Spectroscopic surface brightness fluctuations

Spektroskopische Flächenhelligkeitsfluktuationen

  • Galaxies evolve on cosmological timescales and to study this evolution we can either study the stellar populations, tracing the star formation and chemical enrichment, or the dynamics, tracing interactions and mergers of galaxies as well as accretion. In the last decades this field has become one of the most active research areas in modern astrophysics and especially the use of integral field spectrographs furthered our understanding. This work is based on data of NGC 5102 obtained with the panoramic integral field spectrograph MUSE. The data are analysed with two separate and complementary approaches: In the first part, standard methods are used to measure the kinematics and than model the gravitational potential using these exceptionally high-quality data. In the second part I develop the new method of surface brightness fluctuation spectroscopy and quantitatively explore its potential to investigate the bright evolved stellar population. Measuring the kinematics of NGC 5102 I discover that this low-luminosity S0 galaxy hostsGalaxies evolve on cosmological timescales and to study this evolution we can either study the stellar populations, tracing the star formation and chemical enrichment, or the dynamics, tracing interactions and mergers of galaxies as well as accretion. In the last decades this field has become one of the most active research areas in modern astrophysics and especially the use of integral field spectrographs furthered our understanding. This work is based on data of NGC 5102 obtained with the panoramic integral field spectrograph MUSE. The data are analysed with two separate and complementary approaches: In the first part, standard methods are used to measure the kinematics and than model the gravitational potential using these exceptionally high-quality data. In the second part I develop the new method of surface brightness fluctuation spectroscopy and quantitatively explore its potential to investigate the bright evolved stellar population. Measuring the kinematics of NGC 5102 I discover that this low-luminosity S0 galaxy hosts two counter rotating discs. The more central stellar component co-rotates with the large amount of HI gas. Investigating the populations I find strong central age and metallicity gradients with a younger and more metal rich central population. The spectral resolution of MUSE does not allow to connect these population gradients with the two counter rotating discs. The kinematic measurements are modelled with Jeans anisotropic models to infer the gravitational potential of NGC 5102. Under the self-consistent mass-follows-light assumption none of the Jeans models is able to reproduce the observed kinematics. To my knowledge this is the strongest evidence evidence for a dark matter dominated system obtained with this approach so far. Including a Navarro, Frenk & White dark matter halo immediately solves the discrepancies. A very robust result is the logarithmic slope of the total matter density. For this low-mass galaxy I find a value of -1.75 +- 0.04, shallower than an isothermal halo and even shallower than published values for more massive galaxies. This confirms a tentative relation between total mass slope and stellar mass of galaxies. The Surface Brightness Fluctuation (SBF) method is a well established distance measure, but due to its sensitive to bright stars also used to study evolved stars in unresolved stellar populations. The wide-field spectrograph MUSE offers the possibility to apply this technique for the first time to spectroscopic data. In this thesis I develop the spectroscopic SBF technique and measure the first SBF spectrum of any galaxy. I discuss the challenges for measuring SBF spectra that rise due to the complexity of integral field spectrographs compared to imaging instruments. Since decades, stellar population models indicate that SBFs in intermediate-to-old stellar systems are dominated by red giant branch and asymptotic giant branch stars. Especially the later carry significant model uncertainties, making these stars a scientifically interesting target. Comparing the NGC 5102 SBF spectrum with stellar spectra I show for the first time that M-type giants cause the fluctuations. Stellar evolution models suggest that also carbon rich thermally pulsating asymptotic giant branch stars should leave a detectable signal in the SBF spectrum. I cannot detect a significant contribution from these stars in the NGC 5102 SBF spectrum. I have written a stellar population synthesis tool that predicts for the first time SBF spectra. I compute two sets of population models: based on observed and on theoretical stellar spectra. In comparing the two models I find that the models based on observed spectra predict weaker molecular features. The comparison with the NGC 5102 spectrum reveals that these models are in better agreement with the data.show moreshow less
  • Galaxien entwickeln sich auf kosmischen Zeitskalen. Um diese Entwicklung zu untersuchen und zu verstehen benutzen wir zwei verschiedene Methoden: Die Analyse der stellaren Population in Galaxien gibt Auskunft über die Sternentstehungsgeschichte und die Erzeugung von schweren Elementen. Die Analyse der Bewegung der Sterne gibt Auskunft über die dynamische Entwicklung, Interaktionen und Kollisionen von Galaxien, sowie die Akkretion von Gas. Die Untersuchung der Galaxienentwicklung ist in den letzten Jahrzehnten zu einem der wichtigsten Bereiche in der modernen Astrophysik geworden und die Einführung der Integral-Feldspektroskopie hat viel zu unserem heutigen Verständnis beigetragen. Die Grundlage dieser Arbeit bilden Spektren von der Galaxie NGC 5102. Die Spektren wurden mit dem Integral-Feldspektrographen MUSE aufgenommen, welcher sich durch ein groß es Gesichtsfeld auszeichnet. Die Daten werden mit zwei unterschiedlichen und sich ergänzenden Methoden analysiert: Im ersten Teil der Arbeit benutze ich etablierte Methoden um dieGalaxien entwickeln sich auf kosmischen Zeitskalen. Um diese Entwicklung zu untersuchen und zu verstehen benutzen wir zwei verschiedene Methoden: Die Analyse der stellaren Population in Galaxien gibt Auskunft über die Sternentstehungsgeschichte und die Erzeugung von schweren Elementen. Die Analyse der Bewegung der Sterne gibt Auskunft über die dynamische Entwicklung, Interaktionen und Kollisionen von Galaxien, sowie die Akkretion von Gas. Die Untersuchung der Galaxienentwicklung ist in den letzten Jahrzehnten zu einem der wichtigsten Bereiche in der modernen Astrophysik geworden und die Einführung der Integral-Feldspektroskopie hat viel zu unserem heutigen Verständnis beigetragen. Die Grundlage dieser Arbeit bilden Spektren von der Galaxie NGC 5102. Die Spektren wurden mit dem Integral-Feldspektrographen MUSE aufgenommen, welcher sich durch ein groß es Gesichtsfeld auszeichnet. Die Daten werden mit zwei unterschiedlichen und sich ergänzenden Methoden analysiert: Im ersten Teil der Arbeit benutze ich etablierte Methoden um die Bewegung der Sterne zu vermessen und daraus das Gravitationspotential der Galaxie abzuleiten. Dieser Teil der Arbeit profitiert insbesondere von der ausgezeichneten Datenqualität. Im zweiten Teil der Arbeit entwickle ich erstmalig eine Methode für die Datenanalyse zur Extraktion von spektroskopischen Flächenhelligkeitsfluktuationen und quantifiziere deren Potential für die Untersuchung der hellen und entwickelten Sterne in Galaxien. Durch die Analyse der Bewegung der Sterne in NGC 5102 habe ich entdeckt, dass diese S0 Galaxie aus zwei entgegengesetzt rotierenden Scheiben besteht. Durch die Kombination von meinen Ergebnissen mit publizierten Messungen der Rotation des HI Gases finde ich, dass dieses in die gleiche Richtung rotiert wie die innere Scheibe. Die Analyse der stellaren Population zeigt starke Gradienten im mittleren Alter und der mittleren Metallizität. Dabei ist die stellare Population im Zentrum jünger und hat eine höhere Metallizität. Die spektrale Auflösung von MUSE reicht nicht aus, um zu untersuchen, ob diese Gradienten in der Population mit den beiden entgegengesetzt rotierenden Scheiben verbunden sind. Um das Gravitationspotential von NGC 5102 zu untersuchen, modelliere ich die gemessene Kinematik mit anisotropen Jeans Modellen. Keines der Modelle in dem ich annehme, dass die Massenverteilung der Verteilung des Lichts folgt, ist in der Lage die gemessene Kinematik zu reproduzieren. Nach meinem Wissen ist dies der bislang stärkste Hinweis auf Dunkle Materie, der mit dieser Methode in einer einzelnen Galaxie bisher erzielt worden ist. Durch das Hinzufügen einer sphärischen Dunkle Materie Komponente in Form eines Navarro, Frenk & White Halos kann die Diskrepanz zwischen Beobachtung und Modell gelöst werden. Fast modelunabhängig lässt sich die Steigung des logarithmischen Dichteprofils der gesamten (sichtbare und dunkle) Materie messen. In dieser massearmen Galaxie finde ich einen Wert von -1.75 +- 0.04. Diese Steigung ist flacher als die eines isotermen Dichteprofils und noch flacher als die Steigungen die für massereiche Galaxien veröffentlicht wurden. Diese Ergebnisse bestätigen eine bisher nur angedeutete Korrelation zwischen der Steigung des Dichteprofils und der stellaren Masse. Flächenhelligkeitsfluktuationen (Surface Brightness Fluctuations, SBF) sind eine etablierte Methode zur Entfernungsbestimmung von Galaxien. SBF werden von den hellsten Sternen in einer Population verursacht und werden daher auch benutzt, um diese Sterne zu untersuchen. MUSE zeichnet sich durch die einmalige Kombination von einem groß en Gesichtsfeld, mit einem guten räumlichen Sampling, und einer spektroskopischen Zerlegung des Lichts über das gesamte Gesichtsfeld aus. Dadurch kann die SBF Methode erstmalig auf Spektren angewendet werden. In dieser Arbeit entwickle ich die Methode der spektroskopischen SBF und messe das erste SBF Spektrum von einer Galaxie. Dabei diskutiere ich insbesondere die Herausforderungen die sich durch die Komplexität von Integral-Feldspektrographen verglichen mit bildgebenden Instrumenten für die SBF Methode ergeben. Seit langem sagen stellare Populationsmodelle voraus, dass die SBF in stellaren Populationen, die älter als etwa 0.5 Gyr sind, von Sternen auf dem roten und dem asymptotischen Riesenast erzeugt werden. Dabei ist insbesondere die Modellierung von Sternen des asymptotischen Riesenastes schwierig, weshalb diese wissenschaftlich besonders interessant sind. Der Vergleich des gemessenen SBF Spektrums von NGC 5102 mit Spektren von Riesensternen zeigt, dass das SBF Spektrum von Sternen mit dem Spektraltyp M dominiert wird. Nach allen Standardmodellen der stellaren Entwicklung sollten auch kohlenstoffreiche Riesensterne vom Spektraltyp C im SBF Spektrum sichtbar sein. Zu dem gemessenen SBF Spektrum tragen diese Sterne aber nicht signifikant bei. Ich habe eine stellar population synthesis Software geschrieben, die zum ersten Mal auch SBF Spektrenmodelle berechnet. Mit dieser Software habe ich zwei verschiedene Versionen von Modellen berechnet: die eine basiert auf beobachteten Sternspektren, die andere auf theoretischen Modellen von Sternspektren. Die Version der SBF Modellspektren, die auf den beobachteten Sternspektren beruht, zeigt schwächere molekulare Absorptionsbanden. Der Vergleich mit dem SBF Spektrum von NGC 5102 zeigt, dass diese Modelle besser zu den Daten passen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Martin MitzkusORCiDGND
URN:urn:nbn:de:kobv:517-opus4-406327
Subtitle (English):probing bright evolved stars in unresolved stellar populations
Subtitle (German):Untersuchung von hellen, entwickelten Sternen in unaufgelösten stellaren Populationen
Advisor:Martin M. Roth, C. Jakob Walcher
Document Type:Doctoral Thesis
Language:English
Year of Completion:2017
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2017/12/05
Release Date:2018/02/07
Tag:Galaxien; Kinematik; stellare Population
galaxy; kinematics; stellar population
Pagenumber:ix, 89
RVK - Regensburg Classification:US 3100
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 52 Astronomie / 520 Astronomie und zugeordnete Wissenschaften
PACS Classification:90.00.00 GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS (for more detailed headings, see the Geophysics Appendix) / 98.00.00 Stellar systems; interstellar medium; galactic and extragalactic objects and systems; the Universe / 98.10.+z Stellar dynamics and kinematics
90.00.00 GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS (for more detailed headings, see the Geophysics Appendix) / 98.00.00 Stellar systems; interstellar medium; galactic and extragalactic objects and systems; the Universe / 98.62.-g Characteristics and properties of external galaxies and extragalactic objects (for the Milky Way, see 98.35.-a)
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht