Physikalische Hydrogele auf Polyurethan-Basis
Physical hydrogels based on polyurethanes
- Physikalische Hydrogele gewinnen derzeit als Zellsubstrate zunehmend an Interesse, da Viskoelastizität oder Stressrelaxation ein bedeutender Parameter in der Mechanotransduktion ist, der bisher vernachlässigt wurde. In dieser Arbeit wurden multi-funktionelle Polyurethane entworfen, die über einen neuartigen Gelierungsmechanismus physikalische Hydrogele bilden. In Wasser bilden die anionischen Polyurethane spontan Aggregate, welche durch elektrostatische Abstoßung in Lösung gehalten werden. Eine schnelle Gelierung kann von hier aus durch Ladungsabschirmung erreicht werden, wodurch die Aggregation voranschreitet und ein Netzwerk ausgebildet wird. Dies kann durch die Zugabe von verschiedenen Säuren oder Salzen geschehen, sodass sowohl saure (pH 4 - 5) als auch pH-neutrale Hydrogele erhalten werden können. Während konventionelle Hydrogele auf Polyurethan-Basis in der Regel durch toxische isocyanat-haltige Präpolymere hergestellt werden, eignet sich der hier beschriebene physikalische Gelierungsmechanismus für in situ Anwendungen inPhysikalische Hydrogele gewinnen derzeit als Zellsubstrate zunehmend an Interesse, da Viskoelastizität oder Stressrelaxation ein bedeutender Parameter in der Mechanotransduktion ist, der bisher vernachlässigt wurde. In dieser Arbeit wurden multi-funktionelle Polyurethane entworfen, die über einen neuartigen Gelierungsmechanismus physikalische Hydrogele bilden. In Wasser bilden die anionischen Polyurethane spontan Aggregate, welche durch elektrostatische Abstoßung in Lösung gehalten werden. Eine schnelle Gelierung kann von hier aus durch Ladungsabschirmung erreicht werden, wodurch die Aggregation voranschreitet und ein Netzwerk ausgebildet wird. Dies kann durch die Zugabe von verschiedenen Säuren oder Salzen geschehen, sodass sowohl saure (pH 4 - 5) als auch pH-neutrale Hydrogele erhalten werden können. Während konventionelle Hydrogele auf Polyurethan-Basis in der Regel durch toxische isocyanat-haltige Präpolymere hergestellt werden, eignet sich der hier beschriebene physikalische Gelierungsmechanismus für in situ Anwendungen in sensitiven Umgebungen. Sowohl Härte als auch Stressrelaxation der Hydrogele können unabhängig voneinander über einen breiten Bereich eingestellt werden. Darüberhinaus zeichnen sich die Hydrogele durch exzellente Stressregeneration aus.…
- Physical hydrogels have gained recent attention as cell substrates, since viscoelasticity or stress relaxation is a powerful parameter in mechanotransduction, which has long been neglected. We designed multi-functional polyurethanes to form physical hydrogels via a unique tunable gelation mechanism. The anionic polyurethanes spontaneously form aggregates in water that are kept in a soluble state through electrostatic repulsion. Fast subsequent gelation can be triggered by charge shielding which allows the aggregation and network building to proceed. This can be induced by adding either acids or salts, resulting in acidic (pH 4-5) or pH-neutral hydrogels, respectively. Whereas conventional polyurethane-based hydrogels are commonly prepared from toxic isocyanate precursors, the physical hydrogelation mechanism described here does not involve chemically reactive species which is ideal for in situ applications in sensitive environments. Both stiffness and stress relaxation can be tuned independently over a broad range and the gels exhibitPhysical hydrogels have gained recent attention as cell substrates, since viscoelasticity or stress relaxation is a powerful parameter in mechanotransduction, which has long been neglected. We designed multi-functional polyurethanes to form physical hydrogels via a unique tunable gelation mechanism. The anionic polyurethanes spontaneously form aggregates in water that are kept in a soluble state through electrostatic repulsion. Fast subsequent gelation can be triggered by charge shielding which allows the aggregation and network building to proceed. This can be induced by adding either acids or salts, resulting in acidic (pH 4-5) or pH-neutral hydrogels, respectively. Whereas conventional polyurethane-based hydrogels are commonly prepared from toxic isocyanate precursors, the physical hydrogelation mechanism described here does not involve chemically reactive species which is ideal for in situ applications in sensitive environments. Both stiffness and stress relaxation can be tuned independently over a broad range and the gels exhibit excellent stress recovery behavior.…
Author details: | Mai-Thi LeiendeckerORCiDGND |
---|---|
URN: | urn:nbn:de:kobv:517-opus4-103917 |
Supervisor(s): | Alexander Böker |
Publication type: | Doctoral Thesis |
Language: | German |
Year of first publication: | 2017 |
Publication year: | 2016 |
Publishing institution: | Universität Potsdam |
Granting institution: | Universität Potsdam |
Date of final exam: | 2016/09/01 |
Release date: | 2017/03/23 |
Tag: | Bulkgele; Hydrogele; Kolloidchemie; Mechanotransduktion; Mikrogele; Polyurethane; Stressrelaxation; Stressrelaxierung; Viskoelastizität; physikalische Hydrogele bulk gels; colloidal chemistry; hydrogels; mechanotransduction; microgels; physical hydrogels; polyurethanes; stress relaxation; stress-relaxation; viscoelasticity |
Number of pages: | 109 |
RVK - Regensburg classification: | VK 5070, VK 8007 |
Organizational units: | Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie |
DDC classification: | 5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften |
License (German): | Keine öffentliche Lizenz: Unter Urheberrechtsschutz |