Tailoring the emission of stripe-array diode lasers with external cavities to enable nonlinear frequency conversion

Maßgeschneiderte Emission aus Breitstreifenlasern mit externen Resonatoren zur Ermöglichung nichtlinearer Frequenzkonversion

  • A huge number of applications require coherent radiation in the visible spectral range. Since diode lasers are very compact and efficient light sources, there exists a great interest to cover these applications with diode laser emission. Despite modern band gap engineering not all wavelengths can be accessed with diode laser radiation. Especially in the visible spectral range between 480 nm and 630 nm no emission from diode lasers is available, yet. Nonlinear frequency conversion of near-infrared radiation is a common way to generate coherent emission in the visible spectral range. However, radiation with extraordinary spatial temporal and spectral quality is required to pump frequency conversion. Broad area (BA) diode lasers are reliable high power light sources in the near-infrared spectral range. They belong to the most efficient coherent light sources with electro-optical efficiencies of more than 70%. Standard BA lasers are not suitable as pump lasers for frequency conversion because of their poor beam quality and spectralA huge number of applications require coherent radiation in the visible spectral range. Since diode lasers are very compact and efficient light sources, there exists a great interest to cover these applications with diode laser emission. Despite modern band gap engineering not all wavelengths can be accessed with diode laser radiation. Especially in the visible spectral range between 480 nm and 630 nm no emission from diode lasers is available, yet. Nonlinear frequency conversion of near-infrared radiation is a common way to generate coherent emission in the visible spectral range. However, radiation with extraordinary spatial temporal and spectral quality is required to pump frequency conversion. Broad area (BA) diode lasers are reliable high power light sources in the near-infrared spectral range. They belong to the most efficient coherent light sources with electro-optical efficiencies of more than 70%. Standard BA lasers are not suitable as pump lasers for frequency conversion because of their poor beam quality and spectral properties. For this purpose, tapered lasers and diode lasers with Bragg gratings are utilized. However, these new diode laser structures demand for additional manufacturing and assembling steps that makes their processing challenging and expensive. An alternative to BA diode lasers is the stripe-array architecture. The emitting area of a stripe-array diode laser is comparable to a BA device and the manufacturing of these arrays requires only one additional process step. Such a stripe-array consists of several narrow striped emitters realized with close proximity. Due to the overlap of the fields of neighboring emitters or the presence of leaky waves, a strong coupling between the emitters exists. As a consequence, the emission of such an array is characterized by a so called supermode. However, for the free running stripe-array mode competition between several supermodes occurs because of the lack of wavelength stabilization. This leads to power fluctuations, spectral instabilities and poor beam quality. Thus, it was necessary to study the emission properties of those stripe-arrays to find new concepts to realize an external synchronization of the emitters. The aim was to achieve stable longitudinal and transversal single mode operation with high output powers giving a brightness sufficient for efficient nonlinear frequency conversion. For this purpose a comprehensive analysis of the stripe-array devices was done here. The physical effects that are the origin of the emission characteristics were investigated theoretically and experimentally. In this context numerical models could be verified and extended. A good agreement between simulation and experiment was observed. One way to stabilize a specific supermode of an array is to operate it in an external cavity. Based on mathematical simulations and experimental work, it was possible to design novel external cavities to select a specific supermode and stabilize all emitters of the array at the same wavelength. This resulted in stable emission with 1 W output power, a narrow bandwidth in the range of 2 MHz and a very good beam quality with M²<1.5. This is a new level of brightness and brilliance compared to other BA and stripe-array diode laser systems. The emission from this external cavity diode laser (ECDL) satisfied the requirements for nonlinear frequency conversion. Furthermore, a huge improvement to existing concepts was made. In the next step newly available periodically poled crystals were used for second harmonic generation (SHG) in single pass setups. With the stripe-array ECDL as pump source, more than 140 mW of coherent radiation at 488 nm could be generated with a very high opto-optical conversion efficiency. The generated blue light had very good transversal and longitudinal properties and could be used to generate biphotons by parametric down-conversion. This was feasible because of the improvement made with the infrared stripe-array diode lasers due to the development of new physical concepts.show moreshow less
  • Für eine Vielzahl von interessanten Anwendungen z.B. in den Lebenswissenschaften werden kohärente Strahlquellen im sichtbaren Spektralbereich benötigt. Diese Strahlquellen sollen sich durch eine hohe Effizienz (d.h. Sparsamkeit), Mobilität und eine hohe Güte des emittierten Lichtes auszeichnen. Im Idealfall passt die Lichtquelle in die Hosentasche und kann mit herkömmlichen Batterien betrieben werden. Diodenlaser sind solche kleinen und sehr effizienten Strahlquellen. Sie sind heutzutage allgegenwärtig, begegnen uns in CD-Playern, Laserdruckern oder an Supermarktkassen im täglichen Leben. Diodenlaser zeichnen sich durch ihren extrem hohen Wirkungsgrad aus, da hier elektrischer Strom direkt in Licht umgewandelt wird. Jedoch können bisher noch nicht alle Wellenlängen im sichtbaren Bereich mit diesen Lasern realisiert werden. Eine Möglichkeit, diesen Wellenlängenbereich über einen Umweg zu erreichen, ist Frequenzkonversion von infrarotem in sichtbares Licht mit sogenannten nichtlinearen optischen Kristallen. Dies ist im Prinzip auch mitFür eine Vielzahl von interessanten Anwendungen z.B. in den Lebenswissenschaften werden kohärente Strahlquellen im sichtbaren Spektralbereich benötigt. Diese Strahlquellen sollen sich durch eine hohe Effizienz (d.h. Sparsamkeit), Mobilität und eine hohe Güte des emittierten Lichtes auszeichnen. Im Idealfall passt die Lichtquelle in die Hosentasche und kann mit herkömmlichen Batterien betrieben werden. Diodenlaser sind solche kleinen und sehr effizienten Strahlquellen. Sie sind heutzutage allgegenwärtig, begegnen uns in CD-Playern, Laserdruckern oder an Supermarktkassen im täglichen Leben. Diodenlaser zeichnen sich durch ihren extrem hohen Wirkungsgrad aus, da hier elektrischer Strom direkt in Licht umgewandelt wird. Jedoch können bisher noch nicht alle Wellenlängen im sichtbaren Bereich mit diesen Lasern realisiert werden. Eine Möglichkeit, diesen Wellenlängenbereich über einen Umweg zu erreichen, ist Frequenzkonversion von infrarotem in sichtbares Licht mit sogenannten nichtlinearen optischen Kristallen. Dies ist im Prinzip auch mit Diodenlasern möglich, konnte bisher jedoch nur sehr ineffizient oder mit erheblichem Aufwand umgesetzt werden. Allerdings kann mit Hilfe von externen Resonatoren die Emission solcher Standard-Laserdioden maßgeblich beeinflusst und die Qualität des Lichtes erheblich verbessert werden. Hier setzt die Zielsetzung dieser Arbeit an: Das Licht von infraroten Hochleistungslaserdioden, sogenannten „Streifen-Arrays“, sollte durch einen externen Resonator stabilisiert und für die Frequenzverdopplung erschlossen werden. Diese Arrays bestehen aus mehreren dicht nebeneinander angeordneten Einzelemittern und zeichnen sich dadurch aus, dass eine Kopplung dieser Emitter von außen möglich ist. Im ersten Schritt sollte eine solche Synchronisation der Emitter erreicht werden. In einem zweiten Schritt soll das von außen beeinflusste Licht des Arrays mit einer hohen Effizienz in sichtbares (blaues) Licht konvertiert werden um den Wirkungsgrad der Diodenlaser voll auszunutzen. Dafür war es notwendig die Physik der Streifen-Arrays sorgfältig zu untersuchen. Es mussten Methoden entwickelt werden, durch die eine gezielte Beeinflussung der Emitter möglich ist, damit es zu einer globalen Kopplung und Synchronisation der Array Emitter kommt. Dafür wurden mit Hilfe von mathematischen Modellierungen und Experimenten verschiedene Resonatorkonzepte entwickelt und realisiert. Schlussendlich war es möglich, die Emissionseigenschaften der Arrays um mehrere Größenordnungen zu verbessern und sehr effizient kohärentes blaues Licht sehr hoher Güte zu erzeugen. In einem weiteren Experiment ist es zusätzlich gelungen nichtklassisches Licht bzw. Paarphotonen zu generieren, die ebenfalls interessant für die Lebenswissenschaften sind.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Andreas Jechow
URN:urn:nbn:de:kobv:517-opus-39653
ISBN:978-3-86956-031-1
Publisher:Universitätsverlag Potsdam
Place of publication:Potsdam
Advisor:Ralf Menzel
Document Type:Doctoral Thesis
Language:English
Year of Completion:2009
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2009/11/30
Release Date:2010/01/12
Tag:Diodenlaser; Frequenzkonversion; Kopplung; Modellierung; externe Resonatoren
diode-laser-arrays; diode-lasers; external cavities; modeling
Pagenumber:ii, 139
RVK - Regensburg Classification:UH 5616
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Publication Way:Universitätsverlag Potsdam
Licence (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Keine Bearbeitung 3.0 Deutschland
Notes extern:
In Printform erschienen im Universitätsverlag Potsdam:

Jechow, Andreas: Tailoring the emission of stripe-array diode lasers with external cavities to enable nonlinear frequency conversion / Andreas Jechow. - Potsdam : Universitätsverlag Potsdam, 2010. - ii, 139 S. : Ill., graph. Darst.
Zugl: Potsdam, Univ., Diss., 2009
ISBN 978-3-86956-031-1
--> bestellen