Deciphering multiple changes in complex climate time series using Bayesian inference

Bayes'sche Inferenz als diagnostischer Ansatz zur Untersuchung multipler Übergänge in komplexen Klimazeitreihen

  • Change points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of the observations. Unraveling such transitions yields essential information for the understanding of the observed system’s intrinsic evolution and potential external influences. A precise detection of multiple changes is therefore of great importance for various research disciplines, such as environmental sciences, bioinformatics and economics. The primary purpose of the detection approach introduced in this thesis is the investigation of transitions underlying direct or indirect climate observations. In order to develop a diagnostic approach capable to capture such a variety of natural processes, the generic statistical features in terms of central tendency and dispersion are employed in the light of Bayesian inversion. In contrast to established Bayesian approaches to multiple changes, the generic approach proposed in this thesis is not formulated in the framework of specialized partition models of high dimensionalityChange points in time series are perceived as heterogeneities in the statistical or dynamical characteristics of the observations. Unraveling such transitions yields essential information for the understanding of the observed system’s intrinsic evolution and potential external influences. A precise detection of multiple changes is therefore of great importance for various research disciplines, such as environmental sciences, bioinformatics and economics. The primary purpose of the detection approach introduced in this thesis is the investigation of transitions underlying direct or indirect climate observations. In order to develop a diagnostic approach capable to capture such a variety of natural processes, the generic statistical features in terms of central tendency and dispersion are employed in the light of Bayesian inversion. In contrast to established Bayesian approaches to multiple changes, the generic approach proposed in this thesis is not formulated in the framework of specialized partition models of high dimensionality requiring prior specification, but as a robust kernel-based approach of low dimensionality employing least informative prior distributions. First of all, a local Bayesian inversion approach is developed to robustly infer on the location and the generic patterns of a single transition. The analysis of synthetic time series comprising changes of different observational evidence, data loss and outliers validates the performance, consistency and sensitivity of the inference algorithm. To systematically investigate time series for multiple changes, the Bayesian inversion is extended to a kernel-based inference approach. By introducing basic kernel measures, the weighted kernel inference results are composed into a proxy probability to a posterior distribution of multiple transitions. The detection approach is applied to environmental time series from the Nile river in Aswan and the weather station Tuscaloosa, Alabama comprising documented changes. The method’s performance confirms the approach as a powerful diagnostic tool to decipher multiple changes underlying direct climate observations. Finally, the kernel-based Bayesian inference approach is used to investigate a set of complex terrigenous dust records interpreted as climate indicators of the African region of the Plio-Pleistocene period. A detailed inference unravels multiple transitions underlying the indirect climate observations, that are interpreted as conjoint changes. The identified conjoint changes coincide with established global climate events. In particular, the two-step transition associated to the establishment of the modern Walker-Circulation contributes to the current discussion about the influence of paleoclimate changes on the environmental conditions in tropical and subtropical Africa at around two million years ago.show moreshow less
  • Im Allgemeinen stellen punktuelle Veränderungen in Zeitreihen (change points) eine Heterogenität in den statistischen oder dynamischen Charakteristika der Observablen dar. Das Auffinden und die Beschreibung solcher Übergänge bietet grundlegende Informationen über das beobachtete System hinsichtlich seiner intrinsischen Entwicklung sowie potentieller externer Einflüsse. Eine präzise Detektion von Veränderungen ist daher für die verschiedensten Forschungsgebiete, wie den Umweltwissenschaften, der Bioinformatik und den Wirtschaftswissenschaften von großem Interesse. Die primäre Zielsetzung der in der vorliegenden Doktorarbeit vorgestellten Detektionsmethode ist die Untersuchung von direkten als auch indirekten Klimaobservablen auf Veränderungen. Um die damit verbundene Vielzahl an möglichen natürlichen Prozessen zu beschreiben, werden im Rahmen einer Bayes’schen Inversion die generischen statistischen Merkmale Zentraltendenz und Dispersion verwendet. Im Gegensatz zu etablierten Bayes’schen Methoden zur Analyse vonIm Allgemeinen stellen punktuelle Veränderungen in Zeitreihen (change points) eine Heterogenität in den statistischen oder dynamischen Charakteristika der Observablen dar. Das Auffinden und die Beschreibung solcher Übergänge bietet grundlegende Informationen über das beobachtete System hinsichtlich seiner intrinsischen Entwicklung sowie potentieller externer Einflüsse. Eine präzise Detektion von Veränderungen ist daher für die verschiedensten Forschungsgebiete, wie den Umweltwissenschaften, der Bioinformatik und den Wirtschaftswissenschaften von großem Interesse. Die primäre Zielsetzung der in der vorliegenden Doktorarbeit vorgestellten Detektionsmethode ist die Untersuchung von direkten als auch indirekten Klimaobservablen auf Veränderungen. Um die damit verbundene Vielzahl an möglichen natürlichen Prozessen zu beschreiben, werden im Rahmen einer Bayes’schen Inversion die generischen statistischen Merkmale Zentraltendenz und Dispersion verwendet. Im Gegensatz zu etablierten Bayes’schen Methoden zur Analyse von multiplen Übergängen, die im Rahmen von Partitionsmodellen hoher Dimensionalität formuliert sind und die Spezifikation von Priorverteilungen erfordern, wird in dieser Doktorarbeit ein generischer, Kernel-basierter Ansatz niedriger Dimensionalität mit minimal informativen Priorverteilungen vorgestellt. Zunächst wird ein lokaler Bayes’scher Inversionsansatz entwickelt, der robuste Rückschlüsse auf die Position und die generischen Charakteristika einer einzelnen Veränderung erlaubt. Durch die Analyse von synthetischen Zeitreihen die dem Einfluss von Veränderungen unterschiedlicher Signifikanz, Datenverlust und Ausreißern unterliegen wird die Leistungsfähigkeit, Konsistenz und Sensitivität der Inversionmethode begründet. Um Zeitreihen auch auf multiple Veränderungen systematisch untersuchen zu können, wird die Methode der Bayes’schen Inversion zu einem Kernel-basierten Ansatz erweitert. Durch die Einführung grundlegender Kernel-Maße können die Kernel-Resultate zu einer gewichteten Wahrscheinlichkeit kombiniert werden die als Proxy einer Posterior-Verteilung multipler Veränderungen dient. Der Detektionsalgorithmus wird auf reale Umweltmessreihen vom Nil-Fluss in Aswan und von der Wetterstation Tuscaloosa, Alabama, angewendet, die jeweils dokumentierte Veränderungen enthalten. Das Ergebnis dieser Analyse bestätigt den entwickelten Ansatz als eine leistungsstarke diagnostische Methode zur Detektion multipler Übergänge in Zeitreihen. Abschließend wird der generische Kernel-basierte Bayes’sche Ansatz verwendet, um eine Reihe von komplexen terrigenen Staubdaten zu untersuchen, die als Klimaindikatoren der afrikanischen Region des Plio-Pleistozän interpretiert werden. Eine detaillierte Untersuchung deutet auf multiple Veränderungen in den indirekten Klimaobservablen hin, von denen einige als gemeinsame Übergänge interpretiert werden. Diese gemeinsam auftretenden Ereignisse stimmen mit etablierten globalen Klimaereignissen überein. Insbesondere der gefundene Zwei-Stufen-Übergang, der mit der Ausbildung der modernen Walker-Zirkulation assoziiert wird, liefert einen wichtigen Beitrag zur aktuellen Diskussion über den Einfluss von paläoklimatischen Veränderungen auf die Umweltbedingungen im tropischen und subtropischen Afrika vor circa zwei Millionen Jahren.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Nadine Berner
URN:urn:nbn:de:kobv:517-opus4-100065
Advisor:Matthias Holschneider
Document Type:Doctoral Thesis
Language:English
Year of Completion:2016
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2016/10/24
Release Date:2016/11/29
Tag:(sub-) tropisches Afrika; Detektion multipler Übergänge; Plio-Pleistozän; direkte und indirekte Klimaobservablen; kernel-basierte Bayes'sche Inferenz; terrigener Staub
(sub-) tropical Africa; Plio-Pleistocene; direct and indirect climate observations; kernel-based Bayesian inference; multi-change point detection; terrigenous dust
Pagenumber:xvi, 135
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
MSC Classification:60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Gxx Stochastic processes
PACS Classification:00.00.00 GENERAL / 05.00.00 Statistical physics, thermodynamics, and nonlinear dynamical systems (see also 02.50.-r Probability theory, stochastic processes, and statistics)
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht