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AN OPEN MAPPING THEOREM FOR

THE NAVIER-STOKES EQUATIONS

ALEXANDER SHLAPUNOV AND NIKOLAI TARKHANOV

Abstract. We consider the Navier-Stokes equations in the layer Rn × [0, T ]

over Rn with finite T > 0. Using the standard fundamental solutions of the
Laplace operator and the heat operator, we reduce the Navier-Stokes equations

to a nonlinear Fredholm equation of the form (I + K)u = f , where K is a
compact continuous operator in anisotropic normed Hölder spaces weighted at

the point at infinity with respect to the space variables. Actually, the weight

function is included to provide a finite energy estimate for solutions to the
Navier-Stokes equations for all t ∈ [0, T ]. On using the particular properties

of the de Rham complex we conclude that the Fréchet derivative (I + K)′ is

continuously invertible at each point of the Banach space under consideration

and the map I +K is open and injective in the space. In this way the Navier-

Stokes equations prove to induce an open one-to-one mapping in the scale of

Hölder spaces.
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2 A. SHLAPUNOV AND N. TARKHANOV

Introduction

The problem of describing the dynamics of incompressible viscous fluid is of great
importance in applications. In 2006 the Clay Mathematics Institute announced it as
the sixth prize millennium problem, see [Fef00]. The dynamics is described by the
Navier-Stokes equations and the problem consists in finding a classical solution to
the equations. By a classical solution we mean here a solution of a class which is well
motivated by applications and for which a uniqueness theorem is available. Essential
contributions have been published in the research articles [Ler34a, Ler34b], [Kol42],
[Hop51], [LS60], [Tao15] as well as surveys and books [Lad70, Lad03]), [Lio61,
Lio69], [Tem79], [FV80], etc.

In physics by the Navier-Stokes equations is meant the impulse equation for the
flow. In the computational fluid dynamics the impulse equation is enlarged by the
continuity and energy equations.

The impulse equation of dynamics of (compressible) viscous fluid was formu-
lated in differential form independently by Claude Navier (1827) and George Stokes
(1845). This is

ρ(∂tv + (v · ∇)v) = μΔv + (λ+ μ)∇ div v −∇p+ f, (0.1)

where v : X × (0, T ) → R
3 and p : X × (0, T ) → R are the search-for velocity vector

field and pressure of a particle in the flow, respectively, and X is a domain in the
Euclidean space R3, (0, T ) is an interval of the time axis. Furthermore, the number
ρ stands for the mass density, λ and μ are the first Lamé constant and the dynamical
viscosity of the fluid under consideration, respectively, Δ = ∂2

x1x1 + ∂2
x2x2 + ∂2

x3x3 is
the Laplace operator in R

3, ∇ and div are the gradient operator and the divergence
operator in R

3, respectively, and f is the density vector of outer forces, such as
gravitation and so on, see formulas (15.5) and (15.6) in [LL59, § 15], [Tem79] and
elsewhere.

Usually the impulse equation is supplemented by the continuity equation

∂tρ+ div(ρv) = g,

see [LL59, § 15].
In order to specify a particular solution of equations (0.1), one usually considers

the first mixed problem in the cylinder X × (0, T ) by posing the initial conditions
on the lower basis of the cylinder and a Dirichlet condition on the lateral surface.
To wit,

v(x, 0) = v0(x), for x ∈ X ,
v(x, t) = vl(x, t), for (x, t) ∈ ∂X × (0, T ).

(0.2)

It is worth pointing out that the pressure p is determined solely from the impulse
equation up to an additive constant. To fix this constant it suffices to put a moment
condition on p.

If the density ρ does not change along the trajectories of particles, the flow is said
to be incompressible. It is the assumption that is most often used in applications.
For incompressible fluid the continuity equation takes the especially simple form
div v = 0 in X ×(0, T ), i.e., the vector field v should be divergence free (solenoidal).
In many practical problems the flow is not only incompressible but it has even a
constant density. In this case one can just set ρ = 1 in (0.1) which reduces the
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impulse equation to

∂tv + (v · ∇)v − μΔv +∇p = f,
div v = 0

(0.3)

in X × (0, T ). In this way we obtain what is referred to as but the Navier-Stokes
equations.

After J. Leray [Ler34a, Ler34b], a great attention was paid to weak solutions
to (0.3) with boundary conditions (0.2). Hopf [Hop51] proved that equations (0.3)
under homogeneous data (0.2) have a weak solution satisfying reasonable estimates.
However, in this full generality no uniqueness theorem for a weak solution has been
known. On the other hand, under stronger conditions on the solution it is unique,
see [Lad70, Lad03], who proved the existence of a smooth solution for the two-
dimensional version of the problem.

Traditionally two main directions have been formed in the study of the Navier-
Stokes equations. The first direction is concerned with improvement of the regu-
larity of the weak solution of Hopf [Hop51] using a priori estimates or more refined
methods. The second one is based on the fixed point theorems like those by Ba-
nach or Schauder or mapping degree theory which allow one to attack the nonlinear
problem directly.

On these ways one usually looks first for a suitable uniqueness class of solutions
to the problem. When working in Lebesgue and Sobolev spaces of positive or nega-
tive smoothness, one is aimed at obtaining solvability theorems of certain linearised
versions of the problem in the spaces of generalised functions and establishing a pri-
ori estimates for weak solutions (see for instance the monographs [Lad70], [Tem79]
and the references given there). However, this does not lead to any breakthrough
in the original nonlinear problem, as elementary examples like y = expx show.
Furthermore, on passing to the nonlinear problem in spaces of distributions one
encounters the additional problem on multiplication of distributions. Hence, there
is strong feeling that weak solutions do not completely fit to handle the nonlinearity
of the Navier-Stokes equations.

Actually this observation has motivated clearly the investigation of the linear
and quasilinear systems of parabolic equations in (possibly, weighted) Hölder spaces
over cylindrical domains, see for instance [LSU67], [Sol64], [Sol65], [Bel79], [BS93],
[Sol06], etc. Although the use of Hölder spaces guarantees an uniqueness theorem
for the Navier-Stokes equations, one is still not able to derive an existence theorem
in this function scale. What is usually lacking is the compactness or smallness of
the nonlinear term with respect to the parabolic linear part of the equations. The
weighted Hölder spaces we introduce in the present article serve mainly to get rid
of this drawback.

We now specify the contribution of our paper to a huge amount of works on the
Navier-Stokes equations. In the sequel we consider an initial problem for the Navier-
Stokes equations in the case of non-compressible fluid corresponding to ρ = 1.
Namely,

∂tu− μΔu+ (u · ∇)u+∇p = f, if (x, t) ∈ X × (0, T ),
divu = 0, if (x, t) ∈ X × (0, T ),

u(x, 0) = u0(x), if x ∈ X ,

(0.4)

where X = R
n with n ≥ 2, T > 0 is finite, and μ > 0 is a viscosity constant.

As usual, the boundary conditions in this case are replaced by proper asymptotic
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behaviour of the solution at the point of infinity (cf. for instance [Fef00] for the
space of smooth functions).

We develop an operator theoretic approach to the Navier-Stokes equations. The
focus is on elaborating a scale of weighted Hölder spaces which provides the open-
ness of the map induced by the Navier-Stokes equations, and the compactness of
the nonlinear term.

Basically an open mapping theorem just amounts to an existence theorem for
all data which are close to any element of the range of the operator. To the best of
our knowledge there have been known no such results for finite energy solutions in
the scale of Hölder spaces on a cylinder with unbounded basis. Theorems 10 and
11 of [Lad70, Ch. 4, § 4] contain similar results for weak solutions in spaces of the
Lebesgue type.

On the other hand, when combined with the invertibility of the linear part in
the Navier-Stokes equations, the compactness of the nonlinear term enables one
to invoke the mapping degree theory to get an existence theorem, if there is any.
This is precisely on what the most of current investigations of the Navier-Stokes
equations are focused.

Let us dwell on the content of the paper and the choice of function spaces in
detail. It should be first noted that since the gradient, rotation and divergence
operators are of steady use in the models of hydrodinamics we use the language
of exterior differential forms and the de Rham complex to treat the Navier-Stokes
equations, see Section 1. This allows one to immediately specify the Navier-Stokes
equations within the framework of global analysis on smooth compact manifolds
with boundary. However, we have not been able to uniquely identify the nature of
nonlinearity on forms of degree greater than one.

It is well known that the operator Δ (∂t − μΔ) admits a matrix factorisation
through the Stokes operator (the principal linear part of the Navier-Stokes equa-
tions), see [LL59, § 15] or Section 1 below. Hence, on aiming at investigation of
the Navier-Stokes equations on functions vanishing at the infinitely distant point,
one should begin with the study of invertibility of the Laplace and heat operators
in the spaces in question. The point at infinity in R

n is naturally thought of as
a conical point of the one-point compactificaion of Rn. The analysis close to this
point is traditionally based on the use of weighted spaces, see [Kond66], [HM96]
for parabolic problems, [AMN14] for Stokes-type equations or [McO79] for elliptic
problems in weighted Sobolev spaces. Still the Laplace operator acts properly in
weighted Sobolev spaces of square integrable functions on R

n merely for n ≥ 5.
Apart from difficulties with multiplication and possible lack of uniqueness this is
an evidence for us to choose the scale of weighted Hölder spaces over Rn instead of
Sobolev spaces, see Section 2.

We first introduce weighted Hölder spaces over R
n as in elliptic theory and

then anisotropic Hölder spaces over the layer R
n × [0, T ] of finite width T > 0.

The explicit construction of these Banach spaces provides appropriate embedding
theorems including those on compact embedding, see Section 2. Taking the results
by [McO79], [HM98] and [Beh11] as a starting point, we investigate the Laplace
operator and the heat operator in anisotropic weighted Hölder spaces with weight
functions prescribing a proper behaviour of its elements at the point at infinity,
see Sections 3 and 4. As usual, a set of prohibited weights appears, for which
the action of the Laplace operator fails to be Fredholm. Note that the range
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of weight exponents, for which the Laplace operator is continuously invertible, is
rather narrow.

As but one useful tool we derive theorems on the invertibility of the differential
of the de Rham complex in both elliptic and parabolic scales of weighted Sobolev
spaces, see Section 3. They actually constitute certain versions of the classical
Hodge theory on the one-point compactification of R

n, cf. also the particular
decompositions of [Lad70, Ch. 1, § 2] and [Tem79, Ch. 1, § 1.4] related to the
rotation operator.

The actions of the Laplace and heat operators in the weighted Hölder spaces un-
der study prove to be not fully coherent. To wit, in order to achieve the invertibility
of the Laplace operator for lower dimensions 2 ≤ n ≤ 4 or higher smoothness, we
deal with parabolic Hölder spaces, where the dilation principle is partially neglected
with regard to the weight. As a result we lose some regularity and weight in the
Cauchy problem for the heat equation in the scale of parabolic Hölder spaces un-
der consideration. More precisely, the loss of regularity occurs with respect to the
smoothness of solution in the standard Hölder spaces over a cylinder domain with
bounded base.

Using a familiar trick excluding the pressure, and the standard fundamental
solutions of the Laplace and heat operators, we study linearisations of the Navier-
Stokes equations which can be reduced to Fredholm equations of the form (I +
K ′)g = g0, where K

′ is a compact pseudodifferential mapping of anisotropic Hölder
spaces. As a consequence we get an existence theorem for linearisations of the
Navier-Stokes equations, see Section 5. Note that there is a loss of regularity in the
existence theorem for the linearised Navier-Stokes equations comparing with that
for the reduced equations.

Further development allows one to reduce the Navier-Stokes equations to an
operator equation for the Fredholm type operator I +K with a nonlinear compact
continuous mapping K in anisotropic normed Hölder spaces weighted at the point
at infinity with respect to the space variables. Actually, the weight function is
chosen in such a way that the finite energy estimate be fulfilled for solutions of
the Navier-Stokes equations for all t ∈ [0, T ]. Next, using the properties of the
de Rham complex we conclude that the Fréchet derivative (I +K)′ of the map is
continuously invertible at every point of the Banach space under the consideration
and the map I+K is open and injective in the space. This implies readily that the
reduced Navier-Stokes equations induce an open mapping on the scale of Hölder
spaces. Again, a loss of regularity occurs in the open mapping theorem for the
Navier-Stokes equations comparing with that for the reduced equations. However,
the soft formulation of the open mapping theorem is strengthened to a rigorous
result is the Navier-Stokes equations are given a domain being a metric space, see
Section 6.

Part 1. Preliminaries

1. The Navier-Stokes equations and the de Rham complex

Let Z≥0 be the set of all natural numbers including zero, and let R
n be the

Euclidean space of dimension n ≥ 2 with coordinates x = (x1, . . . , xn). For a
domain X in R

n, we often consider the open cylinder CT (X ) := X × (0, T ) over X
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in the space R
n+1 of variables (x, t). If X = R

n, we write CT = R
n × (0, T ) for

short and we sometimes refer to CT as a layer over Rn.
We are going to rewrite the nonlinear Navier-Stokes equations (0.4) in a more

convenient form. To this end, denote by Λq the bundle of exterior forms of degree
0 ≤ q ≤ n over Rn. Given a domain X in R

n, we write Ωq(X ) for the space of all
differential forms of degree q with C∞ coefficients on X . These space constitute the
so-called de Rham complex Ω·(X ) on X whose differential is given by the exterior
derivative d. To display d acting on q -forms one uses the designation du := dqu for
u ∈ Ωq(X ) (see for instance [T95a]). For the space of differential forms of degree
q with coefficients of a class F in X we have to use more cumbersome designation
F(X , Λq).

By F(X × (0, T ), Λq) is meant the space of all differential forms of degree q in x
whose coefficients are functions of a class F(X × (0, T )). They have the form

u(x, t) =
∑

1≤i1<...<iq≤n

uI(x, t)dx
I

where the sum is over all increasing multi-indices I = (i1, . . . , iq) of the numbers
1, . . . , n, dxI stands for the exterior product of the differentials dxi1 , . . . , dxiq after
each other, and uI(x, t) are functions of class F(X × (0, T )). The parameter t is
included only in the coefficients.

Consider the de Rham complex Ω·(Rn+1
t≥0 ) on the closed half-space R

n+1
t≥0 , i.e.,

0 → Ω0(Rn+1
t≥0 )

d→ Ω1(Rn+1
t≥0 )

d→ . . .
d→ Ωn(Rn+1

t≥0 ) → 0,

where t is thought of as a parameter and the coefficients of differential forms are
smooth both in x and t. We denote by d∗ the formal adjoint operator for d, more
precisely, d∗g = (dq−1)∗g for g ∈ Ωq(Rn+1

t≥0 ). The Laplacian of Ω·(Rn+1
t≥0 ) evaluated

on q -forms reduces to
Δq := d∗d+ dd∗ = −Ekq Δ, (1.1)

where kq =
(
n
k

)
, Ekq

is the unit (kq × kq) -matrix and Δ the Laplace operator
applied componentwise in the space variable x. Equality (1.1) means that

(Δqu)(x, t) = −
∑

1≤i1<...<iq≤n

(ΔuI)(x, t)dx
I .

Write Hμ = ∂t−μΔ for the heat operator in R
n+1
t≥0 with a constant μ > 0. When

extended componentwise to differential forms of degree q it can be written in the
form

Hq
μ = Ekq

∂t + μΔq.

By abuse of notation we will omit the index q and write it simply Hμ if it causes
no confusion.

Since scalar partial differential operators with constant coefficients commute, we
obviously deduce that

dHμ = Hμd,
d∗Hμ = Hμd

∗, (1.2)

etc.
If we identify a function u(x, t) = (u1(x, t), . . . , un(x, t)) with values in R

n with
the differential form

u(x, t) =

n∑
i=1

ui(x, t)dx
i,
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then using the de Rham complex above we introduce the block matrix of partial
differential operators

( Hμ d
d∗ 0

)
:

Ω1(Rn+1
t≥0 )

⊕
Ω0(Rn+1

t≥0 )
→

Ω1(Rn+1
t≥0 )

⊕
Ω0(Rn+1

t≥0 )

for the linear part of the Navier-Stokes operator of (0.3). The following factorisation
was implicitly used in [LL59, § 15].

Lemma 1.1. We have( H1
μ d0

d0∗ 0

)( d1∗d1 H1
μd

0

d0∗H1
μ −(H0

μ)
2

)
=

( Δ1H1
μ 0

0 Δ0H0
μ

)
,

( d1∗d1 H1
μd

0

d0∗H1
μ −(H0

μ)
2

)( H1
μ d0

d0∗ 0

)
=

( Δ1H1
μ 0

0 Δ0H0
μ

)
.

Proof. On using (1.1), (1.2) and the rules of multiplication of block-matrices we see
that

Hμd
1∗d1 + d0d0∗Hμ = Δ1H1

μ, HμHμd
0 − d0(Hμ)

2 = 0,
d0∗d1∗d1 + 0 d0∗Hμ = 0, d0∗Hμd

0 − 0 (Hμ)
2 = Δ0H0

μ,

which proves the first formula. On the other hand,

d1∗d1Hμ +Hμd
0d0∗ = Δ1H1

μ, d1∗d1d0 +Hμd
0 0 = 0,

d0∗HμHμ − (Hμ)
2d0∗ = 0, d0∗Hμd

0 − (Hμ)
2 0 = Δ0H0

μ.

This proves the second formula. �

The lemma shows that the investigation of the Navier-Stokes equations is closely
related to the behaviour of the Laplace and the heat operators on functions over
R

n and R
n+1
t≥0 , respectively. For weighted Sobolev spaces this behaviour has been

studied in the papers [McO79], [HM98], see also [Beh11], [Mar02].
Our next objective is to rewrite the nonlinear part of the Navier-Stokes equations

in terms of the de Rham complex. Given a smooth vector field v on R
n, the

derivative of v in the direction of v is called the substantial derivative of v and
denoted by D1v := (v · ∇)v. To obtain a useful description we make use of the
so-called Hodge star operator on R

n

∗ : Ωq(Rn) → Ωn−q(Rn)

defined by linearity from dxI ∧ (∗dxI) = dx for all multi-indices I = (i1, . . . , iq)
with 1 ≤ i1 < . . . < iq ≤ n. As is known,

∗(∗dxI) = (−1)(n−q)qdxI ,

u ∧ ∗v =
( ∑

1≤i1<...<iq≤n

uIvI

)
dx (1.3)

and so ∗(u ∧ ∗u) = |u|2 holds for all differential forms on R
n with real-valued

coefficients.
The following lemma is well known, see for instance [LL59, § 15].

Lemma 1.2. For any smooth differential forms u and v of degree one in R
n it

follows that

(v · ∇)u+ (u · ∇)v = d0 ∗ (∗v ∧ u) + ∗((∗d1u) ∧ v) + ∗((∗d1v) ∧ u). (1.4)
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Proof. Indeed,

d ∗ (∗v ∧ u) =
n∑

j=1

n∑
i=1

(vi∂jui + ui∂jvi) dx
j (1.5)

and

∗du =
∑
i<j

(∂iuj − ∂jui) ∗ (dxi ∧ dxj)

=
∑
i<j

(∂iuj − ∂jui) (−1)i+j−1dx[i, j],

where dx[i, j] is the exterior product of the differentials dx1, . . . , dxn after each
other among which dxi and dxj are omitted. Then

(∗du) ∧ v =
n∑

k=1

(∑
i<j

(∂iuj − ∂jui)vk(−1)i+j−1dx[i, j] ∧ dxk
)

=
∑
i<j

(∂iuj − ∂jui)vj(−1)n+i−1dx[i] +
∑
i<j

(∂iuj − ∂jui)vi(−1)n+jdx[j],

and so using (1.3) yields

∗((∗du) ∧ v) =
∑
i<j

(∂iuj − ∂jui)vidx
j −

∑
i<j

(∂iuj − ∂jui)vjdx
i

=
∑
i<j

(∂iuj − ∂jui)vidx
j −

∑
i>j

(∂jui − ∂iuj)vidx
j

=
n∑

j=1

(∑
i �=j

vi∂iuj −
∑
i�=j

vi∂jui

)
dxj .

The same reasoning shows that

∗((∗dv) ∧ u) =
n∑

j=1

(∑
i �=j

ui∂ivj −
∑
i �=j

ui∂jvi

)
dxj .

Since, by (1.5),

d ∗ (∗v ∧ u) =

n∑
j=1

(
vj∂juj + uj∂jvj +

∑
i �=j

(vi∂jui + ui∂jvi)
)
dxj ,

on gathering the above equalities we arrive at (1.4), as desired. �

In particular, on choosing u = v we get D1u = d0 (∗(∗u ∧ u)/2) + ∗ ((∗d1u) ∧ u
)

for all one-forms u.

2. The Hölder spaces weighted at the point at infinity

Suppose that X is a (possibly, unbounded) domain in R
n with smooth boundary,

where n ≥ 1.
For s = 0, 1, . . ., denote by Cs,0(X ) the space of all s times continuously differ-

entiable functions on X with finite norm

‖u‖Cs,0(X ) =
∑
|α|≤s

sup
x∈X

|∂αu(x)|.
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Given any 0 < λ ≤ 1, we set

〈u〉λ,X = sup
x,y∈X
x �=y

|u(x)− u(y)|
|x− y|λ

and write C0,λ(X ) for the space of all continuous functions on the closure of X with
finite norm

‖u‖C0,λ(X ) = ‖u‖C0,0(X ) + 〈u〉λ,X ,

the so-called Hölder space. More generally, for s = 0, 1, . . ., let Cs,λ(X ) stand for
the space of all s times continuously differentiable functions on X with finite norm

‖u‖Cs,λ(X ) = ‖u‖Cs,0(X ) +
∑
|α|≤s

〈∂αu〉λ,X .

The normed spaces Cs,λ(X ) with two indices s ∈ Z≥0 and λ ∈ [0, 1] are known to
be Banach spaces.

We are next going to control the growth of functions on X at the point at infinity.
Set

w(x) =
√

1 + |x|2,
w(x, y) = max{w(x), w(y)} ∼ √

1 + |x|2 + |y|2
for x, y ∈ R

n. Let δ ∈ R. (Note that δ is tacitly assumed to be nonnegative.)
Denote by Cs,0,δ(X ) the space of all s times continuously differentiable functions
on X with finite norm

‖u‖Cs,0,δ(X ) =
∑
|α|≤s

sup
x∈X

(w(x))δ+|α||∂αu(x)|.

For 0 < λ ≤ 1, we introduce

〈u〉λ,δ,X = sup
x,y∈X
x �=y

|x−y|≤|x|/2

(w(x, y))δ+λ |u(x)− u(y)|
|x− y|λ .

If X does not contain the origin, we define C0,λ,δ(X ) to consist of all continuous
functions on X , such that

‖u‖C0,λ,δ(X ) = ‖u‖C0,0,δ(X ) + 〈u〉λ,δ,X
< ∞.

For those domains X which contain the origin we have also to control the Hölder
property close to 0. Hence, we let C0,λ,δ(X ) be the space of all continuous functions
on X with finite norm

‖u‖C0,λ,δ(X ) = ‖u‖C0,λ(U) + ‖u‖C0,0,δ(X ) + 〈u〉λ,δ,X ,

where U is a small neighbourhood of the origin in X . Finally, for s ∈ Z≥0, we intro-

duce Cs,λ,δ(X ) to be the space of all s times continuously differentiable functions
on X with finite norm

‖u‖Cs,λ,δ(X ) =
∑
|α|≤s

‖∂αu‖C0,λ,δ+|α|(X ).

The normed spaces Cs,λ,δ(X ) constitute a scale of Banach spaces parametrised
by s ∈ Z≥0, λ ∈ [0, 1] and δ ∈ R. We will mostly consider the case X = R

n and
U being the unit open ball B1 = B(0, 1) in R

n. We will write simply Cs,λ,δ for
the corresponding space when no confusion can arise. The properties of the scale
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are well known, see Section 7 of the Appendix 3 for additional details. Actually
this construction is natural if we think of Rn as a manifold with a singular point
at the point of infinity. The first summand corresponds to a coordinate chart in
the nonsingular part of the manifold while the last two summands of the norm
correspond to a coordinate chart of the point at infinity. We need not glue together
these summands into one norm by means of partition of unity on R

n, for there are
global coordinates in all of Rn and the operators under consideration possess the
transmission property.

Lemma 2.1. The space Cs,λ,δ(Rn) is embedded continuously into the Fréchet space

Cs,λ
loc (R

n).

Proof. By definition, the space Cs,λ,δ(Rn) is embedded continuously into Cs,0
loc (R

n)

for all λ ∈ [0, 1]. In addition, it is embedded continuously into Cs,λ(B1). Take
x0 ∈ R

n away from the closure of B1 and choose any ball B(x0, r) around x0 with
radius 0 < r < 1. Since |x| ≥ |x0| − r ≥ 1− r for all x in the closure of B(x0, r), it
follows that

〈u〉
λ,B(x0,r)

≤ sup
x,y∈B(x0,r)

|x−y|≤|x|/2

|u(x)− u(y)|
|x− y|λ + sup

x,y∈B(x0,r)
x �=y

|x−y|>|x|/2

|u(x)− u(y)|
|x− y|λ

≤ 〈u〉
λ,δ,B(x0,r)

+
2λ+1

(1− r)λ
sup

x∈B(x0,r)

(w(x))δ|u(x)|

≤
(
1 +

2λ+1

(1− r)λ

)
‖u‖C0,λ,δ(Rn).

Therefore, C0,λ,δ(Rn) is embedded continuously into C0,λ(B(x0, r)) for all x0 ∈ R
n

with |x0| > 1 and for any r ∈ (0, 1). By the Heine-Borel theorem, the space
C0,λ,δ(Rn) is embedded continuously into C0,λ(X ) for any bounded domain X in
R

n, as desired. �

Lemma 2.2. If δ > n/2, then there is a constant c = c(δ) > 0 such that

‖u‖L2(Rn) ≤ c(δ) ‖u‖C0,0,δ(Rn)

for all u ∈ C0,0,δ(Rn).

Proof. The proof is similar to that of Lemma 2.5. �

By the very definition of the spaces, any derivative ∂α
x maps Cs,λ,δ continuously

into Cs−|α|,λ,δ+|α| if s ∈ Z≥0, λ ∈ [0, 1] and |α| ≤ s. The following embedding
theorem is expectable.

Theorem 2.3. Suppose that s, s′ ∈ Z≥0, δ, δ
′ ∈ R≥0 and λ, λ′ ∈ [0, 1]. If δ ≥ δ′

and s + λ ≥ s′ + λ′ then the space Cs,λ,δ is embedded continuously into the space
Cs′,λ′,δ′ . Moreover, the embedding is compact if δ > δ′ and s + λ > s′ + λ′ is
fulfilled.

Proof. It is similar to the proof of Theorem 2.6, see also § 7. �

Let us introduce the anisotropic Hölder spaces (see [LSU67], [Sol64], [Sol06],
[Beh11] and elsewhere).
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As usual, we first set

‖v‖C0,0[0,T ] = sup
t∈[0,T ]

|v(t)|,

〈v〉λ,[0,T ] = sup
t′,t′′∈[0,T ]

t′ �=t′′

|v(t′)− v(t′′)|
|t′ − t′′|λ

and

‖v‖C0,λ[0,T ] = ‖v‖C0,0[0,T ] + 〈v〉λ,[0,T ]

for functions defined on [0, T ]. For s ∈ Z≥0 and λ ∈ [0, 1], the space Cs,λ([0, T ]) is
the usual Hölder space on the segment [0, T ] with norm

‖v‖Cs,λ[0,T ] =

s∑
j=0

‖(d/dt)jv‖C0,λ[0,T ].

As is well known, this is a scale of Banach spaces.
More generally, given a Banach space B, we denote by Cs,0([0, T ],B) the Banach

space of all mappings v : [0, T ] → B with finite norm

‖v‖Cs,0([0,T ],B) =
s∑

j=0

sup
t∈[0,T ]

‖(d/dt)jv‖B,

where s ∈ Z≥0. We also let

〈v〉λ,[0,T ],B = sup
t′,t′′∈[0,T ]

t′ �=t′′

‖v(t′)− v(t′′)‖B
|t′ − t′′|λ

and let Cs,λ([0, T ],B) stand for the space of all functions v ∈ Cs,0([0, T ],B) with
finite norm

‖v‖Cs,λ([0,T ],B) =

s∑
j=0

(
sup

t∈[0,T ]

‖(d/dt)jv‖B + 〈(d/dt)jv〉λ,[0,T ],B
)
.

Weighted Hölder spaces which control the behaviour of functions with respect
to the time variable t have been well known, see for instance [Sol06] and elsewhere.
We go to introduce anisotropic Hölder spaces which suit well to parabolic theory
and are weighted at x = ∞.

The Hölder spaces in question will be parametrised several parameters s, λ, δ,
X and T . By abuse of notation we introduce the special designation s(s, λ, δ) for
the quintuple

s(s, λ, δ) :=
(
2s, λ, s,

λ

2
, δ
)
.

Let Cs(0,0,δ)(CT (X )) = C0,0([0, T ], C0,0,δ(X )) be the space of all continuous func-

tions on CT (X ) with finite norm

‖u‖
Cs(0,0,δ)(CT (X ))

= sup
(x,t)∈CT (X )

(w(x))δ|u(x, t)|,

and, for 0 < λ ≤ 1,

Cs(0,λ,δ)(CT (X )) = C0,0([0, T ], C0,λ,δ(X )) ∩ C0,λ/2([0, T ], C0,0,δ(X ))
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is the space of all continuous functions on CT (X ) with finite norm

‖u‖
Cs(0,λ,δ)(CT (X ))

= sup
t∈[0,T ]

‖u(·, t)‖C0,λ,δ(X ) + sup
t′,t′′∈[0,T ]

t′ �=t′′

‖u(·, t′)− u(·, t′′)‖C0,0,δ(X )

|t′ − t′′|λ/2 .

Then

Cs(s,0,δ)(CT (X )) =
s⋂

j=0

Cj,0([0, T ], C2(s−j),0,δ(X ))

is the space of functions on the cylinder CT (X ) with continuous derivatives ∂α
x ∂

j
t u,

for |α|+ 2j ≤ 2s, and with finite norm

‖u‖
Cs(s,0,δ)(CT (X ))

=
∑

|α|+2j≤2s

‖∂α
x ∂

j
t u‖Cs(0,0,δ+|α|)(CT (X ))

.

Similarly,

Cs(s,λ,δ)(CT (X )) =

s⋂
j=0

(
Cj,0([0, T ], C2(s−j),λ,δ(X )) ∩ Cj,λ/2([0, T ], C2(s−j),0,δ(X ))

)

is the space functions on CT (X ) with continuous partial derivatives ∂α
x ∂

j
t u, for

|α|+ 2j ≤ 2s, and with finite norm

‖u‖
Cs(s,λ,δ)(CT (X ))

=
∑

|α|+2j≤2s

‖∂α
x ∂

j
t u‖Cs(0,λ,δ+|α|)(CT (X ))

.

We also need a function space whose structure goes slightly beyond the scale of
function spaces Cs(s,λ,δ)(CT (X )). Namely, given any integral k ≥ 0, we denote by

Ck,s(s,λ,δ)(CT (X )) the space of all continuous functions u on CT (X ) whose deriva-

tives ∂β
xu belong to Cs(s,λ,δ+|β|)(CT (X )) for all multi-indices β satisfying |β| ≤ k,

with finite norm

‖u‖
Ck,s(s,λ,δ)(CT (X ))

=
∑
|β|≤k

‖∂β
xu‖Cs(s,λ,δ+|β|)(CT (X ))

.

For k = 0, this space just amounts to Cs(s,λ,δ+|β|)(CT (X )), and so we omit the
index k = 0.

If X = R
n, we will simply write it Ck,s(s,λ,δ) if it causes no confusion. The

normed spaces Ck,s(s,λ,δ) are obviously Banach spaces. Let us briefly discuss their
basic properties.

Lemma 2.4. The Banach space Ck,s(s,λ,δ) is embedded continuously into the space

C
k,s(s,λ,0)
loc (CT ).

Proof. It is similar to the proof of Lemma 2.4. �
We note that the function classes introduced above can be thought of as “physi-

cally” admissible solutions to the Navier-Stokes equations (at least for proper num-
bers δ).

Lemma 2.5. If δ > n/2 then there exists a constant c > 0 depending on δ, such
that

‖u(·, t)‖L2(Rn) ≤ c ‖u‖Cs(0,0,δ)(CT )

for all t ∈ [0, T ] and all u ∈ Cs(0,0,δ).
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Proof. Indeed, on passing to the spherical coordinates we obtain

‖u(·, t)‖2L2(Rn) ≤ ‖u‖2
Cs(0,0,δ)(CT )

∫
Rn

(1 + |x|2)−δdx

= ‖u‖2
Cs(0,0,δ)(CT )

∫ +∞

0

σn r
n−1

(1 + r2)δ
dr,

where σn is the surface area of the unit sphere in R
n. Hence it follows that

c(δ) =

∫ +∞

0

σn r
n−1

(1 + r2)δ
dr,

for this integral converges if δ > n/2. �

The following embedding theorem is rather expectable.

Theorem 2.6. Let s, s′ ∈ Z≥0, δ, δ′ ∈ R≥0, λ, λ′ ∈ [0, 1] and k a nonnegative

integer. If s + λ ≥ s′ + λ′ and δ ≥ δ′, then the space Ck,s(s,λ,δ) is embedded
continuously into Ck,s(s′,λ′,δ′). The embedding is compact if s + λ > s′ + λ′ and
δ > δ′.

Proof. We begin with the following lemma.

Lemma 2.7. The space Ck,s(s,0,δ)(CT ) is embedded continuously into the space
Ck,s(s−1,1,δ)(CT ).
Proof. If u ∈ Ck,s(s,0,δ) then by the mean value theorem of Lagrange there is
ϑ ∈ (0, 1) such that

|∂β
x∂

j
t u(x, t)− ∂β

x∂
j
t u(y, t)|

|x− y| =

∣∣∣ n∑
i=1

∂β+ei
x ∂j

t u(xϑ, t)(y
i − xi)

∣∣∣
|x− y|

≤
( n∑

i=1

|∂β+ei
x ∂j

t u(xϑ, t)|2
)1/2

=

( n∑
i=1

(w(xϑ))
2(δ+|β|+1)|∂β+ei

x ∂j
t u(xϑ, t)|2

)1/2

(w(xϑ))δ+|β|+1

for all admissible β and j, where ei is the basis vector of the axis xi in R
n and

xϑ = x+ ϑ(y − x).
Suppose |x− y| ≤ |x|/2. Then, by the triangle inequality, we get

|x|/2 ≤ ||x| − ϑ|y − x|| ≤ |xϑ| ≤ |x|+ ϑ|y − x| ≤ (3/2) |x| (2.1)

whence |x − y| ≤ w(xϑ) if |x − y| ≤ |x|/2. Moreover, as ||x| − |y|| ≤ |x − y|, it
follows that

|x|/2 ≤ |y| ≤ (3/2) |x|, (2.2)

if |x− y| ≤ |x|/2. Now (2.1) and (2.2) imply that

2

3
w(xϑ) ≤ w(x) ≤ w(x, y) ≤

√
13

2
w(x) ≤

√
13w(xϑ) (2.3)

if |x− y| ≤ |x|/2.
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It follows from (2.3) that

sup
t∈[0,T ]

sup
|x−y|≤|x|/2

x �=y

(w(x, y))δ+|β|+1 |∂β
x∂

j
t u(x, t)− ∂β

x∂
j
t u(y, t)|

|x− y|

≤ c
( n∑

i=1

‖∂β+ei
x ∂j

t u‖2Cs(0,0,δ+|β|+1)(CT )

)1/2

,

with c being a positive constant independent of u ∈ Ck,s(s,0,δ)(CT ).
Arguing in the same way, for u ∈ Ck,s(s,0,δ)(CT ), we conclude by Lagrange’s

mean value theorem that there is ϑ ∈ (0, 1) with the property that

sup
x∈Rn

sup
t′,t′′∈[0,T ]

t′ �=t′′

(w(x))δ+|β| |∂β
x∂

j
t u(x, t

′)− ∂β
x∂

j
t u(x, t

′′)|
|t′ − t′′|1/2

= sup
x∈Rn

sup
t′,t′′∈[0,T ]

t′ �=t′′

(w(x))δ+|β| |∂β
x∂

j+1
t u(x, tϑ)(t

′ − t′′)|
|t′ − t′′|1/2

= sup
x∈Rn

(w(x))δ+|β| sup
t′,t′′∈[0,T ]

t′ �=t′′

|t′ − t′′|1/2|∂β
x∂

j+1
t u(x, tϑ)|

≤
√
T ‖∂β

x∂
j+1
t u‖Cs(0,0,δ+|β|)(CT )

for all admissible β and j, where tϑ = t′ + ϑ(t′′ − t′).
As is well known, the space Ck,s(s,0,0)(CT (B1)) is embedded continuously into

the space Ck,s(s−1,1,0)(CT (B1)), if s is a nonnegative integer. Thus, Ck,s(s,0,δ)(CT )
is embedded continuously into Ck,s(s−1,1,δ)(CT ), as desired. �

Now we note that

(w(x, y))δ
′+λ′+|β| |∂β

x∂
j
t u(x, t)− ∂β

y ∂
j
t u(y, t)|

|x− y|λ′

= (w(x, y))δ+λ+|β| |∂β
x∂

j
t u(x, t)− ∂β

y ∂
j
t u(y, t)|

|x− y|λ
1

(w(x, y))δ−δ′

( |x− y|
w(x, y)

)λ−λ′

whence
〈∂β∂j

t u(·, t)〉λ′,δ′,Rn ≤ 2λ
′−λ 〈∂β∂j

t u(·, t)〉λ,δ,Rn ,

if 0 < λ′ ≤ λ ≤ 1 and δ′ ≤ δ. Besides,

(w(x))δ
′+|β| |∂β

x∂
j
t u(x, t

′)− ∂β
x∂

j
t u(x, t

′′)|
|t′ − t′′|λ′/2

= (w(x))δ+|β| |∂β
x∂

j
t u(x, t

′)− ∂β
x∂

j
t u(x, t

′′)|
|t′ − t′′|λ/2

1

(w(x))δ−δ′ |t′ − t′′|(λ−λ′)/2,

and so, for 0 < λ′ ≤ λ ≤ 1 and δ′ ≤ δ, we obtain

(w(x))δ
′+|β|〈∂β

x∂
ju(x, ·)〉λ′/2,[0,T ] ≤ (2T )

λ−λ′
2 (w(x))δ

′+|β|〈∂β
x∂

ju(x, ·)〉λ/2,[0,T ].

Hence, as Ck,s(s,λ,0)(CT (B1)) is embedded continuously into Ck,s(s,λ′,0)(CT (B1))
for λ ≥ λ′ > 0, we see that Ck,s(s,λ,δ)(CT ) is embedded continuously into the space

Ck,s(s,λ′,δ′)(CT ) provided λ ≥ λ′ > 0 and δ ≥ δ′. Now applying Lemma 2.7 yields
readily

Ck,s(s,λ,δ)(CT ) ↪→ Ck,s(s′,λ′,δ′)(CT )
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if s+ λ ≥ s′ + λ′ and δ ≥ δ′.
To study the compactness of the embedding we note that Cs(0,λ,0)(B1×[0, T ]) is

embedded compactly into Cs(0,λ′,0)(CT (B1)) for λ > λ′ > 0. Use the standard one
point compactification of Rn. Namely, we embed CT into the compact cylinder C
in R

n+2 consisting of all (z0, z1, . . . , zn, zn+1) ∈ R× R
n × [0, T ], such that

(z0)2 +
n∑

j=1

(zj)2 = 1.

To this end we consider the map

ι : R̂n × [0, T ] → R
n+2

given by

ι(x, t) =

⎧⎨
⎩

( |x|2 − 1

(w(x))2
,

2x

(w(x))2
, t
)
, if x �= ∞,

(1, 0, t), if x = ∞.
(2.4)

Indeed, ( |x|2 − 1

(w(x))2

)2

+
∣∣∣ 2x

(w(x))2

∣∣∣2 =
|x|4 − 2|x|2 + 1 + 4|x|2

(w(x))4
= 1,

and then, as the points at infinity of R̂n × [0, T ] correspond to the point (1, 0, t) of
cylinder C, the inverse map ι−1 is given by

ι−1(z) =

⎧⎨
⎩

( (z1, . . . , zn)
1− z0

, zn+1
)
, if −1 ≤ z0 < 1,

(∞, zn+1), if z = (1, 0, zn+1).

The map ι is obviously continuous on R̂
n × [0, T ] and at least C1 smooth and

nonsingular on CT , for

∂iι0 =
4xi

(w(x))4
, for 1 ≤ i ≤ n; ∂tι0 = 0;

∂iιj =
2δij

(w(x))2
− 4xi xj

(w(x))4
, for 1 ≤ i, j ≤ n; ∂tιj = 0, for 1 ≤ j ≤ n;

∂iιn+1 = 0, for 1 ≤ i ≤ n; ∂tιn+1 = 1.

The function
d((x, t′), (y, t′′)) = |ι(x, t′)− ι(y, t′′)|

is obviously a metric on the set R̂
n × [0, T ] ∼= C. We are now in a position to

formulate a compactness criterion a là Ascoli-Arzelá theorem.

Lemma 2.8. Let S be a subset of Ck,s(s,0,δ)(CT ) bearing the following properties:
1) S is bounded in Ck,s(s,0,δ)(CT );
2) for any ε > 0 there is δ(ε) > 0 such that, for all (x, t′), (y, t′′) ∈ CT with

d((x, t′), (y, t′′)) < δ(ε) and for all u ∈ S, we get

|(w(x))δ′+|α+β|∂α+β
x ∂j

t u(x, t
′)− (w(y))δ

′+|α+β|∂α+β
y ∂j

t u(y, t
′′)| < ε

if |α|+ 2j ≤ 2s and |β| ≤ k;

3) for any ε > 0 there is δ(ε) > 0 such that, for all (x, t′), (y, t′′) ∈ CT (B1) with√|x− y|2 + |t′ − t′′| < δ(ε) and for all u ∈ S, we have

|∂α+β
x ∂j

t u(x, t
′)− ∂α+β

y ∂j
t u(y, t

′′)| < ε

if |α|+ 2j ≤ 2s and |β| ≤ k.
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Then the set S is precompact in the weighted space Ck,s(s,0,δ′)(CT ) for any δ′ < δ.

Proof. Fix an arbitrary δ′ < δ. If S is a bounded set in Ck,s(s,0,δ)(CT ) then, for
u ∈ S, the functions

u(α+β,j)(z)

=

{ (
(w(x))δ

′+|α+β|∂α+β
x ∂j

t u
)
(ι−1(z)), if z ∈ C \ (1, 0, zn+1),

0, if z = (1, 0, zn+1),

are continuous on C for δ > δ′ because

|u(α+β,j)(z)| ≤ ‖∂α+β
x ∂j

t u‖Cs(0,0,δ+|α|)(CT )(w(ι
−1(z))δ

′−δ

for all z ∈ C \ (1, 0, zn+1), and

ι−1(z) → (∞, t)

if z → (1, 0, t) with some t ∈ [0, T ]. In particular, the set {u(α+β,j)}u∈S satisfies
the hypotheses of the Ascoli-Arzelá theorem, and so it is precompact in C(C). In

particular, this means that the set S is precompact in Ck,s(s,0,δ′)(CT ), as desired. �

If S is a bounded set in the space Cs(0,λ,δ)(CT ), then it is obviously bounded in

the spaces Cs(0,0,δ)(CT ) and Cs(0,λ,0)(CT (B1)), too. For any 0 ≤ λ′ < λ ≤ 1, this

set is precompact in Cs(0,λ′,0)(CT (B1)). Moreover, we have

(w(x, y))δ |u(x, t)− u(y, t)| ≤ ‖u‖Cs(0,λ,δ)(CT )

( |x− y|
w(x, y)

)λ

≤ 2λ/2 ‖u‖Cs(0,λ,δ)(CT )

for all x, y ∈ R
n and t ∈ [0, T ], and

(w(y))δ |u(y, t′)− u(y, t′′)| ≤ ‖u‖Cs(0,λ,δ)(CT )|t′ − t′′|λ/2

≤ Tλ/2 ‖u‖Cs(0,λ,δ)(CT )

for all y ∈ R
n and t′, t′′ ∈ [0, T ].

If |x| ≤ |y| then

|(w(x))δ′u(x, t′)− (w(y))δ
′
u(y, t′′)| ≤ (w(x))δ

′ |u(x, t′)− u(y, t′)|
+ |(w(x))δ′ − (w(y))δ

′ ||u(y, t′)|
+ (w(y))δ

′ |u(y, t′)− u(y, t′′)|,
which is dominated by

≤ 1

(w(x, y))δ−δ′ (w(x, y))
δ|u(x, t′)− u(y, t′)|

+
(
√
2)δ

(w(x, y))δ−δ′
|(w(x))δ′ − (w(y))δ

′ |
(w(x, y))δ′

(w(y))δ|u(y, t′)|

+
( √

2

w(x, y)

)δ−δ′

(w(y))δ|u(y, t′)− u(y, t′′)|,
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for in this case w(x) ≤ w(x, y) ≤ √
2w(y) and δ ≥ δ′ ≥ 0. Hence, for all x, y ∈ R

n

with |x| ≤ |y| and t′, t′′ ∈ [0, T ] we have

|(w(x))δ′u(x, t′)− (w(y))δ
′
u(y, t′′)|

≤ c
‖u‖Cs(0,λ,δ)(CT )

(w(x, y))δ−δ′

(( |x− y|
w(x, y)

)λ

+ |t′ − t′′|λ/2
)

+ c
‖u‖Cs(0,0,δ)(CT )

(w(x, y))δ−δ′
|(w(x))δ′ − (w(y))δ

′ |
(w(x, y))δ′

(2.5)

with a positive constant c depending on T but not on x, y, t′, t′′ and u.
Fix ε > 0. As δ > δ′ ≥ 0 and

|x− y|
w(x, y)

≤
√
2, |t′ − t′′| ≤ T,

|(w(x))δ′ − (w(y))δ
′ |

(w(x, y))δ′
≤ 2,

we conclude that there is R > 0 such that

‖u‖Cs(0,λ,δ)(CT )

(w(x, y))δ−δ′

(( |x− y|
w(x, y)

)λ

+ |t′ − t′′|λ/2
)

<
ε

4
,

‖u‖Cs(0,0,δ)(CT )

(w(x, y))δ−δ′
|(w(x))δ′ − (w(y))δ

′ |
(w(x, y))δ′

<
ε

4

for all x and y satisfying |x|2 + |y|2 > R2, and for all t′, t′′ ∈ [0, T ]. Since the
function w(x) and the map ι(x, t) are continuous on CT , they are equicontinuous on

the cylinder CT (BR), where BR stands for the ball of radius R around the origin in
R

n. On this cylinder the metric d((x, t′), (y, t′′)) defines the same topology as the
standard metric (|x−y|2+ |t′− t′′|2)1/2 as well as the metric (|x−y|2+ |t′− t′′|)1/2.
Hence, there is a positive number δ(ε) depending on ε, such that

‖u‖Cs(0,λ,δ)(CT )

(w(x, y))δ−δ′

(( |x− y|
w(x, y)

)λ

+ |t′ − t′′|λ/2
)

<
ε

4
,

‖u‖Cs(0,0,δ)(CT )

(w(x, y))δ−δ′
|(w(x))δ′ − (w(y))δ

′ |
(w(x, y))δ′

<
ε

4

for all (x, t′), (y, t′′) ∈ CT (BR) satisfying d((x, t′), (y, t′′)) < δ(ε).
As for any x, y ∈ R

n one has either |x| ≤ |y| or |y| ≤ |x|, on evaluating the

difference |(w(x))δ′u(x, t′)− (w(y))δ
′
u(y, t′′)| we may confine ourselves to the case

|x| ≤ |y|. In particular, (2.5) means that S satisfies the hypotheses of Lemma 2.8,

and so S is precompact in Cs(0,0,δ′)(CT ). Hence, (any sequence in) S contains a

subsequence {uν} convergent in Cs(0,0,δ′)(CT ). Without loss of the generality we
may assume that it converges to zero in this space. On the other hand,

(w(x, y))δ
′+λ′ |u(x, t)− u(y, t)|

|x− y|λ′

≤
(
(w(x, y))δ+λ |u(x, t)− u(y, t)|

|x− y|λ
)λ′

λ ((w(x, y))δ
′ |u(x, t)− u(y, t)|)1−λ′

λ

(w(x, y))(δ−δ′)λ
′
λ
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and

(w(x))δ
′ |u(x, t′)− u(x, t′′)|

|t′ − t′′|λ
′
2

≤
(
(w(x))δ

|u(x, t′)− u(x, t′′)|
|t′ − t′′|λ2

)λ′
λ ((w(x))δ

′ |u(x, t′)− u(x, t′′)|)1−λ′
λ

(w(x))(δ−δ′)λ
′
λ

.

Therefore, by (2.3),

sup
t∈[0,T ]

〈uν〉λ′,δ′,Rn ≤ C sup
t∈[0,T ]

〈uν〉λ
′/λ

λ,δ,Rn ‖uν‖1−λ′/λ
Cs(0,0,δ′)(CT )

,

〈uν〉λ′/2,[0,T ],C0,0,δ′ (Rn) ≤ C 〈uν〉λ
′/λ

λ/2,[0,T ],C0,0,δ(Rn)
‖uν‖1−λ′/λ

Cs(0,0,δ′)(CT )

with C > 0 a constant independent of ν, and so the sequence {uν} converges to

zero in Cs(0,λ′,δ′)(CT ), too. Hence it follows that S is precompact in Cs(0,λ′,δ′)(CT ).
Thus, Cs(0,λ,δ)(CT ) is embedded compactly into Cs(0,λ′,δ′)(CT ) if λ > λ′ and δ > δ′.
By induction we conclude immediately that the embedding

Ck,s(s,λ,δ)(CT ) ↪→ Ck,s(s,λ′,δ′)(CT )
is compact for any integral numbers k, s ≥ 0, provided that λ > λ′ and δ > δ′.

Finally, on applying Lemma 2.7 we see that Ck,s(s,λ,δ)(CT ) is embedded com-

pactly into Ck,s(s′,λ′,δ′)(CT ), if s+λ > s′+λ′ and δ > δ′. The proof is complete. �

We also need a standard lemma on the multiplication of functions.

Lemma 2.9. Let s, k be nonnegative integers and λ ∈ [0, 1]. If u ∈ Ck,s(s,λ,δ)(CT )
and v ∈ Ck,s(s,λ,δ′)(CT ), then the product uv belongs to Ck,s(s,λ,δ+δ′)(CT ) and

‖uv‖Ck,s(s,λ,δ+δ′)(CT ) ≤ c ‖u‖Ck,s(s,λ,δ)(CT )‖v‖Ck,s(s,λ,δ′)(CT ) (2.6)

with c > 0 a constant independent of u and v.

Proof. Indeed, for |α|+ 2j ≤ 2s and |β| ≤ k, we get

∂α+β
x ∂j

t (uv) =
∑
α′≤α
β′≤β

j′≤j

(
α
α′
)(

β
β′

)(
j
j′

)
∂α′+β′
x ∂j′

t u ∂α−α′+β−β′
x ∂j−j′

t v (2.7)

whence

|∂α+β
x ∂j

t (uv)|
(w(x))−δ−δ′−|α+β| ≤ c

∑
α′≤α
β′≤β

j′≤j

|∂α′+β′
x ∂j′

t u|
(w(x))−δ−|α′+β′|

|∂α′′+β′′
x ∂j′′

t v|
(w(x))−δ′−|α′′+β′′| ,

where α′′ = α− α′, β′′ = β − β′ and j′′ = j − j′, the constant c depending only on

s and k. Hence it follows that (2.6) is fulfilled for λ = 0 because

∫
fg ≤

∫
f

∫
g

if f ≥ 0 and g ≥ 0.
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We now assume that λ ∈ (0, 1] and |x − y| ≤ |x|/2. Then using (2.3) and (2.7)
we deduce readily that

1

(w(x, y))−δ−δ′−|α+β|−λ

|∂α+β
x ∂j

t (uv)(x, t)− ∂α+β
y ∂j

t (uv)(y, t)|
|x− y|λ

≤ c
∑
α′≤α
β′≤β

j′≤j

|∂α′+β′
x ∂j′

t u(x, t)|
(w(x))−δ−|α′+β′|)

|∂α′′+β′′
x ∂j′′

t v(x, t)− ∂α′′+β′′
y ∂j′′

t v(y, t)|
(w(x, y))−δ′−|α′′+β′′|−λ|x− y|λ

+ c
∑
α′≤α
β′≤β

j′≤j

|∂α′+β′
x ∂j′

t u(x, t)− ∂α′+β′
y ∂j′

t u(y, t)|
(w(x, y))−δ−|α′+β′|−λ|x− y|λ

|∂α′′+β′′
y ∂j′′

t v(y, t)|
(w(y))−δ′−|α′′+β′′|)

for |α| + 2j ≤ 2s and |β| ≤ k, the constant c depends neither on x and t nor on u
and v. Therefore,

sup
t∈[0,T ]

〈∂α+β∂j
t (uv)(·, t)〉λ,δ+δ′+|α+β|,Rn

≤ c
∑
α′≤α
β′≤β

j′≤j

‖∂α′+β′
x ∂j′

t u‖Cs(0,0,δ+|α′+β′|)(CT ) sup
t∈[0,T ]

〈∂α′′+β′′
x ∂j′′

t v〉λ,δ′+|α′′+β′′|,Rn

+ c
∑
α′≤α
β′≤β

j′≤j

sup
t∈[0,T ]

〈∂α′+β′
x ∂j′

t u〉λ,δ+|α′+β′|,Rn ‖∂α′′+β′′
x ∂j′′

t v‖Cs(0,0,δ′+|α′′+β′′|)(CT ).

Similarly,

1

(w(x))−δ−δ′−|α+β|
|∂α+β

x ∂j
t (uv)(x, t

′)− ∂α+β
x ∂j

t (uv)(x, t
′′)|

|t′ − t′′|λ/2

≤ c
∑
α′≤α
β′≤β

j′≤j

|∂α′+β′
x ∂j′

t u(x, t′)|
(w(x))−δ−|α′+β′|)

|∂α′′+β′′
x ∂j′′

t v(x, t′)− ∂α′′+β′′
x ∂j′′

t v(x, t′′)|
(w(x))−δ′−|α′′+β′′||t′ − t′′|λ/2

+ c
∑
α′≤α
β′≤β

j′≤j

|∂α′+β′
x ∂j′

t u(x, t′)− ∂α′+β′
x ∂j′

t u(x, t′′)|
(w(x))−δ−|α′+β′||t′ − t′′|λ/2

|∂α′′+β′′
x ∂j′′

t v(x, t′′)|
(w(x))−δ′−|α′′+β′′|) ,

the constant c need not be the same in diverse applications. Hence,

〈∂α+β
x ∂j

t (uv)(x, ·)〉λ/2,[0,T ],C0,0,δ+δ′+|α+β|(Rn)

≤ c
∑
α′≤α
β′≤β

j′≤j

‖∂α′+β′
x ∂j′

t u‖Cs(0,0,δ+|α′+β′|)(CT ) 〈∂α′′+β′′
x ∂j′′

t v〉λ/2,[0,T ],C0,0,δ′+|α′′+β′′|(Rn)

+ c
∑
α′≤α
β′≤β

j′≤j

〈∂α′+β′
x ∂j′

t u〉λ/2,[0,T ],C0,0,δ+|α′+β′|(Rn) ‖∂α′′+β′′
x ∂j′′

t v‖Cs(0,0,δ′+|α′′+β′′|)(CT ).

Applying the Cauchy-Schwarz inequality we conclude that (2.6) is actually ful-
filled for all λ ∈ (0, 1], for the estimates of the term ‖uv‖

Ck,s(s,λ,0)(CT (B1))
are simi-

lar. �
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Lemma 2.10. Suppose that s ≥ 1 and k ≥ 0 are integers and λ ∈ [0, 1]. Then it
follows that

1) ∂α
x maps Ck,s(s,λ,δ)(CT ) continuously into Ck−|α|,s(s,λ,δ+|α|)(CT ), if |α| ≤ k;

2) ∂α
x maps Cs(s,λ,δ)(Rn×[0, T ]) continuously into C2s−|α|,λ,s−1, λ2 ,δ+|α|(Rn×[0, T ]),

if 1 ≤ |α| ≤ 2;

3) ∂j
t maps Ck,s(s,λ,δ)(CT ) continuously into Ck,s(s−j,λ,δ)(CT ), if 0 ≤ j ≤ s;

4) the heat operator Hμ maps Ck,s(s,λ,δ)(CT ) continuously into Ck,s(s−1,λ,δ)(CT ).
Proof. The first three assertions follow readily from the definition of the spaces.
To derive the last assertions from the first three ones it suffices to apply Theorem
2.6 according to which the space Ck,s(s−1,λ,δ+2)(CT ) is embedded continuously into
Ck,s(s−1,λ,δ)(CT ). �

Aiming at the investigation of linearisations of the Navier-Stokes equations we
now consider the action of differential operators with variable coefficients in the
scale Ck,s(s,λ,δ)(CT ). Set

Pu =
∑
|α|≤1

Pα(x, t)∂
αu (2.8)

for u ∈ C1(Rn, Λq), where Pα are (kq × kq) -matrices of differentiable functions on

CT and kq the rank of the bundle Λq.

Lemma 2.11. Let s ≥ 1 and k ≥ 0 be integers, 0 < λ ≤ 1 and δ, δ′ > 0. If
the entries of Pα, |α| ≤ 1, belong to Ck+s(s−1,λ,δ′−|α|)(CT ), then (2.8) induces a
bounded linear map

P : Ck,s(s,λ,δ)(CT , Λq) → Ck,s(s−1,λ,δ+δ′)(CT , Λq).

Proof. If 0 < λ ≤ 1, then according to Lemma 2.9 and Theorems 2.6 we get
immediately

‖Pα∂
αu‖Ck,s(s−1,λ,δ+δ′)(CT ,Λq)

≤ c′ ‖Pα‖Ck,s(s−1,λ,δ′−|α|)(CT ,Hom(Λq))‖∂αu‖Ck,s(s−1,λ,δ+|α|)(CT ,Λq)

≤ c′′ ‖Pα‖Ck,s(s−1,λ,δ′−|α|)(CT ,Hom(Λq))‖u‖Ck+|α|,s(s−1,λ,δ)(CT ,Λq)

≤ c′′′ ‖Pα‖Ck,s(s−1,λ,δ′−|α|)(CT ,Hom(Λq))‖u‖Ck,s(s,λ,δ)(CT ,Λq)

with some constants c′, c′′ and c′′′ independent of u ∈ Ck,s(s,λ,δ)(CT , Λq), because
the space Ck,s(s,λ,δ)(CT ) is embedded continuously into Ck+1,s(s−1,λ,δ)(CT ). �

Lemma 2.10 shows that the scale of weighted spaces Ck,s(s,λ,δ)(CT ) does not fully
agree with the dilation principle for parabolic equations so far as it concerns the
weight. Hence, when solving the Cauchy problem for the heat equation, we should
expect some loss of regularity with respect to either the smoothness or the weight.

3. The de Rham complex over weighted Hölder spaces

Motivated by the factorisation of linearised Navier-Stokes equations we are inter-
ested in describing the behaviour of the Laplace operator and the de Rham complex
in the scales Cs,λ,δ and Ck,s(s,λ,δ)(CT ). Actually, it is well known and similar to
the behaviour of the Laplace operator in the scale of weighted Sobolev spaces (see
for instance [McO79]).
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Let H≤m stand for the space of all harmonic polynomials of degree ≤ m in the
space variable x ∈ R

n. Denote by Rs,λ,δ+2(Rn) the range of the bounded linear
operator

Δ : Cs+2,λ,δ(Rn) → Cs,λ,δ+2(Rn) (3.1)

induced by the Laplace operator Δ.

Theorem 3.1. Assume that n ≥ 2, s is a nonnegative integer and 0 < λ < 1. If
moreover δ > 0 and δ+2−n �∈ Z≥0, then the operator (3.1) is Fredholm. Moreover,

1) (3.1) is an isomorphism, if 0 < δ < n− 2;
2) (3.1) is an injection, if n − 2 + m < δ < n − 1 + m for m ∈ Z≥0 and its

(closed) range Rs,λ,δ+2(Rn) consists of all f ∈ Cs,λ,δ+2(Rn) satisfying∫
Rn

f(x)h(x)dx = 0

whenever h ∈ H≤m.

Proof. See for instance [Beh11], [Mar02]. The key tool in the proof is the Newton
potential

Φf (x) =

∫
Rn

φ(x− y) f(y) dy (3.2)

on all of Rn defined for functions f over Rn, where

φ(x) =

⎧⎪⎨
⎪⎩

1

π
ln |x|, for n = 2,

1

σn

|x|2−n

2− n
, for n ≥ 3,

is the standard two-sided fundamental solution of the convolution type to the
Laplace operator in R

n and σn the area of the unit sphere in R
n. Let us briefly

sketch the proof.
The crucial role in the proof is played by the following a priori estimate of

Schauder type for the Laplace operator.

Lemma 3.2. Suppose δ > 0. If f ∈ C0,λ,δ+2(Rn) and u ∈ C0,0,δ(Rn) satisfies
Δu = f in the sense of distributions in R

n, then u ∈ C2,λ,δ(Rn) and

‖u‖C2,λ,δ(Rn) ≤ c
(‖f‖C0,λ,δ+2(Rn) + ‖u‖C0,0,δ(Rn)

)
with c a constant depending on λ and δ but not on u.

Proof. The proof is based on a priori estimates of Schauder type for solutions of
elliptic equations, see for instance [GT83] for Hölder spaces, [NW73], [McO79] for
weighted Sobolev spaces, [MR04] for weighted Hölder spaces on an infinite cone
and Proposition 2.7 of [Beh11] and Theorem 4.21 of [Mar02] for weighted Hölder
spaces on a manifold with conical points.

Indeed, by Lemma 2.1 and elliptic regularity we conclude that any function u

satisfying the hypotheses of the lemma belongs to C2,λ
loc (R

n). Using standard a
priori estimates for the Laplace operator yields

‖u‖C2,λ(B1)
≤ c

(
‖Δu‖C0,λ(B2)

+ ‖u‖C0,0(B2)

)
,∑

|α|≤2

‖∂αu‖C0,λ(B2)
≤ c

(
‖Δu‖C0,λ(B4)

+ ‖u‖C0,0(B4)

)
(3.3)

for all u as in the statement of the lemma, with c a constant depending on the ratio
of the radii of the balls but not on u. (See for instance Theorem 4.6 in [GT83,
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§ 4.2, § 4.3], cf. also Theorem 9.11 for Lebesgue spaces ibid.) For |x| ≤ 4 one

verifies easily 1 ≤ √
1 + |x|2 ≤ √

17. Therefore, using (2.3) we may write the last
inequality as∑

|α|≤2

‖∂αu‖C0,λ,δ+|α|(B2)
≤ c

(
‖Δu‖C0,λ,δ+2(B4)

+ ‖u‖C0,0,δ(B4)

)
(3.4)

for all u as in the statement of the lemma, the constant c depends on δ and need
not be the same in diverse applications.

We next consider a spherical layer in R
n of the form r < |x| < 8r, where r ≥ 1

is a fixed constant, and we define the function

ur(x) := u(rx)

for 1 ≤ |x| ≤ 8. Then

∂iur(x) = r(∂iu)(rx),
Δur(x) = r2(Δu)(rx),

that is r2f(rx). Again by standard a priori estimates we obtain

‖∂αur‖C0,λ(B4\B2)
≤ c

(
‖Δur‖C0,λ(B8\B1)

+ ‖ur‖C0,0(B8\B1)

)
for |α| ≤ 2, see for instance Theorem 4.6 in [GT83, § 4.2, § 4.3] and Theorem 9.11
for Lebesgue spaces ibid. For the original function u this reduces to

rδ+|α|‖∂αu‖C0,λ(B4r\B2r)

≤ c
(
rδ+2‖Δu‖C0,λ(B8r\Br)

+ rδ‖u‖C0,0(B8r\Br)

)
with c a constant depending on the ratio of the radii of the balls but not on u. Note
that if r ≤ |x| ≤ 8r then r <

√
1 + |x|2 ≤ 9r. Therefore, on applying estimate (3.3)

we get

‖∂αu‖C0,λ,δ+|β|(B4r\B2r)

≤ c
(
‖Δu‖C0,λ,δ+2(B8r\Br)

+ ‖u‖C0,0,δ(B8r\Br)

)
for |α| ≤ 2, where the constant c depends on δ but not on r ≥ 1 and u.

We now choose r = 2m with m = 0, 1, . . .. For any multi-index α satisfying
|α| ≤ 2 it follows that

‖∂αu‖C0,λ,δ+|β|(B2m+2\B2m+1 )

≤ c
(
‖Δu‖C0,λ,δ+2(B2m+3\B2m ) + ‖u‖C0,0,δ(B2m+3\B2m )

)
,

where the constant c depends neither on m = 0, 1, . . . nor on u. Combining
these sequence of inequalities in spherical layers with (3.3) and (3.4) establishes
the lemma. �

Let us continue with the proof of Theorem 3.1. First we note that the Liouville
theorem implies that the operator Δ is injective on Cs,λ,δ(Rn), for any s ≥ 2
and δ > 0, and the kernel of the operator Δ on Cs,λ,δ(Rn) is equal to H≤m, if
−m− 1 < δ < −m with m = 0, 1, . . ..

Second, let Hm stand for the set of all homogeneous harmonic polynomials of
degree m with respect to the space variable x. Note that if m is a nonnegative
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integer and δ > n− 2+m then for f ∈ C0,0,δ+2(Rn) to be in the range of Δ acting
on C1,0,δ(Rn) ∩ C2(Rn) it is necessary that∫

Rn

fhjdx =

∫
Rn

(Δu)hjdx = lim
R→+∞

∫
|x|=R

(∂u
∂ν

hj − u
∂hj

∂ν

)
ds = 0

for all hj ∈ Hj with 0 ≤ j ≤ m, because

Rn−1−δ+(j−1) = Rn−1−(δ+1)+j = Rn−2+j−δ → 0

as R → +∞. Thus for n = 2 the isomorphism described in the item 1) is impossible.
Clearly, the function (w(x))−δ−2 belongs to Cs,0,δ+2(Rn) for any δ ∈ R and

all s ∈ Z≥0. Our next objective is to Let us construct a formal solution to the
inhomogeneous equation

ΔF =
1

(1 + |x|2)(δ+2)/2
(3.5)

in R
n \ {0}. To this end we introduce

F (x) =
∞∑
k=0

ak
(1 + |x|2)(δ+2k)/2

as a formal series. Clearly, the coefficients ak are uniquely determined from equality
(3.5).

Lemma 3.3. Let δ be a real number different from 0, n− 2, n− 4, . . .. The series
F converges uniformly along with all derivatives on compact subsets away from the
origin in R

n. Moreover the function F belongs to Cs,0,δ(Rn \B1) for any s ∈ Z≥0

and it satisfies (3.5).

Proof. It easy to verify that

∂iF (x) =

∞∑
k=0

−(δ + 2k)xi ak
(1 + |x|2)(δ+2k+2)/2

,

∂2
i F (x) =

∞∑
k=0

( (δ + 2k)(δ + 2k + 2)x2
i ak

(1 + |x|2)(δ+2k+4)/2
− (δ + 2k) ak

(1 + |x|2)(δ+2k+2)/2

)
,

and so

ΔF (x) =
∞∑
k=0

( (δ + 2k)(δ + 2k + 2) |x|2 ak
(1 + |x|2)(δ+2k+4)/2

− (δ + 2k)nak
(1 + |x|2)(δ+2k+2)/2

)

=

∞∑
k=0

( (δ + 2k)(δ + 2k + 2− n) ak
(1 + |x|2)(δ+2k+2)/2

− (δ + 2k)(δ + 2k + 2) ak
(1 + |x|2)(δ+2k+4)/2

)

=
δ(δ+2−n) a0

(1 + |x|2)(δ+2)/2
+

∞∑
k=1

(δ+2k) ((δ+2k+2−n)ak − (δ+2k−2)ak−1)
(1 + |x|2)(δ+2k+2)/2

as formal series. In particular, if

a0 =
1

δ(δ + 2− n)
,

ak =
δ + 2k − 2

δ + 2k + 2− n
ak−1

(3.6)
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for k ≥ 1, then

ΔF (x) =
1

(1 + |x|2)(δ+2)/2

as formal series. We get

a1 =
1

(δ + 2− n)(δ + 4− n)
,

a2 =
δ + 2

(δ + 2− n)(δ + 4− n)(δ + 6− n)

and more generally

ak =

k−1∏
j=1

(δ + 2j)

k+1∏
j=1

(δ + 2j − n))

,

for k ≥ 3, provided that δ is different from 0, n− 2, n− 4, . . .. From (3.6) it follows
that the convergence domain of the power series

∞∑
k=0

akz
k

coincides with the unit disc in C. Hence, by the Abel theorem the series F converges
uniformly along with all derivatives on compact subsets of Rn\{0}. Its sum belongs
actually to C∞

loc(R
n \ {0}) ∩ C0,0,δ(Rn \B1), for

(w(x))δF (x) =

∞∑
k=0

ak(w(x))
δ

(1 + |x|2)(δ+2k)/2
=

∞∑
k=0

ak
(1 + |x|2)k .

Next,

(w(x))δ+1|∂iF (x)| ≤
∞∑
k=0

|δ + 2k||ak||xi|(w(x))δ+1

(1 + |x|2)(δ+2k+2)/2

=
|xi|

(1 + |x|2)1/2
∞∑
k=0

|δ + 2k||ak|
(1 + |x|2)k .

Formula (3.6) implies that the convergence radius of the series

∞∑
k=0

|δ + 2k||ak|zk

equals 1 whence

(w(x))δ+1|∂iF (x)| ≤
∞∑
k=0

|δ + 2k||ak|
2k

< ∞,

i.e., F ∈ C1,0,δ(Rn \B1).
We now proceed by induction. For any multi-index α ∈ Z≥0 we readily verify

that

(w(x))δ+|α|∂αF (x) =
∞∑
k=0

Pα,k

( x

w(x)

) ak
(1 + |x|2)k ,
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where Pα,k are polynomials of degree ≤ |α| of n variables, such that∣∣∣Pα,k

( x

w(x)

)∣∣∣ ≤ c k|α|

for all x ∈ R
n, the constant c depending on δ but not on k. On arguing as above we

deduce that F ∈ Cs,0,δ(Rn\B1) for any nonnegative integer s. By the construction,
F satisfies (3.5). �

Lemma 3.4. If δ > 0 then the potential Φf given by (3.2) satisfies Δ(Φf) = f in
the sense of distributions on R

n for all f ∈ C0,λ,δ+2(Rn). Moreover, if 0 < δ < n−2
then the potential (3.2) induces the bounded map Φ : C0,λ,δ+2(Rn) → C2,λ,δ(Rn)
for all λ ∈ (0, 1).

Proof. We begin with n > 2.

Recall that C0,λ,δ+2(Rn) ↪→ C0,λ
loc (R

n). Fix f ∈ C0,λ,δ+2(Rn) with δ > 0. First,
for x = 0, we get

|(Φf)(0)| ≤ 1

σn(n− 2)

∫
Rn

|f(y)|
|y|n−2

dy

≤ 1

σn(n− 2)

∫
|y|≤1

|f(y)|
|y|n−2

dy +
1

σn(n− 2)

∫
|y|≥1

|f(y)|
|y|n−2

dy

≤ ‖f‖C0,0,δ(Rn)

σn(n− 2)

(∫
|y|≤1

(1 + |y|2)−(δ+2)/2

|y|n−2
dy +

∫
|y|≥1

|y|−(δ+n)dy
)
.

The first integral in the parentheses converges because n − 2 < n, and the second
integral converges because δ + n > n.

If x �= 0, then

|x− y| = |y|
∣∣∣ y|y| − x

|y|
∣∣∣ ≥ |y|(1− 1/2) = |y|/2

for all x ∈ R
n satisfying |x| ≤ |y|/2. Hence we obtain

|(Φf)(x)|
≤ 1

σn(n− 2)

∫
|y|≤2|x|

|f(y)|
|y − x|n−2

dy +
1

σn(n− 2)

∫
|y|≥2|x|

|f(y)|
|y − x|n−2

dy

≤ ‖f‖C0,0,δ(Rn)

σn(n− 2)

(∫
|y|≤2|x|

(1 + |y|2)−(δ+2)/2

|x− y|n−2
dy +

∫
|y|≥2|x|

2n−2|y|−(δ+n)dy
)
.

(3.7)

Again the first integral in the last line converges, for n − 2 < n, and the second
integral in the last line converges, for n + δ > n. Thus, the potential (Φf)(x) is
well defined for all x ∈ R

n.
It follows from potential theory (see for instance [Gun34]) that for each R > 0

the integral

Φ(χBR
f)(x) =

1

σn(n− 2)

∫
|y|≤R

f(y)

|x− y|n−2
dy

converges uniformly in the ball BR and it belongs to C2,λ(BR) provided that f ∈
C0,λ,δ+2(Rn). Clearly the integral

Φ((1− χBR
)f)(x) =

1

σn(n− 2)

∫
|y|≥R

f(y)

|x− y|n−2
dy
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is a C∞ functions of x ∈ BR. We thus deduce that the potential Φf belongs to

C2,λ(BR) in any ball BR, and so Φf ∈ C2,λ
loc (R

n) for each f ∈ C0,λ,δ+2(Rn) with
δ > 0.

Moreover, it follows from (3.7) that the integral Φf converges uniformly on each
compact set K ⊂ R

n. For any v ∈ C∞
comp(R

n), using Fubini theorem we get∫
Rn

(Φf)(x)Δv(x)dx =

∫
Rn

f(y)(ΦΔv)(y)dy =

∫
Rn

f(y)v(y)dy,

i.e. Δ(Φf) = f in the sense of distributions in R
n for each f ∈ C0,λ,δ+2(Rn) with

δ > 0, for e is a fundamental solution of convolution type to the Laplace operator
in R

n.
As f ∈ C0,λ,δ+2(Rn), we get

‖(w(x))δ+2−εf‖Lq(Rn) ≤ ‖f‖C0,0,δ+2(Rn)‖(w(x))−ε(x)‖Lq(Rn)

for all 0 < ε < δ+2, i.e., the function f belongs to W 0,q,δ+2−ε(Rn) for all q > n/ε.
If 0 < ε < δ then

−n/q < 0 < δ − ε < n− 2− n/q

for all q > n/(n − 2 − δ + ε). According to [McO79] (see Theorem 8.1 below) we
conclude that Φf ∈ W 2,q,δ−ε(Rn). In particular, the potential Φf vanishes at the
infinity point.

Given any f ∈ C0,λ,δ+2(Rn), we get∣∣∣ ∫
Rn

f(y)

|x− y|n−2
dy

∣∣∣ ≤ c ‖f‖C0,0,δ+2(Rn)

∫
Rn

(w(y))−(δ+2)

|x− y|n−2
dy (3.8)

with c a constant independent of x and f . As (w(y))−δ−2 belongs to Cs,λ,δ+2(Rn)
for any s ∈ Z≥0 (see Example 7.3 below), the potential Φw−δ−2 belongs to C∞

loc(R
n),

vanishes at infinity and satisfies

Δ(Φw−δ−2) = w−δ−2

in R
n. On the other hand, the integral Φ(χB1

w−(δ+2)) is harmonic away from the
closed ball B1 and it belongs obviously to Cs,0,n−2(Rn \ B1) for all s ∈ Z≥0. It
follows that

ΔΦ((1− χB1
)w−δ−2) = w−δ−2 (3.9)

in R
n \B1.

On combining (3.9) and (3.5) we see that the difference

h = Φ((1− χB1
)w−δ−2)− F

is a harmonic function in R
n \ B1 vanishing at the point of infinity. It can be

recovered via its smooth boundary values on ∂B1. Indeed, let {h(j)
k (x)} be the

system of homogeneous harmonic polynomials forming an L2 -orthonormal basis on
the unit sphere in R

n, where k stands for the polynomial degree and j = 1, . . . , J(k),
with

J(k) =
(n+ 2k − 2)(n+ k − 3)!

k!(n− 2)!

being the number of polynomials of degree k in the basis, see [Sob74, Ch. XI]).
Then the results on the exterior Dirichlet problem show that

h =
∞∑
k=0

J(k)∑
j=1

c
(j)
k

|x|n+2k−2
h
(j)
k (x) =

1

|x|n−2

∞∑
k=0

J(k)∑
j=1

c
(j)
k

|x|k h
(j)
k

( x

|x|
)
,



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES EQUATIONS 27

where

c
(j)
k =

(
Φ((1− χB1)w

−δ−2)− F, h
(j)
k

)
L2(∂B1)

and the series converges uniformly on compact subsets of Rn \B1. In particular, as

J(k) ≤ c kn−2,

max
|x|=1

|h(j)
k (x)| ≤ cn k

n/2−1,

see [Sob74, Ch. XI, § 2)]) and formula (XI.3.23) ibid, the Cauchy-Hadamard formula
yields readily

lim sup
k→+∞

max
1≤j≤J(k)

|c(j)k | ≤ 1

and hence

(1 + |x|2)(n−2)/2|h(x)| ≤
( (1 + |x|2)1/2

|x|
)n−2 ∞∑

k=0

J(k)∑
j=1

|c(j)k |
|x|k

∣∣∣h(j)
k

( x

|x|
)∣∣∣

≤ c
∞∑
k=0

kn/2+n−3

|x|k

with a constant c independent on k. It follows that h ∈ C0,0,n−2(Rn \B1).
On the other hand, as already mentioned, the potential Φ(χB1

w−δ−2) belongs
to Cs,0,n−2(Rn \B1) for all s = 0, 1, . . ., and so

Φ(w−δ−2) = Φ(χB1
w−δ−2) + Φ((1− χB1

)w−δ−2)

is of class Cs(Rn) ∩ Cs,0,δ(Rn \ B1) for all s ∈ Z≥0, if 0 < δ < n − 2. Thus,
Φ(w−δ−2) ∈ Cs,0,δ(Rn) for all s and 0 < δ < n − 2. We now apply estimate (3.8)
to conclude that

‖Φf‖C0,0,δ(Rn) ≤ ‖f‖C0,0,δ+2(Rn) ‖Φ(w−δ−2)‖C0,0,δ(Rn)

if 0 < δ < n− 2. Now it follows from Lemma 3.2 that Φ is the bounded inverse for
the operator

Δ : C2,λ,δ(Rn) → C0,λ,δ+2(Rn)

for all 0 < δ < n− 2, as desired. �

Lemma 3.4 gives a proof of the statement 1) for s = 0 and n ≥ 3. (Note that
the statement 1) is actually vacuous for n = 2.)

Further, we may use the following decomposition of the standard fundamental
solution to the Laplace equation

φ(x− y) = φ(x− 0)−
∞∑
k=1

J(k)∑
j=1

h
(j)
k (x)h

(j)
k (y)

(n+ 2k − 2)|x|n+2k−2
(3.10)

for n ≥ 2, where the series converges uniformly along with all derivatives on compact
sets of the cone {|x| > |y|} in R

2n (see [SW71], [Shl92], [McO79] and elsewhere).
Set

φm(x, y) = φ(x− y)− φ(〈x〉 − 0) +
m∑

k=1

J(k)∑
j=1

h
(j)
k (〈x〉)h(j)

k (y)

(n+ 2k − 2)〈x〉n+2k−2
,

where x �→ 〈x〉 is a so-called norm smoothing function, i.e., 〈x〉 = |x| for |x| ≥ 2
and 〈x〉 ≥ 1 for all x ∈ R

n.
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Lemma 3.5. Suppose that n − 2 +m < δ < n − 1 +m for some m ∈ Z≥0. Then
the integral

Φmf(x) =

∫
Rn

φm(x, y)f(y)dy

induces a bounded linear operator Φm : C0,λ,δ+2(Rn) → C2,λ,δ(Rn) which coincides
with the potential Φ on R0,λ,δ+2(Rn).

Proof. Indeed, since n+m < δ + 2 < n+m+ 1, the integral∫
Rn

f(y)h
(j)
k (y)dy

converges because∣∣∣ ∫
Rn

f(y)h
(j)
k (y)dy

∣∣∣ ≤ ‖f‖C0,0,δ+2(Rn)

∫
Rn

h
(j)
k (y)(w(y))−(δ+2)dy

≤ ‖f‖C0,0,δ+2(Rn) ‖h(j)
k ‖C(∂B1)

∫
Rn

(w(y))k−δ−2dy,

the last integral being finite for all 0 ≤ k ≤ m because −n − 1 < k − δ − 2 < −n.
It follows that the integral operator Km induced by the kernel

km(x, y) = φ(〈x〉 − 0)−
m∑

k=1

J(k)∑
j=1

h
(j)
k (〈x〉)h(j)

k (y)

(n+ 2k − 2)〈x〉n+2k−2

maps C0,λ,δ+2(Rn) to functions harmonic outside of the ball B2 and vanishing at
the point of infinity. Hence the integral (Φmf)(x) converges for all x ∈ R

n, if
f ∈ C0,λ,δ+2(Rn). Moreover, since

Φmf = Φf −Kmf,

we conclude that Φmf ∈ C2,λ
loc (R

n) for each function f ∈ C0,λ,δ+2(Rn) such that
n+m− 2 < δ < n+m− 1.

As already mentioned, if 0 < ε < δ + 2, then f belongs to W 0,q,δ+2−ε(Rn) for
all q > n/ε. If 0 < ε < δ + 2− n−m then

n− 2 +m− n/q < n− 2 +m < δ − ε < n− 1 +m− n/q

holds for all q > n/(n− 1 +m− δ + ε). Thus, by [McO79] (see also Theorem 8.1),
we get Φmf ∈ W 2,q,δ−ε(Rn). In particular, the potential Φmf vanishes at the point
of infinity.

For n ≥ 3, it follows from [McO79, Lemma 5] that

|φm(x, y)| ≤ c
(1 + |y|m+n−2)

|x− y|n−2(1 + |x|m+n−2)
, if 2|y| ≥ |x|,

|φm(x, y)| ≤ c
(1 + |y|m+1)

|x− y|n−2(1 + |x|m+1)
, if 2|y| ≤ |x|,

where c is a constant independent of x and y which can be different in diverse
applications. Then

(w(x))δ
∣∣∣∫

|2y|≥|x|
φm(x, y)f(y)dy

∣∣∣ ≤ c‖f‖C0,λ,δ+2(Rn)(w(x))
δ−m−n+2Φ(wm+n−δ−4)(x).
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If n + m − 2 < δ < n + m − 1 then 0 < δ − m − n + 2 < 1 ≤ n − 2 and hence
by the assertion 1) which has already been proved we see that Φ(wm+n−δ−4) is of
class C0,0,δ+2−m−n(Rn). In particular,∥∥∥ ∫

|2y|≥|x|
φm(x, y)f(y)dy

∥∥∥
C0,0,δ(Rn)

≤ c ‖f‖C0,λ,δ+2(Rn)‖Φ(wm+n−δ−4)‖C0,0,δ+2−m−n(Rn).

Similarly,

(w(x))δ
∣∣∣∫

|2y|≤|x|
φm(x, y)f(y)dy

∣∣∣ ≤ c‖f‖C0,λ,δ+2(Rn)(w(x))
δ−m−1Φ(wm−δ−1)(x).

If n ≥ 3 and n + m − 2 < δ < n + m − 1 then 0 ≤ n − 3 < δ − m − 1 < n − 2
and hence by the assertion 1) we conclude that Φ(wm−δ−1) ∈ C0,0,δ−m−1(Rn). It
follows that ∥∥∥ ∫

|2y|≥|x|
φm(x, y)f(y)dy

∥∥∥
C0,0,δ(Rn)

≤ c ‖f‖C0,λ,δ+2(Rn)‖Φ(wm−δ−1)‖C0,0,δ−m−1(Rn),

and so
‖Φmf‖C0,0,δ(Rn) ≤ c ‖f‖C0,λ,δ+2(Rn).

Finally, by construction Φmf coincides with the potential Φf on R0,λ,δ+2(Rn)
whence

ΔΦmf = f

for all f ∈ R0,λ,δ+2,m(Rn). Now Lemma 3.2 implies that Φmf maps R0,λ,δ+2(Rn)
continuously into C2,λ,δ(Rn) for the corresponding δ.

For s = 2 and n = 2 the proof is similar and follows the same scheme as in
[McO79, Lemma 6] for the weighted Sobolev spaces. �

On summarising we have proved the assertion 2) for s = 2 and n ≥ 2.

Lemma 3.6. Suppose P is a homogeneous partial differential operator P of order
0 ≤ k ≤ s− 2 with constant coefficients. Then,

1) P maps Cs−2,λ,δ+2(Rn) continuously into Rs−2−k,λ,δ+2+k(Rn), provided that
0 < δ < n− 2 and n− 2 +m < δ + k < n− 2 +m+ 1;

2) P maps Rs−2,λ,δ+2(Rn) continuously into Rs−2−k,λ,δ+2+k(Rn), provided that
n− 2 +m < δ < n− 2 +m+ 1.

Proof. If f ∈ Cs−2,λ,δ+2(Rn), where 0 < δ < n−2 and n−2+m < δ+k < n−2+m+1,
then m < k and, given any h ∈ Hm, we use the Green formula for P to get∫

Rn

(Pf)(x)h(x)dx = lim
R→+∞

∫
BR

(Pf)(x)h(x)dx

=

∫
Rn

f(x)(P ∗h)(x)dx+ lim
R→+∞

∫
∂BR

GP (h, f)

= 0,

because P ∗h = 0 (for m < k!) and the modulus of

∫
∂BR

GP (h, f) is dominated by

k−1∑
j=0

Rn−1Rm−j

(1 + |R|2)(δ+2+k−1−j)/2
.
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(Here, by GP (·, ·) is meant a Green operator for P .)
Similarly, if f ∈ Rs−2,λ,δ+2(Rn), where n − 2 + m < δ < n − 2 + m + 1, then

using the Green formula for P yields∫
Rn

(Pf)(x)h(x)dx = lim
R→+∞

∫
BR

(Pf)(x)h(x)dx

=

∫
Rn

f(x)(P ∗h)(x)dx+ lim
R→+∞

∫
∂BR

GP (h, f)

= 0

for all h ∈ H≤m+k, because P ∗h ∈ H≤m (for the operators P ∗ and Δ commute)
and ∣∣∣ ∫

∂BR

GP (h, f)
∣∣∣ ≤ c

k−1∑
j=0

Rn−1Rm+k−j

(1 + |R|2)(δ+2+k−1−j)/2
.

�
Finally, we may further argue by induction because on integrating by parts for

f ∈ Cs−2,λ,δ+2(Rn) we get

∂α

∫
Rn

f(y)

|x− y|n−2
dy =

∫
Rn

∂αf(y)

|x− y|n−2
dy

whenever δ > 0 and |α| ≤ s− 2. Indeed, if 0 < δ < n− 2 and f ∈ Cs−2,λ,δ+2(Rn)
or n− 2+m < δ < n− 2+m+1 and f ∈ Rs−2,λ,δ+2(Rn), then also ∂αf is of class
Rs−2−|α|,λ,δ+2+|α|(Rn) and

∂α(Φf) = Φ(∂αf) = Φm(∂αf),

which is due to the properties of Φ and Φm derived above. (Obviously, we have
Δ∂α(Φf) = ∂αf .) In particular, ∂α(Φf) ∈ C0,0,δ+|α|(Rn) for all |α| ≤ s−2 accord-
ing to Lemma 3.5. Now using Lemma 3.2 we see that ∂α(Φf) ∈ C2,λ,δ+|α|(Rn) for
all |α| ≤ s− 2, and so Φf ∈ Cs,λ,δ(Rn) satisfies Δ(Φf) = f .

We have thus proved the assertion 2) of the theorem for n ≥ 3 and s ≥ 2. For
s ≥ 2 and n = 2 the proof is similar. �

What about the case δ < 0? In the case of Sobolev space a duality argument
might be used. Actually we do not consider δ < 0 below. For handling the Navier-
Stokes equations we need merely δ > 0 if we want to provide a finite energy estimate.

Now we start to study the Laplace operator in the scale Ck,s(s,λ,δ)(CT ). As the
Laplace operator is not fully consistent with the dilation principle in CT we should
expect some loss of regularity of solutions to Δu = f in this scale of function spaces.

Similarly to the scale Cs,λ,δ, we will use the potential

(Φ⊗ I)f (x, t) =

∫
Rn

φ(x− y) f(y, t)dy

for function f defined on CT . The variable t enters into the integral as a parameter
and the pair (x, t) is assumed to be in the finite layer CT over Rn.

Actually, we can easily extend Theorem 3.1 to the Laplace operator acting
boundedly as

Δ :

s⋂
j=0

Cj,0([0, T ], C2(s−j)+k+2,λ,δ(Rn)) →
s⋂

j=0

Cj,0([0, T ], C2(s−j)+k,λ,δ+2(Rn)).

(3.11)
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Let Cs([0, T ], H≤m) be the space of all Cs functions of t ∈ [0, T ] with values in the
harmonic polynomials of degree ≤ m in x. Any element h(x, t) can be alternatively
thought of as a polynomial of H≤m whose coefficients are Cs functions on [0, T ].

Lemma 3.7. Let n ≥ 2, s, k be nonnegative integers, 0 < λ < 1 and δ > 0 The
operator (3.11) has closed range unless δ + 2− n ∈ Z≥0. Moreover,

1) it is an isomorphism, if 0 < δ < n− 2;
2) it is an injection, if n − 2 +m < δ < n − 1 +m for some m ∈ Z≥0, and its

range consists of all

f ∈
s⋂

j=0

Cj,0([0, T ], C2(s−j)+k,λ,δ+2(Rn))

satisfying

∫
Rn

f(x, t)h(x)dx = 0 for all h ∈ H≤m.

Proof. First we note that, by the Liouville theorem, a harmonic function on R
n

whose growth at the infinity point does not exceed that of |x|m is a polynomial of
degree m ∈ Z+. Hence, for δ > 0, the kernel of operator (3.11) consists of those
functions

u ∈
s⋂

j=0

Cj,0([0, T ], C2(s−j)+k+2,λ,δ(Rn))

which depend on the variable t only and vanish as |x| → +∞. This means that
operator (3.11) is injective for all s ≥ 0 and δ > 0.

Finally, using Theorem 3.1 yields

sup
t∈[0,T ]

‖∂j
t (Φ⊗ I)f(·, t)‖C2(s−j)+k+2,λ,δ(Rn)

= sup
t∈[0,T ]

‖(Φ⊗ I)∂j
t f(·, t)‖C2(s−j)+k+2,λ,δ(Rn)

≤ c sup
t∈[0,T ]

‖∂j
t f(·, t)‖C2(s−j)+k,λ,δ+2(Rn)

for all 0 ≤ j ≤ s and appropriate δ and f . �

By Lemma 2.10, the Laplace operator induces a bounded linear operator

Δ : Ck+2,s(s,λ,δ)(CT ) → Ck,s(s,λ,δ+2)(CT ).
However, we are also aimed at describing the action of the potential Φ ⊗ I on
the “parabolic” Hölder spaces. To this end, we introduce Ck+1,s(s,λ,δ)(CT ) ∩ DΔ

to be the space of all functions u from Ck+1,s(s,λ,δ)(CT ) with the property that
Δu ∈ Ck,s(s,λ,δ+2)(CT ). We endow this space with the so-called graph norm

‖u‖Ck+1,s(s,λ,δ)(CT )∩DΔ
= ‖u‖Ck+1,s(s,λ,δ)(CT ) + ‖Δu‖Ck,s(s,λ,δ+2)(CT ).

Let Cs,λ([0, T ], H≤m) stand for the space of all Cs,λ functions of t ∈ [0, T ] with
values in the harmonic polynomials of degree ≤ m with respect to the variable
x ∈ R

n.

Corollary 3.8. Suppose that n ≥ 2, k and s are nonnegative integers, 0 < λ < 1
and δ > 0, δ + 2 − n �∈ Z≥0. Then Ck+1,s(s,λ,δ)(CT ) ∩ DΔ is a Banach space and
the Laplace operator Δ induces a continuous linear operator

Δ : Ck+1,s(s,λ,δ)(CT ) ∩ DΔ → Ck,s(s,λ,δ+2)(CT ). (3.12)
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with closed range. Moreover,
1) it is an isomorphism, if 0 < δ < n− 2;
2) if n− 2 +m < δ < n− 1 +m for some m ∈ Z≥0, then it is an injection and

its range Rk,s(s,λ,δ+2)(CT ) consists of those f ∈ Ck,s(s,λ,δ+2)(CT ) which satisfy∫
Rn

f(x, t)h(x)dx = 0

for all h ∈ H≤m.

Proof. We first note that the elements of Ck+1,s(s,λ,δ)(CT ) ∩ DΔ are Ck+2+2s,λ
loc

functions of x ∈ R
n, which is due to elliptic regularity. If {uν} is a Cauchy sequence

in Ck+1,s(s,λ,δ)(CT ) ∩ DΔ, then it is a Cauchy sequence in Ck+1,s(s,λ,δ)(CT ) and
{Δuν} is a Cauchy sequence in the space Ck,s(s,λ,δ+2)(CT ). As the spaces are
complete we conclude that the sequence {uν} converges in Ck+1,s(s,λ,δ)(CT ) to an
element u and the sequence {Δuν} converges in Ck,s(s,λ,δ+2)(CT ) to an element f .
Obviously, Δu = f is fulfilled in the sense of distributions. Hence, u belongs to
Ck+1,s(s,λ,δ)(CT ) ∩ DΔ and it is the limit of the sequence {uν} in this space. We
have thus proved that the space Ck+1,s(s,λ,δ)(CT ) ∩ DΔ is Banach. Moreover, by
the very definition of the space, the Laplace operator Δ induces a continuous linear
operator as is shown in (3.12).

Next, the Liouville theorem implies that a harmonic function in R
n growing as

|x|m at the point of infinity is a polynomial of order m ∈ Z≥0. It follows that

for δ > 0 the kernel of Δ consists of those functions u ∈ Ck+1,s(s,λ,δ)(CT ) ∩ DΔ

which depend on the variable t only and vanish as |x| → +∞. This means that the
operator Δ is injective on Ck+1,s(s,λ,δ)(CT ) ∩ DΔ, provided that s ≥ 0 and δ > 0.

Now we need an analogue of Lemmata 3.4 and 3.5.

Lemma 3.9. Assume n ≥ 2, k and s are nonnegative integers, 0 < λ < 1 and
δ > 0, δ+2−n �∈ Z≥0. Then the potential Φ⊗ I induces a bounded linear operator

Ck,s(s,λ,δ+2)(CT ) → Ck+1,s(s,λ,δ)(CT ) ∩ DΔ, if 0 < δ < n− 2,
Rk,s(s,λ,δ+2)(CT ) → Ck+1,s(s,λ,δ)(CT ) ∩ DΔ, if n− 2 < δ,

satisfying Δ(Φ⊗ I) = I on these spaces.

Proof. Indeed, by Theorem 3.1 we get

sup
t′,t′′∈[0,T ]

t′ �=t′′

‖(Φ⊗ I)∂j
t f (·, t′)− (Φ⊗ I)∂j

t f (·, t′′)‖C2(s−j)+k+1,0,δ(Rn)

|t′ − t′′|λ/2

= sup
t′,t′′∈[0,T ]

t′ �=t′′

‖Φ(∂j
t f(·, t′)− ∂j

t f(·, t′′))‖C2(s−j)+k+1,0,δ(Rn)

|t′ − t′′|λ/2

≤ sup
t′,t′′∈[0,T ]

t′ �=t′′

‖∂j
t f(·, t′)− ∂j

t f(·, t′′)‖C2(s−j)+k−1,λ,δ+2(Rn)

|t′ − t′′|λ/2

≤ c sup
t′,t′′∈[0,T ]

t′ �=t′′

‖∂j
t f(·, t′)− ∂j

t f(·, t′′)‖C2(s−j)+k,0,δ+2(Rn)

|t′ − t′′|λ/2

for all f in Ck,s(s,λ,δ+2)(CT ), if 0 < δ < n − 2, or in the range Rk,s(s,λ,δ+2)(CT ), if
n+m− 2 < δ < n+m− 1, where c is a constant granted by Lemma 2.7.
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It is clear from Lemmata 3.4 and 3.5 that Δ(Φ⊗ I)f = f for all functions f in
Ck,s(s,λ,δ+2)(CT ), if 0 < δ < n−2, or in Rk,s(s,λ,δ+2)(CT ), if n+m−2 < δ < n+m−1.

On combining what has been proved with the results of Lemma 3.7 we obtain
readily

‖(Φ⊗ I)f)‖Ck+1,s(s,λ,δ)(CT )∩DΔ
≤ c ‖f‖Ck,s(s,λ,δ+2(CT )

for all function f as above, with c a constant independent of f . �

On applying this lemma we complete readily the proof of Corollary 3.8, which
has been our goal. �

Lemma 3.10. Suppose that P is a homogeneous partial differential operator of
order 0 ≤ k′ ≤ k with constant coefficients which acts in the space variable x.
Then,

1) P maps Ck,s(s,λ,δ+2)(Rn×[0, T ]) continuously into Rk−k′,s(s,λ,δ+2+k′)(Rn×[0, T ]),
if 0 < δ < n− 2 and n− 2 +m < δ + k′ < n− 1 +m for some m ∈ Z≥0;

2) P maps Rk,s(s,λ,δ+2)(Rn×[0, T ]) continuously into Rk−k′,s(s,λ,δ+2+k′)(Rn×[0, T ]),
if n− 2 +m < δ < n− 1 +m for some m ∈ Z≥0.

Proof. Indeed, if f ∈ Ck,s(s,λ,δ+2)(CT ) and
0 < δ < n− 2,

n− 2 +m < δ + k′ < n− 1 +m

for some m ∈ Z≥0, then m < k′ and, for any h ∈ H≤m, using the Green formula
for P yields ∫

Rn

(Pf)(x, t)h(x)dx

= lim
R→+∞

∫
BR

(Pf)(x, t)h(x)dx

=

∫
Rn

f(x, t)(P ∗h)(x)dx+ lim
R→+∞

∫
∂BR

GP (h, f)

= 0,

the last equality being a consequence of the facts that P ∗h = 0, for m < k′, and

∣∣∣ ∫
∂BR

GP (h, f)
∣∣∣ ≤ c

k′−1∑
j=0

Rn−1Rm−j

(1 + |R|2)(δ+2+k′−1−j)/2

with some constant c independent of R.
Similarly, if f ∈ Rk,s(s,λ,δ+2)(CT ) and n− 2 +m < δ < n− 1 +m, then, for any

h ∈ H≤m+k′ , using the Green formula for P we obtain∫
Rn

(Pf)(x, t)h(x)dx

= lim
R→+∞

∫
BR

(Pf)(x, t)h(x)dx

=

∫
Rn

f(x, t)(P ∗h)(x)dx+ lim
R→+∞

∫
∂BR

GP (h, f)

= 0
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because P ∗h ∈ H≤m (since ΔP = PΔ) and

∣∣∣ ∫
∂BR

GP (h, f)
∣∣∣ ≤ c

k′−1∑
j=0

Rn−1Rm+k′−j

(1 + |R|2)(δ+2+k′−1−j)/2
,

the constant c being independent of R. �

As a corollary we are in a position to describe the behaviour of the de Rham
cohomolgy in the scale of weighted Hölder spaces.

For this purpose, for a differential operator A acting on sections of the vector
bundle Λq over R

n, we denote by Cs,λ,δ(Rn, Λq) ∩ SA the space of all differential
forms u ∈ Cs,λ,δ(Rn, Λq) satisfying Au = 0 in the sense of the distributions in R

n.
Similarly, we write Ck,s(s,λ,δ)(CT , Λq) ∩ SA for the space of all q -forms on R

n with
coefficients from Ck,s(s,λ,δ)(CT ) satisfying Au (·, t) = 0 in the sense of distributions
for all fixed t ∈ [0, T ]. These spaces are obviously closed subspaces of Cs,λ,δ(Rn, Λq)
and Ck,s(s,λ,δ)(CT , Λq), respectively, and so they are Banach spaces under induced
norms.

Corollary 3.11. Let q ≥ 0, s ∈ Z≥0, 0 < λ < 1, and δ > 0 satisfy δ+2−n �∈ Z≥0.
If f ∈ Rs,λ,δ+2(Rn, Λq+1)∩Sd, then there is a unique u ∈ Cs+1,λ,δ+1(Rn, Λq)∩Sd∗ ,
such that

du = f (3.13)

in R
n. Moreover,

‖u‖Cs+1,λ,δ+1(Rn,Λq) ≤ c ‖f‖Cs,λ,δ+2(Rn,Λq+1)

with c a constant independent of f , and if 0 < δ < n then the solution u belongs to
Rs+1,λ,δ+1(Rn, Λq).

Proof. Indeed, as f belongs to Rs,λ,δ+2(Rn, Λq+1), Theorem 3.1 and (1.1) imply
that

Φf ∈ Cs+2,λ,δ(Rn, Λq+1),
d∗Φf ∈ Cs+1,λ,δ+1(Rn, Λq) ∩ Sd∗ ,

dd∗Φf ∈ Cs,λ,δ+2(Rn, Λq+1).

On the other hand,

Δ(dd∗ Φf − f) = dd∗(f − f) = 0

in the sense of distributions on R
n. Since δ > 0, the operator Δ is injective on

Cs,λ,δ+2(Rn, Λq+1), and hence dd∗Φf = f .
If f = 0 then the solution to (3.13) is harmonic in R

n because of (1.1). It follows
that the solution vanishes in all of Rn by the injectivity of the operator Δ on the
space Cs+1,λ,δ+1(Rn, Λq, for δ > 0.

We may now use the Banach closed graph theorem to deduce that the bounded
linear operator

d : Cs+1,λ,δ+1(Rn, Λq) ∩ Sd∗ → Cs,λ,δ+2(Rn, Λq+1) ∩ Sd

is continuously invertible.
If 0 < δ < n− 1, then 1 < δ + 1 < n and so

u = d∗Φf ∈ Cs+1,λ,δ+1(Rn, Λq)
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belongs actually to the range of the Laplace operator by Theorem 3.1. Finally, if
n − 1 < δ < n, then, since Φf ∈ Cs+2,λ,δ(Rn, Λq+1) belongs to the range of the
operator

Δ : Cs+4,λ,δ−2(Rn, Λq+1) → Cs+2,λ,δ(Rn, Λq+1),

on using Lemma 3.6 we conclude that u = d∗Φf ∈ Rs+1,λ,δ+1(Rn, Λq). �

Denote by Ck,s(s,λ,δ+1)(CT , Λq) ∩ Dd the space of all differential forms u ∈
Ck,s(s,λ,δ+1)(CT , Λq), such that du ∈ Ck,s(s,λ,δ+2)(CT , Λq+1), endowed with the
graph norm

‖u‖Ck,s(s,λ,δ+1)(CT ,Λq)∩Dd

= ‖u‖Ck,s(s,λ,δ+1)(CT ,Λq) + ‖du‖Ck,s(s,λ,δ+2)(CT ,Λq+1).

As in the proof of Corollary 3.8 one shows that Ck,s(s,λ,δ+1)(CT , Λq)∩Dd is a Banach
space and the differential d induces a bounded linear operator

dq : Ck,s(s,λ,δ+1)(CT , Λq) ∩ Dd → Ck,s(s,λ,δ+2)(CT , Λq+1).

Corollary 3.12. Let q ≥ 0, s ∈ Z≥0, k = 1, 2, . . ., 0 < λ < 1, and let δ > 0 satisfy

δ + 2− n �∈ Z≥0. Then, for each f ∈ Rk,s(s,λ,δ+2)(CT , Λq+1) ∩ Sd there is a unique

differential form u ∈ Ck,s(s,λ,δ+1)(CT , Λq) ∩ Dd with the property that

du(·, t) = f(·, t),
d∗u(·, t) = 0

(3.14)

in CT . Moreover,

‖u‖Ck,s(s,λ,δ+1)(CT ,Λq)∩Dd
≤ c ‖f‖Ck,s(s,λ,δ+2)(CT ,Λq+1)

with c a constant independent of f , and if 0 < δ < n then the solution u belongs to
Rk,s(s,λ,δ+1)(CT , Λq).

Proof. It runs in much the same way as the proof of Corollary 3.11. As f belongs
to Rk,s(s,λ,δ+2)(CT , Λq+1), Lemma 3.9 and (1.1) imply that

(Φ⊗ I)f ∈ Ck,s(s,λ,δ)(CT , Λq+1) ∩ DΔ,
d∗(Φ⊗ I)f ∈ Ck,s(s,λ,δ+1)(CT , Λq) ∩ Sd∗ ,

dd∗(Φ⊗ I)f ∈ Ck−1,s(s,λ,δ+2)(CT , Λq+1).

On the other hand, we obtain

Δ(dd∗(Φ⊗ I)f(·, t)− f(·, t)) = dd∗(f − f)(·, t) = 0

in the sense of distributions on R
n, for each t ∈ [0, T ]. Since δ > 0, the operator

Δ is injective on Ck−1,s(s,λ,δ+2)(CT , Λq+1), and so dd∗(Φ⊗ I)f(·, t) = f(·, t) for all
t ∈ [0, T ]. In particular, d∗(Φ⊗ I)f belongs to Ck,s(s,λ,δ+1)(CT , Λq)∩Dd, as is easy
to check.

If f(·, t) = 0, then the solution to (3.14) is harmonic in R
n because of (1.1), for

each t ∈ [0, T ]. Therefore, it is identically zero by the injectivity of the operator Δ
on the space Ck,s(s,λ,δ)(CT , Λq), for δ > 0.

Thus, the bounded linear operator

d : Ck,s(s,λ,δ+1)(CT , Λq) ∩ Dd → Ck,s(s,λ,δ+2)(CT , Λq+1) ∩ Sd

restricted to the forms satisfying d∗u = 0 is continuously invertible by the closed
graph theorem.
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If 0 < δ < n− 1, then 1 < δ + 1 < n and

u := d∗(Φ⊗ I)f ∈ Ck,s(s,λ,δ+1)(CT , Λq) ∩ Sd∗

belongs to the range of operator (3.12) by Corollary 3.8. If n− 1 < δ < n, then, as
(Φ⊗ I)f ∈ Ck+1,s(s,λ,δ)(CT , Λq+1) is in the range of (3.12) by Corollary 3.8, we use
Lemma 3.10 to see that u := d∗(Φ⊗ I)f ∈ Rk,s(s,λ,δ+1)(CT , Λq), as desired. �

Corollary 3.13. Suppose that q ≥ 0, s ∈ Z≥0, k is a positive integer, 0 < λ < 1,

and δ > 0 satisfies δ+2−n �∈ Z≥0. Then, for any u ∈ Rk,s(s,λ,δ)(CT , Λq) satisfying
d∗u = 0, it follows that

u = d∗(Φ⊗ I)du.

Proof. Indeed, Lemma 3.10 yields du ∈ Rk−1,s(s,λ,δ+1)(CT , Λq+1). Use Lemma 3.9
and (1.1) to see that

u = (Φ⊗ I)(d∗d+ dd∗)u = (Φ⊗ I)d∗du ∈ Ck,s(s,λ,δ)(CT , Λq)

and d∗(Φ⊗ I)du ∈ Rk−1,s(s,λ,δ)(CT , Λq).
On the other hand, by the same Lemma 3.9, we have

Δ (d∗(Φ⊗ I)du− (Φ⊗ I)d∗du) = d∗du− d∗du = 0.

Finally, since the Laplacian Δ is injective on Ck−1,s(s,λ,δ)(CT , Λq+1), we obtain

d∗(Φ⊗ I)du = (Φ⊗ I)d∗du = u,

as desired. �

Part 2. Open mapping theorem

4. The heat operator in the weighted Hölder spaces

As usual, we denote by γt0u the restriction of a continuous function u in the layer
CT to the hyperplane {t = t0} in R

n+1, where t0 ∈ [0, T ]. The following lemma is
obvious.

Lemma 4.1. Let s, k ∈ Z≥0 and λ ∈ [0, 1]. The restriction γ0 induces a bounded
linear operator

γ0 : Ck,s(s,λ,δ)(CT ) → C2s+k,λ,δ(Rn).

Let ψμ be the standard fundamental solution of the convolution type to the heat
operator Hμ in R

n+1, n ≥ 1,

ψμ(x, t) =
θ(t)

(4πμt)
n/2

e
−|x|2

4μt ,

where θ(t) is the Heaviside function. Denote by

(Ψμf)(x, t) =

∫ t

0

∫
Rn

ψμ(x− y, t− s) f(y, s) dyds,

(Ψμ,0u0)(x, t) =

∫
Rn

ψμ(x− y, t)u0(y) dy

the so-called volume parabolic potential and Poisson parabolic potentials, respec-
tively, defined for (x, t) ∈ CT .
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Consider the Cauchy problem for the heat operator in the weighted Hölder
spaces. Given functions f in CT and u0 on R

n, find a function u in CT , such
that {

Hμ u(x, t) = f(x, t) for (x, t) ∈ R
n × (0, T ),

γ0u (x, 0) = u0(x) for x ∈ R
n.

(4.1)

Lemma 4.2. For each real δ, problem 4.1 has at most one solution in the space
Cs(1,λ,δ)(CT ).
Proof. The lemma follows, for instance, from Theorem 16 in [Fri64, Ch. 1, § 9].
There have been also much more advanced results. �

The solution of the Cauchy problem in weighted Hölder spaces is recovered from
the data by means of the Green formula.

Lemma 4.3. Assume that δ > 0, Then, for each function u ∈ Cs(1,λ,δ)(CT ), it
follows that

u = Ψμ Hμu+ Ψμ,0 γ0u.

Proof. See ibid. �

The following lemma is a main technical tool in estimating parabolic potentials
in weighted Hölder spaces.

Lemma 4.4. For each δ > 0 and γ > 0 there is a positive constant c depending on
δ, γ and T , such that∫

Rn

(
1 +

|x− y|2
4μt

)γ

ψμ(x− y, t)
dy

(1 + |y|2)δ/2 ≤ c (1 + |x|2)−δ/2

for all (x, t) ∈ CT .
Proof. First we note that, given any real number r, the function

f(s) = (1 + s)re−s/2

is bounded on [0,∞). It follows that

(1 + 2s)γe−s

≤ 2γ sup
s≥0

(
(1 + s)γe−s/2

)
sup
s≥0

(
(1 + s)re−s/2

)
(1 + s)−r

≤ c (1 + s)−r

for all s ≥ 0, the constant c depending only on r and γ. Taking s =
|x− y|2
8μt

yields

immediately (
1 +

|x− y|2
4μt

)γ

e
−|x−y|2

8μt ≤ c
(
1 +

|x− y|2
8μt

)−r

for all t > 0.
If |x| ≥ 2|y| then

|x− y| ≥ ||x| − |y|| ≥ ||x| − |x|/2| = |x|/2.
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Hence, on choosing r = δ/2 we obtain

(
1 +

|x− y|2
4μt

)γ

e
−|x−y|2

8μt (1 + |x|2)δ/2 ≤ c
(1 + |x|2)δ/2(
1 + |x−y|2

8μt

)δ/2

≤ c
(1 + |x|2)δ/2(
1 + |x|2

32μt

)δ/2

≤ c (max{1, 32μT})δ/2,
and so

∫
Rn

(
1 +

|x−y|2
4μt

)γ

ψμ(x−y, t)
(1+|x|2)δ/2
(1+|y|2)δ/2 dy ≤ c (max{1, 32μT})δ/2

∫
Rn

e
−|x−y|2

8μt

(4πμt)n/2
dy

for all (x, t) ∈ CT , where
∫
Rn

e
−|x−y|2

8μt

(4πμt)n/2
dy =

( 2

π

)n/2
∫
Rn

e
−|x−y|2

8μt d
y√
8μt

= 2n/2

reduces to the so-called Gauß (-Euler-Poisson) integral.
Finally, if |x| ≤ 2|y|, then

∫
Rn

(
1 +

|x−y|2
4μt

)γ

ψμ(x−y, t)
(1+|x|2)δ/2
(1+|y|2)δ/2 dy ≤ 2δ/2 c

∫
Rn

e
−|x−y|2

8μt

(4πμt)n/2
dy

= 2(δ+n)/2 c,

as is evaluated above. �

Denote by Ck,s(s,λ,δ)(CT ) ∩ DHμ the domain of the heat operator acting in

Ck,s(s,λ,δ)(CT ). This space is topologised and complete (i.e., Banach) under the
graph norm

‖u‖Ck,s(s,λ,δ)(CT )∩DHμ
= ‖u‖Ck,s(s,λ,δ)(CT ) + ‖Hμu‖Ck,s(s,λ,δ)(CT ).

Lemma 4.5. Let s, k ∈ Z≥0, 0 < λ < 1 and δ > 0. The parabolic potentials Ψμ

and Ψμ,0 induce bounded linear operators

Ψμ : Ck,s(s,λ,δ)(CT ) → Ck,s(s,λ,δ)(CT ) ∩ DHμ
,

Ψμ,0 : C2s+k,λ,δ(Rn) → Ck,s(s,λ,δ)(CT ) ∩ DHμ .

Proof. We first prove the boundedness of the operator given by the Poisson par-
abolic potential. It is well known that Ψμ,0 maps C2s+k,λ,δ(Rn) continuously into

C
k,s(s,λ,0)
loc (Rn × [0,∞)).
Suppose |α| ≤ k + 2s. Then

∂α
x (Ψμ,0u0)(x, t) =

∫
Rn

ψμ(x− y, t)∂α
y u0(y) dy

= Ψμ,0(∂
αu0)(x, t)
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for all t > 0, which is due to the properties of convolution. By Lemma 4.4, it follows
that

(w(x))δ+|α||∂α
x (Ψμ,0u0)(x, t)|

≤ ‖∂αu0‖C0,λ,δ+|α|(Rn)

∫
Rn

ψμ(x− y, t)
(1 + |x|2)(δ+|α|)/2

(1 + |y|2)(δ+|α|)/2 dy

≤ c ‖∂αu0‖C0,λ,δ+|α|(Rn)

with c a constant depending on α and T but not on u0. Furthermore, we evaluate
easily

(w(x, y))δ+|α|+λ
|∂α

x (Ψμ,0u0)(x, t)− ∂α
y (Ψμ,0u0)(y, t)|

|x− y|λ

= (w(x, y))δ+|α|+λ
∣∣∣ ∫

Rn

ψμ(x− z, t)− ψμ(y − z, t)

|x− y|λ ∂αu0(z) dz
∣∣∣

≤ (w(x, y))δ+|α|+λ

∫
Rn

ψμ(z, t)
|∂αu0(z + x)− ∂αu0(z + y)|

|(z + x)− (z + y)|λ dz

≤ ‖∂αu0‖C0,λ,δ+|α|(Rn)(w(x, y))
δ+|α|+λ

∫
Rn

ψμ(z, t)
dz

(w(x+z, y+z))δ+|α|+λ

for all x, y ∈ R
n and t > 0. On the other hand, applying Lemma 4.4 we conclude

that∫
Rn

ψμ(z, t) (w(x+ z))−(δ+|α|+λ) dz =

∫
Rn

ψμ(x− z) (w(z))−(δ+|α|+λ) dz

≤ c
1

(w(x))δ+|α|+λ
,

where c is a constant independent of x and t. Since w(x + z, y + z) exceeds both
w(x+ z) and w(y + z) and δ + |α|+ λ ≥ 0, this implies∫

Rn

ψμ(z, t) (w(x+ z, y + z))−(δ+|α|+λ) dz ≤ c
1

(max{w(x), w(y)})δ+|α|+λ

≤ c (w(x, y))−(δ+|α|+λ),

the last inequality being due to the fact that w(x, y) ≤ √
2 max{w(x), w(y)}. The

constant c depends neither on x, y nor on t ∈ [0, T ] and it may be different in
diverse applications.

Our next concern will be the Hölder continuity of the potential Ψν,0u0 in t. We
get

(w(x))δ+|α| |∂α
x (Ψμ,0u0)(x, t

′)− ∂α
x (Ψμ,0u0)(x, t

′′)
|t′ − t′′|λ/2 |

= (w(x))δ+|α|
∣∣∣ ∫

Rn

ψμ(x− z, t′)− ψμ(x− z, t′′)
|t′ − t′′|λ/2 ∂αu0(z) dz

∣∣∣
= (w(x))δ+|α|

∣∣∣ ∫
Rn

e
−|z|2

4μ

(4πμ)n/2
∂αu0(x+ z

√
t′)− ∂αu0(x+ z

√
t′′)

|t′ − t′′|λ/2
∣∣∣,

which is dominated by the

(w(x))δ+|α| |
√
t′ −√

t′′|λ
|t′ − t′′|λ/2

∫
Rn

e
−|z|2

4μ

(4πμ)n/2
|z|λ dz

(w(x+ z
√
t′, x+ z

√
t′′))δ+|α|+λ

(4.2)
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multiple of the norm ‖∂αu0‖C0,λ,δ+|α|(Rn). It remains to estimate (4.2). To this end
we apply Lemma 4.4 to get

∫
Rn

e
−|z|2

4μ

(4πμ)n/2
|z|λ dz

(w(x+ z
√
t))δ+|α|+λ

=

∫
Rn

ψμ(x− y, t)

(
|x−y|√

t

)λ

dz

(w(y)))δ+|α|+λ

≤ c
1

(w(x))δ+|α|+λ

with c a constant independent of (x, t) ∈ CT . Therefore, arguing as above we obtain

∫
Rn

e
−|z|2

4μ

(4πμ)n/2
|z|λ dz

(w(x+ z
√
t′, x+ z

√
t′′))δ+|α|+λ

≤ c
1

(max{w(x), w(y)})δ+|α|+λ

≤ c (w(x, y))−(δ+|α|+λ).

We have thus proved that there is a constant c > 0 depending on k, s, λ and δ,
such that

‖Ψμ,0u0‖Ck+2s,λ,0,λ/2,δ(CT ) ≤ c ‖u0‖Ck+2s,λ,δ(Rn) (4.3)

for all u0 ∈ Ck+2s,λ,δ(Rn). On applying the embedding given by Theorem 2.6 we
deduce that

‖∂j
t (Ψμ,0u0)‖Ck,s(s−j,λ,δ)(CT ) = μ ‖∂j−1

t Δ(Ψμ,0u0)‖Ck,s(s−j,λ,δ)(CT )

= μj ‖Δj(Ψμ,0u0)‖Ck,s(s−j,λ,δ)(CT )

≤ c ‖(Ψμ,0u0)‖Ck+2s,λ,0,λ/2,δ(CT )

≤ c ‖u0‖Ck+2s,λ,δ(Rn)

for all j = 0, 1, . . . , s. Hence it follows that the operator Ψμ,0 is bounded in the
desired spaces.

We now turn to the volume parabolic potential Ψμ. We will tacitly use the

well-known fact that Ψμ maps Ck,s(s,λ,δ)(CT ) continuously into the local space

C
k,s(s+1,λ,0)
loc (CT ).
Pick any multi-index α ∈ Z

n
≥0 with |α| ≤ k + 2s. Using the properties of

convolution in R
n one obtains

∂α
x (Ψμf)(x, t) =

∫ t

0

∂α
x

∫
Rn

ψμ(x− y, t− s)f(y, s)dy ds

=

∫ t

0

∫
Rn

ψμ(x− y, t− s) ∂α
y f(y, s)dy ds

= Ψμ(∂
αf)(x, t)

for all f ∈ Ck,s(s,λ,δ)(CT ). By Lemma 4.4,

(w(x))δ+|α| |∂α
x (Ψμf)(x, t)|

≤ ‖∂αf‖Ck+2s−|α|,0,λ,λ/2,δ+|α|(CT )

∫ t

0

∫
Rn

ψμ(x− y, t− s)
(w(x)
w(y)

)δ+|α|
dyds

≤ c ‖f‖Ck+2s,0,λ,λ/2,δ(CT )

for all (x, t) in the layer CT , the constant c depending on finite T but not on f .
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In order to estimate the derivatives of Ψμf in t we now use the fact that ψμ is
a (right) fundamental solution of convolution type to the heat operator. If f is an
arbitrary function of Ck,s(s,λ,δ)(CT ) and j = 1, . . . , s, then Theorem 2.6 yields

‖∂j
t (Ψμf)‖Ck,s(s−j,λ,δ)(·)

= ‖∂j−1
t f + μΔ∂j−1

t (Ψμf)‖Ck,s(s−j,λ,δ)(·)

≤ ‖∂j−1
t f‖Ck,s(s−j,λ,δ)(·) + ‖μ∂j−2

t Δf + μ2Δ2∂j−2
t (Ψμf)‖Ck,s(s−j,λ,δ+2)(·)

≤
j−1∑
i=0

‖μi∂j−1−i
t Δif‖Ck,s(s−j,λ,δ+2i)(·) + ‖μjΔj(Ψμf)‖Ck,s(s−j,λ,δ+2j)(·)

≤ c
(‖f‖Ck,s(s−1,λ,δ)(·) + ‖Ψμf‖Ck+2s,0,λ,λ/2,δ(·)

)
,

where all function spaces are over the layer CT which we omit by abuse of notation.
The constant c is independent of f , and so Ψμ acts boundedly in the desired spaces.

�

Our next goal is to show a more subtle result on the volume parabolic potential
Ψμ which we need in the sequel.

Theorem 4.6. Let s be a positive integer, k ∈ Z≥0, 0 < λ < 1 and δ > 0. The
potential Ψμ induces a bounded linear operator

Ck,s(s−1,λ,δ+2)(CT ) → Ck,s(s,λ,δ)(CT ).
Proof. We begin with a weak a priori estimate of Schauder type for the heat oper-
ator in weighted spaces.

Lemma 4.7. Suppose that 0 < λ < 1 and δ > 0. If f ∈ Cs(0,λ,δ+2)(CT ) and a

function u ∈ C1,0,λ,λ/2,δ)(CT ) ∩ C
s(1,λ,0)
loc (CT ) satisfies Hμu = f in CT and γ0u = 0

then u belongs actually to the space Cs(1,λ,δ)(CT ) and
‖u‖Cs(1,λ,δ)(CT ) ≤ c

(
‖u‖C1,0,λ,λ/2,δ)(CT ) + ‖f‖Cs(0,λ,δ+2)(CT )

)
,

where c depends on λ and δ but not on f and u.

Proof. First, by Lemma 2.1 and parabolic regularity, we conclude that any function

u satisfying the hypotheses of the lemma belongs to C
s(1,λ,0)
loc (CT ). Then, by stan-

dard a priori estimates for solutions of the Cauchy problem for the heat operator
(see for instance [Kry96, Lemma 9.2.1]), there is a constant c > 0 such that

‖u‖Cs(1,λ)(CT ) ≤ c
(
‖u‖Cs(0,λ)(CT ) + ‖Hμu‖Cs(0,λ)(CT )

)
for all u ∈ Cs(0,λ)(CT ) ∩ C

s(1,λ)
loc (CT ) with Hμw ∈ Cs(0,λ)(CT ) satisfying γ0u = 0.

Here, Cs(s,λ)(CT ) are normed spaces of Hölder continuous functions in all of CT
which include parabolic anisotropy. This scale of function spaces is different from
our scale of weighted spaces, for it does not specify the behaviour of functions at
the infinity points of CT . However, the corresponding local versions of both scales
coincide.

Let X1 and X2 be two bounded domains in R
n, such that X1 � X2. Fix a function

χ ∈ C∞
comp(X2) which is equal to 1 in a neighbourhood of the closure of X1. An

easy calculation shows that

Hμ(χu) = χ(Hμu)− μχ(Δu)− 2∇χ · ∇u
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for each distribution u in the cylinder CT (X2). As usual, using the multiplication
operator u �→ χu one concludes that there is a constant c depending merely on the
distance

dist(∂X1, ∂X2) = inf
x∈∂X1
y∈∂X2

|x− y|,

such that

‖u‖
Cs(1,λ)(CT (X1))

≤ c
(
‖u‖

C1,0,λ,λ/2(CT (X2))
+ ‖Hμu‖Cs(0,λ)(CT (X2))

)
(4.4)

for all functions u ∈ C1,0,λ,λ/2(CT (X2)) ∩ C
s(1,λ)
loc (CT (X2)) which satisfy Hμu ∈

Cs(0,λ)(CT (X2)) and γ0u = 0.
In particular, (4.4) applies to any function u satisfying the hypotheses of Lemma

4.7, which yields

‖∂tu‖Cs(0,λ)(CT (B2))
+

∑
|α|≤2

‖∂α
x u‖Cs(0,λ)(CT (B2))

≤ c
(
‖u‖

C1,0,λ,λ/2(CT (B4))
+ ‖Hμu‖Cs(0,λ)(CT (B4))

)
with c a constant independent on u. If |x| ≤ 4, then 1 ≤ (1 + |x|2)1/2 ≤ √

17.
Hence, letting the constant c depend also on δ and using (2.3) we can rewrite the
last inequality as

‖∂tu‖Cs(0,λ,δ+2)(CT (B1))
+

∑
|α|≤2

‖∂α
x u‖Cs(0,λ,δ+|α|)(CT (B1))

≤ c(δ)
(
‖u‖

C1,0,λ,λ/2,δ(CT (B2))
+ ‖Hμu‖Cs(0,λ,δ+2)(CT (B2))

)
,

‖∂tu‖Cs(0,λ,δ+2)(CT (B2))
+

∑
|α|≤2

‖∂α
x u‖Cs(0,λ,δ+|α|)(CT (B2))

≤ c(δ)
(
‖u‖

C1,0,λ,λ/2,δ(CT (B4))
+ ‖Hμu‖Cs(0,λ,δ+2)(CT (B4))

)
(4.5)

for all u as in the statement of the lemma.
We now consider a region in R

n of the form r < |x| < 8r, where r ≥ 1 is a fixed
constant, and set

ur(x, t) = u(rx, r2t)

for 1 ≤ |x| ≤ 8 and t ∈ [0, T/r2]. Then

∂iur(x, t) = r(∂iu)(rx, r
2t),

∂j∂iur(x, t) = r2(∂j∂iu)(rx, r
2t),

∂tur(x, t) = r2(∂tu)(rx, r
2t)

whence

Hμur(x, t) = r2
(
∂tv(rx, r

2t)− (μΔu)(rx, r2t)
)
= r2f(rx, r2t).

On applying estimate (4.4) to ur we obtain

‖∂tur‖Cs(0,λ)((B4\B2)×[0,T/r2]) +
∑
|α|≤2

‖∂α
x ur‖Cs(0,λ)((B4\B2)×[0,T/r2])

≤ c
(
‖ur‖C1,0,λ,λ/2((B8\B1)×[0,T/r2]) + ‖Hμur‖Cs(0,λ)((B8\B1×[0,T/r2])

)
,
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where the constant c could be chosen to be independent of r because r ≥ 1 and
0 < T/r2 ≤ T . This is equivalent to

rδ+2‖∂tu‖Cs(0,λ)((B4r\B2r)×[0,T ]) +
∑
|α|≤2

rδ+|α|‖∂α
x u‖Cs(0,λ)((B4r\B2r)×[0,T ])

≤ c
( ∑

|β|≤1

rδ+|β|‖∂βu‖Cs(0,λ)((B8r\Br)×[0,T ]) + rδ+2‖Lμu‖Cs(0,λ)((B8r\Br)×[0,T ])

)
,

the constant c > 0 being independent of r ≥ 1 and u.
For r ≤ x ≤ 8r, we have r < (1+ |x|2)1/2 ≤ 9r. Hence, the latter inequality just

amounts to saying that

‖∂tu‖Cs(0,λ,δ+2)((B4r\B2r)×[0,T ]) +
∑
|α|≤2

‖∂α
x u‖Cs(0,λ,δ+|α|)((B4r\B2r)×[0,T ])

≤ c(δ)
(
‖u‖C1,0,λ,λ/2,δ((B8r\Br)×[0,T ]) + ‖Hμu‖Cs(0,λ,δ+2)((B8r\Br)×[0,T ])

)
holds with some constant c(δ) > 0 independent of r and u. Choose r = 2m, for
m = 0, 1, . . ., to get

‖∂tu‖Cs(0,λ,δ+2)((B2m+2\B2m+1 )×[0,T ]) +
∑
|α|≤2

‖∂α
x u‖Cs(0,λ,δ+|α|)((B2m+2\B2m+1 )×[0,T ])

≤ c(δ)
(
‖u‖C1,0,λ,λ/2,δ((B2m+3\B2m )×[0,T ]) + ‖Hμu‖Cs(0,λ,δ+2)((B2m+3\B2m )×[0,T ])

)
(4.6)

with c(δ) a constant independent of u.
Finally, on combining Theorem 2.6 with (4.5) and (4.6) for m = 0, 1, . . . we

obtain the statement of the lemma. �

In the next lemma we present an intermediate assertion towards the complete
proof of Theorem 4.6.

Lemma 4.8. Let s be a positive integer, k ∈ Z≥0, 0 < λ < 1 and δ > 0. The
parabolic potential Ψμ induces a bounded linear operator

Ck,s(s−1,λ,δ+2)(CT ) → Ck+1,s(s−1,λ,δ)(CT ).
Proof. It is well known that Ψμ maps Ck,s(s−1,λ,δ+2)(CT ) continuously into the

Fréchet space C
k,s(s,λ,0)
loc (CT ) provided that 0 < λ < 1. Arguing as in Lemma 4.5

we see that

(w(x))δ|(Ψμf)(x, t)|

≤ ‖f‖Cs(0,λ,δ+2)(CT )

∫ t

0

∫
Rn

ψμ(x− y, t− s)
(1 + |x|2)δ/2

(1 + |y|2)(δ+2)/2
dyds

≤ c ‖f‖Cs(0,λ,δ+2)(CT )

c

1 + |x|2 sup
t∈[0,T ]

∫ t

0

ds,

where c > 0 is a constant depending on T but not on x and f because of Lemma
4.4.



44 A. SHLAPUNOV AND N. TARKHANOV

Furthermore, using Lemma 4.4 and (2.3) we obtain

(w(x, y))δ+λ |(Ψμf)(x, t)− (Ψμf)(y, t)|
|x− y|λ

≤ (w(x, y))δ+λ

∫ t

0

(∫
Rn

ψμ(z, t− s)
|f(x+ z)− f(y + z)|

|x− y|λ dz

)
ds

≤ ‖f‖Cs(0,λ,δ+2)(CT )

∫ t

0

∫
Rn

ψμ(z, t− s)
(w(x, y))δ+λ

(w(x+ z, y + z))δ+λ+2
dzds

≤ ‖f‖Cs(0,λ,δ+2)(CT )

c

(w(x, y))2

∫ T

0

ds

for x �= y, the constant c being independent of f and different in diverse applica-
tions.

In addition, pick t′, t′′ ∈ [0, T ]. Without restriction of generality one can assume
that t′ < t′′. To evaluate the difference quotient

(w(x))δ
|(Ψμf)(x, t

′)− (Ψμf)(x, t
′′)|

|t′ − t′′|λ/2
we make the changes of variables t′ − s = s′ and t′′ − s = s′′ in the integrals in
question. A direct calculation shows that the quotient is majorised by the sum of
two terms

I1 := (w(x))δ
∫ t′

0

∫
Rn

ψμ(x− y, s)
|f(y, t′ − s)− f(y, t′′ − s)|

|t′ − t′′|λ/2 dyds,

I2 :=
(w(x))δ

|t′ − t′′|λ/2
∫ t′′

t′

∫
Rn

ψμ(x− y, s) |f(y, t′′ − s)| dyds.

We get

I1 ≤ ‖f‖Cs(0,λ,δ+2)(CT )

∫ t′

0

∫
Rn

ψμ(x− y, s)
(w(x))δ

(w(y))δ+2
dyds

≤ c

(w(x))2
‖f‖Cs(0,λ,δ+2)(CT )

with c a constant depending neither on x ∈ R
n and t′, t′′ ∈ [0, T ] nor on f , the last

inequality being due to Lemma 4.4. The term I2 is estimated by using the mean
value theorem for integrals, for

I2 ≤ ‖f‖Cs(0,0,δ+2)(CT )

|t′ − t′′|
|t′ − t′′|λ/2

∫
Rn

ψμ(x− y, tϑ)
(w(x))δ

(w(y))δ+2
dy

with an intermediate point tϑ ∈ (t′, t′′). On applying Lemma 4.4 once again we get

I2 ≤ c
|t′ − t′′|1−λ/2

(w(x))2
‖f‖Cs(0,0,δ+2)(CT )

and so

(w(x))δ
|(Ψμf)(x, t

′)− (Ψμf)(x, t
′′)|

|t′ − t′′|λ/2 ≤ c ‖f‖Cs(0,λ,δ+2)(CT )

with c a constant independent of f . Summarising we see that Ψμ induces a bounded
linear operator

Cs(0,λ,δ+2)(CT ) → Cs(0,λ,δ)(CT ).
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Similarly, for any multi-index α ∈ Z≥0 of norm |α| = 1, it follows by Lemma 4.4
that

(w(x))δ+1|∂α(Ψμf)(x, t)|

≤ ‖f‖Cs(0,λ,δ+2)(CT )

∫ t

0

∫
Rn

2|x− y|
4μ(t− s)

ψμ(x− y, t− s)
(w(x))δ+1

(w(y))δ+2
dyds

≤ ‖f‖Cs(0,λ,δ+2)(CT )

c

w(x)
sup

t∈[0,T ]

∫ t

0

ds√
t− s

= 2
√
T

c

w(x)
‖f‖Cs(0,λ,δ+2)(CT ),

where c is a constant independent of f . Furthermore, using Lemma 4.4 and (2.3)
we obtain

(w(x, y))δ+1+λ
|∂α

x (Ψμf)(x, t)− ∂α
y (Ψμf)(y, t)|

|x− y|λ

≤ (w(x, y))δ+1+λ

∫ t

0

(∫
Rn

2|z|
4μ(t− s)

ψμ(z, t− s)
f(x−z, s)− f(y−z, s)|

|x− y|λ dz
)
ds

≤ ‖f‖Cs(0,λ,δ+2)(CT )

∫ t

0

∫
Rn

2|z|
4μ(t−s)

ψμ(z, t−s)
(w(x, y))δ+1+λ

(w(x−z, y−z))δ+2+λ
dzds

≤ sup
t∈[0,T ]

∫ t

0

ds√
t− s

c

w(x, y)
‖f‖Cs(0,λ,δ+2)(CT )

for all x �= y and t > 0, with c a constant independent of f .
To estimate the difference quotient

(w(x))δ+1 |∂α
x (Ψμf)(x, t

′)− ∂α
x (Ψμf)(x, t

′′)|
|t′ − t′′|λ/2

for x ∈ R
n and t′, t′′ ∈ [0, T ], we argue as above. To be definite assume that t′ < t′′.

An immediate calculation shows that the quotient is majorised by the sum of two
terms

I ′1 := (w(x))δ+1

∫ t′

0

∫
Rn

2|x− y|
4μs

ψμ(x− y, s)
|f(y, t′ − s)− f(y, t′′ − s)|

|t′ − t′′|λ/2 dyds,

I ′2 :=
(w(x))δ+1

|t′ − t′′|λ/2
∫ t′′

t′

∫
Rn

2|x− y|
4μs

ψμ(x− y, s) |f(y, t′′ − s)| dyds.

One verifies readily that

I ′1 ≤ ‖f‖Cs(0,λ,δ+2)(CT )

∫ t′

0

∫
Rn

2|x− y|
4μs

ψμ(x− y, s)
(w(x))δ+1

(w(y))δ+2
dyds

≤ c

w(x)
‖f‖Cs(0,λ,δ+2)(CT )

∫ T

0

ds√
s

with c a constant independent of both x and t′, t′′ and f , the last inequality being
a consequence of Lemma 4.4. On the other hand, the term I ′2 is estimated by using
the mean value theorem for integrals in a generalised form. More precisely, we
obtain

I ′2 ≤ ‖f‖Cs(0,0,δ+2)(CT )

∫ t′′

t′

ds√
s

|t′ − t′′|λ/2
∫
Rn

∫ t′′

t′

2|x− y|
4μ

√
tϑ

ψμ(x− y, tϑ)
(w(x))δ+1

(w(y))δ+2
dyds
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with an intermediate point tϑ ∈ (t′, t′′). Since∫ t′′

t′

ds√
s
≤ 2

√
t′′ − t′

for all t′, t′′ satisfying 0 ≤ t′ ≤ t′′, an application of Lemma 4.4 yields that

I ′2 ≤ c
|t′ − t′′|(1−λ)/2

w(x)
‖f‖Cs(0,0,δ+2)(CT )

and so

(w(x))δ+1 |∂α
x (Ψμf)(x, t

′)− ∂α
x (Ψμf)(x, t

′′)|
|t′ − t′′|λ/2 ≤ c ‖f‖Cs(0,λ,δ+2)(CT )

with c a constant independent of f .
Hence, the volume parabolic potential Ψμ maps Cs(0,λ,δ+2)(CT ) continuously into

C1,s(0,λ,δ)(CT ). I.e., we have proved the statement of the lemma for s = 1 and k = 0.
Suppose s > 1 and k is a positive integer. If f ∈ Ck,s(s−1,λ,δ+2)(CT ) then, as in

Lemma 4.5,

∂α+β
x Ψμf = Ψμ(∂

α+β
x f)

for all multi-indices α, β ∈ Z
n
≥0 such that |α| ≤ 2(s − 1) and |β| ≤ k. Hence it

follows that

‖Ψμf‖C2(s−1)+k+1,0,λ,λ/2,δ(CT ) ≤ c ‖f‖C2(s−1)+k,0,λ,λ/2,δ+2(CT ) (4.7)

where c is a positive constant depending on s, k and T but not on f .
For s = 2, we have f ∈ C2+k,1,λ,λ/2,δ+2(CT ). By the embedding of Theorem 2.6,

‖∂t(Ψμf)‖Ck+1,0,λ,λ/2,δ(CT )

= ‖f + μΔ(Ψμf)‖Ck+1,0,λ,λ/2,δ(CT )

≤ ‖f‖Ck+1,0,λ,λ/2,δ(CT ) + cμ ‖Δ(Ψμf)‖Ck+1,0,λ,λ/2,δ+2(CT )

≤ ‖f‖Ck+1,0,λ,λ/2,δ(CT ) + cμ ‖Ψμf‖Ck+3,0,λ,λ/2,δ(CT )

≤ c ‖f‖Ck+2,0,λ,λ/2,δ+2(CT )

and so

‖Ψμf‖Ck+3,1,λ,λ/2,δ(CT ) ≤ c ‖f‖Ck+2,1,λ,λ/2,δ+2(CT ),

the constant c is independent of f and it may be different in diverse applications.
More generally, for arbitrary s > 1 and 1 ≤ j ≤ s − 1, the embedding of Theorem
2.6 implies

‖∂j
t (Ψμf)‖Ck+1,s(s−1−j,λ,δ)(·)

= ‖∂j−1
t f + μΔ∂j−1

t (Ψμf)‖Ck+1,s(s−1−j,λ,δ)(·)

≤ ‖∂j−1
t f‖Ck+1,s(s−1−j,λ,δ)(·) + c‖μ∂j−2

t Δf + μ2Δ2∂j−2
t (Ψμf)‖Ck+1,s(s−1−j,λ,δ+2)(·)

≤ c

j−1∑
i=0

‖∂j−1−i
t μiΔif‖Ck+1,s(s−1−j,λ,δ+2i)(·) + c‖μjΔj(Ψμf)‖Ck+1,s(s−1−j,λ,δ+2j)(·)

≤ c
(
‖f‖Ck+1,s(s−2,λ,δ+2)(CT ) + ‖Ψμf‖C2s+k+1,0,λ,λ/2,δ(·)

)
(4.8)



AN OPEN MAPPING THEOREM FOR THE NAVIER-STOKES EQUATIONS 47

which is dominated by a constant multiple of ‖f‖Ck,s(s−1,λ,δ+2)(CT ) with a constant

independent of f . In (4.8) all function spaces are over the domain CT which we
omit for short.

We thus arrive at an inequality

‖Ψμf‖Ck+1,s(s−1,λ,δ)(CT ) ≤ c ‖f‖Ck,s(s−1,λ,δ+2)(CT ),

showing the boundedness of Ψμ in the desired spaces. �

We are now in a position to finish the proof of Theorem 4.6. If f is an arbitrary
function in Ck,s(s−1),λ,δ+2)(CT ) and |α| ≤ 2(s− 1), |β| ≤ k, then Lemma 4.8 shows
that ∂α+β

x (Ψμf) = Ψμ(∂
α+β
x f) belongs to C1,0,λ,λ/2,δ+|α|+|β|(CT ) and

Hμ ∂
α+β
x (Ψμf) = ∂α+β

x f ∈ Cs(0,λ,δ+|α|+|β|+2)(CT ),
γ0 ∂

α+β
x (Ψμf) = 0.

From the estimate of Lemma 4.7 and inequality (4.7) it follows that

‖∂α+β
x (Ψμf)‖Cs(1,λ,δ+|α|+|β|(CT ) ≤ c ‖∂α+βf‖Cs(0,λ,δ+|α|+|β|+2)(CT ) (4.9)

with a positive constant c independent of f . Moreover, arguing as in (4.8) we get

‖∂s
t (Ψμf)‖Ck,0,λ,λ/2,δ(·)
= ‖∂s−1

t f + μΔ∂s−1
t (Ψμf)‖Ck,0,λ,λ/2,δ(·)

≤ ‖∂s−1
t f‖Ck,0,λ,λ/2,δ(·) + c ‖μ∂s−2

t Δf + μ2Δ2∂s−2
t (Ψμf)‖Ck,0,λ,λ/2,δ+2(·)

≤ c
s−1∑
i=0

‖∂s−1−i
t μiΔif‖Ck,0,λ,λ/2,δ+2i(·) + c‖μsΔs(Ψμf)‖Ck,0,λ,λ/2,δ+2s(·)

≤ c
(‖f‖Ck,s(s−1,λ,δ+2)(·) + ‖Ψμf‖C2s+k,0,λ,λ/2,δ(·)

)
(4.10)

which is dominated by c ‖f‖Ck,s(s−1,λ,δ+2)(CT ) with a constant c independent of f .

On combining (4.7), (4.8), (4.9), (4.10) we see that the potential Ψμ induces a
bounded linear operator

Ck,s(s−1,λ,δ+2)(CT ) → Ck,s(s,λ,δ)(CT ),
provided that 0 < λ < 1. �

5. The linearised Navier-Stokes equations

Now we begin to study the operators related to a linearisation of the Navier-
Stokes equations. For this purpose, denote by

AV0 =
(

Hμ + V0 d0

γ0 0

)
a linearisation of the Navier-Stokes equations with first order term

V0u = ∗
(
∗g(0) ∧ u

)
+ ∗

(
∗d1u ∧ v(1)

)
+ d0 ∗

(
∗v(2) ∧ u

)
in CT , where v(1) and v(2) are fixed one-forms and g(0) is a fixed two-form, cf.
Lemma 1.2.
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Theorem 5.1. Let n ≥ 2, s be a positive integer, k ∈ Z≥0 and δ > n/2. If

the coefficients of v(1) are of class Cs(0,0,0), the coefficients of v(2) are of class
C1,s(0,0,−1) and the coefficients of g(0) are of class Cs(0,0,0) in CT , then any pair
U = (u, p)T of

u ∈ Cs(1,0,δ)(CT , Λ1) ∩ Sd∗ ,
p ∈ C1,s(0,0,δ−1)(CT ) (5.1)

satisfying AV0U = 0 in the layer is identically zero.

Proof. For U = (u, p)T the equality AV0U = 0 just amounts to saying that

Hμu+ d0p = −V0u in CT ,
γ0u = 0 in R

n.
(5.2)

Since δ > n/2, one may follow [Ler34a] or Theorem 3.2 for n = 2 and Theorem
3.4 for n = 3 of [Tem79], proving the uniqueness result with the use of integration
by parts. Indeed,

∂t‖u(·, t)‖2L2(BR) = 2 (∂tu, u)L2(BR),

for we restrict ourselves to real-valued forms. From the properties of u and p listed
in (5.1) we conclude that dp ∈ Cs(0,0,δ)(CT , Λ1) and the coefficients of the one-forms
u, ∂iu, ∂tu andHμu, dp are square integrable over Rn for each fixed t ∈ [0, T ], which
is due to Lemma 2.5. Hence, using (1.1) and the Stokes formula we get

(Hμu+ dp, u)L2(Rn,Λ1)

= lim
R→+∞

(1
2
∂t‖u(·, t)‖2L2(BR,Λ1) + μ‖du(·, t)‖2L2(BR,Λ2) + μ‖d∗u(·, t)‖2L2(BR)

+ (p, d∗u)L2(BR) −
∫
∂BR

u∗
(∂u
∂ν

− pν
)
ds
)

=
1

2
∂t‖u(·, t)‖2L2(Rn,Λ1) + μ‖du(·, t)‖2L2(Rn,Λ2),

for u′u is of class Cs(0,0,2δ+1), pu is of class Cs(0,0,2δ−1) in the layer CT by Lemma
2.9 and

Rn−1−(2δ−1) = Rn−2δ → 0

if R → +∞.
Furthermore, the restrictions which we put on the forms g(0) and v(1), v(2) guar-

antee that the integrals

(∗(∗g(0) ∧ u), u)L2(Rn,Λ1), (∗(∗du ∧ v(1)), u)L2(Rn,Λ1), (d ∗ (∗v(2) ∧ u), u)L2(Rn,Λ1)

converge for each t ∈ [0, 1], for the integrands belong to Cs(0,0,2δ)(CT ) (see Lemmata
2.5 and 2.9). Hence, (5.2) implies

1

2
∂t‖u(·, t)‖2L2(Rn,Λ1) + μ ‖du(·, t)‖2L2(Rn,Λ2) = −(V0u(·, t), u(·, t))L2(Rn,Λ1).

Since g(0) is of class Cs(0,0,0) in the layer CT , there is a constant c independent of
u ∈ Cs(0,0,δ)(CT , Λ1), such that

(∗(∗g(0) ∧ u, u)L2(Rn,Λ1) ≤ c ‖u‖2L2(Rn,Λ1)
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for all t ∈ [0, T ]. Besides,

(∗(∗du ∧ v(1)), u)L2(Rn,Λ1)

≤ c ‖v(1)‖Cs(0,0,0)(CT ,Λ1)‖du‖L2(Rn,Λ2)‖u‖L2(Rn,Λ1)

≤ bμ‖du‖2L2(Rn,Λ2) +
c2

4bμ
‖v(1)‖2

Cs(0,0,0)(CT ,Λ1)
‖u‖2L2(Rn,Λ1)

with any constant b > 0, for 2b1b2 ≤ b21 + b22. Finally we integrate by parts to
observe that

(d(∗v(2) ∧ u), u)L2(Rn,Λ1) = (∗(∗v(2) ∧ u), d∗u)L2(Rn) = 0.

On combining these estimates we see that there is a constant c > 0 independent of
u and t ∈ [0, T ], such that

− (V0u(·, t), u(·, t))L2(Rn,Λ1) ≤ c ‖u(·, t)‖2L2(Rn,Λ1) + μ ‖du(·, t)‖2L2(Rn,Λ2) (5.3)

for all u ∈ Cs(1,0,δ)(CT , Λ1) ∩ Sd∗ . It follows that

1

2
∂t ‖u(·, t)‖2L2(Rn,Λ1) ≤ c ‖u(·, t)‖2L2(Rn,Λ1)

for all t ∈ [0, T ].
Now we note that the from the inequality x′(t) ≤ a(t)x(t) for all t in some

interval of the real axis it follows that

d

dt

(
e−A(t)x(t)

)
≤ 0,

where A is a primitive function for a. Therefore, since A(t) = 2c t is a primitive for
the function a(t) = 2c, we conclude that

d

dt

(
e−2c t‖u(·, t)‖2L2(Rn,Λ1)

)
≤ 0

for all t ∈ [0, T ].
Pick any t ∈ (0, T ]. Then∫ t

0

d

ds

(
e−2c s‖u(·, s)‖2L2(Rn,Λ1)

)
ds = e−2c t‖u(·, t)‖2L2(Rn,Λ1) − ‖u(·, 0)‖2L2(Rn,Λ1)

= e−2c t‖u(·, t)‖2L2(Rn,Λ1)

≤ 0

because u(x, 0) = 0 for all x ∈ R
n. Thus,

‖u(·, t)‖2L2(Rn,Λ1) ≤ 0

for all t ∈ [0, T ], i.e., u ≡ 0. Hence it follows that dp = 0, i.e., p does not depend
on x. However, the function |p(t)| is dominated by (1+ |x|2)−(δ−1)/2 as |x| → +∞.
Since δ > n/2 ≥ 1 we deduce readily that p(t) is identically equal to zero, as
desired. �

As is already mentioned, the scale of weighted spaces Ck,s(s,λ,δ) in the layer CT
does not fully agree with the dilation principle for parabolic equations. Differentia-
tion in the time variable t does not lead to increasing the weight exponent δ which
results in committing a violation of compact embeddings. In order to get rid of
this shortage we go to slightly modify the above scale by introducing an additional
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Hölder exponent λ′ which should exceed λ and thus affect to a gain of “smooth-
ness” in t. This manipulation of function spaces seems to be justified by the refined
structure of the Navier-Stokes equations. For s, k ∈ Z≥0 and 0 < λ < λ′ < 1, we
introduce

Fk,s(s,λ,λ′,δ)(CT ) := Ck+1,s(s,λ,δ)(CT ) ∩ Ck,s(s,λ′,δ)(CT ).
When given the norm

‖u‖Fk,s(s,λ,λ′,δ)(CT ) := ‖u‖Ck+1,s(s,λ,δ)(CT ) + ‖u‖Ck,s(s,λ′,δ)(CT ).

this is obviously a Banach space. To certain extent these spaces are similar to those
with two-norm convergence which are of key importance for ill-posed problems.

If s ∈ Z≥0 and 0<λ<λ′<1, then all statements above on the Laplace operator,

de Rham complex and heat operator are true for the scale Fk,s(s,λ,λ′,δ)(CT ) instead
of the scale Ck,s(s,λ,δ)(CT ). The range Rk,s(s,λ,λ′,δ)(CT ) of the operator

Δ : Fk,s(s,λ,λ′,δ)(CT ) ∩ DΔ → Fk,s(s,λ,λ′,δ+2)(CT )
just amounts to the whole space Fk,s(s,λ,λ′,δ+2)(CT ), if 0 < δ < n−2, and it reduces

to the intersection Rk+1,s(s,λ,δ+2)(CT )∩Rk,s(s,λ′,δ+2)(CT ), if δ belongs to an interval
n− 2 +m < δ < n− 1 +m.

Lemma 5.2. Let s be a positive integer, k ∈ Z≥0, 0 < λ < λ′ < 1 and δ > δ′.
Then the embedding

Fk,s(s,λ,λ′,δ)(CT , Λq) ↪→ Fk+1,s(s−1,λ,λ′,δ′)(CT , Λq)

is compact.

Proof. By abuse of notation we omit the domain and target bundle in designations.
By Theorem 2.6,

1) the space Ck+1,s(s,λ,δ) is embedded compactly into Ck+1,s(s−1,λ′,δ′), since
s+ λ > s− 1 + λ′ and δ > δ′;

2) the space Ck,s(s,λ′,δ) is embedded compactly into Ck,s(s,λ,δ′), for 0 < λ < λ′

and δ > δ′;
3) the space Ck,s(s,λ,δ′) is embedded continuously into Ck+2,s(s−1,λ,δ′).
Hence it follows that if S is a bounded set in

Fk,s(s,λ,λ′,δ) = Ck+1,s(s,λ,δ) ∩ Ck,s(s,λ′,δ),

then any sequence from S has a subsequence converging in the space

Fk+1,s(s−1,λ,λ′,δ′) = Ck+2,s(s−1,λ,δ′) ∩ Ck+1,s(s−1,λ′,δ′),

as desired. �

Corollary 5.3. Let n ≥ 2, s be a positive integer, k ∈ Z≥0 and γ ≥ 0.

1) If 0 < λ ≤ 1 and the coefficients of v(1) are of class Ck,s(s−1,λ,γ−1), the
coefficients of v(2) are of class Ck+1,s(s−1,λ,γ−1) and the coefficients of g(0) are of
class Ck,s(s−1,λ,γ) in CT , then the operator AV0 induces a bounded linear operator

Ck,s(s,λ,δ)(CT , Λ1) ∩ Sd∗

⊕
Ck+1,s(s−1,λ,δ+γ−1)(CT )

→
Ck,s(s−1,λ,δ+γ)(CT , Λ1)

⊕
C2s+k,λ,δ(Rn, Λ1) ∩ Sd∗ .

2) If 0 < λ < λ′ ≤ 1 and the coefficients of v(1) are of class Fk,s(s−1,λ,λ′,γ−1),

the coefficients of v(2) are of class Fk+1,s(s−1,λ,λ′,γ−1) and the coefficients of g(0)
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are of class Fk,s(s−1,λ,λ′,γ) in CT , then the operator AV0
induces a bounded linear

operator

Fk,s(s,λ,λ′,δ)(CT , Λ1) ∩ Sd∗

⊕
Fk+1,s(s−1,λ,λ′,δ+γ−1)(CT )

→
Fk,s(s−1,λ,λ′,δ+γ)(CT , Λ1)

⊕
C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ .

3) If moreover δ > n/2 and the coefficients of v(1) are of class Cs(0,0,0) in CT ,
then the null-space of the operators consists of all pairs (0, c)T , where c is a constant.

Proof. This follows from Lemma 2.11 and Theorem 5.1. �

Part 3) of the corollary just amounts to saying that the pressure p is defined up
to a real constant.

Consider now the operators

W0f = d ∗ (∗g(0) ∧ d∗(Φ⊗ I)f) + d ∗ (∗f ∧ v(1)),

U0f = ∗(∗g(0) ∧ d∗(Φ⊗ I)f) + ∗(∗f ∧ v(1))

which map 2 -forms on CT into 2 - and 1 -forms, respectively. It follows from (1.1)
and Corollary 3.13 that d(U0f) = W0f for f ∈ Ck−1,s(s,λ,δ+1)(CT , Λ2), and

d(V0u) = d ∗ (∗g(0) ∧ d∗(Φ⊗ I)du) + d ∗ (∗du ∧ v(1)) = W0(du) (5.4)

for all u ∈ Ck,s(s,λ,δ)(CT , Λ1). Equality (5.4) can be equivalently reformulated by
saying that the pair {V0,W0} is a homomorphism of the de Rham complex at steps
1 and 2.

Using these operators allows us to pass for the study of nonlinear Navier-Stokes
equations to a weakly perturbed Cauchy problem for the heat equation in the scale
Ck−1,s(s,λ,δ+1)(CT , Λ2) rather than to a linearisation of the Navier-Stokes equations
in the scale Ck,s(s,λ,δ)(CT , Λ1). Our next concern will be to describe this trick.

Lemma 5.4. Let s and k ≥ 2 be positive integers, 0 < λ < λ′ < 1, and 1 ≤ δ < n
be different from n− 2, n− 1.

1) If the coefficients of g(0) are of class Ck,s(s−1,λ,δ+1) and the coefficients of v(1)

are of class Ck,s(s−1,λ,δ) in the layer CT then the linear operators

U0 : Rk−1,s(s,λ,δ+1)(CT , Λ2) → Ck,s(s−1,λ,δ+2)(CT , Λ1),
W0 : Rk−1,s(s,λ,δ+1)(CT , Λ2) → Ck−1,s(s−1,λ,δ+3)(CT , Λ2)

(5.5)

are bounded.
2) If, moreover, 1<δ<n and the coefficients of g(0) are of class Fk,s(s−1,λ,λ′,δ+1),

the coefficients of v(1) are of class Fk,s(s−1,λ,λ′,δ) in the layer CT then the operators

U0 : Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) → Fk,s(s−1,λ,λ′,δ+2)(CT , Λ1),

W0 : Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) → Fk−1,s(s−1,λ,λ′,δ+3)(CT , Λ2)
(5.6)

are compact.
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Proof. Let g(0) and v(1) satisfy the hypotheses listed in 1). Pick any δ′ such that
1 ≤ δ′ ≤ δ. Then, according to Lemmata 2.9 and 3.9, we get

‖U0f‖Ck,s(s−1,λ,δ+2)(·)

≤ c
(
N(g(0)) ‖d∗(Φ⊗ I)f‖Ck,s(s−1,λ,δ′)(·) +N(v(1)) ‖f‖Ck,s(s−1,λ,δ′+1)(·)

)
≤ c

(
N(g(0)) ‖f‖Ck,s(s−1,λ,δ′+1)(·) +N(v(1)) ‖f‖Ck,s(s−1,λ,δ′+1)(·)

)
(5.7)

for all f ∈ Ck−1,s(s,λ,δ+1)(CT , Λ2), where we omit the domain and target bundles
for short. The constant c depends neither on g(0) and v(1) nor on f and it may be
different in diverse applications, and

N(g(0)) = ‖g(0)‖Ck,s(s−1,λ,δ−δ′+2)(·),
N(v(1)) = ‖v(1)‖Ck,s(s−1,λ,δ−δ′+1)(·).

Note that N(g(0)) and N(v(1)) are dominated by the norms ‖g(0)‖Ck,s(s−1,λ,δ+1)(·)
and ‖v(1)‖Ck,s(s−1,λ,δ)(·), respectively, for the inequality δ − δ′ + 2 ≤ δ + 1 is equiv-

alent to 1 ≤ δ′. As the space Ck−1,s(s,λ,δ′+1)(·) is embedded continuously into

Ck,s(s−1,λ,δ′+1)(·), we see that

‖U0f‖Ck,s(s−1,λ,δ+2)(·) ≤ c ‖f‖Ck−1,s(s,λ,δ′+1)(·)

with c a constant independent of f . In particular, for δ′ = δ and 1 ≤ δ < n, we
derive the boundedness of the operator U0 in (5.5). Using Lemma 3.10 we conclude
that the operator W0 in (5.5) is bounded, too, for dU0 = W0. This completes the
proof of part 1).

In part 2) we assume that δ > 1. Then there is a δ′ ≥ 1 such that δ > δ′.
According to Lemma 5.2, if S is bounded set in

Fk−1,s(s,λ,λ′,δ+1)(·) = Ck,s(s,λ,δ+1)(·) ∩ Ck−1,s(s,λ′,δ+1)(·),
then there is a sequence {fν} in S which converges in the space

Fk,s(s−1,λ,λ′,δ′′+1)(·) = Ck+1,s(s−1,λ,δ′+1)(·) ∩ Ck,s(s−1,λ′,δ′+1)(·)
to a limit f . By (5.7),

‖U0(fν − f)‖Ck+1,s(s−1,λ,δ+2)(·)

≤ c
(
‖g(0)‖Ck+1,s(s−1,λ,δ+1)(·)‖fν − f‖Ck+1,s(s−1,λ,δ′+1)(·)

+ ‖fν − f‖Ck+1,s(s−1,λ,δ′+1)(·)‖v(1)‖Ck+1,s(s−1,λ,δ)(·)
)

→ 0

(5.8)

as ν → ∞. On the other hand, using (5.7) with λ′ instead of λ, we obtain

‖U0(fν − f)‖Ck,s(s−1,λ′,δ+2)(·)

≤ c
(
‖g(0)‖Ck,s(s−1,λ′,δ+1)(·)‖fν − f‖Ck,s(s−1,λ′,δ′+1)(·)

+ ‖fν − f‖Ck,s(s−1,λ′,δ′+1)(·)‖v(1)‖Ck,s(s−1,λ′,δ)(·)
)

→ 0
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as ν → ∞.
We have thus proved that the sequence {U0fν} converges to U0f in the norm

of the space Fk,s(s−1,λ,λ′,δ+2)(·). Hence it follows that the map U0 in (5.6) is
compact. Then Lemma 2.10 implies that the map W0 in (5.6) is compact, too,
because W0 = dU0. �

Lemma 5.5. Let s ≥ 1 and k ≥ 2 be integers, 1 ≤ δ < n be different from n − 2
and n− 1, and the coefficients of g(0) be of class Ck,s(s−1,λ,δ+1), the coefficients of
v(1) be of class Ck,s(s−1,λ,δ) in CT . If g0 ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd then any
two-form g on R

n with coefficients in Rk−1,s(s,λ,δ+1)(CT ) satisfying
g + ΨμW0g = g0 (5.9)

belongs to Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd.

Proof. Let g ∈ Ck−1,s(s,λ,δ+1)(CT , Λ2) be a solution to equation (5.9). If n = 2,
then dg = 0 because d2 vanishes identically. If n ≥ 3, then from (1.1) and (1.2) it
follows that Hμd = dHμ, dΨμ = Ψμd, dW0g = 0, and so dg = 0, as desired. �

Lemma 5.6. Assume that s and k ≥ 2 are positive integers, 0<δ<n is different
from n − 2, n − 1, and the coefficients of g(0) are of class Ck,s(s−1,λ,δ+1), the
coefficients of v(1) are of class Ck,s(s−1,λ,δ), and the coefficients of v(2) are of class
Ck+1,s(s−1,λ,−1) in the layer CT . Let moreover F = (f, u0)

T be an arbitrary pair of

Ck,s(s−1,λ,δ)(CT , Λ1)× C2s+k,λ,δ(Rn, Λ1) ∩ Sd∗ .

1) If U = (u, p)T ∈ Ck−1,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ × Ck−1,s(s−1,λ,δ−1)(CT ) satisfies
du ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) and

AV0U = F (5.10)

then g = du is a solution to equation (5.9) with g0 = Ψμ,0du0 + Ψμdf .

2) Conversely, if g ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) is a solution to equation (5.9) with
g0 = Ψμ,0du0 + Ψμdf in Rk−1,s(s,λ,δ+1)(CT , Λ2), then the pair

u = d∗(Φ⊗ I)g,
p = d∗(Φ⊗ I) (f − (Hμ + V0)u)

belongs to Ck−1,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ × Ck−1,s(s−1,λ,δ−1)(CT ), satisfies (5.10) and, in
addition, du ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2).

There is a gap in the smoothness of u and p in Lemma 5.6. It is caused by the
lack of smoothing properties of the Newton potential Φ⊗ I acting in the parabolic
Hölder spaces. Lemma 3.9 guarantees that Φ⊗ I improves the smoothness in x by
one while one would like to have the gain 2. However, we were not able to prove
this.

Proof. 1) Let U = (u, p)T be a solution to (5.10). By (1.2), we get dHμu = Hμdu,
and so using (5.4) yields{

Hμdu+W0du = df in CT ,
γ0 du = du0 on R

n,

the last equality being due to d γ0u = γ0 du. It remains to apply Lemmata
3.10, 4.3, 4.5 and Theorem 4.6 to conclude that the two-form g = du is of class
Rk−1,s(s,λ,δ+1)(CT ) and satisfies equation (5.9). (Obviously, g is closed in the layer.)
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2) Set g0 = Ψμ,0du0 + Ψμdf . Since dΨμ,0 = Ψμ,0d and dΨμ = Ψμd, it follows by

Lemmata 3.10 and 3.6 that g0 ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd, if 0 < δ < n. Hence,
any solution g to (5.9) is in Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd because of Lemma 5.5.

Now, Corollary 3.12 implies that u = d∗(Φ⊗ I)g is an one-form with coefficients
in Rk−1,s(s,λ,δ)(CT ) satisfying du = g in the layer. Using Lemma 4.3 and formula
(5.4) we see that {

d (Hμu+ V0u− f) = 0 in CT ,
d (γ0u− u0) = 0 on R

n.

As 0 < δ < n and

Hμu+ V0u− f ∈ Ck−1,s(s−1,λ,δ)(CT , Λ1) ∩ Sd,

Corollary 3.12 shows that the function p = d∗(Φ ⊗ I) (f −Hμu− V0u) belongs to

the space Ck−1,s(s−1,λ,δ−1)(CT ) and it satisfies

Hμu+ V0u+ dp = f

in CT . Finally, since
d (γ0u− u0) = 0,
d∗ (γ0u− u0) = 0,

we get γ0u = u0 in all of Rn because of Corollary 3.11. Hence, the pair U = (u, p)T

is a solution to (5.10). �
Corollary 5.7. Let s and k ≥ 2 be positive integers, 0 < λ < λ′ < 1, n/2 < δ < n

be different from n−2, n−1, and the coefficients of g(0) be of class Fk,s(s−1,λ,λ′,δ+1),
the coefficients of v(1) be of class Fk,s(s−1,λ,λ′,δ) in the layer CT . Then the operator

I+ΨμW0 : Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd → Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd (5.11)

is continuously invertible.

Proof. First we observe by Lemmata 3.10, 5.4 and 5.5 that the operator I + ΨμW0

is a continuous selfmapping of Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd. Our next goal is to
show that this mapping is one-to-one.

Lemma 5.8. Suppose that s and k ≥ 2 are positive integers, n/2 < δ < n is
different from n− 2, n− 1, and the coefficients of g(0) are of class Ck,s(s−1,λ,δ+1),
the coefficients of v(1) are of class Ck,s(s−1,λ,δ) in the layer CT . Then any form
g ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) satisfying (I + ΨμW0)g = 0 is identically zero.

Proof. Indeed, Lemma 5.5 yields readily dg = 0 in CT . Then using Corollary 3.12
and equality (5.4) we deduce that the function u = d∗(Φ⊗ I)g satisfies du = g and{ d(Hμu+ V0u) = 0 in CT ,

d∗u = 0 in CT
whence

d(γ0u) = γ0(g) = γ0(−ΨμW0g) = 0,
d∗(γ0u) = γ0(d

∗u) = 0

on R
n. According to (1.1), the last two equalities imply that γ0u is a harmonic

one-form on R
n. As δ > 0 it follows that γ0u vanishes at the point at infinity and

hence γ0u ≡ 0 on R
n.

Since d(Hμu+ V0u) = 0, the function

p = −d∗(Φ⊗ I) (Hμu+ V0u)
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belongs to the space Ck,s(s−1,λ,δ−1)(CT ) and satisfies Hμu + V0u + dp = 0 in CT .
Therefore, the pair U = (u, p)T lies in the direct product

Ck−2,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ × Ck,s(s−1,λ,δ−1)(CT )
and satisfies AV0

U = 0. Finally, by the uniqueness result of Theorem 5.1 we get
u ≡ 0, and so g ≡ 0, too. �

We are now in a position to complete the proof of Corollary 5.7. According to
Lemma 5.4, the operator (5.11) is Fredholm and its index equals zero. Then the
statement of the corollary follows from Lemma 5.8 and Fredholm theorems. �

Corollary 5.9. Assume that s and k ≥ 2 are positive integers, 0 < λ < λ′ < 1,
n/2 < δ < n is different from n − 2, n − 1, and the coefficients of g(0) are of

class Fk,s(s−1,λ,λ′,δ+1), the coefficients of v(1) are of class Fk,s(s−1,λ,λ′,δ), and the
coefficients of v(2) are of class Fk+1,s(s−1,λ,λ′,−1) in the layer CT . Then for any
pair

F =(f, u0)
T ∈ Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗

there is a unique solution

U=(u, p)T ∈ Fk−1,s(s,λ,λ′,δ)(CT , Λ1) ∩ Sd∗ ×Fk−1,s(s−1,λ,λ′,δ−1)(CT )
to the equation AV0

U = F and the corresponding linear operator U = A−1
V0

(F ) is
bounded.

Proof. It follows from Corollary 5.7, Theorem 5.1 and Lemma 5.6, for

dF ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2)×R2s+k,λ,δ+1(Rn, Λ2),

Ψμ,0du0 + Ψμdf ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2),

the latter inclusion being due to Lemma 4.5. �

6. The Navier-Stokes equations as an open map

We plan to prove that the Navier-Stokes equations can be treated as a nonlinear
injective Fredholm operator with open range in proper Banach spaces. Recall that
a nonlinear operator A : X → Y in Banach spaces X, Y is called Fredholm if it has
a Frechét derivative at each point x0 ∈ X and this derivative is a Fredholm linear
map from X to Y (see [Sma95]).

For this purpose we set

A =
( Hμ +D1 d

γ0 0

)
= A0 +

( D1 0
0 0

)
.

Clearly, the operator is well defined in the scale of weighted Hölder spaces intro-
duced above. For nonlinear Fredholm operators we may use a Sard theorem for
Banach spaces (see [Sma95]) and the Baire category theorem to obtain additional
information on the range of A.

Thus, given any data F = (f, u0)
T , we look for a solution U = (u, p)T of nonlin-

ear Navier-Stokes equations

A
(

u
p

)
=

( f
u0

)
(6.1)

in the scale of weighted Hölder spaces on CT .
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Theorem 6.1. Suppose s ≥ 1 and k are nonnegative integers, n/2 < δ, and the
coefficients of g(0) are of class Cs(0,0,0), the coefficients of v(1) are of class Cs(0,0,0),
and the coefficients of v(2) are of class C1,s(0,0,−1) in the layer CT . Then, for each
pair

F =(f, u0)
T ∈ Ck,s(s−1,λ,δ)(CT , Λ1)× C2s+k,λ,δ(Rn, Λ1) ∩ Sd∗

the nonlinear Navier-Stokes type equation

A0

( u
p

)
+

( V0u
0

)
+ a

( D1u
0

)
=

( f
u0

)
, (6.2)

where a is an arbitrary nonnegative real number, has at most one solution in the
space

Ck,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ × Ck+1,s(s−1,λ,δ−1)(CT ).
Proof. One may follow the original paper [Ler34a] or the proofs of Theorem 3.2 for
n = 2 and Theorem 3.4 for n = 3 in [Tem79], showing the uniqueness result by
integration by parts. Cf. also Theorem 5.1.

Indeed, let (u′, p′′) and (u′′, p′′) be any two solutions to (6.1). Then for the
difference (u, p) = (u′ − u′′, p′ − p′′) we get( Hμu+ dp

0

)
= a

( D1u′′ −D1u′

0

)
−

( V0u
0

)
. (6.3)

It is easy to see that

∂t ‖u(·, t)‖2L2(BR,Λ1) = 2 (∂tu, u)L2(BR,Λ1)

for all t ∈ [0, T ]. As

u ∈ Ck,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ ,
p ∈ Ck+1,s(s−1,λ,δ−1)(CT )

and δ > n/2, the coefficients of the one-forms u, ∂iu, ∂tu, Hμu and dp are, by
Lemma 2.5, square integrable over all of R

n for each fixed t ∈ [0, T ]. Hence it
follows that

(Hμu+ dp, u)L2(Rn,Λ1)

= lim
R→+∞

(1
2
∂t‖u(·, t)‖2L2(BR,Λ1) + μ‖du(·, t)‖2L2(BR,Λ2) + μ‖d∗u(·, t)‖2L2(BR)

+ (p, d∗u)L2(BR) −
∫
∂BR

u∗
(∂u
∂ν

− pν
)
ds
)

=
1

2
∂t‖u(·, t)‖2L2(Rn,Λ1) + μ

n∑
i=1

‖∂iu(·, t)‖2L2(Rn,Λ1)

because d∗u = 0 and Rn−1−(2δ−1) = Rn−2δ → 0 if R → +∞. We have used here
the identity

‖du(·, t)‖2L2(Rn,Λ2) + ‖d∗u(·, t)‖2L2(Rn) =

n∑
i=1

‖∂iu(·, t)‖2L2(Rn,Λ1) (6.4)

which can be checked, for example, by the Plancherel theorem.
Furthermore, the integrals (D1u′, u)L2(Rn,Λ1) and (D1u′′, u)L2(Rn,Λ1) converge,

for both D1u′ and D1u′′ are one-forms with coefficients of class Cs(0,0,δ+1) in the
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layer CT and u ∈ Cs(0,0,δ)(CT , Λ1) with δ > n/2 (see Lemmata 2.5 and 2.9). There-
fore, (6.3) implies

1

2
∂t ‖u(·, t)‖2L2(Rn,Λ1) + μ

n∑
i=1

‖∂iu(·, t)‖2L2(Rn,Λ1)

= − a
(
(D1u′, u)L2(Rn,Λ1) − (D1u′′, u)L2(Rn,Λ1)

)− (V0u, u)L2(Rn,Λ1).

A trivial verification shows that

(D1u′, u)L2(Rn,Λ1) − (D1u′′, u)L2(Rn,Λ1)

=

n∑
i,j=1

∫
Rn

(
u′
i(∂iu

′
j)uj − u′′

i (∂iu
′′
j )uj

)
dx

=
n∑

i,j=1

∫
Rn

(
(u′

i − u′′
i )(∂iu

′
j)uj + u′′

i (∂i(u
′
j − u′′

j ))uj

)
dx

=
n∑

i,j=1

∫
Rn

(
ui(∂iu

′
j)uj + u′′

i (∂iuj)uj

)
dx,

where u =

n∑
j=1

ujdx
j and similarly for the forms u′ and u′′. As d∗u′′ = 0, it follows

that
n∑

i,j=1

∫
Rn

u′′
i (∂iuj)uj dx =

n∑
j=1

lim
R→+∞

×
(∫

BR

(
d∗u′′)(ujuj)−

n∑
i=1

u′′
i (∂iuj)uj

)
dx+

n∑
i=1

∫
∂BR

u′′
i ujujds

)

= −
n∑

i,j=1

∫
Rn

u′′
i (∂iuj)uj dx,

for Rn−1−3δ−1 → 0 if R → +∞. Since we arrived at the same sum with opposite
sign, we conclude that this sum vanishes. On integrating by parts once again we
obtain

n∑
i,j=1

∫
Rn

ui(∂iu
′
j)uj dx =

n∑
j=1

∫
Rn

(d∗u)(u′
juj)−

n∑
i,j=1

∫
Rn

ui(∂iuj)u
′
j dx,

and so

1

2
∂t ‖u(·, t)‖2L2(Rn,Λ1) + μ

n∑
i=1

‖∂iu(·, t)‖2L2(Rn,Λ1)

= a
n∑

i,j=1

∫
Rn

ui(·, t)(∂iuj)(·, t)u′
j(·, t) dx− (V0u(·, t), u(·, t))L2(Rn,Λ1)

for all t ∈ [0, T ].
As both u′ and u have coefficients in Ck,s(s,λ,δ)(CT ), the pairwise products uiu

′
j

are of class Cs(0,0,2δ)(CT ), where 2δ > 0 by assumption. In particular, the functions
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ui(·, t)u′
j(·, t) are square integrable over R

n for each fixed t ∈ [0, T ] (see Lemma
2.5). By the Cauchy-Schwarz inequality,

n∑
i,j=1

∫
Rn

ui(∂iuj)u
′
j dx ≤

n∑
i,j=1

‖∂iuj‖L2(Rn)‖uiuj‖L2(Rn)

≤
( n∑

i,j=1

‖∂iuj‖2L2(Rn)

)1/2( n∑
i,j=1

‖uiu
′
j‖2L2(Rn)

)1/2

whence

a
n∑

i,j=1

∫
Rn

ui(·, t)(∂iuj)(·, t)u′
j(·, t) dx

≤ bμ
n∑

i,j=1

‖∂iuj(·, t)‖2L2(Rn) +
a2

4bμ

n∑
i,j=1

‖ui(·, t)u′
j(·, t)‖2L2(Rn)

with an arbitrary constant b > 0 independent of u′ and u′′, for 2b1b2 ≤ b21 + b22.
Then, using estimate (5.3) for the term (V0(u, u)L2(Rn,Λ1) obtained in the proof of
Theorem 5.1, and identity (6.4) we conclude that

1

2
∂t ‖u(·, t)‖2L2(Rn,Λ1) ≤

a2

2μ

n∑
i,j=1

‖ui(·, t)u′
j)(·, t)‖2L2(Rn) + c ‖u(·, t)‖2L2(Rn,Λ1),

for all t ∈ [0, T ], where the constant c depends neither on t nor on u′ and u′′. Since
u′ ∈ Cs(0,0,δ)(CT , Λ1), there is another constant C depending on u′ but not on x
and t, such that

|v(x, t)|2 ≤ C (1 + |x|2)−δ

for all (x, t) ∈ CT . Hence it follows that

1

2
∂t ‖u(·, t)‖2L2(Rn,Λ1) ≤

( a2

2μ
C2 + c

)
‖u(·, t)‖2L2(Rn,Λ1)

for all t ∈ [0, T ].
The rest of the proof runs in the same way as that of Theorem 5.1. This leads

immediately to u ≡ 0 and p ≡ 0, i.e., the solutions (u′, p′) and (u′′, p′′) coincide, as
desired. �

The nonlinear Navier-Stokes equations reduce in much the same way as the
corresponding linearised equations. To this end we introduce nonlinear pseudodif-
ferential operators

D2g = d ∗ (∗g ∧ d∗(Φ⊗ I)g),

Qg = ∗(∗g ∧ d∗(Φ⊗ I)g)

which map two-forms on CT into two- and one-forms, respectively. By the very
construction, we have d(Qg) = D2g.

It follows from (1.1) and Corollary 3.13 that

dD1u = d ∗ (∗du ∧ u) = d ∗ (∗du ∧ d∗(Φ⊗ I)du) = D2(du) (6.5)

for all u ∈ Ck,s(s,λ,δ)(CT , Λ1). Equality (6.5) means that the pair {D1,D2} is a
nonlinear homomorphism of the de Rham complex at steps 1 and 2. Using this
homomorphism allows one to reduce the Navier-Stokes equations to a nonlinear
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Cauchy problem for the heat equation in the scale Ck−1,s(s,λ,δ+1)(CT , Λ2). We pro-
ceed with an explicit description.

Lemma 6.2. Let s ≥ 1 and k ≥ 2 be integers, 0 < λ < λ′ < 1, and let 1 ≤ δ < n
be different from n− 2 and n− 1. Then the nonlinear operators

Q : Rk,s(s−1,λ,δ+1)(CT , Λ2) → Ck,s(s−1,λ,δ+2)(CT , Λ1),
D2 : Rk,s(s−1,λ,δ+1)(CT , Λ2) → Ck−1,s(s−1,λ,δ+3)(CT , Λ2)

(6.6)

are continuous. If, in addition, 1 < δ < n, then the nonlinear operators

Q : Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) → Fk,s(s−1,λ,λ′,δ+2)(CT , Λ1),

D2 : Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) → Fk−1,s(s−1,λ,λ′,δ+3)(CT , Λ2)
(6.7)

are compact and continuous.

Proof. Indeed, given any elements g(0) and g in Ck,s(s−1,λ,δ+1)(CT , Λ2), we get

Qg = ∗(∗g ∧ d∗(Φ⊗ I)g)

= ∗(∗(g − g(0)) ∧ d∗(Φ⊗ I)g(0)) + ∗(∗g(0) ∧ d∗(Φ⊗ I)(g − g(0)))

+ ∗(∗(g − g(0)) ∧ d∗(Φ⊗ I)(g − g(0))) + ∗(∗g(0) ∧ d∗(Φ⊗ I)g(0)).

(6.8)

Fix g(0) and any real δ′ satisfying 1 ≤ δ′ ≤ δ. From (6.8) and Lemma 2.9 it
follows that

‖Qg −Qg(0)‖Ck,s(s−1,λ,δ+2)(·)

≤ c
(
‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)‖d∗(Φ⊗ I)g(0)‖Ck,s(s−1,λ,δ−δ′+1)(·)

+ ‖g(0)‖Ck,s(s−1,λ,δ−δ′+2)(·)‖d∗(Φ⊗ I)(g − g(0))‖Ck,s(s−1,λ,δ′)(·)

+ ‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)‖d∗(Φ⊗ I)(g − g(0))‖Ck,s(s−1,λ,δ−δ′+1)(·)
)

≤ c
(
‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)‖g(0)‖Ck,s(s−1,λ,δ−δ′+2)(·)

+ ‖g(0)‖Ck,s(s−1,λ,δ−δ′+2)(·)‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)

+ ‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)‖g − g(0)‖Ck,s(s−1,λ,δ−δ′+2)(·)
)

≤ c
(
‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)‖g(0)‖Ck,s(s−1,λ,δ+1)(·)

+ ‖g(0)‖Ck,s(s−1,λ,δ+1)(·)‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)

+ ‖g − g(0)‖Ck,s(s−1,λ,δ′+1)(·)‖g − g(0)‖Ck,s(s−1,λ,δ+1)(·)
)

(6.9)

with c a constant independent of g(0) and g, the last inequality being due to the fact
that δ−δ′+2 ≤ δ+1 if and only if 1 ≤ δ′. By abuse of notation we omit the domain
and target bundles in designations. Choosing δ′ = δ we deduce that if gν → g(0)

in the space Ck,s(s−1,λ,δ+1)(·) then Qgν → Qg(0) in the space Ck,s(s−1,λ,δ+2)(·).
Moreover Lemma 2.10 implies that the sequence dQgν converges to dQg(0) in the
space Ck−1,s(s−1,λ,δ+3)(·). Thus the nonlinear mappings (6.6) are continuous, as
desired.



60 A. SHLAPUNOV AND N. TARKHANOV

If moreover δ > 1 then there is a real δ′ such that 1 ≤ δ′ < δ. According to
Lemma 5.2, if S is a bounded set in

Fk−1,s(s,λ,λ′,δ+1)(·) = Ck,s(s,λ,δ+1)(·) ∩ Ck−1,s(s,λ′,δ+1)(·),
then there is a sequence {gν} ⊂ S converging in the space

Fk,s(s−1,λ,λ′,δ′+1)(·) = Ck+1,s(s−1,λ,δ′+1)(·) ∩ Ck,s(s−1,λ′,δ′+1)(·)
to a limit g(0). Estimate (6.9) yields

‖Qgν −Qg(0)‖Ck+1,s(s−1,λ,δ+2)(·) → 0,

‖Qgν −Qg(0)‖Ck,s(s−1,λ′,δ+2)(·) → 0,

as ν → ∞. On summing up we see that the sequence Qgν converges to Qg(0)

in the norm of Fk,s(s−1,λ,λ′,δ+2)(·). Hence, the mapping Q of (6.7) is compact.
Finally, Lemma 2.10 implies that the mapping D2 of (6.7) is compact, too, because
it factors continuously through Q. �

Lemma 6.3. Let s ≥ 1 and k ≥ 2 be integers, 0 < λ < 1, and let 0 < δ < n
be different from n − 2 and n − 1. If g0 ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd, then any
solution g ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) to the equation

g + ΨμD
2g = g0 (6.10)

automatically satisfies dg (·, t) = 0 in R
n for each t ∈ [0, T ].

Proof. Indeed, if n = 2, then dg = 0 because d2 = 0. If n ≥ 3, it follows from (1.1)
and (1.2) that

d
(
g + ΨμD

2g
)

= dg + ΨμdD
2g

= dg

= dg0,

and so dg = 0. �

Our next result interprets Lemma 5.6 within the context of (nonlinear) Navier-
Stokes equations.

Lemma 6.4. Suppose that s ≥ 1 and k ≥ 2 are integers, 0 < λ < 1, and 0 < δ < n
is different from n−2 and n−1. Let moreover F = (f, u0)

T be an arbitrary pair of

Ck,s(s−1,λ,δ)(CT , Λ1)× C2s+k,λ,δ(Rn, Λ1) ∩ Sd∗ .

1) If U = (u, p)T ∈ Ck−1,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ × Ck−1,s(s−1,λ,δ−1)(CT ) satisfies
du ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) and

AU = F (6.11)

then g = du is a solution to equation (6.10) with g0 = Ψμ,0du0 + Ψμdf .

2) Conversely, if g ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) is a solution to equation (6.10) with
g0 = Ψμ,0du0 + Ψμdf ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) then the pair

u = d∗(Φ⊗ I)g,
p = d∗(Φ⊗ I)

(
f −Hμu−D1u

)
belongs to Ck−1,s(s,λ,δ)(CT , Λ1) ∩ Sd∗ × Ck−1,s(s−1,λ,δ−1)(CT ), satisfies (6.11) and
du ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2).
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Proof. 1) Let U = (u, p)T be a solution to (6.11). From (1.2) it follows that
dHμu = Hμdu, and so using (6.5) we obtain{ Hμdu(·, t) +D2du(·, t) = df(·, t) on R

n,
du(·, 0) = du0 on R

n

for all t ∈ [0, T ], the last equality being a consequence of d γ0u = γ0 du. It remains
to apply Lemmata 3.10, 4.3, 4.5 and Theorem 4.6 to see that g = du is of class
Rk−1,s(s,λ,δ+1)(CT ) and satisfies equation (6.10). (Obviously, g is closed in the
layer.)

2) Set g0 = Ψμ,0du0 + Ψμdf . Since dΨμ,0 = Ψμ,0d and dΨμ = Ψμd, it follows by

Lemmata 3.10 and 3.6 that g0 ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd, if 0 < δ < n. Hence,
any solution g to (6.10) is in Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd because of Lemma 6.3.

Now, Corollary 3.12 implies that u = d∗(Φ⊗ I)g is an one-form with coefficients
in Rk−1,s(s,λ,δ)(CT ) satisfying du = g ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) in the layer. Using
Lemma 4.3 and formula (6.5) we see that{

d
(
Hμu+D1u− f

)
= 0 in CT ,

d (γ0u− u0) = 0 on R
n.

As 0 < δ < n and

Hμu+D1u− f ∈ Ck−1,s(s−1,λ,δ)(CT , Λ1) ∩ Sd,

an application of Corollary 3.12 shows that p = d∗(Φ⊗I)
(
f −Hμu−D1u

)
belongs

to the space Ck−1,s(s−1,λ,δ−1)(CT ) and it satisfies

Hμu+D1u+ dp = f

in CT . Finally, since
d (γ0u− u0) = 0,
d∗ (γ0u− u0) = 0,

we get γ0u = u0 in all of Rn because of Corollary 3.11. Hence, the pair U = (u, p)T

satisfies (6.11). �

We are already in a position to state an open mapping theorem for the reduced
equation (6.10).

Theorem 6.5. Assume that s and k ≥ 2 are positive integers, 0 < λ < λ′ < 1, and
n/2 < δ < n is different from n−2 and n−1. Then ΨμD

2 is a compact continuous

selfmapping of the space Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd. Moreover, the mapping

I+ΨμD
2 : Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd→Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd (6.12)

is Fredholm, injective, and open.

Proof. First we note that Lemmata 3.10, 6.2 and 6.3 imply that the operator ΨμD
2

maps Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd continuously into the space itself. Since we
have D2 = dQ, the continuity and compactness of the mapping ΨμD

2 follow from
Lemma 6.2 and Theorem 4.6. We now turn to the one-to-one property of the
mapping (6.12).

Lemma 6.6. Let s ≥ 1 and k ≥ 2 be integers, 0 < λ < 1, and n/2 < δ < n be
different from n − 2 and n − 1. If g0 ∈ Rk−1,s(s,λ,δ)(CT , Λ2) ∩ Sd then equation
(6.10) has no more than one solution in Rk−1,s(s,λ,δ+1)(CT , Λ2).
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Proof. Suppose that g′, g′′ ∈ Rk−1,s(s,λ,δ+1)(CT , Λ2) are two solutions to (6.10). By
Lemma 6.3, they satisfy dg′(·, t) = 0 and dg′′(·, t) = 0 in R

n for each t ∈ [0, T ].
Since g0 ∈ Rk−1,s(s,λ,δ)(CT , Λ2) ∩ Sd we see by Corollaries 3.11 and 3.12 that

there are unique forms

u0 = d∗Φ (γ0g0) ∈ C2s+k,λ,δ(Rn, Λ1),
f = d∗(Φ⊗ I)Hμg0 ∈ Ck−1,s(s−1,λ,δ)(CT , Λ1),

such that
du0 = γ0g0,
df = Hμg0

and g0 = Ψμ,0du0 + Ψμdf in CT . Lemma 5.6 implies that the pairs U ′ = (u′, p′)T

and U ′′ = (u′′, p′′)T with

u′ = d∗(Φ⊗ I)g′, u′′ = d∗(Φ⊗ I)g′′,
p′ = d∗(Φ⊗ I)

(
f −Hμu

′ −D1u′) , p′′ = d∗(Φ⊗ I)
(
f − Lμu

′′ −D1u′′)
belong to Ck−2,s(s,λ,δ)(CT , Λ1) × Ck,s(s−1,λ,δ−1)(CT ) and satisfy AU ′ = F and
AU ′′ = F in the layer, where F = (f, u0)

T . By the uniqueness of Theorem 6.1, we
get U ′ = U ′′.

In particular, u′ = u′′, and so d∗(Φ ⊗ I)g′ = d∗(Φ ⊗ I)g′′. Since both g′ and g′′

belong to Rk−1,s(s,λ,δ+1)(CT , Λ2) ∩ Sd, it follows that

Δ (d∗(Φ⊗ I)g′ − d∗(Φ⊗ I)g′′) = d∗ (g′ − g′′) = 0,
d (g′ − g′′) = 0

in CT . Now Corollary 3.12 yields g′ = g′′, as desired. �

Lemma 6.6 implies immediately that the mapping in (6.12) is actually one-to-
one.

An easy calculation shows that the Frechét derivative of the map I + ΨμD
2 at

an arbitrary point

g(0) ∈ Fk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd ⊂ Fk,s(s−1,λ,λ′,δ+1)(CT , Λ2) ∩ Sd

is given by

(I + ΨμD
2)′g(0)g = (I + ΨμW0)g.

Here, the mapping W0 is constructed by means of g(0) and v(1) = d∗(Φ ⊗ I)g(0),
the latter one-form belonging to

Fk−1,s(s,λ,λ′,δ)(CT , Λ1) ⊂ Fk,s(s−1,λ,λ′,δ)(CT , Λ1).

Now Corollary 5.7 shows that the Frechét derivative (I + ΨμD
2)

′
g(0) is a continu-

ously invertible selfmapping of the space Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd, for each
g(0) as above.

Finally, as the Frechét derivative is a continuously invertible linear operator at
each point g(0) of Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2)), the openness of (6.12) follows from
the implicit mapping theorem in Banach spaces, see for instance Theorem 5.2.3 of
[Ham82, p. 101]. �

Theorem 6.5 suggests two directions for the development of the topic. First, one
can use the standard fixed point techniques including mapping degree theory to
handle operator equation (6.10). Second, one can take into account the properties
of the so-called clopen set.
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Corollary 6.7. Assume n ≥ 2. Let s ≥ 1 and k ≥ 2 be integers, 0 < λ < λ′ < 1,
and let n/2 < δ < n be different from n − 2 and n − 1. If the range of mapping
(6.12) is closed then it coincides with the whole destination space.

Proof. Since the destination space is convex, it is connected. As is known, the only
clopen (closed and open) sets in a connected topological vector space are the empty
set and the space itself. Hence, the range of the mapping I +ΨμD

2 is closed if and
only if it coincides with the whole destination space. �

When combined with Lemma 6.4, Theorem 6.5 implies that the Navier-Stokes
equations induce an open noncoercive mapping in the function spaces under con-
sideration.

Corollary 6.8. Suppose n ≥ 2. Let s ≥ 1 and k ≥ 2 be integers, 0 < λ < λ′ < 1,
and let n/2 < δ < n be different from n − 2 and n − 1. Then, for any pair

U (0) = (u(0), p(0))T of Fk−1,s(s,λ,λ′,δ)(CT , Λ1)∩Sd∗ ×Fk−1,s(s−1,λ,λ′,δ−1)(CT ), such
that

du(0) ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2),

AU (0) ∈ Fk−1,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ ,

there is ε > 0 with the property that for all data F = (f, u0)
T of the product

Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ satisfying the estimate

‖d(f − (Hμ+D1)u(0))‖Fk−1,s(s,λ,λ′,δ+1)(·)+‖d(u0−γ0u
(0))‖C2s+k,λ,δ+1(·) < ε (6.13)

the nonlinear equation AU = F has a unique solution U = (u, p)T in

Fk−1,s(s,λ,λ′,δ)(CT , Λ1) ∩ Sd∗ ×Fk−1,s(s−1,λ,λ′,δ−1)(CT )
with du ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2).

The proof of the corollary actually shows that ‖u − u(0)‖Fk−1,s(s,λ,λ′,δ)(·) ≤ c ε,

where c is a constant depending only on certain norms of the potentials d∗(Φ⊗ I)
and Ψμ, Ψμ,0, and the inverse operator (I + ΨμW0)

−1, but not on the data f and

u0. Here, the operator W0 is constructed by means of the forms g(0) = du(0) and
v(1) = u(0).

Proof. By Lemma 4.5, the volume parabolic potential Ψμ induces bounded linear
operators

Ck+1,s(s,λ,δ+1)(CT ) → Ck+1,s(s,λ,δ+1)(CT ) ∩ DHμ
,

Ck,s(s,λ′,δ+1)(CT ) → Ck,s(s,λ′,δ+1)(CT ) ∩ DHμ
,

and hence a bounded linear operator

Fk,s(s,λ,λ′,δ+1)(CT ) → Fk,s(s,λ,λ′,δ+1)(CT ) ∩ DHμ
. (6.14)

Similarly, Lemma 4.5 implies that the Poisson parabolic potential Ψμ,0 induces
a bounded linear operator

C2s+k+1,λ,δ+1(Rn) → Ck+1,s(s,λ,δ+1)(CT ) ∩ DHμ
.

On the other hand, by Theorem 2.3, the space C2s+k+1,λ,δ+1(Rn) is continuously

embedded into the space C2s+k,λ′,δ+1(Rn). Hence it follows that the potential Ψμ,0

induces a bounded linear operator

C2s+k+1,λ,δ+1(Rn) → Ck,s(s,λ′,δ+1)(CT ) ∩ DHμ ,
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and so a bounded linear operator

C2s+k+1,λ,δ+1(Rn) → Fk,s(s,λ,λ′,δ+1)(CT ) ∩ DHμ
. (6.15)

We now apply Lemma 6.4 to see that the form g(0) = du(0) is a solution to the
equation

(I + ΨμD
2)g(0) = g

(0)
0

with the right-hand side g
(0)
0 := Ψμ,0dγ0u

(0) + Ψμd(Hμ +D1)u(0) belonging to the

space Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2). Set

g0 = Ψμ,0du0 + Ψμdf,

which belongs to Fk−1,s(s,λ,λ′,δ+1)(CT , Λ2) by Lemma 4.5. An immediate calcula-
tions shows that

‖g0 − g
(0)
0 ‖Fk−1,s(s,λ,λ′,δ+1)(CT ,Λ2)

≤ ‖Ψμ,0‖ ‖d(u0 − γ0u
(0))‖C2s+k,λ,δ+1(Rn,Λ2)

+ ‖Ψμ‖ ‖df − d(Hμ +D1)u(0)‖Fk−1,s(s,λ,λ′,δ+1)(CT ,Λ2)

where ‖Ψμ‖ and ‖Ψμ,0‖ are the norms of bounded linear operators (6.14) and (6.15),
respectively.

If ε > 0 in the estimate (6.13) is small enough, then Theorem 6.5 shows that

there is a solution g ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2)∩Sd to the equation g+ΨμD
2g = g0.

Finally, the pair
u = d∗(Φ⊗ I)g,
p = d∗(Φ⊗ I)

(
f −Hμu−D1u

)
belongs to Fk−1,s(s,λ,λ′,δ)(CT , Λ1) ∩ Sd∗ ×Fk−1,s(s−1,λ,λ′,δ−1)(CT ) and satisfies the
nonlinear equation AU = F , which is due to Lemma 6.4. Moreover, du = g belongs
to Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2), as desired. �

In the strict sense of the word Corollary 6.8 is not an open mapping theorem,
for neither the domain nor the target space has been fixed for the Navier-Stokes
equations. In order to strengthen the assertion we turn to the framework of metric
spaces. For this purpose, denote by DA the set of all pairs U = (u, p)T in the
product

Fk−1,s(s,λ,λ′,δ)(CT , Λ1) ∩ Sd∗ ×Fk−1,s(s−1,λ,λ′,δ−1)(CT ),
such that

du ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2),

AU ∈ Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ .

SinceA is nonlinear, the set DA fails to bear a vector space structure. We topologise
it under the metric

d(U, V ) := ‖U − V ‖+ ‖du− dv‖+ ‖AU −AV ‖,
where

‖U − V ‖ = ‖U − V ‖Fk−1,s(s,λ,λ′,δ)(CT ,Λ1)×Fk−1,s(s−1,λ,λ′,δ−1)(CT ),

‖du− dv‖ = ‖du− dv‖Fk−1,s(s,λ,λ′,δ+1)(CT ,Λ2),

‖AU −AV ‖ = ‖AU −AV ‖Fk,s(s,λ,λ′,δ)(CT ,Λ1)×C2s+k+1,λ,δ(Rn,Λ1)

for U = (u, p)T and V = (v, q)T in DA.
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Since the weighted Hölder spaces are complete, we conclude immediately that the
metric space DA is complete, too. Indeed, choose a Cauchy sequence Uν = (uν , pν)

T

in DA. By the above, the sequences {Uν}, {duν} and {AUν} converge in the Banach
spaces

Fk−1,s(s,λ,λ′,δ)(CT , Λ1) ∩ Sd∗×Fk−1,s(s−1,λ,λ′,δ−1)(CT ), Fk−1,s(s,λ,λ′,δ+1)(CT , Λ2),

Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ ,

respectively. Let U = (u, p)T stand for the limit of {Uν}. A familiar argument
using embedding theorems and the continuity of the operators d1 and A in their
domains shows that the limits of the sequences {duν} and {AUν} just amount to
du and AU , respectively. Thus,

du ∈ Fk−1,s(s,λ,λ′,δ+1)(CT , Λ2),

AU ∈ Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ .

Moreover, if h ∈ H≤m is a harmonic polynomial of suitable degree in R
n, then∫

Rn

du(x)h(x) dx = lim
ν→∞

∫
Rn

duν(x)h(x) dx = 0

because duν ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) for all ν = 1, 2, . . .. Hence it follows that

du ∈ Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) and U ∈ DA, which was to be proved.

Corollary 6.9. Suppose n ≥ 2, s and k ≥ 2 are positive integers, 0<λ<λ′ < 1,
and n/2 < δ < n is different from n− 2 and n− 1. Then the mapping

A : DA → Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗ (6.16)

is continuous, injective and its range is open.

Proof. Indeed, the continuity of mapping (6.16) follows from the very construction
of the space DA. By Theorem 6.1, it is injective. Fix an element U (0) of DA.
Denote by ‖d1‖ the norm of the exterior derivative which maps

Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗

continuously into

Fk−1,s(s,λ,λ′,δ+1)(CT , Λ2)× C2s+k,λ,δ+1(Rn, Λ2) ∩ Sd.

Then, for any pair F = (f, u0)
T of

Fk,s(s,λ,λ′,δ)(CT , Λ1)× C2s+k+1,λ,δ(Rn, Λ1) ∩ Sd∗

satisfying

‖AU (0) − F‖Fk,s(s,λ,λ′,δ)(CT ,Λ1)×C2s+k+1,λ,δ(Rn,Λ1) <
ε

‖d1‖ ,

we get estimate (6.13) with the constant ε as in Corollary 6.8. Thus, the statement
follows immediately from Corollary 6.8. �

Remark 6.10. For n ≥ 3 and n/2 < δ < n − 1 we need not work with the sophis-

ticated scale Rk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd of function spaces. We may simply use

the scale Fk−1,s(s,λ,λ′,δ+1)(CT , Λ2) ∩ Sd. instead, which makes the exposition more
transparent.
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We finish the section by mentioning a familiar example by P. Fatou (1922). He
constructed a holomorphic mapping f(z) of C2 whose Jacobi matrix f ′(z) has a
constant determinant different from zero. The mapping f is a homeomorphism
onto the image, however, the image of f leaves out a closed subset of C

2 with
nonempty interior. This shows that nonlinear Fredholm mappings may behave
rather intricately.
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Part 3. Appendix

7. Properties of weighted Hölder spaces

Recall that the scale of weighted Hölder spaces on R
n we deal with is introduced

in Section 2. We now describe briefly the standard properties of these spaces. They
are similar to more common weighted Sobolev space that we consider in Section 8.

Lemma 7.1. If s is a positive integer then Cs,0,δ(Rn) is embedded continuously
into Cs−1,λ,δ(Rn) for any 0 < λ ≤ 1.
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Proof. If u ∈ C1,0,δ(Rn) then by the mean value theorem of Lagrange for each
x, y ∈ R

n there is ϑ ∈ (0, 1) such that

|u(x)− u(y)|
|x− y| =

∣∣∣ n∑
i=1

∂iu(xθ)(y
i − xi)

∣∣∣
|x− y| ≤

( n∑
i=1

|∂iu(xθ)|2
)1/2

,

where xϑ = x+ ϑ(y − x). Hence,

(w(x, y))δ+λ |u(x)− u(y)|
|x− y|λ

≤
(w(x, y)
w(xϑ)

)δ+λ( |x− y|
w(xϑ)

)1−λ( n∑
i=1

(w(xϑ))
2(δ+1)|∂iu(xϑ)|2

)1/2

.

Since 0 < λ ≤ 1, it follows from (2.3) that

〈u〉λ,δ,Rn ≤ c

n∑
i=1

‖∂iu‖C0,0,δ+1(Rn)

for all u ∈ C1,0,δ(Rn), where c is a constant independent of u.
As is well known, the space Cs,0(B1) is embedded continuously into Cs−1,λ(B1),

if s = 1, 2, . . . and 0 < λ ≤ 1. Thus, C1,0,δ(Rn) is embedded continuously into
C0,λ,δ(Rn) and Cs,0,δ(Rn) is embedded continuously into Cs−1,λ,δ(Rn), this latter
follows by induction. �

Lemma 7.2. If s is a positive integer, then the norm of Cs,λ,δ(Rn) is equivalent
to the norm ∑

|α|=s

〈∂αu〉λ,B1
+ ‖u‖Cs,0,δ(Rn) +

∑
|α|=s

〈∂αu〉λ,δ+s,Rn .

Proof. By definition,∑
|α|=s

〈∂αu〉λ,B1
+ ‖u‖Cs,0,δ(Rn) +

∑
|α|=s

〈∂αu〉λ,δ+s,Rn ≤ ‖u‖Cs,λ,δ(Rn)

for all u ∈ Cs,λ,δ(Rn). On the other hand, according to Lemma 7.1 there is a
positive constant c such that∑

|α|≤s−1

〈∂αu〉λ,B1
+

∑
|α|≤s−1

〈∂αu〉λ,δ+|α|,Rn ≤ c ‖u‖Cs,0,δ(Rn)

for all u ∈ Cs,λ,δ(Rn). This establishes the lemma. �

Example 7.3. Clearly, the function (w(x))−δ belongs to Cs,0,δ(Rn) for all s ∈ Z≥0.
The function

|x|λ
(w(x))δ+λ

belongs to C0,λ,δ(Rn) if 0 < λ ≤ 1. Indeed, it obviously belongs to C∞
loc(R

n) and

(w(x))δ|x|λ
(w(x))δ+λ

≤ (w(x))δ+λ

(w(x))δ+λ
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does not exceed one. Moreover, if |x − y| ≤ |x|/2, then (2.1)-(2.3) and the mean
value theorem of Lagrange yield

(w(x, y))δ+λ ||x|λ(w(x))−(δ+λ) − |y|λ(w(y))−(δ+λ)|
|x− y|λ

≤ (w(x, y))δ+λ

(w(x))δ+λ

||x|λ − |y|λ|
|x− y|λ +

|y|λ(w(x, y))δ+λ|((w(x))−(δ+λ) − (w(y))−(δ+λ)|
|x− y|λ

≤ 2δ+λ +
|y|λ|x− y|1−λ

w(x, y)

(w(x, y))δ+λ+1|((w(x))−(δ+λ) − (w(y))−(δ+λ)|
|x− y|

≤ 2δ+λ +
|y|λ|x− y|1−λ

w(x, y)
|δ+λ| (w(x, y))

δ+λ+1

(w(xϑ))δ+λ+1

which is dominated by a constant independent of x and y.

Lemma 7.4. The norm ‖u‖Cs,λ,δ(Rn) is equivalent to the norm

∑
|α|=s

〈∂αu〉λ,B1
+‖u‖Cs,0,δ(Rn)+

∑
|α|=s

sup
|x−y|≤|x|/2

x �=y

|(w(x))δ+λ+|α|∂αu(x)−(w(y))δ+λ+|α|∂αu(y)|
|x− y|λ .

Proof. Cf. [MR04] for weighted Hölder spaces on an infinite cone. One should
consider the cases δ + λ ≤ 1 and δ + λ > 1 separately. We restrict ourselves to the
second case. On the one hand side, we get

|(w(x))δ+λu(x)− (w(y))δ+λu(y)|
|x− y|λ

≤ (w(x, y))δ+λ |u(x)− u(y)|
|x− y|λ +

|(w(x))δ+λ − (w(y))δ+λ|
|x− y|λ |u(y)|

≤ 〈u〉λ,δ,Rn +
(δ + λ)(w(xϑ))

δ+λ−1|x− y|
|x− y|λ |u(y)|

≤ c ‖u‖C0,λ,δ(Rn)

for all u ∈ C0,λ,δ(Rn), where c > 0 is a constant independent of u (cf. Example
7.3).

Conversely, if |x− y| ≤ |x|/2 then, by (2.3), we get w(x, y) ≤
√
13

2
w(x) < 2w(x)

and so

(w(x, y))δ+λ |u(x)− u(y)|
|x− y|λ

≤ 2δ+λ |(w(x))δ+λu(x)− (w(y))δ+λu(y)|
|x− y|λ + 2δ+λ |(w(x))δ+λ − (w(y))δ+λ|

|x− y|λ |u(y)|

≤ 2δ+λ
( |(w(x))δ+λu(x)− (w(y))δ+λu(y)|

|x− y|λ +
(δ + λ)(w(xϑ))

δ+λ−1|x− y|
|x− y|λ |u(y)|

)

≤ c
(
‖u‖C0,0,δ(Rn) + sup

|x−y|≤|x|/2
x �=y

|(w(x))δ+λu(x)− (w(y))δ+λu(y)|
|x− y|λ

)

for all u ∈ C0,λ,δ(Rn), the constant c does not depend on u and may by different
in diverse applications. �

We proceed to prove Theorem 2.3.
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Proof. For the Hölder spaces over bounded domains (i.e., no weight functions are
required) the assertion is well known.

The assertion on the continuous embedding is almost obvious. Indeed, suppose
0 < λ′ ≤ λ ≤ 1 and δ′ ≤ δ. Then (w(x))δ

′ |u(x)| ≤ (w(x))δ|u(x)| and
〈u〉λ′,δ′,Rn

= sup
|x−y|≤|x|/2

x �=y

(w(x, y))δ
′+λ′ |u(x)− u(y)|

|x− y|λ′

= sup
|x−y|≤|x|/2

x �=y

(w(x, y))δ+λ |u(x)− u(y)|
|x− y|λ

( |x− y|
w(x, y)

)λ−λ′

(w(x, y))δ
′−δ

≤ 2λ−λ′ 〈u〉λ,δ,Rn

because |x− y| ≤ |x|+ |y| ≤ 2w(x, y). As C0,λ(B1) is embedded continuously into

C0,λ′
(B1) for λ ≥ λ′ > 0, we see that the space C0,λ,δ(Rn) is embedded continuously

into C0,λ′,δ′(Rn) if moreover δ ≥ δ′. Arguing by induction we see that Cs,λ,δ(Rn) is

embedded continuously into Cs,λ′,δ′(Rn) for all s ∈ Z≥0. Furthermore, from Lemma
7.1 it follows that Cs,λ,δ(Rn) is continuously embedded into Cs−1,1,δ(Rn), and so

Cs,λ,δ(Rn) is embedded continuously into Cs′,λ′,δ′(Rn) provided that s+λ ≥ s′+λ′

and δ ≥ δ′, as desired.
To prove the compactness of this embedding we note that C0,λ(B1) is is em-

bedded compactly into C0,λ′
(B1) for λ > λ′ > 0. We now use the one point

identification of Rn given by the stereographic projection ι into the unit sphere S
n

in R
n+1. Namely, set

ι(x) =
( |x|2 − 1

(w(x))2
,

2x

(w(x))2

)
for x ∈ R

n, cf. (2.4). This is a homeomorphism of Rn onto the complement of the
north pole (1, 0) in S

n, where we write z = (z0, z′′) with z′′ = (z1, . . . , zn) for the
coordinates of Rn. It is easy to check that the inverse for this map is given by the
formula

ι−1(z) =
z′′

1− z0
,

and so we obtain a compactification R̂
n of Rn by adding the infinitely distant point

∞ = ι−1(1, 0) corresponding to the north pole of Sn. By the very construction, the

map ι extends to a homeomorphism of R̂n onto R
n. Moreover, ι is a diffeomorphism

of R̂n onto S
n, for

∂iι0 =
4xi

(w(x))4
, if 1 ≤ i ≤ n;

∂iιj =
2δij

(w(x))2
− 4xi xj

(w(x))4
, if 1 ≤ i, j ≤ n.

The function d(x, y) = |ι(x) − ι(y)| is easily verified to be a metric on the

compactification R̂
n. We now prove a compactness criterion a là Ascoli-Arzelá

theorem which is a particular case of Lemma 2.8.

Lemma 7.5. Assume that S is a family in C0,0,δ(Rn) possessing the following
properties:

1) S is bounded in C0,0,δ(Rn);
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2) for any ε > 0 there is δ(ε) > 0 such that for all x, y ∈ R
n with d(x, y) < δ(ε)

we get |(w(x))δ′u(x)− (w(y))δ
′
u(y)| < ε whenever u ∈ S;

3) for any ε > 0 there is δ(ε) > 0 such that for all x, y ∈ B1 with |x− y| < δ(ε)
we have |u(x)− u(y)| < ε whenever u ∈ S.

Then the family S is precompact in any weighted space C0,0,δ′(Rn) of weight
exponent δ′ < δ.

Proof. Fix an arbitrary δ′ < δ. If S is a bounded set in C0,0,δ(Rn) then, for u ∈ S,
the function

u(0)(z) =
{

(wδ′u)(ι−1(z)), if z ∈ S
n \ {(1, 0)},

0, if z = (1, 0),

is continuous on S
n, for

|u(0)(z)| ≤ ‖u‖C0,0,δ(Rn) (w(ι
−1(z)))δ

′−δ

and ι−1(z) → ∞ as z → (1, 0). In particular, the set {u(0)}u∈S satisfies the
hypotheses of the Ascoli-Arzelá theorem and thus it is precompact in the space
C(Sn). Hence it follows that the family S is precompact in the space C0,0,δ′(Rn),
as desired. �

If S is a bounded set in C0,λ,δ(Rn) then it is bounded in the spaces C0,0,δ(Rn)

and C0,λ(B1). Then it is precompact in C0,λ′
(B1) with any 0 ≤ λ′ < λ. Moreover,

we have

(w(x, y))δ|u(x)− u(y)| ≤ ‖u‖C0,λ,δ(Rn)

( |x− y|
w(x, y)

)λ

≤ 2λ ‖u‖C0,λ,δ(Rn)

for all x, y ∈ R
n.

If |x| ≤ |y|, then
|(w(x))δ′u(x)− (w(y))δ

′
u(y)|

≤ (w(x))δ
′ |u(x)− u(y)|+ |(w(x))δ′ − (w(y))δ

′ | |u(y)|

≤ (w(x, y))δ|u(x)− u(y)|
(w(x, y))δ−δ′ + (

√
2)δ

|(w(x))δ′ − (w(y))δ
′ |

(w(x, y))δ
(w(y))δ|u(y)|

because 0 ≤ δ′ < δ and w(x) ≤ w(x, y) ≤ √
2w(y). Combining this with the

aforegoing inequality yields

|(w(x))δ′u(x)− (w(y))δ
′
u(y)|

≤
( |x− y|
w(x, y)

)λ ‖u‖C0,λ,δ(Rn)

(w(x, y))δ−δ′ + (
√
2)δ

|(w(x))δ′ − (w(y))δ
′ |

(w(x, y))δ′
‖u‖C0,0,δ(Rn)

(w(x, y))δ−δ′

(7.1)

for all x, y ∈ R
n satisfying |x| ≤ |y|. Clearly, the quotient

|(w(x))δ′ − (w(y))δ
′ |

(w(x, y))δ′

does not exceed 1. Note that by symmetry estimate (7.1) holds actually for all
x, y ∈ R

n.
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Fix ε > 0. As S is bounded in C0,λ,δ(R
n
) and δ > δ′, it follows that there is

R > 0 such that ( |x− y|
w(x, y)

)λ ‖u‖C0,λ,δ(Rn)

(w(x, y))δ−δ′ <
ε

2
,

(
√
2)δ

|(w(x))δ′ − (w(y))δ
′ |

(w(x, y))δ′
‖u‖C0,0,δ(Rn)

(w(x, y))δ−δ′ <
ε

2

for all x, y ∈ R
n satisfying w(x, y) > R, and for all u ∈ S.

Since the map ι and the function w(x) are continuous on R̂
n, they are uniformly

continuous on the closed ball BR. On BR the metric d(x, y) defines the same
topology as the standard metric |x−y|. Therefore, there is a small number δ(ε) > 0
with the property that ( |x− y|

w(x, y)

)λ ‖u‖C0,λ,δ(Rn)

(w(x, y))δ−δ′ <
ε

2
,

(
√
2)δ

|(w(x))δ′ − (w(y))δ
′ |

(w(x, y))δ′
‖u‖C0,0,δ(Rn)

(w(x, y))δ−δ′ <
ε

2

for all x, y ∈ BR satisfying d(x, y) < δ(ε), and for all u ∈ S.
Now, estimate (7.1) shows that the family S satisfies the hypotheses of Lemma

7.5. Hence, S is precompact in C0,0,δ′(Rn), and so S contains a sequence {uk} which
converges to a function in C0,0,δ′(Rn). There is no loss of generality in assuming
that the limit function is zero. As

(w(x, y))δ
′+λ′ |u(x)− u(y)|

|x− y|λ′

=
(
(w(x, y))δ+λ |u(x)− u(y)|

|x− y|λ
)λ′/λ ((w(x, y))δ

′ |u(x)− u(y)|)1−λ′/λ

(w(x, y))(δ−δ′)λ′/λ ,

we get

〈uk〉λ′,δ′,Rn ≤ c 〈uk〉λ
′/λ

λ,δ,Rn‖uk‖1−λ′/λ
C0,0,δ′ (Rn)

with c a constant independent of k. Hence, the sequence {uk} converges to zero

in C0,λ′,δ′(Rn), too. Thus, the family S is precompact in C0,λ′,δ′(Rn). Arguing by

induction we deduce that Cs,λ,δ(Rn) is embedded compactly into Cs,λ′,δ′(Rn), if
s ∈ Z≥0 and λ > λ′, δ > δ′.

Finally, suppose that s+λ > s′+λ′ and δ > δ′. Then s > s′ and the embedding
of Cs,λ,δ(Rn) into Cs′,λ′,δ′(Rn) factors through

Cs,λ,δ(Rn) ↪→ Cs′,1,δ′(Rn) ↪→ Cs′,λ′,δ′(Rn).

The first of these embeddings is compact and the second one is continuous. This
establishes Theorem 2.3. �

As a byproduct of the proof of Theorem 2.3 we see that the norm ‖u‖Cs,λ,δ(Rn)

is equivalent to ∑
|α|≤s−1

‖∂αu‖C0,1,δ+|α|(Rn) +
∑
|α|=s

‖∂αu‖C0,λ,δ+s(Rn).

Using the scale of weighted Hölder spaces on R
n we introduce in Section 2 the

scale Ck,s(s,λ,δ)(CT ) of anisotropic Hölder spaces in the layer CT = R
n × [0, T ].

These Banach spaces are often referred to as parabolic spaces. A proof similar to
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that of Lemma 7.4 shows that the norm ‖u‖Cs(s,λ,δ)(CT ) is actually equivalent the
norm

‖u‖
Cs(s,λ,0)(CT (B1))

+ ‖u‖Cs(s,0,δ)(CT )

+
∑

|α|+2j≤2s

sup
t∈[0,T ]

sup
|x−y|≤|x|/2

x �=y

|(w(x))δ+λ+|α|∂α
x ∂

j
t u(x, t)− (w(y))δ+λ+|α|∂α

x ∂
j
t u(y, t)|

|x− y|λ

+
∑

|α|+2j≤2s

sup
x∈Rn

(w(x))δ+|α| sup
t′,t′′∈[0,T ]

t′ �=t′′

|∂α
x ∂

j
t u(x, t

′)− ∂α
x ∂

j
t u(x, t

′′)|
|t′ − t′′|λ/2 .

We finish this section by a few explicit examples of functions of parabolic spaces
in the layer CT .
Example 7.6. The function

f(x, t) = (1 + t)−γ/2
(
1 +

|x|2
1 + t

)−δ/2

= (1 + t)−(γ−δ)/2
(
1 + t+ |x|2

)−δ/2

belongs to Cs(s,0,δ)(CT ) for all s ∈ Z≥0. Indeed, we get

|f(x, t)| ≤ (1 + t)−(γ−δ)/2(w(x))−δ.

Furthermore,

∂if(x, t) = (1 + t)−γ/2 −δ xi

1 + t

(
1 +

|x|2
1 + t

)− δ+2
2

,

∂i∂jf(x, t) =
−δδi,j

(1 + t)
γ+2
2

(
1 +

|x|2
1 + t

)− δ+2
2

+
δ(δ + 2)xixj

(1 + t)
γ+4
2

(
1 +

|x|2
1 + t

)− δ+4
2

whence

|∂if(x, t)| ≤ δ

(1 + t)
γ−δ
2

(1 + t+ |x|2)− δ+1
2 ≤ δ (w(x))−(δ+1),

|∂i∂jf(x, t)| ≤ c

(1 + t)
γ−δ
2

(1 + t+ |x|2)− δ+2
2 ≤ c (w(x))−(δ+2),

where the constant c is independent of x and t and it need not be the same in
diverse applications. The differentiation in t does not affect the weight exponent,
for

∂tf(x, t) =
δ |x|2

2(1 + t)
γ+4
2

(
1 +

|x|2
1 + t

)− δ+2
2 − γ

2

1

(1 + t)
γ+2
2

(
1 +

|x|2
1 + t

)− δ
2

,

and so

|∂tf(x, t)| ≤ c

(1 + t)
γ−δ+2

2

(1 + t+ |x|2)− δ
2 ≤ c (w(x))−δ.

By induction,

|∂α
x ∂

j
t f(x, t)| ≤ c

(1 + t)(γ−δ+2j)/2

(
1 + t+ |x|2

)−(δ+|α|)/2

≤ c (w(x))δ+|α|

for all (x, t) ∈ CT , the constant c depending only on α, j and δ, γ, T , as desired.
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Note that the function f of this example satisfies∫
Rn

|f(x, t)|2 dx < ∞

for any one t ≥ 0 if and only if δ > n/2 (cf. Lemma 2.5).

Example 7.7. The function

1

(w(x))δ+λ

( |x|2
1 + t

)λ/2

+
1

(w(x))δ
|t|λ/2

belongs to Cs(0,λ,δ)(CT ), for any 0 < λ ≤ 1.

Example 7.8. For the function

u(x, t) =
sinx1

(1 + |x|2)δ/2 t

in the layer CT with finite T > 0, we get

u ∈ Cs(0,λ,δ)(CT ),
Hμu ∈ Cs(0,λ,δ)(CT )

and γ0(u) = 0, but ∂1u �∈ Cs(0,λ,δ+1)(CT ) and hence u �∈ Cs(1,λ,δ)(CT ) (cf. the a
priori estimate of Lemma 4.7).

8. The Laplace operator in weighted Sobolev spaces over R
n

Given a (possibly, unbounded) domain X in R
n and 1 ≤ q < ∞, we use the

designation Lq(X ) for the space of all (equivalence classes of) measurable functions
u in X , such that the Lebesgue integral of |u|q over X is finite. When equipped
with the norm

‖u‖Lq(X ) =
(∫

X
|u|q dx

)1/q

,

the space Lq(X ) is Banach. More generally, for s = 0, 1, . . ., we denote by W s,q(X )
the completion of C∞

comp(X ) with respect to the norm

‖u‖W s,q(X ) =
(∫

X

∑
|α|≤s

|∂αu|q dx
)1/q

.

As usual (cf. [McO79]), we denote by W s,q,δ(Rn) the weighted Sobolev spaces

with the weight index δ ∈ R. On using the same weight function w(x) =
√

1 + |x|2
as above we define W s,q,δ(Rn) to be the completion of C∞

comp(R
n) with respect to

the norm

‖u‖W s,q,δ(Rn) =
( ∑

|α|≤s

‖wδ+|α| ∂αu‖qLq(Rn)

)1/q

,

where s is a nonnegative integer, 1 ≤ q ≤ ∞ and δ an arbitrary real number.
The following result is due to [McO79].

Theorem 8.1. Let 1 < q < ∞. The Laplace operator Δ induces a bounded linear
operator

Δ : W 2,q,δ(Rn) → W 0,q,δ+2(Rn), (8.1)

which is Fredholm provided that δ − n + 2 + n/q �∈ Z≥0 and −δ − n/q �∈ Z≥0.
Moreover,

1) (8.1) is an isomorphism if −n/q < δ < n− 2− n/q;
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2) (8.1) is an injection with closed range consisting of those f ∈ W 0,q,δ+2(Rn)
which satisfy ∫

Rn

f(x)h(x)dx = 0

for all h ∈ H≤m, if n− 2−n/q+m < δ < n− 2−n/q+m+1 with some m ∈ Z≥0;
3) (8.1) is a surjection with kernel H≤m if −n/q −m− 1 < δ < −n/q −m with

some m ∈ Z≥0;
4) (8.1) fails to have a closed range if δ = −m − n/q or δ = m + n − 2 − n/q

with some m ∈ Z≥0.

Clearly, for n = 2 no isomorphism is possible in (8.1). By the Hölder inequality,
the space W 0,q,δ+2(Rn) is continuously embedded into L2(Rn) provided that q ≥ 2
and

δ >
n

2
− 2− n

q
. (8.2)

Hence, if using the scale W 0,q,δ+2(Rn) for solving the Navier-Stokes equations, a
finite energy estimate might be available only if inequality (8.2) is fulfilled.

By Theorem 2.8 of [Beh11], Theorem 8.1 extends to the Laplace-Beltrami oper-
ator in weighted Hölder spaces over a compact closed manifold with conical singu-
larity.

To avoid the irregular action of the Laplace operator in the scale Ck,s(s,λ,δ)(Ct)
we set

C∞,s(s,λ,δ)(CT ) =
∞⋂
k=0

Ck,s(s,λ,δ)(CT ).

This is a Fréchet space topologised under the family of norms ‖u‖Ck,s(s,λ,δ)(CT ),

where k = 0, 1, . . ..

Corollary 8.2. Let n ≥ 2 and k, s ∈ Z≥0, 0 < λ ≤ 1. The Laplace operator Δ
induces a continuous linear operator

Δ : C∞,s(s,λ,δ)(CT ) → C∞,s(s,λ,δ+2)(CT ), (8.3)

which is actually normally solvable provided that δ − n + 2 �∈ Z≥0 and −δ �∈ Z≥0.
Moreover,

1) (8.3) is an isomorphism if 0 < δ < n− 2;
2) (8.3) is an injection whose (closed) range consists of all f ∈ C∞,s(s,λ,δ+2)(CT )

satisfying ∫
Rn

f(x, t)h(x)dx = 0

for all h ∈ H≤m, if n− 2 +m < δ < n− 1 +m with some m ∈ Z≥0;

3) (8.3) is a surjection with kernel Cs,λ/2([0, T ], H≤m) if −m−1 < δ < −m with
some m ∈ Z≥0.

Proof. Lemma 3.9 yields

‖(Φ⊗ I)f‖Ck+2,s(s,λ,δ)(CT ) ≤ c ‖f‖Ck+1,s(s,λ,δ+2)(CT )

for all f ∈ C∞,s(s,λ,δ+2)(CT ), if 0 < δ < n − 2, or for all f ∈ C∞,s(s,λ,δ+2)(CT ) in
the range of (8.3), if n− 2 +m < δ < n− 1 +m. Hence, the assertion follows from
Corollary 3.8. �
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9. A pseudodifferential perturbation of the heat operator

Having in the mind a linearisation of the Navier-Stokes equations we consider
the perturbation Hμ + P of the heat operator by a first order pseudodifferential
operator

Pu =
∑
|α|≤1

P ′
α(x, t)∂

αu+
∑
|α|≤2

P ′′
α (x, t)∂

α(Φ⊗ I)u,

where P ′
α and P ′′

α are (kq × kq) -matrices of smooth functions on CT , kq being the
rank of the bundle Λq.

Lemma 9.1. Suppose that s, k are positive integers, 0 < λ < λ′ < 1 and δ > 0.
If moreover the entries of P ′

α belong to Fk′,s(s−1,λ,λ′,δ′−|α|)(CT ), where k′ ≥ k and
δ′ > 2, and the coefficients P ′′

α vanish, then the operator P induces a compact linear
map

Fk,s(s,λ,λ′,δ)(CT , Λq) → Fk,s(s−1,λ,λ′,δ+2)(CT , Λq).

Proof. As δ > 0 and δ′ > 2 there is δ′′ ≥ 0 with the property that δ′′ < δ and
δ − δ′′ + 2 ≤ δ′. By Lemma 5.2, if S is bounded set in

Fk,s(s,λ,λ′,δ)(CT , Λq) = Ck+1,s(s,λ,δ)(CT , Λq) ∩ Ck,s(s,λ′,δ)(CT , Λq),

then there is a sequence {uν} in S which converges in the space

Fk+1,s(s−1,λ,λ′,δ′′)(CT , Λq) = Ck+2,s(s−1,λ,λ′,δ′′)(CT , Λq) ∩ Ck+1,s(s−1,λ′,δ′′)(CT , Λq).

Without loss of generality we may assume that the sequence {uν} converges to zero
in this space.

Since δ−δ′′+2 ≤ δ′, it follows that δ−δ′′+2−|α| ≤ δ′−|α|. Now, as 0 ≤ δ′′ < δ,
we get by Lemma 2.9 and Theorem 2.6 that

‖P ′
α∂

αuν‖Ck+1,s(s−1,λ,δ+2)(CT ,Λq)

≤ c ‖P ′
α‖Ck+1,s(s−1,λ,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖∂αuν‖Ck+1,s(s−1,λ,δ′′+|α|)(CT ,Λq)

≤ c ‖P ′
α‖Ck′+1,s(s−1,λ,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖uν‖Ck+1+|α|,s(s−1,λ,δ′′)(CT ,Λq)

≤ c ‖P ′
α‖Ck′+1,s(s−1,λ,δ′−|α|)(CT ,Hom(Λq))‖uν‖Ck+2,s(s−1,λ,δ′′)(CT ,Λq)

for all multi-indices α of norm ≤ 1, the constant c is independent of ν and it can
be different in diverse applications.

Finally,

‖P ′
α∂

αuν‖Ck,s(s−1,λ′,δ+2)(CT ,Λq)

≤ c ‖P ′
α‖Ck,s(s−1,λ′,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖∂αuν‖Ck,s(s−1,λ′,δ′′+|α|)(CT ,Λq)

≤ c ‖P ′
α‖Ck′,s(s−1,λ′,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖uν‖Ck+|α|,s(s−1,λ′,δ′′)(CT ,Λq)

≤ c ‖P ′
α‖Ck′,s(s−1,λ′,δ′−|α|)(CT ,Hom(Λq))‖uν‖Ck+1,s(s−1,λ′,δ′′)(CT ,Λq)

for all multi-indices α satisfying |α| ≤ 1, the constant c being independent of ν.
Thus, any sequence {P ′

α∂
αuν} with |α| ≤ 1 converges to zero in the Banach

space Fk,s(s−1,λ,λ′,δ+2)(CT , Λq), as desired. �

Lemma 9.2. Let s, k be positive integers, 0 < λ < λ′ < 1 and δ > 0 satisfy
δ+2−n �∈ Z≥0. If moreover the coefficients P ′

α vanish and the entries of P ′′
α belong
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to Fk′,s(s−1,λ,λ′,δ′−|α|)(CT ), where k′ ≥ k and δ′ > 2, then the operator P induces
a compact linear map

Rk,s(s,λ,λ′,δ)(CT , Λq) → Fk,s(s−1,λ,λ′,δ+2)(CT , Λq).

Proof. As δ > 0 satisfies δ + 2 − n �∈ Z≥0, the continuity of the operator P in
the spaces in question follows immediately from Lemma 3.9 and the remark before
Lemma 5.2.

Since δ > 0 and δ′ > 2 there is δ′′ ≥ 0 with the property that δ′′ < δ and
δ − δ′′ + 2 ≤ δ′. According to Lemma 5.2, if S is a bounded set in

Fk,s(s,λ,λ′,δ)(CT , Λq) = Ck+1,s(s,λ,δ)(CT , Λq) ∩ Ck,s(s,λ′,δ)(CT , Λq),

then there is a sequence {uν} in S converging in the space

Fk+1,s(s−1,λ,λ′,δ′′)(CT , Λq) = Ck+2,s(s−1,λ,λ′,δ′′)(CT , Λq) ∩ Ck+1,s(s−1,λ′,δ′′)(CT , Λq).

Without loss of generality we may assume that the sequence {uν} converges to zero
in this space.

Since δ−δ′′+2 ≤ δ′, it follows that δ−δ′′+2−|α| ≤ δ′−|α|. Now, as 0 ≤ δ′′ < δ,
we get by Lemmata 2.10, 2.9 and Theorem 2.6 that

‖P ′′
α∂

α(Φ⊗ I)uν‖Ck+1,s(s−1,λ,δ+2)(CT ,Λq)

≤ c ‖P ′′
α‖Ck+1,s(s−1,λ,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖∂α(Φ⊗ I)uν‖Ck+1,s(s−1,λ,δ′′+|α|)(CT ,Λq)

≤ c ‖P ′′
α‖Ck+1,s(s−1,λ,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖uν‖Ck+|α|,s(s−1,λ,δ′′)(CT ,Λq)

≤ c ‖P ′′
α‖Ck′+1,s(s−1,λ,δ′−|α|)(CT ,Hom(Λq))‖uν‖Ck+2,s(s−1,λ,δ′′)(CT ,Λq)

for all multi-indices α of norm ≤ 2, the constant c is independent of ν and it can
be different in diverse applications.

Once again using Lemmata 2.10, 2.9 and Theorem 2.6 yields

‖P ′′
α∂

α(Φ⊗ I)uν‖Ck,s(s−1,λ′,δ+2)(CT ,Λq)

≤ c ‖P ′′
α‖Ck,s(s−1,λ′,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖∂α(Φ⊗ I)uν‖Ck,s(s−1,λ′,δ′′+|α|)(CT ,Λq)

≤ c ‖P ′′
α‖Ck′,s(s−1,λ′,δ−δ′′+2−|α|)(CT ,Hom(Λq))‖uν‖Ck−1+|α|,s(s−1,λ′,δ′′)(CT ,Λq)

≤ c ‖P ′′
α‖Ck′,s(s−1,λ′,δ′−|α|)(CT ,Hom(Λq))‖uν‖Ck+1,s(s−1,λ′,δ′′)(CT ,Λq)

for all multi-indices α satisfying |α| ≤ 2, the constant c being independent of ν.
We have thus proved that each sequence {P ′′

α∂
α(Φ⊗I)uν} with |α| ≤ 2 converges

to zero in the Banach space Fk,s(s−1,λ,λ′,δ+2)(CT , Λq). Obviously, this establishes
the lemma. �

The following corollary is perhaps of limited interest, for the assumptions are
hardly verifiable.

Corollary 9.3. Under the hypotheses of Lemma 9.1 and Lemma 9.2, if moreover
the operator ΨμP maps Rk,s(s,λ,λ′,δ)(CT , Λq) into itself, then the linear operator

I + ΨμP : Rk,s(s,λ,λ′,δ)(CT , Λq) → Rk,s(s,λ,λ′,δ)(CT , Λq) (9.1)

is Fredholm of index zero.

Proof. The operator

ΨμP : Rk,s(s,λ,λ′,δ)(CT , Λq) → Rk,s(s,λ,λ′,δ)(CT , Λq)
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is compact because of Lemmata 9.1 and 9.2 and Theorem 4.6. Then the Riesz-
Schauder theory implies that operator (9.1) is Fredholm and its index just amounts
to zero. �

We finish this section by showing that the structure of the nonlinear term D2

changes drastically when passing from n = 2 to n = 3. To this end, pick any two
sufficiently smooth closed differential forms g and h of degree 2 on R

n. If n = 2
then

g = g1,2 dx
1 ∧ dx2,

h = h1,2 dx
1 ∧ dx2,

and so

d ∗ (∗g ∧ d∗h) = d (∗g ∗ d∗h)
= d (∗g d(∗h))
= d(∗g) ∧ d(∗h)

In particular, D2g = d(∗g) ∧ d (∗(Φ⊗ I)g).
If n = 3 then

g = g2,3 dx
2 ∧ dx3 + g3,1 dx

3 ∧ dx1 + g1,2 dx
1 ∧ dx2,

h = h2,3 dx
2 ∧ dx3 + h3,1 dx

3 ∧ dx1 + h1,2 dx
1 ∧ dx2,

and so an easy calculation shows that

∗ (∗g ∧ d∗h) = det

⎛
⎝ dx1 dx2 dx3

g2,3 g3,1 g1,2
∂2h1,2 − ∂3h3,1 ∂3h2,3 − ∂1h1,2 ∂1h3,1 − ∂2h2,3

⎞
⎠ .

This formula certainly applies to D2g = d ∗ (∗g ∧ d∗(Φ⊗ I)g), however, it does not
lead to any manageable expression for the nonlinear term.

10. An energy estimate for T = +∞
In the last section we consider the Navier-Stokes equations in the infinite cylinder

C∞ := R
n × (0,∞) with n = 2 or n = 3.

Lemma 10.1. Let n be 2 or 3, n/2 < δ < n, γ > 0, and let u0 ∈ C2,λ,δ(Rn, Λ1),
f ∈ C1,s(0,λ,δ)(CT , Λ1) for all T > 0 and

|∂αf(x, t)| ≤ c (1 + |x|2)− δ+|α|
2 (1 + t)−

γ+2
2 (10.1)

for all (x, t) ∈ R
n × [0,∞) and |α| ≤ 1, where c > 0 is a constant independent of

(x, t). If U = (u, p)T belongs to Cs(1,λ,δ)(CT , Λ1) × C1,s(0,λ,δ−1)(CT ) for all T > 0
and satisfies

AU = (f, u0)
T

in R
n × [0,∞), then sup

t≥0
‖u(·, t)‖L2(Rn) < ∞.

Proof. By Lemma 3.9, we get f = (d∗d+ dd∗) (Φ⊗ I)f. Set

f ′ = d∗d(Φ⊗ I)f ∈ Cs(0,λ,δ)(CT , Λ1) ∩ Sd∗ ,
p′ = d∗(Φ⊗ I)f ∈ C1,s(0,λ,δ−1)(CT ),

then the pair U ′ = (u, p− p′)T belongs to Cs(1,λ,δ)(CT , Λ1)× C1,s(0,λ,δ−1)(CT ) and
satisfies

AU ′ = (f ′, u0)
T (10.2)

in R
n × [0,∞).
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According to [Hop51] there is a weak solution U ′′ = (u′′, p′′)T to the Navier-
Stokes equations

AU ′′ = (f ′, u0)
T

in R
n× [0,∞), cf. also Theorem 3.1 of Chapter III in [Tem79]. Moreover, as δ < n,

it follows from Lemma 3.7 and (10.1) that

(1 + |x|2)δ/2 |d∗d(Φ⊗ I)f(x, t)| ≤ ‖f(·, t)‖C0,λ,δ(Rn,Λ1)

≤ c ‖f(·, t)‖C1,0,δ(Rn,Λ1)

≤ c (1 + t)−(γ+2)/2

with some constant c > 0 independent of (x, t) and different in diverse applications.
Hence ∫ ∞

0

‖f ′(·, t)‖2L2(Rn,Λ1)dt ≤ c

∫
Rn

dx

(1 + |x|2)δ/2
∫ ∞

0

dt

(1 + t)(γ+2)/2

≤ c

because δ > n/2 and γ > 0. The constant c depends on f .
Since d∗f ′ = 0 we conclude that the weak solution u′′ satisfies the energy estimate

‖u′′(·, t)‖2L2(Rn,Λ1) + 2μ

∫ t

0

‖u′′(·, s)‖2L2(Rn,Λ1)ds

≤ ‖u0‖2L2(Rn,Λ1) + 2μ

∫ t

0

(u′′(·, s), f ′(·, s))L2(Rn,Λ1) ds

(see Theorem 3.1 of Chapter III and § 3.6 in [Tem79]). Moreover, as the pair
U ′ = (u, p− p′)T is also a strong solution to the Navier-Stokes equations of (10.2)
in CT for any finite T > 0, Theorem 3.8 of Chapter III in [Tem79]) actually implies
that u = u′′ in CT for each T > 0.

Finally, since

(u(·, t), f ′(·, t))L2(Rn,Λ1) ≤ ‖u(·, t)‖L2(Rn,Λ1) ‖f ′(·, t)‖L2(Rn,Λ1)

≤ ‖u(·, t)‖2L2(Rn,Λ1) +
1

4
‖f ′(·, t)‖2L2(Rn,Λ1),

we conclude that

‖u(·, t)‖2L2(Rn,Λ1) = ‖u′′(·, t)‖2L2(Rn,Λ1)

≤ ‖u0‖2L2(Rn,Λ1) +
μ

2

∫ ∞

0

‖f ′(·, t)‖2L2(Rn,Λ1)dt

< ∞

holds for all t ∈ [0, T ] with finite T , as desired. �

Note that for any positive δ and γ there are constants Q > 0 and c with the
property that

(1 + |x|2)δ/2(1 + t)(γ+2)/2 ≤ c (1 + t+ |x|2)Q/2
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for all (x, t) ∈ R
n × [0,∞). For example, one can choose Q = 2 max{δ, γ + 2} and

c = 1.
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