Out-of-core GPU-based change detection in massive 3D point clouds

  • If sites, cities, and landscapes are captured at different points in time using technology such as LiDAR, large collections of 3D point clouds result. Their efficient storage, processing, analysis, and presentation constitute a challenging task because of limited computation, memory, and time resources. In this work, we present an approach to detect changes in massive 3D point clouds based on an out-of-core spatial data structure that is designed to store data acquired at different points in time and to efficiently attribute 3D points with distance information. Based on this data structure, we present and evaluate different processing schemes optimized for performing the calculation on the CPU and GPU. In addition, we present a point-based rendering technique adapted for attributed 3D point clouds, to enable effective out-of-core real-time visualization of the computation results. Our approach enables conclusions to be drawn about temporal changes in large highly accurate 3D geodata sets of a captured area at reasonable preprocessingIf sites, cities, and landscapes are captured at different points in time using technology such as LiDAR, large collections of 3D point clouds result. Their efficient storage, processing, analysis, and presentation constitute a challenging task because of limited computation, memory, and time resources. In this work, we present an approach to detect changes in massive 3D point clouds based on an out-of-core spatial data structure that is designed to store data acquired at different points in time and to efficiently attribute 3D points with distance information. Based on this data structure, we present and evaluate different processing schemes optimized for performing the calculation on the CPU and GPU. In addition, we present a point-based rendering technique adapted for attributed 3D point clouds, to enable effective out-of-core real-time visualization of the computation results. Our approach enables conclusions to be drawn about temporal changes in large highly accurate 3D geodata sets of a captured area at reasonable preprocessing and rendering times. We evaluate our approach with two data sets from different points in time for the urban area of a city, describe its characteristics, and report on applications.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Rico Richter, Jan Eric Kyprianidis, Jürgen DöllnerGND
DOI:https://doi.org/10.1111/j.1467-9671.2012.01362.x
ISSN:1361-1682 (print)
Parent Title (English):Transactions in GIS
Publisher:Wiley-Blackwell
Place of publication:Hoboken
Document Type:Article
Language:English
Year of first Publication:2013
Year of Completion:2013
Release Date:2017/03/26
Volume:17
Issue:5
Pagenumber:18
First Page:724
Last Page:741
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
Peer Review:Referiert
Institution name at the time of publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik