learning online" into a fashion. As an e-learning provider, besides to keep improving the quality of e-lecture content, to provide better learning environment for online learners is also a highly important task. This task can be preceded in various ways, and one of them is to enhance and upgrade the learning materials provided: e-lectures could be more than videos. Moreover, this process of enhancement or upgrading should be done automatically, without giving extra burdens to the lecturers or teaching teams, and this is the aim of this thesis. The first part of this thesis is an integrated framework of multi-lingual subtitles production, which can help online learners penetrate the language barrier. The framework consists of Automatic Speech Recognition (ASR), Sentence Boundary Detection (SBD) and Machine Translation (MT), among which the proposed SBD solution is major technical contribution, building on Deep Neural Network (DNN) and Word Vector (WV) and achieving state-of-the-art performance. Besides, a quantitative evaluation with dozens of volunteers is also introduced to measure how these auto-generated subtitles could actually help in context of e-lectures. Secondly, a technical solution "TOG" (Tree-Structure Outline Generation) is proposed to extract textual content from the displaying slides recorded in video and re-organize them into a hierarchical lecture outline, which may serve in multiple functions, such like preview, navigation and retrieval. TOG runs adaptively and can be roughly divided into intra-slide and inter-slides phases. Table detection and lecture video segmentation can be implemented as sub- or post-application in these two phases respectively. Evaluation on diverse e-lectures shows that all the outlines, tables and segments achieved are trustworthily accurate. Based on the subtitles and outlines previously created, lecture videos can be further split into sentence units and slide-based segment units. A lecture highlighting process is further applied on these units, in order to capture and mark the most important parts within the corresponding lecture, just as what people do with a pen when reading paper books. Sentence-level highlighting depends on the acoustic analysis on the audio track, while segment-level highlighting focuses on exploring clues from the statistical information of related transcripts and slide content. Both objective and subjective evaluations prove that the proposed lecture highlighting solution is with decent precision and welcomed by users. All above enhanced e-lecture materials have been already implemented in actual use or made available for implementation by convenient interfaces.show moreshow less
  • In der Ära der mit Hochgeschwindigkeit digitalisierten und globalisierten Welt ist die Online-Bildung nicht mehr ein kunstvoller Begriff im Elfenbeinturm, sondern eine sich schnell entwickelnde Industrie, die für den Alltag der Menschen eine wichtige Rolle spielt. Zahlreiche Vorlesungen werden digital aufgezeichnet und im Internet Online zur Verfügung gestellt, so dass sie vom überall auf der Welt erreichbar und zugänglich sind. Sie werden als e-Vorlesungen bezeichnet. Eine neue Form der Online-Bildung namens „Massive Open Online Courses“ (MOOCs), welche zum Trend seit dem letzten Jahr geworden ist, verstärket und beschleunigt die Entwicklung des Online-Lernens. Ein Online-Lernen Anbieter hat nicht nur die Qualität des Lerninhaltes sondern auch die Lernumgebung und die Lerntools ständig zu verbessern. Eine diese Verbesserungen ist die Form, in der das Lernmaterial aktualisiert und angeboten wird. Das Ziel dieser Dissertation ist die Untersuchung und die Entwicklung von Tools, die der Prozess der Verbesserung und Aktualisierung desIn der Ära der mit Hochgeschwindigkeit digitalisierten und globalisierten Welt ist die Online-Bildung nicht mehr ein kunstvoller Begriff im Elfenbeinturm, sondern eine sich schnell entwickelnde Industrie, die für den Alltag der Menschen eine wichtige Rolle spielt. Zahlreiche Vorlesungen werden digital aufgezeichnet und im Internet Online zur Verfügung gestellt, so dass sie vom überall auf der Welt erreichbar und zugänglich sind. Sie werden als e-Vorlesungen bezeichnet. Eine neue Form der Online-Bildung namens „Massive Open Online Courses“ (MOOCs), welche zum Trend seit dem letzten Jahr geworden ist, verstärket und beschleunigt die Entwicklung des Online-Lernens. Ein Online-Lernen Anbieter hat nicht nur die Qualität des Lerninhaltes sondern auch die Lernumgebung und die Lerntools ständig zu verbessern. Eine diese Verbesserungen ist die Form, in der das Lernmaterial aktualisiert und angeboten wird. Das Ziel dieser Dissertation ist die Untersuchung und die Entwicklung von Tools, die der Prozess der Verbesserung und Aktualisierung des Lernmaterials automatisch durchführen. Die entwickelten Tools sollen das Lehrerteam entlasten und seine Arbeit beschleunigen. Der erste Teil der Dissertation besteht aus einem integrierten Framework für die Generierung von mehrsprachigen Untertiteln. Dies kann den Online-Lernern ermöglichen, die Sprachbarriere beim Lernen zu überwinden. Das Framework besteht aus „Automatic Speech Recognition“ (ASR), „Sentence Boundary Detection“ (SBD), und „Machine Translation“ (MT). SBD ist realisiert durch die Anwendung von „Deep Neural Network“ (DNN) und „Word Vector“ (WV), wodurch die Genauigkeit der Stand der Technik erreicht ist. Außerdem quantitative Bewertung durch Dutzende von Freiwilligen ist also eingesetzt, um zu evaluieren, wie diese automaisch generierten Untertiteln in den E-Vorlesungen helfen können. Im zweiten Teil ist eine technische Lösung namens „Tree-Structure Outline Generation“ (TOG) für die Extraktion des textuellen Inhalts aus den Folien präsentiert. Der extrahierten Informationen werden dann in strukturierter Form dargestellt, welche die Outline der Vorlesung wiederspiegelt. Diese Darstellung kann verschiedenen Funktionen dienen, wie dem Vorschau, der Navigation, und dem Abfragen des Inhaltes. TOG ist adaptiv und kann grob in Intra-Folie und Inter-Folien Phasen unterteilt werden. Für diese Phasen, Tabellenerkennung und die Segmentierung von Vorlesungsvideo können als Sub- oder Post-Applikation jeweils implementiert werden. Die höhere Genauigkeit der extrahierten Outline, der Tabellen, und der Segmenten wird experimentell durch die Anwendung auf verschieden e-Vorlesungen gezeigt. Basierend auf den Untertiteln und dem Outline, die in vorher generiert wurden, Vorlesungsvideos können weiter in Satzeinheiten und Folien-basierten Segmenteinheiten gesplittet werden. Ein Hervorhebungsprozess wird weiter auf diese Einheiten angewendet, um die wichtigsten Teile innerhalb der entsprechenden Vorlesung zu erfassen und zu markieren. Dies entspricht genau, was die Lerner mit einem Stift beim Lesen von Büchern machen. Die Satz-Level-Hervorhebung hängt von der akustischen Analyse auf der Audiospur ab, während die Segment-Level-Hervorhebung auf die Erforschung von Hinweisen aus den statistischen Informationen der verwandten Transkripte und des Folieninhalts fokussiert. Die objektiven und subjektiven Auswertungen zeigen, dass die vorgeschlagene Vorlesungsvorhebungslösung mit anständiger Präzision und von den Benutzern akzeptiert wird. All diese Methoden für die Verbesserung der Online-Materialien wurden bereits für den Einsatz implementiert und durch komfortable Schnittstellen zur Verfügung gestellt.show moreshow less

Download full text files

  • che_diss.pdfeng
    (8355KB)

    SHA-1:fad2e2eca6009c2f38ac8be965c023ef86e5f0d1

Export metadata

Metadaten
Author details:Xiaoyin CheORCiDGND
URN:urn:nbn:de:kobv:517-opus4-408224
Supervisor(s):Christoph Meinel
Publication type:Doctoral Thesis
Language:English
Publication year:2017
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2018/02/01
Release date:2018/03/13
Tag:Deep Learning; Dokument Analyse; E-Learning; natürliche Sprachverarbeitung
E-Learning; NLP; deep learning; document analysis
Number of pages:xviii, 148
RVK - Regensburg classification:ST 306, ST 680, ES 960
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
License (German):License LogoCC BY - Namensnennung, 4.0 International
Einverstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.