Transmorphic:
Mapping direct
Manipulation to
Source Code
Transformations

Robin Schreiber, Robert Krahn, Daniel H. H. Ingalls,
Robert Hirschfeld

Technische Berichte Nr. 110

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\B,O'W ers J.Z‘é-
. ‘ Hasso
@ﬁ@ Plattner
"T Kemp Institut

IT Systems Engineering | Universitat Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitdt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitat Potsdam | 110

Robin Schreiber | Robert Krahn | Daniel H. H. Ingalls | Robert Hirschfeld

Transmorphic

Mapping direct Manipulation to Source Code Transformations

Universitdtsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet tiber http://dnb.dnb.de/ abrufbar.

Universititsverlag Potsdam 2017
http:/ /verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts fiir Softwaresystemtechnik
an der Universitdt Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschiitzt.

Online veroffentlicht auf dem Publikationsserver der Universitdat Potsdam
URN urn:nbn:de:kobv:517-opus4-98300

http:/ /nbn-resolving.de /urn:nbn:de:kobv:517-opus4-98300

Zugleich gedruckt erschienen im Universitdtsverlag Potsdam:
ISBN 978-3-86956-387-9

mailto:verlag@uni-potsdam.de

Defining Graphical User Interfaces (GUIs) through functional abstractions can
reduce the complexity that arises from mutable abstractions. Recent examples, such
as Facebook’s React GUI framework have shown, how modelling the view as a func-
tional projection from the application state to a visual representation can reduce the
number of interacting objects and thus help to improve the reliabiliy of the system.
This however comes at the price of a more rigid, functional framework where pro-
grammers are forced to express visual entities with functional abstractions, detached
from the way one intuitively thinks about the physical world.

In contrast to that, the GUI Framework Morphic allows interactions in the graphical
domain, such as grabbing, dragging or resizing of elements to evolve an application
at runtime, providing liveness and directness in the development workflow. Mod-
elling each visual entity through mutable abstractions however makes it difficult to
ensure correctness when GUISs start to grow more complex. Furthermore, by evolv-
ing morphs at runtime through direct manipulation we diverge more and more from
the symbolic description that corresponds to the morph. Given that both of these
approaches have their merits and problems, is there a way to combine them in a
meaningful way that preserves their respective benefits?

As a solution for this problem, we propose to lift Morphic’s concept of direct
manipulation from the mutation of state to the transformation of source code. In par-
ticular, we will explore the design, implementation and integration of a bidirectional
mapping between the graphical representation and a functional and declarative
symbolic description of a graphical user interface within a self hosted development
environment. We will present Transmorphic, a functional take on the Morphic GUI
Framework, where the visual and structural properties of morphs are defined in
a purely functional, declarative fashion. In Transmorphic, the developer is able to
assemble different morphs at runtime through direct manipulation which is auto-
matically translated into changes in the code of the application. In this way, the
comprehensiveness and predictability of direct manipulation can be used in the con-
text of a purely functional GUI, while the effects of the manipulation are reflected
in a medium that is always in reach for the programmer and can even be used to
incorporate the source transformations into the source files of the application.

Contents

. Introduction|
[r.1. The Morphic GUI Framework]
[r.2. Functional Graphic User Interfaces| .

=

[1.3. Lifting the Concept of Direct Manipul

ation|

[1.4. Contributions|

[2. Technological Foundations of Transmorphic|

[2.1. Immediate Mode and Retained Mode

Rendering|

[2.2. React and the Merits of Functional Programming|.

[2.3. Functional Lenses|

.................

[3. The Transmorphic GUI Framework|
.................
[3.2. Components|
[3.3. Direct Manipulation in Transmorphid|
[3.4. Function Editor]

[4. Implementation of Transmorphic|

..................
[4.2. Scene Graph Representation|

[4.3. Representation of the Symbolic Description|

[4.4. Direct Manipulation API|
[4.5. Source Transformation Lenses|. . . .
[4.6. Bypassing Compilation|.
[4.7. Interfacing with React.js|

[5. Using Transmorphic and Outlook|
[5.1. Buildinga Clockl.
[5.2. Building a Clock in Transmorphig|. .

[5.3. Comparison to other Morphic Implementations|

[5.4. Limitations of Transmorphic.
[5.5. Future Work|

[6. Related Workl
[6.1. Lively Kernel|.

[6.2. Easy Morphic GUI Framework [EMG]

[6.3. Live Programming in Touch Develop|

10
10
11

13
13
14
16
18

Contents

6.4 QML

74

[7. Conclusion|

A PP A1X]

1. Introduction

In this work we will explore the design, implementation and use cases of Transmor-
phic, a functional interpretation of the Morphic GUI Framework, where the visual
and structural properties of morphs are defined in a purely functional and therefore
declarative fashion. The name Transmorphic is derived from the idea of transforming
a morph to different representations, each of which provides its own set of benefits
for the programmer.

1.1. The Morphic GUI Framework

Morphic [24] is a framework for describing graphical user interfaces (GUI), which
was initially introduced in the programming language Self [5]. What distinguishes
Morphic from other GUI frameworks is that it provides a high degree of directness
and liveness when developing an application with a GUL Directness refers to the pos-
sibility for a designer to directly refer to the graphical representation of an interface
and thereby change its visual, structural or behavioral properties. On the other hand
the liveness of Morphic guarantees that any adaptations at runtime are immediately
reflected in the running program. This includes changes in the symbolic description
of a program or manipulations of the GUI elements.

To provide these properties, Morphic represents each visual entity in the GUI by
an object that combines the object specific behavior, state and visual specifications
in itself. These objects are referred to as morphs and can be referenced and altered in
the symbolic domain through textual editing, or alternatively in the visual domain
through direct manipulation by means of a tool called the halo [31]. Morphic is able
to combine these two different views (visual and symbolic) onto a graphical user
interface, allowing people from different backgrounds (i.e. designers or computer
programmers) with different approaches (i.e. visual or abstract reasoning) to work on
the same program. Also, Morphic does not distinguish between development modes
such as run-time or edit-time and remains fully adaptable throughout execution. For
this reason, Morphic is mostly used in the context of live development environments,
such as Squeak/Smalltalk [19]], Self [5] or Lively Kernel [33].

Morphic’s approach is appealing due to its close resemblance to the physical world:
Being able to directly manipulate individual objects at runtime aligns closely with
many people’s intuitive understanding of a rendered GUL

1. Introduction

1.2. Functional Graphic User Interfaces

Mutable abstractions are a very powerful concept in computer programming, since
they are able to closely reify concepts from the real world and are often very efficient
with regards to memory and computation time. However, this power also comes with
a great responsibility, and if used carelessly can significantly increase the complexity
of an application.

Contrary to that, in a purely functional program, state is managed entirely via
the parameter values of the function calls, and never by mutation of information
that is stored behind an address, outside of the execution stack of the program. This
property is also called referential integrity or value based programming and ensures
that the values that a functional program works with are immutable at any point in
execution.

It is important to understand that immutability by itself does not protect from the
complexities of a mutable abstraction, since errors caused by operations that do not
commute or faulty updates are still possible. Based on this explicit way of managing
state, we are, however, able to derive new abstractions that can replace the existing
mutable abstractions in order to make state more manageable.

To clarify this, let us take the problem of synchronizing controller and view in the
MVC design pattern [22]]. There are different approaches to implement this scenario
based on mutable abstractions (i.e. via an observer or mediator pattern). However
in any of these cases we are faced with the constant challenge to replicate any change
that happens inside the model or controller also within the view in order to keep
both representations of information synchronized. The more complex model or view
become, or the more controller and view objects start to interact with each other, the
more effort we have to put into synchronizing both entities. However, if we instead
consider the view to be a functional projection [11] from the model to the rendered
view, the situation starts to look different: Now that every element is explicitly de-
rived from a value inside the model, we no longer need to implement a separate
update mechanism. Instead, we now just evaluate the functional projection together
with the updated model and retrieve an updated view without having to provide a
separate update mechanism. In addition to that, the code for the GUI becomes more
declarative because the relationship between values and visual entities is purely
functional.

In the context of GUI programming, the functional approach can provide us with
a more stable view implementation that also expresses the intent of the view more
clearly, thereby making it more understandable.

1.3. Lifting the Concept of Direct Manipulation

Both Morphic and the functional approach to rendering a GUI have their respective
benefits and liabilities. We argue, that a combination of a functional view description
and the direct manipulation interface of Morphic creates benefits for experts and
beginners alike: From a professional GUI developer’s perspective a combination of

10

1.4. Contributions

both sides would provide the fast prototyping capabilities of Morphic, together with
a functional foundation of the rendered GUI, that helps to reduce the complexity
inside the application. On the other side, novice programmers, who are new to
functional programming, can use Morphic’s direct manipulation interface to get a
helping hand when taking the first steps in a system, where views are described
in a purely functional manner. This combination of programmatic and symbolic
manipulation is also referred to as Prodirect Manipulation [6].

Existing implementations of Morphic build on the fact that the gestalt of a certain
morph is represented by mutable state that we can manipulate through direct manip-
ulation. The problem which remains is how a direct manipulation interface should
be implemented in the context of a system where the representation of the GUI is
essentially free of state.

As a solution to this problem, we propose to lift the concept of direct manipulation
from the mutation of state to the transformation of code. By that, we mean that the
code that is responsible for the rendered graphical representation is changed and
newly evaluated, such that the direct manipulations are reflected accordingly in the
graphical representation.

1.4. Contributions

Our proposed solution is based on combining the benefits of a declarative, tree-
based description of a morphic scene graph and the object-oriented interpretation of
a morph, where each visual entity comes with an identity and can be manipulated
directly. We will present Transmorphic, which is a functional version of the Morphic
GUI Framework that emphasizes a clean separation between code that is responsi-
ble for stating visual and structural properties and code that manages the model of
the application. In Transmorphic, morphs are defined in an entirely functional and
therefore declarative fashion, where visual properties of a morph scene graph are
functionally derived from the application state. The interface remains responsive,
by automatically triggering a complete reévaluation of the functional view once the
application state has been modified. Application state is evolved by action handlers
that are collocated with the declarative description of visual properties inside the
symbolic description. Direct manipulation changes are mapped to transformations
in the symbolic description of the application, such that afterwards the rendered
morphs match the enacted manipulation. To provide a symmetric relationship be-
tween the symbolic description and the visual representation, Transmorphic makes
use of functional lenses [2] which allow an operation to be translated to different yet
homomorphic data structures. We are therefore able to constantly reconcile graphi-
cal representation and symbolic description of a morph whenever the user applies a
transformation of the morphic scene graph by direct manipulation.

11

1. Introduction

In particular, the contribution are as follows.

1. Presentation of the concept behind Transmorphic, where morphs are defined
in a purely functional way:.

2. Explanation of Transmorphic’s implementation.

3. Comparison of Transmorphic to other implementations of Morphic by means
of a concrete use case scenario.

Section 2 will provide the technological foundations of Transmorphic, while Sec-
tion 3 will present Transmorphic and the concept behind the provided functionalities.
Secion 4 will describe the implementation of Transmorphic and the challenges we
faced when building a GUI system on functional abstractions. We will then present
an example workflow in Transmorphic and compare it to two alternative workflows
in Lively Kernel and Squeak/Smalltalk in Section 5 while also discussing the limita-
tions and future work with regards to Transmorphic. Section 6 will present related
work. We will finally summarize our findings in Section 7.

12

2. Technological Foundations of
Transmorphic

Transmorphic is directly derived from the Morphic GUI framework which itself
has been implemented multiple times based on different interpretations. As a sys-
tem, Transmorphic combines ideas from the functional world (Functional Lenses,
Immutable Data Structures) and systems that provide direct manipulation authoring
(Halo, Object Editor) in a way that enables the programmer to evolve the code and
the corresponding graphical representation simultaneously.

Transmorphic is built in the programming language Clojure [16] which provides
us with powerful mechanisms to instrument and transform code at runtime, and
serves as a base for Transmorphic’s source code transformations. We further used a
version of Clojure, called Clojurescript [26], that compiles to Javascript and allows us
to run in the context of the web browser. This makes Transmorphic accessible from
a wide range of platforms, not requiring any kind of installation routines that need
to be performed by the user beforehand]

2.1. Immediate Mode and Retained Mode Rendering

In the domain of computer graphics, we differentiate between two different modes
in which a scene graph can be rendered: One approach is to define the scene graph
by means of primitive elements that are composed together and are then managed
on behalf of the runtime. We refer to this as retained mode rendering [28]], since the
scene graph is reified by a composite of objects which are retained by the runtime.
Morphic simplifies the implementation of a direct manipulation interface mostly
from the fact that it is based on retained mode rendering, where adaptions to the
scene graph can be performed incrementally at any point in time.

The other approach requires us to keep the structure of the scene graph in a sep-
arate, possibly more abstract representation and perform rendering by explicitly
calling functions that correspond to visual elements to be displayed. In this mode,
each time a frame is drawn the application needs to issue a function call for every
visual element to be displayed, essentially rebuilding the visual representation from
scratch. A concrete example for this so called immediate mode rendering is the Doc-

"Due to current technical limitations, we require a locally running Java Virtual Machine
(JVM) next to the browser. However conceptually, this is not necessary, and future imple-

mentations of Transmorphic could very well be executed completely independent of the
JVM.

13

2. Technological Foundations of Transmorphic

ument Object Model (DOM) which is the internal representation of the rendered
document inside a web browser. Here, each node inside the DOM is interpreted
as a function call to display a certain element inside the browser. When we change
a node inside the DOM, the browser renders a new frame in order to update the
graphical representation of the document. However, modern client-side program-
ming, namely dynamic html [14], has started to treat the DOM more as a piece of
mutable data, rather than an immutable immediate mode description of the document
that has been processed by the web browser. This has resulted in the peculiar situa-
tion of an immediate mode description (the DOM) being used in a way that is almost
identical to that of retained mode rendering (a mutable abstraction).

Another example where retained and immediate modes are combined with each
other is the use of shaders [10] in order to perform adaptations to the (functionally)
rendered vertices or pixels in an incremental manner. We will see that Transmorphic
also combines both modes in order to reconcile a functional view description with a
direct manipulation interface.

2.2. React and the Merits of Functional Programming

The GUI Framework React [11] is the result of a major engineering effort by Facebook
to decouple the browser’s DOM from the imperative programming paradigm. Over
time, the rendering engine in Facebook’s various web applications had grown so
complex, that the Ul repeatedly started to diverge from the actual data that was
supposed to be rendered. The large number of collaborating view and controller
objects forced the engineers at Facebook to reconsider their approach of how data
was rendered in their applications. The usual way to implement interactive graphical
interfaces in the context of the client is to associate groups of nodes inside the DOM
with application data, and then updated the nodes as necessary to reflect the changes.
With React, the intention was to change this way of rendering data to the DOM
by replacing the explicit management of DOM nodes with a functional projection
instead. This essentially means, that the retained mode of managing the DOM gets
replaced by an immediate mode, where visual entities correspond to functions, and
we get to render a scene by repeatedly calling these functions. We end up with a
declarative way to define the view of an application, where the order or permutations
of operations that we initially required to synchronize view and controller, are no
longer part of the picture. Instead, the “mutable part” of application is extracted to
action handlers that are triggered in response to user actions and then transform the
application state accordingly. Once changes in the application state are performed,
the immediate mode render pass is triggered again, causing the view to update
accordingly.

Naively implemented, this approach would work, yet result in unresponsive user
interfaces, since the numerous alterations to the DOM involved with every re-ren-
dering of the view and would reduce the performance: The consolidation of the
DOM, that happens after a mutation, is referred to as “reflow”. The reflow is a user-
blocking operation, may require a lot of time to compute, and can therefore lead to

14

2.2. React and the Merits of Functional Programming

confusing degradation of performance when using the DOM naively. For example,
the mutation of DOM nodes that are deeply nested inside the document tree, or their
attributes, can become surprisingly slow and lead to a significantly reduced respon-
siveness of the running application. In order to keep a web application responsive,
programmers have to carefully mutate the DOM in order to minimize reflow times.
This restriction has made it especially difficult to introduce abstractions that ignore
this nature of the DOM. For example, a purely functional description of the graphical
user interface being rendered in the client may very often lead to large and unneces-
sary amounts of updates in the DOM simply because the notion of different mutable
parts that the DOM consists of, is not part of a functional picture of the world [18]].
React therefore comes with an algorithm that determines the differences between
DOM and the HTML to be rendered, and translates the difference to the smallest set
of operations necessary to adapt the DOM to fit the new version of the view. Since
the diff processing happens in pure Javascript, the impact on the performance is
fairly small, although the problem at hand is a fairly complicated one which needs
advanced heuristics to perform in reasonable time.

Despite its name, React is actually not an implementation of Functional Reactive
Programming (FRP) [40]] or Functional Reactive Animation (FRA) [9]. In FRP and
FRA, user inputs and other sources of information are modeled as signals that change
over time. Changes in these signals can be triggered by actions from the user or other
sources outside of the application. A change will then trigger a chain of function
calls that eventually result in a new end value, which is then used to render the
new state of the application. This is not the case in React, it instead borrows the
reactive part from FRP, meaning the phase when the functional program reacts to
the changes that happened in the input signals of the application. This reactive part is
then embedded in what is just a classical, imperative application, using callbacks to
trigger changes in the data and evolve the application. Although React only replaces
a part of the system that was previously managed through object collaboration,
this measure causes many of the existing Ul consistency bugs to disappear. This is
because the functional description of views in React manages to defines both the
graphical representation, as well as the reactive update mechanism. By replacing
something that was previously a view object with a functional derivation of the
application’s state to visual elements, we remove the need for mutable abstractions
in the view. From an engineering point of view, we think that it is this very removal
of mutable abstractions that makes React less prone to errors when providing a
consistent view in user interfaces.

The programming model of React will not be described in detail here, since this
would exceed the scope of this work. We should however note, that we borrowed
various concepts from the React programming model, such as Components or unidirec-
tional data flow, when designing Transmorphic. Simply put, Transmorphic is similar
to React with the difference that (1) we render morphs instead of HTML tags, and
(2) we have added support for direct manipulation to evolve the application.

15

2. Technological Foundations of Transmorphic

2.3. Functional Lenses

In order to model changes to immutable data structures, we need to represent these
as first class entities that operate on the data structure as a whole. For example, in
the case of a deeply nested dictionary, we need to supply a list of keys, always starting
from the root, that leads to the datapoint we want to change, together with the new
value that should take its place. This explicit notion of a change inside a data structure
can also be generalized, and we can develop strategies that allow us to apply the same
change to different data structures in case there exists a homomorphism between the
data structures. For example, a hash map in Clojure can either be represented by an
XML document, a JSON document or in the standard notation for data structures
used inside Clojure, namely Extensible Data Notation (EDN). Given that we can gen-
eralize changes over the different layouts of the data structures, it should be possible
to directly project changes that happen to one of these representations to all of the
other ones: Supposing we change the JSON representation and determine a key is
changed, we can implement a mechanism that finds the corresponding part within
the XML and changes the value there accordingly.

In functional programming, we call abstractions that provide this kind of change
mapping between data structures, functional lenses [27]. A lens is always defined
between a pair of data structures (i.e. JSON/EDN, JSON/XML, etc...) one of which
we call the target and the other, which we call the source. The roles of these data
structures is important: Since lenses usually do not provide a bijective mapping,
the source data structure will contain the complete set of information, while the
target data structure is often a more simplified or reduced representation of the
information. Each lens itself consists of a pair of functions, namely GET which allows
us to retrieve the representation of the source data in the target data structure and
PUTBACK that is used to update the source data by providing an updated version of
the target data.

GET(source) -> target

PUTBACK(target*, source) -> sourcex

For a lens that maps changes from JSON to XML, the formula could look more
like this:

GET(source.json) -> target.xml

PUTBACK(target*.xml, source.json) -> sourcex*.json

Also notice that we are able to compose lenses with each other, which often frees
us from the need to redefine a lens for every pair of data structures we encounter.
When working with lenses in general, and especially in the case of composition, it
is important to note, that not all lenses are created equal. In fact, we are able to classify
different lenses with regards to “how well” they are able to establish a bidirectional

16

2.3. Functional Lenses

relationship as seen in This means, that in the case of composition, the
resulting macro lens can only be as good as its “worst” sub lens.

\e' S
o“a“ —
“ge’a) all lenses

acceptable and stable
(well-| behaved) Ienses

% behaved and forgetful
(very weII behaved) lenses

Figure 2.1.: The lens classification hierarchy

The “lowest” class of lenses we can deem “acceptable” are the ones that correctly
translate updates back and forth from the target domain to the source domain. More
formally, this means that any PUTBACK that is immediately followed by a GET will
always return the same target value:

GET (PUTBACK(target, source)) = target

An example for an “unreasonable” lens would be one where the PUTBACK function
were to always return the same value. In this case, we would usually never retrieve
the same target we put back into the source before.

The next best class of lenses we call “well behaved”, which is when they are stable,
meaning that when the target is not modified, we also do not modify the source in
case a PUTBACK happens:

PUTBACK(GET (source), source) = source

For example, this excludes all lenses which perform some kind of bookkeeping
inside the source each time a GET is performed, such as incrementing a counter. Put
differently a lens is considered well behaved if and only if its GET function is pure.
While the well behaved lenses constitute the majority of lenses we use in practice
there are further classes of even “stricter” lenses which become more and more
difficult to satisfy.

2Copyright 2006 Benjamin C. Pierce, Microsoft Research, Cambridge https://www.cis.upenn|
edu/~bcpierce/papers/lenses-etapsslides.pdf (slide 71), last accessed 2016-04-14.

17

https://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf
https://www.cis.upenn.edu/~bcpierce/papers/lenses-etapsslides.pdf

2. Technological Foundations of Transmorphic

This brings us to the next higher class of lenses, the “very well behaved” ones,
where in addition the PUTBACK is “forgetful” and will always completely overwrite
the previous update:

PUTBACK(target_2, PUTBACK(target_1, source)) = source_2
GET (source_2) = target_2

Notice that while this property may seem sensible, it also restricts us in some
ways. For example, lenses that are not forgetful make it easy to quickly undo or
redo changes, since the information about previous PUTBACK calls may always be
preserved.

The last class, and most restrictive for that matter, are the lenses that form a bijective
mapping between source and target data structure. These are fairly rare, especially
in the context of graphical representations, since a view is usually discarding in-
formation during the process of rendering information. In order to be bijective, we
must not discard information whenever we GET or PUTBACK information, and both
representations need to be able to store the same amount of information in order to
transmit it back and forth.

2.4. Clojure

In order to ensure control over how state evolves in Transmorphic and to be able to
instrument code at runtime in arbitrary ways, we decided to implement Transmor-
phic entirely in Clojure [16], which is a dialect of LISP that runs on top of the JVM.
Clojure is one of the most recent LISP dialects, that was first released in the year
2005 by Rich Hickey. The creation of Clojure arose from Hickeys dissatisfaction with
the Java programming environment that he was working with at his daily job. These
circumstances eventually lead him to create a flavor of LISP, that would compile to
JVM bytecode, run on top of the JVM and was able to interface with arbitrary Java
libraries and free the developer from having to deal with Java and its abstractions
directly. Clojure is opinionated about the way the programmer should organize the
data of an application, in that it tries to leave the stored data of a program as un-
adorned as possible and also keeping the amount of mutable state to a minimum.
Similar to the way Self justified its prototype-based approach, Clojure argues that
any kind of model or object oriented abstraction eventually turns out to be “wrong”
or “insufficient” and from then on, starts to “obscure” information and hinder the
development of the application rather than supporting the developer [17]. For this
reason, all language constructs in Clojure are non invasive, in that they never en-

3Since this would exceed the scope of this work, we will not give a general introduction to
Clojure and assume that the reader is already familiar with this language. People that
are new to Clojure, we refer to the well written Clojure documentation, available online
at: https://clojure.org/.

18

https://clojure.org/

2.4. Clojure

force a structure upon the data they operate on, but rather interpret data in custom
defined ways and fail on their behalf if the data does not provide the necessary in-
formation. For example, to implement polymorphism, Clojure favors the approach
of multimethods instead of subclassing and overriding the respective methods of
an object [15]. In the following sections, we will describe some of the language fea-
tures of Clojure, that are especially important to understand the inner workings of
Transmorphic.

2.4.1. Persistent Data Structures

To minimize the amount of mutable state in the application, Clojure emphasizes the
widespread use of immutable values and urges to perform a majority of computa-
tion without mutating variables of any kind. In the context of data structures that
embody collections, refraining from mutation essentially means that a new version
of that data structure has to be returned any time an adjustment is applied to the
stored information. Data structures that adhere to this specific property are called
“Persistent Data Structures” since previous references still reference the state of the
data structure when it was initially assigned.

Since mutable state should be reduced to a minimum, persistent data structures
play a central role in most computations in Clojure, making it vital that they are
implemented in a memory and performance efficient way. For this reason, all of
Clojure’s persistent data structures (namely lists, sets, vectors and hashmaps) are
implemented in almost the same way by a Hash Array Mapped Trie [1]. Technically,
a trie is able to store multiple versions of a certain data structure in itself, while
keeping the amount of redundant information to a minimum. In a trie, the hash
that corresponds with a stored value is always also the location that datapoint is
stored at. When a new version of the trie is supposed to be created, the trie takes the
hash that retrieves the current version of the data structure, identifies the location
where the new version differs from the previous one, and inserts a new entry into
the trie to store the new bit of information. An updated version of the hash is now
returned, which is used by the new reference to now point to that “new” version
of the persistent data structure. Meanwhile, the old value can still be retrieved by
the previous hash, making the implemented data structure seemingly immutable by
only using a small set of mutations behind the scenes.

2.4.2. Atoms

There is always a point in time where a computation needs to communicate its re-
sult with other computations. While immutable values simplify the reasoning about
state, and therefore spare our complexity budget when building an application, we
need the ability to mutate state in a Turing Machine based model of computation in
order to communicate our information to other processes. In the context of Turing
Machines, Mutable state is therefore a necessity in order for programs to be of any
use, but it demands alertness from the programmer, since the introduction of side
effects can quickly grow out of hand. In order to control the scope of side effects, we

19

2. Technological Foundations of Transmorphic

need to control when and where they happen, for example by restricting the access
to mutable state. How this is achieved in the best way, is answered differently by each
programming language: For example, the language C [21] enforces little control over
mutations, allowing any datapoint accessible in the current scope to be altered at any
time. By using the const keyword, the programmer is able to declare functions free
of side effects, which the compiler can use to ensure that other functions declared
const actually satisfy this property. Note however, that the compiler can not guaran-
tee that a const declared function is actually free of side effects so the programmer is
still responsible for correctness of the program after all. Higher-level languages, such
as Java, Python [38] or Smalltalk [13] try to contain the complexity of mutable state,
by restricting access to mutable values in various ways: Java for example, allows to
control the access to mutable state by declaring variables public or private, Python
prevents variables declared global to be mutable at all, and Smalltalk by default
does not provide direct access to instance variables held by an object. There are of
course more drastic measures to contain side effects, as encountered in the func-
tional programming language Haskell [35], which does not even provide a language
primitive to introduce side effects at all. Haskell either replaces the need for a side
effect, by threading the state through a functional abstraction called a “Monad” or
resorts back to externally implemented libraries, that then perform the required side
effect on their behalf [39]. Due to this rigorous measure, one very frequently used
external library in Haskell is the I/O-Monad, that provides a monadic interface for
communicating with external processes, encapsulating all mutation of state within
its implementation.

Clojure’s approach of managing mutable state does not abstain from mutating
values entirely but rather allows the programmer to precisely denote places where
it is possible for state to be mutated. Clojure achieves this by wrapping any im-
mutable persistent data structure or primitive value inside a special container called
an “atom”. An atom is itself a value that can be dereferenced to return the currently
stored value inside the atom. By restricting the access to the actual value inside an
atom through a function call, it is possible to swap or replace the current value stored
inside the atom in a transactional context. This design has various implications: For
one, we are able to guarantee a consistent view onto the value of an atom since all
operations that mutate the atom’s value are atomic making it impossible to ever
read an inconsistent bit of information. Secondly, the number of side effects is usu-
ally reduced by defining computations in a functional way, relying on persistent
data structures and then perform a single transaction to persist the result. Lastly,
atoms enable us to instrument the transactional context in arbitrary ways, allowing
us to track how the state inside the application progresses over time. This makes
it easy, to revert state to earlier stages or to implement mechanisms that observe
a certain datapoint inside an application, which simplified the implementation of
Transmorphic.

20

2.4. Clojure

2.4.3. Code is Data

The phrase “Code is Data” comes from the family of LISP programing languages
and refers to LISP’s rather unique way of treating source code in that same manner
as plain data. In any LISP, the translation of code to an executable format, is actually
split in two separate phases: The reader phase and the actual compilation phase. In
the reader phase, code is parsed from a source file into the internal list structure
of the LISP runtime, effectively turning the textual representation of the code into
LISP’s internal schema to store all data [25]. Given that we have all the code in the
form of data in memory, we are able to define special functions that are invoked
at compile time, which are able to operate on the list structures in arbitrary ways.
LISP refers to these special functions as macros, and they can be used to transform
and instrument code (actually data) in arbitrary ways making LISP a formidable
environment for implementing domain specific language constructs. Whenever the
compiler encounters a symbol at the start of a list, that refers to a macro, it invokes
that macro passing the rest of the list as an argument, and then replaces the cons cell
that stores the symbol with the return value of the macro. During macro expansion,
the macro functions have access to a fully-fledged runtime, having no restrictions in
the types of operations or libraries that can be used. Obviously, transforming code in
this manner is not restricted to compilation, but can be used to assemble and evaluate
symbolic expressions at any point in time during the execution of the actual program.
Being a fully compliant LISP dialect, Clojure provides this macro system, which is
used by Transmorphic in order to transform symbolic descriptions at runtime and
compile time.

2.4.4. Clojurescript

While Clojure provides powerful abstractions to reason about state and transform
code, it fully relies on a locally running JVM and can therefore not be directly exe-
cuted in the context of a web browser. Fortunately, Clojure is designed to be com-
piled to various backends and since 2010 exists in a version that can be compiled
to Javascript, called Clojurescript [26]. Transmorphic is therefore written entirely
in Clojurescript, which allows us to leverage all of Clojure’s state management and
code transformation facilities. From a technical perspective, the notion of code as
data makes it very easy to compile Clojure to different platforms, since we essen-
tially just have to replace the step that initially yielded Java Bytecode to now produce
Javascript statements instead. One thing to keep in mind though is that Clojure’s
seamless interfacing with other Java libraries makes existing Clojure code not as
portable as it might seem at first. Thus many modules need to be rewritten in case
they have dependencies to parts of the Java standard library. As of today, the ma-
jority of Clojure is fully compilable to Clojurescript but despite being able to run
in the context of the browser, the compilation steps mostly still require a JVM to be
present during compilation. In particular, many macros in Clojurescript still employ
functions of the Java standard library, since they are only invoked at compile time not
taking into account that one may also want to compile code within the Clojurescript

21

2. Technological Foundations of Transmorphic

(i.e. Javascript) runtime. Clojurescript currently provides the compilation of Clojure
code in the context of the browser at an experimental stage, but is still too incomplete
to be used as the basis of a self hosted development environment. For the time being,
Transmorphic therefore requires an externally running REPL that is deployed on top
of a JVM where the majority of runtime compilation is dispatched to. Development
of Clojurescript has been very active though, and the number of developers using
Clojurescript has already surpassed the number of active Clojure developers for the
JVM, which gives rise to hope that in the near future Clojurescript will be fully self
hosted, obviating the need for a separately running JVM.

22

3. The Transmorphic GUI Framework

Transmorphic combines a functional and declarative way of describing GUIs with
the notion of a morphic scene graph, where each rendered morph can be uniquely
identified and also modified. In this chapter, we will first describe the symbolic
building blocks, and conceptual model of Transmorphic and then take a look at how
we are able to introduce direct manipulation into this system. Transmorphic comes
with two different fundamental abstractions, called Morphs and Components, both of
which we will refer to as entities when we do not have to distinguish between the
two. We will further take a look at the different tools that allow the programmer to
integrate direct manipulation effectively in the context of Transmorphic.

3.1. Morphs

Morphs are the core building blocks that make up the description of a GUI in Trans-
morphic. They are atomic, indivisible entities that are stateless and represent dif-
ferent kinds of visual entities such as rectangles, images, ellipses or polygons. In
Transmorphic, a morph is created by a function call that is being passed a key-value
map of properties followed by an arbitrary number of additional morphs that will
constitute the set of submorphs. For instance, if we want to render an image morph,
we call the function image as in Listing

Listing 3.1: Example for a function call in Transmorphic that yields an image morph

(image {:extent ($parent :extent)
:position {:x 42 :y 42}
curl ?kermit.png”
:on—mouse—enter (fn [e]
(prn ”Mouse entered!”))})

Looking at this example, we can separate the kinds of properties that can be passed
to a certain morph into three different types:

Primitive Properties These are properties that define the visual appearance of a
morph, such as its fill, extent or position. Also there may be certain properties
that only apply to some morphs, for example in this case the :url property
will define the path to the image being displayed inside the image morph. The

23

3. The Transmorphic GUI Framework

values of primitive props are either strings, numbers or collections that satisfy
a certain schema. For example the : extent property expects its value to be a
collection in the form of a hash map that contains : x and :y keys that each
reference a number.

Behavioral Properties Include callbacks, to certain mouse or keyboard events. Also
includes specific morphic events such as grabbing or dragging of a morph.
Behavioral properties present the entry point to perform changes inside the
application state, which eventually causes the graphical representation to up-
date.

Relative Properties Primitive properties may actually be defined in terms of other
morph’s properties in the current morphs surroundings. Defining properties
relative to one another, simplifies composition of morphs, by obviating the
need to pass the values of certain extensional properties explicitly.

The hash map of properties can contain arbitrary key value pairs, yet only the
ones recognized by the actual implementation of the morph, will have an effect.

In Morphic, composition is key to creating a final interface that provides directness
and liveness for the developers of the application. Taking the previous example again,
we can wrap additional morphs inside the image morph we have already introduced,
by composing the function calls that yield the respective morphs together, as seen

in Listing

Listing 3.2: Submorphs are added to another morph through function composition.
This is an example of an image morph that contains two submorphs, namely an
ellipse and a rectangle.

(image {:extent ($parent :extent)
:position {:x 42 :y 42}
curl ?kermit.png”
:on—mouse—enter (fn [e]
(prn ”Mouse entered!”))}
(ellipse {:position {:x 0 :y 0}
:fill ”green”
textent {:x 100 :y 1003}})
(rectangle {:position {:x 42 :y 42}
:fill ”red”
textent {:x 100 :y 100}}))

The submorphs of a certain morph are automatically flattened by the runtime of
Transmorphic, so there is no need to keep track of nested collections of morphs. For
example we can easily add a collection of morphs which is computed through a map
statement and not have to worry about flattening the submorph collection passed to
the image morph, as seen in Listing|[3.3]

24

3.1. Morphs

Listing 3.3: Submorphs can also be defined in terms of collections, such as this map
statement. To save space, we excluded parts of the property definitions.

(rectangle { ... }
(image { ... })
(rectangle { ... 1})

(map (fn [i]
(text {:position {:x (x 10 i) :y (x 10 i)}
:value (str 1)}))
(range 10)))

We refer to the morph that contains a set of other morphs as the parent of these
morphs. Notice, that we can also render submorphs conditionally and do not have to
worry about nil values causing trouble since the flattening mechanism of Transmor-
phic automatically weeds out these as well. In the symbolic description of a morph
scene graph, immutability is a key property, which means that without explicit use
of meta programming facilities, no mutations to neither properties nor structure of
a morph can be introduced once it is created.

3.1.1. Defining new Morphs

A morph is always defined in terms of HTML elements, which gives the programmer
maximum flexibility in terms of defining the appearance of the respective morph as

shown in Listing

Listing 3.4: Example of a morph definition. The helper method html-attributes
ensures that the properties passed to the morph are correctly translated to style
properties and javascript callbacks respectively.

(defmorph image
[{:keys [morph—id type props submorphs]}]
(apply div (html—attributes props morph—id)
(div nil
(img (clj—>js {:style (shape—style props)
:src (props :url)})))
(build—all render—morph submorphs)))

A morph, once defined and used, may be varied by passing different props, and
composed together with other morphs; however, it can not be decomposed any fur-
ther since it constitutes an atomic building block. Furthermore, the implementation
of a new morph, passes several responsibilities to the programmer: For one, it must
be ensured that the behavioral properties are correctly installed into the HTML

25

3. The Transmorphic GUI Framework

elements the morph consists of. In addition to that, tools, such as the halo, that
provide an interface for direct manipulation, assume that certain properties such
as position, extent or rotation are correctly recognized by a morph’s implementation.
Transmorphic already comes with a variety of predefined morph types, which in-
cludes rectangle, ellipse, image, polygon, text and a html morph that can be used to
embed arbitrary html fragments into the morph hierarchy and allows to interface
with external javascript libraries such as code editors embedded in HTML. Due to
these reasons, it is encouraged to keep the number of customly defined morphs to a
minimum and stick to composition instead of defining new morphs to implement a
certain interface.

3.2. Components

While morphs are able to cover all of the visual aspects of the U, they are entirely free
of state and in many cases too fine grained to serve as a reusable abstraction. Also, we
have not yet provided a mechanism that allows us to actually render a morph scene
graph or manage state in a more modularized fashion. For this reason, Transmorphic
provides the programmer with the ability to group morphs into components. A
component can be summarized as an abstraction that reifies a reusable element
inside the GUI of an application. To the outside, a component appears just like a
morph in that we create it by calling a component function together with a set of
properties followed by all the submorphs, as shown in Listing 3.5}

Listing 3.5: Example of a component hour-pointer being rendered as a submorph
of an ellipse morph

(ellipse
{ ...}
(hour—pointer
{:radius radius, :hours (—> time :hours)}
(rectangle ...)))

Things start to get more interesting once we look at the definition of a component
as seen in Listing

The return value of the render method always needs to be either a morph or a
component which we also refer to as the “root” of a component. The structure of this
root entity can be influenced by means of three arguments that are always passed to
the render method of a component once it is getting rendered:

The first argument (usually denoted by self), is a reference to the component local
state that we use as the first argument to all the functions that allow us to read and

26

3.2. Components

Listing 3.6: Example of a component definition

(defcomponent hour—pointer
IRender
(render [self props submorphs]
(rectangle
{:id ”HourPointer”
:position {:x @ :y —2.5}
:rotation (x (+ —0.25 (/ (props :hours) 12)) PI 2)
:fill ”darkblue”
:stroke—width 2
rextent {:x (x .5 (props :radius)) :y 5}}
submorphs)))

write to a component local state. Reading from and writing to this local state reference
works just the same as with normal atoms in Clojure (swap!, reset!, deref)

Listing 3.7: The interface to access and transform the component local state is the
same as Clojure’s atom interface.

@self

<_>
(swap! self assoc :key :value)

(reset! self 42)

Notice that writing to component local state is turned off throughout the render
pass of a component, which means that mutations can only happen within the action
handlers that were provided via the behavioral properties.

The second argument (in this case denoted by props) is the hash map of properties
that was passed to the component. In many cases, this is almost the same set of prop-
erties that the root of the component will receive. To relieve the programmer from
constantly having to manually merge the properties of the root and the component,
Transmorphic by default merges the components properties with the properties of
the component’s root. The root may still define custom properties that are indepen-
dent of the ones passed to the component by simply stating them inside the lexical
scope of the render method.

The last argument is the collection of submorphs (morphs and components, de-
noted by submorphs) that belong to the component that is being rendered.

27

3. The Transmorphic GUI Framework

In the end, the rendering process can only be influenced by either the global
application state, or the respective local state of the component, which results in
a unidirectional flow of information from the few places of mutable data to the
eventual rendering of the visual representation. To implement a reactive interface,
we place code that evolves the component’s local state or the global application state
inside functions that are part of the behavioral properties of a morph that is part of
a component:

Listing 3.8: Example of behavioral properties that manage the application state in
response to user events

(def app—state (atom {:counter 42}))

(defcomponent hour—pointer
IRender
(render [self props _]
(rectangle
{:id ”HourPointer”

:on—mouse—down (fn [e]
(swap! app—state :counter 1nc)
(swap! self assoc :color ”green”)))))

Inside the callback, we can mutate the local state which will cause the view to
be rendered again and the visual representation to be updated. In case we modify
variables that are outside of the local state of a certain component, we need to trigger
a render cycle manually in order for the Ul to stay consistent. The component local
state, together with the globally accessible values (often stored in atoms), constitute
what we refer to as the application state. While Transmorphic is currently very liberal
about how state is organized, components are a useful abstraction that enables the
decomposition of application data with respect to the structure that is embodied in
the respective user interface of an application.

Finally, components also function as the initial entry point to start rendering the
global morph scene graph, which we also refer to as the world. This is done by passing
a component’s name and initial properties and an atom that will be used to manage
the internal state of world to the set-root! function. In addition, we also need to
specify a certain DOM node, from where the world is supposed to be rendered.

Transmorphic allows the programmer to evolve an arbitrary number of different
worlds in parallel, provided that we pass a different world atom for each of them
in order to guarantee isolation. Inside the world atoms, Transmorphic stores an
internal copy of the symbolic description and the currently rendered scene graph,
which allows the different worlds to evolve completely independent from each other.

28

3.2. Components

Listing 3.9: Via set-root! the root DOM node from where the morphic world is
evolving can be specified.

(set—root!
world
my—component
{:id ”foo0”}
(gdom/getElement ”app”))

3.2.1. Owners and Parents

Components constitute a somewhat different structure in our previously purely
morph based scene graph since they are not atomic but compositions of other morphs
and components. In order to make components fit into the whole picture, we need
to introduce the owner relationship in addition to the already described parent-
submorph relationship. The owner-ownee relation denotes the connection between
a component and the composition of morphs that it consists of. Since the parent
of a morph is already its direct ancestor morph, we refer to the component that
initially passed the properties to a morph as the morphs owner. A different way of
putting this, is to say that a component is the owner of all morphs that appear in the
lexical scope of the component’s render method. Note that a component can also be
the owner of another component, in case it is rendered within the scope of another
components render method. Likewise, the parent of a component simply remains
the direct ancestor morph that it was placed in to be rendered as part of a submorph.
To further clarify the difference between these two orthogonal relationships between

components and morphs, take a look at[Figure 3.1]

3.2.2. Component Lifecycle Protocol

On the one hand, the interface a component provides to the outside is that of a
stateless entity, which can be rendered next to other morphs which again are also
just pure functions. Since view objects in Transmorphic are immutable, a component
can not be directly referenced after creation or be called methods on, which means we
have no concept of an object identity corresponding to the component from the outside.
This is one of the strengths of the programming model Transmorphic, since mutable
state is not part of the picture when rendering is performed. On the other hand
on the inside a component can actually carry local state that needs to be initialized,
updated and possibly cleaned up during the time a component is active. Thus, we
need a mechanism that allows us to manage this mutable state that is independent of
inputs of the user, such as initialization or cleanup routines.

First, Transmorphic assigns the call site of a certain component a global identity
such that it can constantly check if future calls (as part of the immediate rendering
mode) will continue the render the component and/or change the parameters etc.
Transmorphic will then constantly monitor that call site and invoke a function from

29

3. The Transmorphic GUI Framework

Owner «——
Parent «-----

Figure 3.1.: Owner and parent relationships visualized

a set of callbacks that we refer to as the Component Lifecycle Protocol. These callbacks
essentially denote different transitions a component goes through during its lifetime
which includes the following callbacks:

1.

init-state: Called right before the component is rendered after being absent from
the scene (mounting). The return value specifies the initial component local
state.

will-mount and did-mount: Called right before and after (respectively) the com-
ponent was mounted. Mounting refers to a component being called after hav-
ing previously been absent from the scene. This may be the the very first time
a component is called at runtime, but can also be the case, when a conditional
continuously decides wether or not a component is being rendered.

will-receive-props: Called each time a call to the component is about to happen.
This callback is especially useful to reason about the changes in properties that
are passed to the component in between the render cycles.

. will-update and did-update: Called each time the component local state is about

or has been updated respectively.

will-unmount: Called when a component is stopped being called in the render
cycle.

This extrapolated finite state machine allows us to define imperative abstractions
within the context of an entity that to the outside provides an entirely functional
interface, free of mutable state.

30

3.2. Components

Listing 3.10: Lifecycle callbacks all correspond to Clojure protocols that one can
choose to implement in order for them to take effect.

(defcomponent bob

IDidUpdate

(did—update [self props] ...)

IInitState

(init—state [self props]
{:foo 42

:bar ”Hello World”})

IWillMount

(will—mount [self props] ...)
<)

3.2.3. Hand

The last ingredient that is needed to enable interactive interfaces is an abstraction that
allows us to model the current user that is interacting with the morphs in the scene.
For this, Morphic uses the abstraction of a hand to let the mouse cursor interact with
the different morphs through either grabbing or dragging behavior. In Transmorphic,
the hand is itself represented by a very small rectangle morph which constantly
tracks the current position of the cursor. At the same time, the hand is also checking
wether or not a morph in the scene graph has been focused by the hand. Hand focus
becomes activated once all of the following conditions hold:

1. The left mouse button is pressed.

2. In order to prevent erroneously capturing a simple click we also require that
the mouse has meanwhile moved by a certain threshold distance.

3. Lastly, in order to work hand in hand with the actual control flow of the view,
the focused morph has to specify in its props that asks for hand focus.

Besides asking for hand focus, the morph should also implement several callbacks
in order to influence the progression of the application state accordingly. It is im-
portant to understand that in Transmorphic the hand does not constitute a tool
for performing direct manipulation, but merely exists to trigger morphic specific
events that can then influence how the application state progresses. This is due to the
rather strict separation between application state and visual representation which
requires a different interpretation of hand interactions, in particular with regards to
the grabbing and dropping of morphs through the hand. In the following, we will
describe how dragging and grabbing behavior differ and how the respective event
callbacks can be used to evolve an application state.

Dragging Dragging is the act of manipulating a certain property of a morph by
press and hold of the mouse button and then moving the cursor to vary the dragged

31

3. The Transmorphic GUI Framework

value. In the context of Morphic, this mechanism is often employed to alter the
position of morphs, or provide interfaces that allow to directly scrub (i.e. vary)
values in the application (i.e. scroll bar). The dragging process is divided into three
stages, each of which can be intercepted by implementing the respective callback:
:on-drag-start, :on-dragand :on-drag-end.

Listing 3.11: Simplified example of a value scrubbing mechanism implemented
though the hand’s dragging protocol

(ellipse
{:on—drag—start (fn [start—pos]
(reset! self {:init—pos start—pos
:current—pos start—pos}))
con—drag (fn [delta]
(let [new—pos (add—points (@self :current—pos) delta)]
(swap! self assoc :current—pos new—pos)
(prn ”Scrubbed value: ” (distance (self :init—pos) new—pos

=))))
:on—drag—stop (fn [end—pos]
(swap! self dissoc :current—pos :init—pos))})

The hand automatically keeps track of the currently dragged morph, and sup-
plies all necessary arguments to the callbacks. Initially :on-drag-start is called,
together with the initial global position of the morph being dragged. At this time, we
usually want to perform any necessary state transitions, such as mode changes that
need to be undertaken to start the dragging process. After this, for each move that
is captured by the runtime, :on-drag is called, and passed the delta between the
previous and current position of the morph. This information can be used to update
arbitrary values inside the model of an application, which makes dragging an ideal
basis for the implementation of scrubbing['] of certain values. Once the hand focus
is lost, the dragging is stopped and :on-grab-stop called where we can perform
any necessary cleanup in the application state. Notice that each time the component
local state was modified, a rerendering of the morph scene graph was triggered as
well. By this, we ensure that the reference to the component local state inside the be-
havioral properties of the morph always reference the most recent version of the state.
For instance, :on-drag will not be called, before the reset! that happened within
:on-drag-start has caused the whole scene to be rerendered and the callbacks
updated accordingly.

4Scrubbing is a widely used user interface paradigm, by which the value of a certain prop-
erty can be varied through dragging the mouse while the mouse button is being pressed.
This allows the user to influence values by directly translating mouse movements to value
changes, without the need for separate Ul elements, such as buttons or sliders.

32

3.2. Components

Grabbing In the context of the hand in Transmorphic, grabbing is the act of trans-
ferring data between two separate control flows of the application. It is very impor-
tant to understand that hand grabbing is not mutating the structure of the rendered
scene, but just an interface for implementing information flow, where the user can
drag elements in order to interact with the system. In Transmorphic, the grabbing
mechanism can be instrumented to transfer data while also providing a comprehen-
sive visual representation. A grabbing process, consists of two stages, one being the
initial grab of a certain morph which is followed by the obligatory drop onto another
morph.

In order to implement a grab and drop mechanism in our application, we need to
implement the :on-grab and :on-drop callbacks within the respective morphs of
our interface. The : on-grab callback must be provided to the morph that represents
the grabbed entity for the user and is called with a reference to the hand. The hand
provides Clojure’s atom interface (swap!, reset!, deref) for storing and reading
arbitrary information, meaning the implementation of :on-grab can specify what
bits of information are to be passed to the hand. By default, once grabbed, a visual
deep copy of the grabbed morph will be placed in the hand that can be grabbed
around but is discarded as soon as the grab is canceled, or a corresponding : on-drop
was found and called successfully. Conceptually this behavior is a reasonable middle
ground between avoiding mutating the morph scene graph while at the same time,
providing a comprehensive visual representation of a grabbed element which is
obviously part of a user interface based on a grabbing mechanism.

Listing 3.12: Simplified example of a grab and drop interface. To save space, we have
left out the component definitions these morphs are a part of.

(rectangle
{:1d ”start”
con—grab (fn [hand]
(swap! hand assoc :countable—morph true))})

(rectangle
{:id ”goal”
:on—drop (fn [hand]
(when (@hand :countable—morph)
(swap! self assoc :dropped—morphs inc)))}
(text {:value (str (self :dropped—morphs))}))

When the grabbed morph looses the hand focus, it is dropped on the morph
directly beneath the hand morph. In case this morph does not explicitly implement
the :on-drop method, we check the parent and continue bubbling up the request
until the root of the world is reached. If we reached the world root, yet no :on-drop

33

3. The Transmorphic GUI Framework

was explicitly implemented, the grabbing process is discarded, which discards the
information inside the hand as well as the visual copy of the grabbed morph. In many
cases, the user may want to prevent the lookup for : on-drop to continue outside the
scope of the current application, and can do so, by providing a :on-drop method
in some wrapping morph that defaults to cancel the dragging process.

3.3. Direct Manipulation in Transmorphic

When introducing the concept of direct manipulation into a system like Transmor-
phic, we are faced with one essential problem: If there is no mutable state that directly
represents the appearance of a system, what then, are we supposed to change in
accordance to direct manipulation by the user? Mutating the application state in this
situation is often times not sufficient to yield the desired result, since most parts of
the morph scene graph may by definition not be influenced by application state at all.
Therefore, in Transmorphic, the answer to this problem is to start treating the sym-
bolic description that is responsible for the rendered scene as a mutable entity, and
consequently translate direct manipulation of a morph scene graph into code transfor-
mations. We will see that this translation mechanism is very elegant, in that it solves
two problems at once: For on we are able to introduce a meaningful implementation
of direct manipulation in a functional morphic, by immediate code transformation,
compilation and evaluation of the symbolic description. At the same time, the bidi-
rectional relationship between visual representation and symbolic description is
established, and the programmer is able to incorporate direct manipulation into the
original symbolic description of a component definition.

3.3.1. Halo

While the hand is the main building block to enable interactiveness of morph inter-
faces, the halo is the primary tool that enables the direct manipulation of properties
and structure of the morph scene graph. The visual aspect of Transmorphic’s halo
interface is directly derived from the one found in Lively Kernel [33] but there are
several differences in the actual semantics behind the actions that the halo provides:
While the halo in Lively Kernel is mapped to state manipulation, the halo in Trans-
morphic is a graphical interface to the underlying functional lenses that eventually
perform code transformations.

Selection Mechanism The halo selection of a certain entity is achieved by pressing
the meta key and performing a left click on that entity. This will summon the halo
and display a surrounding rectangle around the entity alongside a set of handles
that allow the direct manipulation of the entity. In case the entity is provided the :id
property, it will display that value below the selected morph or component. In other
Morphic based environments, such as Lively Kernel, there is no distinction between
morphs and components, and a mapping between visual entities and morphs is
completely sufficient. In Transmorphic however, we want the programmer to be able

34

3.3. Direct Manipulation in Transmorphic

[+ x
o]
12
11 1
B X
10 2
9 3
8 4
7 5)
- A 5 =
coffee Clock

Figure 3.2.: Visual representation of selecting a morph (left, highlighted in red)
vs. the selection of a component (right, highlighted in blue)

to evolve morphs as well as components through the halo mechanism, since both
directly contribute to the rendered end result. We therefore need to provide a mech-
anism that makes morphs and components equally accessible from the graphical
representation of the application.

When we click on an entity, the halo will always first select the underlying morph,
however we are able to reach the corresponding components by propagating the
halo selection further up the morph hierarchy. Selection propagation happens when
the we repeatedly select the same visual entity in the rendered scene. Usually, the
default behavior of the selection propagation is, to pass the halo selection to the
parent of the already selected entity until the root of the world is reached, in which
case the selection starts again from the first morph encountered below the cursor.
Transmorphic enhances this mechanism, in that it not only passes the selection to the
parent, but first checks if the current entity is the root of a component in which case
the corresponding component, namely the entity’s owner is selected next. Since a
component is both assigned a parent as well as an owner, this same pattern continues
from there on: In case the selection propagation is triggered again, we check for the
component wether or not it is the root of its owner, in which case we propagate the
selection to the owner, or else to the parent of the component. To make this slightly
different selection mechanism more clear, please take a look at[Figure 3.3lwhere such
a propagation is explained in the running example alongside the corresponding
symbolic description.

The visual representation by itself, does not convey wether or not we have selected
a component or a morph, since components are conceptually just “groups” of morphs.
Therefore the halo visually distinguishes between the selection of a morph and the

selection of a component, as can be seen in [Figure 3.2

35

3. The Transmorphic GUI Framework

meta + left click meta + left click

Figure 3.3.: Step wise propagation of the halo selection after repeatedly performing
a meta click (alt + left click) on the same target

Altering Properties The most simple type of transformation that the halo pro-
vides, is that of the manipulation of properties. The halo carries a set of handles
that allows the resizing, scaling, rotating, dragging and stylization of the inspected
morph. Essentially this just maps to the setting of :extent, :scale, :rotationor
:position properties of a morph/component. In addition to that, certain types of
morphs may carry properties for which the halo offers specialized interfaces: This
includes the text morph’s font styles or the polygon morph’s vertex array, which can
be manipulated by click, drag and drop of vertex markers. In the case of components,
the halo does not perform any kind of analysis that ensures that the setting of a
certain property actually has the desired result. For example the programmer can
cause unexpected behavior, when providing a custom component definition that
internally maps the :extent property to the :position of its root. Conventional
property names should therefore not be used to influence the custom behavior of
that component, since this effectively undermines the ability to later on operate on
this component via direct manipulation.

Grabbing Morphs and Components Next to the mutation of properties, the halo
allows to alter the structure of the morph scene graph as well, namely the addition
and removal of morphs or components. Again, Transmorphic is able to incorporate
these changes, by mapping them to transformations within the symbolic description,
i.e. literally adding or removing function calls that are responsible for rendering
certain morphs or components. Notice that this also includes the act of copying a
certain morph or component which is just the copy and paste of a function call. The
process for grabbing and dropping with the halo is very straight forward: Once the
grabbing process is initiated, the grabbed morph or component is removed from its
parent, and can then be moved by further dragging the halo to a certain position.
When grabbing stops, the morph or component is always dropped on the morph (and
not the component) that is directly beneath the current position of the cursor. It is
however also useful to be able to drop morphs and components on other components,
which is possible by holding the shift key while the grabbing is stopped. When the

36

3.3. Direct Manipulation in Transmorphic

shift key is pressed throughout the grabbing process, the halo changes the drop
target to the owner component of the morph it would have initially been dropped
on.

Figure 3.4.: The component that is about to receive the dragged entity (if dropped)
is being highlighted by Transmorphic.

Inside this dropping mode, the halo will also highlight the respective component
that is about to receive the grabbed target, by highlighting the root of that compo-
nent as shown in 3.4} Grabbing and dropping slightly differs between morphs and
components, in that components will also carry their behavior with them, while
morphs will only maintain their visual appearance. If for example a certain control
element inside an interface serves a certain role (i.e. a checkbox that toggles a certain
value), it will lose that behavior if it is just dragged by itself to a different location.
In order to preserve that toggling behavior, the component that the element belongs
to needs to be dragged instead, else the behavior is not preserved!

3.3.2. Reconciliation Lens

Internally, Transmorphic makes use of functional lenses to establish a bidirectional
mapping between symbolic description and graphical representation. As described,
lenses are an abstraction that allows us to extract a view from a given source and then
put back an updated view which will cause the source to be updated accordingly.
In the following we will give an overview about the behavior that is provided by
the lens while the internal API to work with the lens, will be described in the next
chapter, where we will describe Transmorphic’s current implementation.

We first need to clarify what exactly constitutes the symbolic description and the
visual representation, since this is what lenses ultimately translate between. The
internal representation of the symbolic description is derived from the set of all
namespaces that contain a component definition in the context of the currently run-

37

3. The Transmorphic GUI Framework

ning instance of Transmorphic. Each component definition resides internally as a lisp
expression, namely a list structure that can either be updated, evaluated or compiled
as needed. In addition to that, Transmorphic further holds a copy of each compo-
nent’s definition for each call context it got used in respectively. The reconciled copy
will then serve as a new component definition that takes the place of the original
component definition at the call site responsible for rendering the modified compo-
nent, while the unaffected call sites will continue to refer to the original or differently
transformed component definition. The other data structure, namely the scene graph,
is represented as a tree structure of all the rendered morphs and components. Within
this tree, each morph or component carries a globally distinguishable identity such
that direct manipulation operations can be applied correctly.

Let us now look at what GET and PUTBACK correspond to in the context of Trans-
morphic: When we want to GET the view from the symbolic description of the system
we just evaluate the current symbolic description of the system together with the
application state. We could also say that GET is just the process of rendering a com-
ponent to retrieve the scene graph.

When we perform direct manipulation, we apply a change inside the graphical
representation, which Transmorphic does by manipulating the entities in the scene
graph. As we will see, these changes only include three types: Changing a property,
removing an entity and the addition of an entity.

Finally the PUTBACK will take the manipulated scene graph and lookup the sym-
bolic descriptions, which are affected by the manipulations. It will then evaluate to
a transformed symbolic description where the direct manipulations are reflected
accordingly. The lens ensures that reconciliations are restricted to the respective call
site of the component, where the direct manipulation was actually applied to. In
an example is shown, where a reconciled component definition is created and calls
to the old component definition are being replaced up the call graph that used to
render the component initially. All the other call sites where the component is also
used can still reference the “old” version of the component and remain unaffected.
The exact process behind the reconciliation mechanism, will be described in detail
in the next chapter. For now it suffices to understand that Transmorphic effectively
manages to precisely reflect changes in the scene graph as changes in the source
code, responsible for that scene graph.

Transmorphic’s reconciliation lens is in fact a very well behaved lens, which we can
check by analyzing the lens’s behavioral aspects:

Acceptable Since GET will always provide us with the most recent rendered scene
graph, changes in the scene graph are always be reflected accordingly after a
PUTBACK together with a recompile has happened.

Stability When no changes have been applied to the scene graph, there will be no
update in the symbolic description in case of a PUTBACK, which also guarantees
stability.

Forgetful The reconciliation lens will always completely overwrite the previous
symbolic description in Transmorphic in case a PUTBACK is performed.

38

3.3. Direct Manipulation in Transmorphic

(ns some-namespace.name
Crequire [.... 1) Carl (root)
(defcomponent alice-*use-case-uuid-xxx*
IRender
(render [self props submorphs]
(bob-*use-case-uuid-xxx*
{:id “Bob”1))))) Bob

(defcomponent alice
IRender
(render [self props submorphs]

(bob {:id “Bob”})))))

(defcomponent bob
IRender
(render [self props submorphs]
(polygon {:fill “yellow”
cextent {:x 100 :y 1003})))

Carl (root)

(defcomponent bob-*use-case-uuid-xxx*
IRender N meemmmemm oo
(render [self props submorphs] .

(polygon {:fill “yellow”
rextent {:x 40 :y 503})))

(defcomponent carl
IRender
(render [self props submorphs]
(rectangle {:id “world”

.
(alice-*use-case-uuid-xxx* (!
{:id “Alice”})))) | -

(set-root! carl { ... } ...)

Figure 3.5.: Example of a change to a morph that is reflected within the owner chain
of components. In order to isolate a direct manipulation to a single component, all
component definitions that are part of the owner chain are replaced by updated ver-
sions (i.e. alice-use-case-uuid-xxx) that reference the updated components.

39

3. The Transmorphic GUI Framework

Bijective Looking at our concrete example of the rendered morphic scene graph
we see that the visual representation reduces application state and symbolic
description to a more simplified description: For example, parts of the view
code thatare currently not “active” are not represented in the view, as is the case
for many parts of the application state that are decoupled from the GUI of an
application. Therefore Transmorphic’s reconciliation lens can not be bijective
since the extracted views of the source usually discard certain information
which is needed to perform an update in the PUTBACK. A successful PUTBACK
therefore always requires that the old symbolic description is also provided
alongside the updates performed on the entities.

3.3.3. The Role of :id

The declarative description of a morph scene graph does not provide a concept of
object identity since every entity is immutable and essentially “replaced” each time
the application state triggers a change in the visual representation of the applica-
tion. However to provide an interface for a morph scene graph that can be changed
through direct manipulation, Transmorphic needs to be able to uniquely identify
every entity inside the scene graph. Since the world an entity resides in, is at any time
a well formed tree, we are able to globally address each entity directly if every entity
in a tree is distinguishable from its siblings. In Transmorphic this distinction can be
mostly done automatic, by combining an entity’s position inside the submorph array
with the part of the symbolic description that is responsible for their rendering, see
Listing (that is the actual function call that creates the entity in the first place).

Listing 3.13: Example of a morph composition, where the submorph index is not
sufficient to reliably infer an identity, yet combined with the location inside the
source code, Transmorphic still manages to differentiate between each morph.

(rectangle
{ ...}
(if (sunny?)
(ellipse {:fill ”yellow”
textent { ... }
Y

(image {:url ”clouds.png”

- 1))

However, things start to become problematic when the submorphs of a certain
entity are dynamic and at the same time are derived from the same symbolic description,
which frequently happens when interfaces are interactive and respond to changes in
the data of the application. Imagine for example a map statement that renders a list
of tweets with respect to the first 100 most recent entries in the feed of a certain user

40

3.3. Direct Manipulation in Transmorphic

as shown in Listing [3.14] In this case tweet is a previously defined component that
renders a respective tweet given all the relevant data that is required for a tweet.

Listing 3.14: An example for a morph composition, where Transmorphic can no
longer infer an identity onto the rendered tweet components

(listmorph

{....1}
(map #(tweet {:data %}) (fetch—tweets 100)))

In this concrete setting Transmorphic is no longer able to infer the identity of
each rendered tweet component in case the collection of the 100 most recent tweets
changes over time, since neither the index nor the function call in the symbolic
description is sufficient to determine the identity of a tweet that was rendered. Also
notice that once we loose the identity of a certain component, all the identities of the
entities that are yielded by its render method are lost as well.

For these reasons it is mandatory to distinguish siblings from each other, in case
a dynamically changing collection of morphs is derived from a single morph or
component declaration in the symbolic description. This is done, by providing an
:1d property in addition to the usually passed properties which needs to be unique
among all siblings. Internally Transmorphic will then incorporate the value of :1id
into the process of synthesizing the vuip of a morph or component in order to ensure
an identity thats independent of the current state of the currently rendered structure
of the morph scene graph. If no :id property is provided although being necessary,
Transmorphic will not prevent evaluation or compilation, however direct manipula-
tion will likely lead to unintended or undesired changes in the visual representation
and symbolic description respectively.

Transmorphic’s identity inference currently breaks down, as soon as the program-
mer edits a certain symbolic description by hand and triggers a save and compile of
that changed component definition. This is for example the case, when the program-
mer saves a description at runtime through the Function Editor, which we will cover
further down this chapter. Since there is not restriction on how the programmer
can alter the symbolic description of a certain component, we can also not reliably
maintain the identity inference. For example a morph with the exact same :id value
can, after the change in the source, be assigned a completely different role, with
different attributes, behavioral properties or even different morph type. Also it can
be confusing the programmer to enter changes in the symbolic domain, which all
of a sudden no longer take the desired effect once rendered. For this reason, once
Transmorphic is notified that a certain component was redefined and recompiled,
all changes that are associated to morphs or components yielded by the redefined
component, are discarded.

41

3. The Transmorphic GUI Framework

3.3.4. Orphanization

One key problem we are faced with, when we perform code transformation to reflect
direct manipulation changes, is related to the bindings inside a symbolic expression.
Imagine the process of copying and/or grabbing a morph/component and then
placing it into a completely different place inside the world. In these cases, where a
morph or component is removed from the the lexical scope it was initially declared
in, we need to consider what happens with properties or submorphs that are bound
to other variables inside that function. For example callbacks to mouse events, con-
tain variables that are bound in the functional scope of the previous owner’s render
method, and can most likely not be resolved reliably when the morph or compo-
nent is later added to a different scope. This is problematic, since that would mean
that we could not realize the removing, copying or adding of morphs which hold
properties bound to their current functional scope, since we could not successfully
recompile such a description. For this reason, Transmorphic by default applies a
process called orphanization to any morph or component that is removed from its
current owner. Orphanization means that the morph or component is detached from
the functional scope it was initially declared in by replacing all behavioral properties
with empty functions and all relative and / or primitive properties with the value they
currently evaluate to. This effectively clears the entity off any symbolic expressions
that are bound to the old scope, such that it can be seamlessly integrated into any
new functional scope it may be added to in the future.

Listing 3.15: Example of an orphanized ellipse morph that was removed from a pre-
vious symbolic let-expression, where several properties where defined through
variables

(let [a 42

b ”foo”]

(ellipse {:extent {:x a :b a}
:fill ”green”
:on—mouse—down (fn [_]

(prn b))}

(let [c ”bar”]
(text {:value (str a b)}))))

(ellipse {:extent {:x 42 :y 42}
:fill ”green”
con—mouse—down (fn [e])}

(text {:value ”foobar”}))

42

3.3. Direct Manipulation in Transmorphic

3.3.5. General Abstraction Preservation

In cases where we detach entities from their original context, and place them into
an entirely new one, it is reasonable to apply orphanization, since the role of the
entity can not be inferred automatically. However if the entity is not removed, yet we
manipulate its properties or submorphs, it becomes crucial to preserve the symbolic
expression the entity is embedded in, together with any variables that define the
entity’s properties. Symbolic statements such as loops, binding expressions or anony-
mous functions constitute vital parts in what defines the role of a certain morph or
component inside the interface, and we need them to be preserved as well in order
preserve the behavior of the GUI in the presence of direct manipulation. Transmor-
phic therefore modifies the corresponding symbolic description of a morph or com-
ponent, without disturbing the “symbolic context” it is embedded in. To illustrate
this property more clearly, let us for a moment look at Listing to understand the
goal we are after.

Listing 3.16: Example of an ellipse morph that is wrapped inside a Loop expression,
yielding a collection of separately placed ellipses, alternating in color

(loop [i (range 10)]
(ellipse {:1id (str 1)
:position {:x (* 10 i) :y (* 10 1)}
cextent {:x 42 :y 42}
:fill (if (even? i) ”orange” ”dodgerblue”)
:border—color ”brown”}))

Let us assume that an edit session is up and running and one of the morphs that
is yielded by the loop statement in the example is also selected with a halo. If the
programmer now starts to manipulate the morph through the halo, we can see that
Transmorphic will preserve the symbolic description as much as possible, thereby
only adapting the property that was changed by the halo in Listing Only the
changed properties will replace the previously existing property value (:extent),
or symbolic expression that the property was derived by (: fill) in the symbolic
description.

Once we continue with performing changes in the graphical representation, we
also see that changes to the structure are directly applied to the the loop statement,
again without removing the abstraction, see Listing|[3.18|

Since the eventual behavior of the direct manipulation is directly influenced by the
way we reconcile changes with our symbolic description, it is worthwhile looking at
what actual behavior the reconciled code exhibits. Notice that not only the adapted
function call influences the end result, but also the symbolic expression (in this
case the loop) that a morph or component may be embedded in. For example in
Listing[3.17|the new value for : extent and : 111 will affect all of the ellipse morphs

43

3. The Transmorphic GUI Framework

Listing 3.17: Reconciled symbolic description of Listingafter fill and extent have
been altered through the halo

(loop [i (range 10)]
(ellipse {:id (str 1)
:position {:x (* 10 i) :y (* 10 1)}
cextent {:x 102 :y 98}
fill ”#32CD32”
:border—color ”brown”}))

Listing 3.18: Reconciled symbolic description from Listing after a rectangle
morph has been dropped on one of the ellipses

(loop [i (range 10)]
(ellipse {:id (str 1)
:position {:x (* 10 i) :y (* 10 1)}
cextent {:x 102 :y 98}
fill ”#32CD32”
:border—color ”brown”}
(rectangle
{:position {:x =5, :y —14.5},
cextent {:x 47, :y 54},
:border—color ”orange”,
:fill ”gold”})))

44

3.3. Direct Manipulation in Transmorphic

Find the call site, that was responsible for
creating the respective morph or component
and adapt the morph/component to.

remove

We remove the corresponding functional call, possibly
removing multiple other morphs or components as well.

add
We add the new submorph to the corresponding func-
tion call, possibly adding the submorph to multiple other
morphs or components as well.
set-prop

We change the set of properties in the corresponding
function call, possibly affecting multiple other morphs or
components as well.

Figure 3.6.: The decision policy for reconciling direct manipulations declaratively

that are derived from this very function call, and not only the single morph we
applied the change to. This will causes the manipulation that was initially applied
to a single morph to be propagated among all other morphs of the same collection.
The effects by this style of reconciliation are rather different to the common in-
terpretation of direct manipulation, where a change is isolated to the object we are
directly operating on. We refer to this reconciliation approach as the declarative rec-
onciliation, since it leverages the declarative description of collections to propagate
changes to multiple entities at once. While we think that this interpretation of direct
manipulation is not suitable to be the default, we none the less decided to include it
into Transmorphic, since we encountered various scenarios where simultaneously
changing multiple entities can be very useful. [Figure 3.6|illustrates the reconciliation
strategy again, covering all cases that may be encountered in Transmorphic.

3.3.6. To Isolate or not to Isolate

While declarative reconciliation has its merits, we argue that this should not be the
default reconciliation approach, since the propagation of changes can often lead to
unexpected results, especially when just presented with the visual representation
of the system. It is therefore worthwhile looking for another transformation policy
that always isolates each change to the very entity it was performed upon. In order
to isolate changes within a collection, we need a property that allows us to differ-
entiate between different entities that are yielded by the same function call. This is
exactly what the value of :id provides us with, so we are able to isolate changes by
dispatching the property value on the entity’s :id. Let us revisit the example from
previously where reconciliation happened declaratively and look at how the isolated
reconciliation looks like in comparison in Listing|[3.19]

45

3. The Transmorphic GUI Framework

@ X
COCR®O0000O®
3

{x102,:y 98}

Figure 3.7.: Manipulating an entity that is part of a declaratively defined collection,

will propagate the change among all entities that are part of that collection. This
picture shows the graphical representations of the transformations in Listings
i and

respectively.

Listing 3.19: Example from Listing yet this time reconciled by means of direct
manipulation reconciliation

(loop [i (range 10)]

(ellipse {:id (str 1)
tposition {:x (x 10 1)
:extent (case (str 1)
73”7 {:x 102 :y 98}

{:x 42 :y 423})
:fill (case (str 1)

»3” ”#32CD32”

ty (x 10 1)}

(if (even? i) ”orange” ”dodgerblue”))
:border—color ”brown”}

(when (= ”3” (str 1))
(rectangle
{:position {:x —5, :y —14.5},
cextent {:x 47, :y 54},
:border—color ”orange”,
:fill ”gold”}))))

46

3.4. Function Editor

No generating abstraction, i.e. loop, map

Is the morph or component inside a collection
or declared inside of an anonymous function?

Direct Manipulation
Reconciliation

Declarative
Reconciliation

no :id value

identify the value of :id that
belongs to the morph/com-
ponent being manipulated

set-prop

remove

Change Property: Replace
property by case statement,
that dispatches on the value
of :id, evaluating the respec-
tive value the property was
set to.

Remove Entity: Wrap the
function call inside a when
clause that skips rendering on
the value of :id.

In case thewhen statement is
already present, enhance the

iproperty (case *id-expr*
conditional accordingly.

“foo” 42
“bar” 1. (when-not (contains?
0) #{”foo” “bar”}

id-expr)
(rectangle { }))

Add Entity: Add the function call corresponding to the new entity to the
morph or component but have it be wrapped in awhen statement, that
only renders the entity in the context of the parent that was directly
manipulated.

(rectangle {:id *id-expr*
o)
(when (= “foo” *id-expr*)
(ellipse { :id “addedMorph”
- D)

Figure 3.8.: The policy for reconciling direct manipulations in an isolated fashion.
Here *id-expr* denotes the symbolic expression that evaluates to the respective
: id of the morph or component.

Notice how, instead of completely overwriting the previous property values, a
case statement is introduced which allows us to assign the property value to the
entity carrying the respective :id. Also the rectangle that was previously added
implicitly to all of the ellipse morph’s from the loop, is now just added to the directly
manipulated morph. This transformation strategy is in fact rather imperative in nature,
in that we introduced a conditional for each property or morph that was manipulated.
We refer to this kind of reconciliation as direct manipulation reconciliation, and we
outlined the corresponding decision network in

3.4. Function Editor

The Function Editor is the core building block in Transmorphic for bridging the
gap between symbolic description, and graphical representation of the morph scene
graph. The idea behind the Function Editor is closely related to the one of the Object
Editor in Lively Kernel, where the programmer is able to directly change the state
and behavior that resides on a certain morph. As the name already implies, it is
however not mutable state encapsulated by objects that are modified by the Function
Editor, but abstractions, namely the definition of components, instead. In the context
of Transmorphic, this means that we are able to change or create the definition of

47

3. The Transmorphic GUI Framework

(() examples.playground/digital-clock

(defcomponent
digital-clock
IRender Vs ~
(render A 5502689183085366)
[self props submorphs]
(rectangle -

{:id "rectangle",

:wants-hand-focus? true, \X\\S\
:border-color "black", .\
:fill "grey",
:border-radius 10,
:drop-shadow? false}

(text o
{:rotation\s.502689183085366,)
:drop-shadow? false,
:font-size 22.400000000000002,
:text-color "limegreen",
:pivot-point {:x 0, :y 0},

»Q

:allow-input false,

:id "text",

:extent {:x 147, :y 28},

:position {:x 10, :y 18},

rtext-string "April 4th",

:font-family "Chrono Medium Italic"}))))

| Reconcile Changes Locked?

Figure 3.9.: Function Editor in action: The direct manipulation of the text morph’s
rotation property via the halo (right hand side) is complemented by the Function
Editor transforming the component definition accordingly (left).

a Component by either altering the symbolic description directly, or through direct
manipulation of the scene graph in the graphical representation. It is important to
understand that the function editor changes the symbolic description within the
original source files of the project and not the symbolic description that is kept inter-
nally by Transmorphic. The function editor does however allow us to incorporate
the changes applied to the internal symbolic description to the definitions inside the
editor such that the programmer is able to evolve the source code by both, manual
editing and direct manipulation.

3.4.1. Editing Morphs

Depending on wether the halo selected a morph or a component, the function editor
will start the edit session in a different mode. In case the halo selected a morph and
we decide to open the Function Editor, Transmorphic creates a new definition of a
component that contains the symbolic description of the selected morph (and all
its submorphs). Before the edit session is initiated, the programmer is prompted to
select, or define the namespace that the new definition is supposed to reside in. This
is done, by a drop down menu that automatically expands from the halo’s edit button,
where the user can either select an existing namespace, or declare an entirely new one.
This ad hoc generated symbolic description does not include any kind of abstractions
(i.e. let or map statements) besides calls to morphs or components. In fact it is the

48

3.4. Function Editor

orphanized version of the morph that was previously selected by the halo. The
idea behind this behavior of Transmorphic is that the programmer is able to create
new abstractions (components) by starting to edit a selected morph in the graphical
representation of the morph scene graph. For example, the programmer may start
by assembling different visual parts (morphs and components) with each other, then
select the one that is supposed to function as the root of the new component, and from
there on create and evolve a newly defined component. When the initial compilation
is initiated, Transmorphic replaces the morph from which the new component was
derived, with a call to the newly defined component. By default, this call to the new
component is parametrized with the same props as the morph that used to reside at
its place beforehand. After this compile and swap transactions, the function editor
automatically transitions into the component editing mode, which we will describe
in the next section.

3.4.2. Editing Components

The second mode of the function editor is triggered when already existing compo-
nents are being edited. This mode is reached by either starting the function editor
when a component is selected via the halo, or once a morph has been replaced by a
newly defined component in which case the function editor transitions from morph
editing to component editing. When editing the component, the function editor im-
mediately presents the programmer the source location, where the component’s
definition resides and allows the programmer to alter the symbolic description or
trigger a recompilation after a change has been committed. By default the function
editor presents the component definition in context of the whole definition of the
namespace, allowing the programmer to also add new function definitions to the
namespace that may be used as part of the behavioral properties of the morph inside
the component’s render method. In case multiple different component edit sessions
are opened in parallel (different components residing in the same namespace), a
change once saved in one editor, is automatically propagated to all other editors
in the same namespace. This mechanism prevents the problem of lost updates and
ensures that each editor has a consistent view onto the source of the application
when an edit session is active. The programmer may apply almost any arbitrary
alterations to the whole namespace definition such as declaration of global variables,
or additional dependencies for the namespace. Currently this freedom in editing the
symbolic description is restricted to one aspect, namely the renaming of components.
Because the mapping between rendered entity and symbolic description is entirely
name based, renaming a component or namespace out of spite either breaks the
reconciliation of the source, or the whole compilation in case required dependencies
in other namespaces can no longer be resolved. For this reason, renaming of compo-
nents should be performed through a separate menu, which allows Transmorphic
to react to the renaming, and perform the necessary changes to source and runtime
in order to let the current edit session evolve undisturbed.

49

3. The Transmorphic GUI Framework

3.4.3. Incorporating the Reconciled Source

As mentioned, behind the scenes Transmorphic already applies code transformation
as a means to realize the desired changes in the graphical representation of the
system, yet all of this was hidden from the programmer up to this point. In order to
let Transmorphic incorporate the changes due to direct manipulation directly into
the source within the function editor, the “Reconcile Changes” box in the bottom
of the editor window has to be checked. If reconciliation is active, the editing of
the symbolic description is temporarily turned off, and is instead replaced by the
symbolic description that is being generated by Transmorphic at runtime to apply the
direct manipulation changes. One example of this behavior can be seen in[Figure 3.9}

The “Reconcile Changes” box may be toggled any time during the edit session
of a component, however this will also toggle between two different alterations of
the symbolic description: One containing the changes done by the user through
editing the source, and the other that was created by incorporating the changes
in the symbolic domain. As of now, Transmorphic does not provide a mechanism
that allows to also combine incorporated changes and edit changes simultaneously,
since the source reconciliation always assumes a static structure of the symbolic
description that it is able to reason about. It is also important to understand that
Transmorphic restricts the incorporation of reconciled source code to the scope of
the component that is currently being edited and explicitly excludes the updated
calls to automatically generated component definitions. For example in
where for a modified use case the PUTBACK created a custom component definition
for that manipulated component, the call to the custom component definition is
not part of what is included in the code managed by the function editor. Since the
use case related component definitions serve a solely technical reason, including
them in the source code reconciliation of the function editor would rather lead to
confusing the programmer, instead of serving a meaningful purpose. The function
editor does however preserve the knowledge about these “altered” components,
and notify the programmer about changes that are “hidden” behind component
calls and not reflected in the source, in order to prevent the accidental loss of direct
manipulation changes.

50

4. Implementation of Transmorphic

Setup Each Transmorphic project is running as a client session inside the browser,
however we currently require a JVM that handles compilation requests, since
Clojurescript does not yet support self hosted compilation to a satisfying extent.

Component Local State This is where Transmorphic stores application state that
can directly trigger the re-rendering of a certain component. Of course the
actual state that influences the final application may also reside in global vari-
ables that code can later reference, however this information is not part of the
bookkeeping of Transmorphic.

Morph Scene Graph The data structure that reifies the current instance of the morph
scene graph, taking into account both, what the component’s render method
returned and what the user introduced as changes through the halo interface. It
can be directly passed to the virtual DOM and be rendered inside the browser
session in order to be displayed. We make use of the React.js [11] library to
render the scene graph into the browser’s DOM.

Symbolic Description Transmorphic also keeps track internally, what the current
symbolic descriptions of components and the namespaces they reside in are.
Note that this is derived, yet separate from the actual source files that belong
to the running Transmorphic project.

Direct Manipulation API Transmorphic provides a fixed API for applying direct
manipulation operations to the scene graph, which allows us to precisely rea-
son about the changes to the scene graph in order to perform the necessary
code transformations when a PUTBACK is triggered.

Lenses At the core of the rendering process are Transmorphic’s functional lenses,
that on the one hand can render the current scene graph out of symbolic de-
scription with respect to the component local state (GET) and also reconcile
the symbolic description with updates that have been performed on the scene
graph through direct manipulation (PUTBACK).

Internal Optimizations In order to provide a more responsive user interface, Trans-
morphic employs a set of internal optimization strategies which includes skip-
ping recompilation of symbolic descriptions and only partially rendering the
morph scene graph.

51

4. Implementation of Transmorphic

cljs cljs cljs

2.

Scene Graph

Symbolic
Description

GET Direct

\%ipulations
)

— .
PUTBACK

\
(defcomponent
) G)

(defcomponent

)

(defcomponent

)

(

\ J

Figure 4.1.: Overview of the different parts that make up Transmorphic’s
implementation

52

4.1. Setup

4.1. Setup

Transmorphic development sessions always run in the context of the browser, which
means that the internal data structures such as symbolic descriptions or scene graph
are all kept inside the client. Despite Clojurescript being able to bootstrap itself, there
currently are wide range of Clojurescript libraries that still require to on be compiled
in the context of the JVM. For this reason the current setup of Transmorphic also
keeps a JVM running next to the browser session that we use to support compilation
in Transmorphic.

Inside the client, Transmorphic stores the scene graph together with the symbolic
description within the atom that was provided to each of the set-root! function
calls, which we refer to as the world atom. Each of these world atoms is constantly
being monitored by Transmorphic to trigger a render pass once a change mutates
the information inside the atom. This includes changes to the symbolic description,
changes to the scene graph and changes to component local state.

Compilation can be triggered either by editing one of the project’s source files or
by recompiling parts of the internal symbolic description. In order to react to changes
in the source files Transmorphic automatically computes the smallest set of files that
need to be recompiled and then pushes the recompiled artifacts to all connected
clients. Symbolic descriptions are updated inside all of the evolving worlds within
the client, which means that we break isolation in the case that the initial source of
the project got modified.

For compilation requests that come from inside of Transmorphic, for example in
reaction to direct manipulation, we allow the respective world to communicate with
the JVM through a socket APL. Here we are able to issue compilations of small in-
cremental updates such as a redefined single component definition. This allows us
isolate changes in the symbolic description to the respective world and also obfus-
cates the need to modify and recompile the original source files.

It is important to note that all of the structures and functions we are about to
describe in the following are implicitly bound to a certain world context, meaning
they can not be used across different evolving worlds. In case we want applications in
different worlds to talk with each other, we need to implement separate mechanisms
that handle the communication between those worlds.

4.2. Scene Graph Representation

The scene graph is an object-oriented representation of the rendered morph scene,
which is retrieved by evaluating the render method of a certain component. During
the render process, a global identifier is assigned to each morph and each component
that is part of the rendered scene, from which a flattened tree can then be derived
such that we can store the tree inside a key value store. To get an overview of the
information that is kept inside the scene graph, take a look at the schema at[Figure 4.2}

This key value store is essentially a database that maps the morph or component’s
uuiD to the respective morph or component entry which contains all the necessary

53

4. Implementation of Transmorphic

Morphs Components

type | props |submorphs o renderl props |submorphs ‘ !
parent owner |1 | parent | owner ‘ !
txs b txs Do
Lo local state Lo

added ro added 1
removed source b removed P
location ool props -

props ! reconciler |.__!

Figure 4.2.: Schematic overview of Transmorphic’s internal representation of the
rendered scene graph. Components and morphs are stored separately since they
store different kinds of information.

information for Transmorphic to either render the scene to the DOM or react to direct
manipulation. First are the extensional attributes that are directly used to generate
a visual representation of the scene graph which includes passed properties (props)
and the array of submorphs for a certain morph or component.

In order to traverse the scene graph efficiently, we are provided with the already
mentioned submorphs but in addition to that also the owner and parent reference,
each storing the uuip of the respective owner component or parent entity.

Besides being the data structure that can be directly passed to the virtual DOM to
be rendered, the scene graph also stores the component local state within the entry
of each component, since this is also something that is directly dependent on the
inferred identity of a component. The dictionary that is denoted by txs stores all of the
performed direct manipulations, which will be described in more detail in the end
of this chapter. In practice, the scene graph stored in a certain world atom is always
derived from the component that was defined to be the root of the world. However
theoretically we can retrieve the scene graph based on any defined component, given
that we have its local state and a set of properties we can pass to it.

4.2.1. Identity Inference

We already mentioned that in case of ambiguity between the identity of rendered
morphs or components, the programmer is required to provide the :id property, to
uniquely differentiate siblings from each other. However, for Transmorphic to be
able to mutate the rendered visual morphs after they are rendered, we need to be
able to address them by a reference that identifies them uniquely in the context of
the whole scene graph. It is important to understand that the concept of a “reference”
is not available by default in our system but instead needs to be re-introduced. When
defining a component in Transmorphic, any code that in the end yields a visual
element, is purely declarative. When a morph is supposed to be rendered in the
scope of a component, it is done by performing a function call and passing the
required arguments which creates an immutable value that can not be manipulated
throughout the rest of the render pass. This restriction is intentional, and is one of the

54

4.2. Scene Graph Representation

core reasons, why declarative code is easier to maintain and reason about, since there
is a single direction in which information flows in order to yield the rendered scene
graph. We loose identity of the rendered elements, but gain a better understanding
of what we actually render in the end.

Since within the symbolic description of a morph scene graph, there is no identity;,
Transmorphic applies a strategy that assigns a universal identifier to each rendered
morph and every component after it has been rendered, so that it can be uniquely
identified among all other rendered elements inside the current world. This identifier
is automatically derived from the absolute path to that entity inside the world, and
the respective local :id properties of the morphs or components that are encoun-
tered throughout the traversal of that path. Once the component or morph has been
rendered and assigned the corresponding identifier, it is placed inside a key value
store that maps identifier to the morph or component entity. Ambiguity, meaning
there are branches which we can no longer distinguish from each other (as described
in Section 3.3.3| where we indicated the importance of : id), will cause Transmorphic
to loose the ability to infer identifiers to all the rendered descendants further down
that branch. Consequences of identity loss are various, ranging from the inability to
correctly introduce changes through the halo up to unintended convolution of local
state of different components and should therefore be avoided at any cost.

4.2.2. Component Submorphs

There is one aspect about Transmorphic’s scene graph, which at first creates ambigu-
ity with regards to the parent relationship. As mentioned, we can pass an arbitrary
number of morphs or components as submorphs to a component which itself is com-
pletely free to place the submorphs anywhere inside its rendered morph hierarchy.
For example the component may decide to place its submorphs immediately as the
submorphs of its root, but may also place the submorphs somewhere else, deeply
nested inside the hierarchy of morphs it is the owner of (see Listing|[4.1).

Listing 4.1: Example of the submorphs being rendered further down the morph
composition encapsulated by a component

(defcomponent morph—wrapper
IRender
(render [self props submorphs]
(rectangle
{:id ”HourPointer?”

cee)

(ellipse {:1d ”wrapper”
oo}
submorphs))))

55

4. Implementation of Transmorphic

Listing 4.2: Example of a component that repeatedly renders its submorphs in dif-
ferent places

(defcomponent repeater

IRender

(render [self {:keys [times]} submorphs]
(map

#(rectangle {:id ”wrapper”
:position %}
submorphs)

(get—wrapper—positions times))))

We could even imagine components that render the submorphs not a single but
multiple times, functioning more like a repeater than a simple wrapper of the morphs
that are passed to them (see Listing|[4.2).

It now becomes difficult to say what we can consider the parent of a certain morph
that has been passed as a submorph of a component. For example in the extreme
case where we repeatedly render the passed submorphs, there is no longer a way to
denote a single parent for a passed submorph. We again encounter a conflict between
the functional, declarative interface of Transmorphic, and its simultaneous notion
of morphs having an identity: While the parent relationship of morphs requires the
notion of object identity, the way we issue the render of a morph or component is
purely declarative, without the notion of directly referencing the morph or compo-
nent as a mutable entity. To guarantee that any morph in the rendered hierarchy
can still be uniquely identified, submorphs that have been passed to a component
are split up into two different entities, one being the prototype and the other being
the derived morph. A prototype is never rendered directly but only receives a visual
representation by one of its derivations, which denotes the morphs that are passed
to a certain parent morph in the render method of the component. In [Figure 4.3|the
relationship between prototypes and derived morphs is illustrated visually.

Having established the prototype-derivation relationship, we are again able to
uniquely assign the appropriate parents to each morph. Prototype morphs always
have the component as the parent, they have been passed to, while derived morphs
are always the children of the morph or component they have been passed to in the
scope of the render method. Notice that the owner of both prototype and derived
morph is the same, namely the component from which they initially received their
properties.

4.3. Representation of the Symbolic Description
Transmorphic keeps an internal representation of the running project’s symbolic

description that is separate from the source files. We determined that a separation
between project source files and the symbolic description at runtime, is useful for

56

4.3. Representation of the Symbolic Description

S~

“derived from”

Figure 4.3.: Relationship between prototypes and their derived morphs

multiple reasons: For one, the programmer should still have the final word, when it
comes to modifying the source code of the application: While source transformation
is a means to implement the direct manipulation, the runtime should not interfere
with the original source files and perform source authoring on behalf of the pro-
grammer. Encapsulating the source transformations in a separate structure allows
us to flexibly create symbolic descriptions internally that reflect the changes due to
direct manipulation without directly affecting the sources. At the same time we are
also able to export the transformations to the actual files in case explicitly demanded
by the programmer, for example by enabling reconciliation in the function editor.
Furthermore, a separate structure in which the symbolic description is stored, simpli-
fies managing the isolation of changes to the description. For example, we can start
differentiating between the uses cases that a component appears in by storing sepa-
rate copies of the symbolic description and only apply source transformations to the
specific use case. Likewise, the compilation of different components can also happen
in an isolated fashion and we are not required to recompile entire namespaces in
cases just a single component definition changes.

We first store all of the different namespaces together with references to all of the
components that are defined within them alongside the path to the source file that
the namespace originated from. In addition, we also store the compilation context
that is used in cases where some of the components need to be recompiled in iso-
lation. The compilation context is initially created when the entire project with all
its namespaces is compiled, and is then kept internally to be reused and updated at
runtime, when new compilation requests are scheduled. What follows is the list of
all defined components each of which is split up into different use-case scenarios.
By default, a component only has a single use case that applies to all of the instances

57

4. Implementation of Transmorphic

Namespaces

ns-name

components q |

compile-ctx -\

comp-name

sexp

use-cases o

Components

Figure 4.4.: Schematic description of the internally stored symbolic descriptions

it is used in, however every time a component definition is updated with regards to
a direct manipulation, a new use case is introduced in order to isolate the change to
the instance at hand.

4.4. Direct Manipulation API

In the previous chapter we have seen various kinds of direct manipulations that can
be applied to the rendered morph scene graph. By now, we have already learned
that the vuip that is assigned to each morph and component allows us to, in theory,
precisely define various kinds of changes to the rendered entities. We will now
present the internal API for traversing and mutating the morph scene graph in
Transmorphic. Notice that the API for direct manipulation is implicitly bound to
the context of a certain world, which is why we do not pass the world explicitly as
an additional parameter. It should also be noted that the features presented here
should be restricted to tooling and other applications that support the development
process of the programmer. In no case should this API be used within the scope of a
component’s render method, since various parts of the API are highly stateful and
directly interfere with the rendering process. In the following we will use the term
“entity” to refer to both morphs and components alike, since many parts of the API
apply to both of them in the same way.

58

4.4. Direct Manipulation API

4.4.1. Walking the Scene Graph

We will first explain the part of Transmorphic’s direct manipulation API that allows
to traverse the morph scene graph, which includes the following functions:

$morph, $component, $submorphs, $parent, Sowner, Sprops

The functions $submorphs, $parent, $owner, $props all work with respect
to a certain entity (that is a uuip), so we need some way to enter the scene graph
at an initial point similar to a handle from where we can start traversing the scene
graph. This is what the functions $morph and $component provide us with: In both
cases, a certain morph can be addressed based on its :id property:

($morph ”morph-id”)

The function will search the main morph scene graph (that is the world it is bound
to) beginning from the root and return a reference to the first morph that carries
the property :1id of value “morph-id”. Since the value of :1id is often only unique
among the siblings of a component or morph, we can pass further arguments to
$morph or Scomponent, in order to specify that a certain value of :1d has to occur
in the chain of parents, like so:

($morph ”parent-id” ”other-parent-id” ... ”morph-id”)

This allows to quickly reduce the number of possible matches, in case we need to
hand pick a certain morph and want to perform direct manipulations in a purely
programmatic way. Given that have get a hand on a specific morph, we can con-
tinue with reading its properties or fetching its parent or the owner component
respectively:

(let [ref (Smorph ”parent-id” ”other-parent-id” ... ”morph-id”)]
(Sowner ref)
($props ref)
($parent ref)
.)

We can continue traversing the scene graph in arbitrary ways, just we would in a
common imperative environment.

(let [ref (Smorph ”parent-id” ”other-parent-id” ... ”morph-id”)]
(=> ref $parent $parent $Sowner ...)

»)

Properties returned by $props are fully evaluated, and not in the symbolic form
they were initially defined in.

59

4. Implementation of Transmorphic

4.4.2. Manipulating the Scene Graph

Transmorphic provides a fixed set of possible mutations in order to reason about
the changes in a way that can later be reconciled with the symbolic description. In
particular the following set of functions are provided each in two flavors, one for
morphs and one for components respectively:

1. (add! parent-ref ref) Takes a reference (uuip) of the parent entity and
reference (uuip) to another entity that will be added to the parent.

2. (remove! ref) Removes the entity referenced by ref from the scene graph.
Notice, that the vuiD entry is still kept inside the key value store and the re-
moved entity can be inserted into the scene graph at any point in time until
recompilation may invalidate the entity. This call also causes the orphanization
of the respective entity such that it can be added to other contexts afterwards.

3. (set-prop! ref prop value) Sets the property prop to the value val at
the entity pointed to by the vuib ref. Notice that value may also be a relative
property, and not necessarily a primitive value.

4. (copy! ref) Allows the programmer to create new components/morphs
based on already existing ones. This allows to introduce new elements into
the scene graph, without the need to change the symbolic description and
recompile a particular component definition. The copied entity is orphanized.

5. (move! ref new-parent-ref) Isjustashorthand foraconsecutive remove!
and add! call. Just like removed or copied entities, a moved entity is getting
orphanized implicitly.

Notice that each of these functions has side effects, in that it causes the scene
graph that is stored inside the world atom to be updated. Consequently the names
of the functions all carry a trailing exclamation mark, which is the convention in
Clojure to denote functions that perform side effects on their behalf. We are able to
retrieve a reconciled symbolic description of the affected components, through the
reconciliation lenses we will talk about in detail next.

4.5. Source Transformation Lenses

Internally Transmorphic implements the bidirectional mapping between symbolic
description and graphical representation by means of functional lenses. We will now
see how the different lenses are represented concretely in Transmorphic, how they
are being used and how they work internally.

Currently there exist two different types of lenses that are actively part of Trans-
morphic’s reconciliation machinery: The Direct Manipulation Lens reconciles the sym-
bolic description and isolates changes through introduction of conditional state-
ments to single morph instances, in case they are part of a morph collection. On the

60

4.5. Source Transformation Lenses

other hand the Declarative Manipulation Lens refrains from introducing conditionals,
thereby leveraging the declarative expressiveness of a symbolic expression which
in the context of morph collections lifts direct manipulations to apply all morphs or
components that were derived from the same symbolic description.

We saw in the previous chapter, how the lenses behave with regards to their GET
and PUTBACK functions. Internally, the lenses can be accessed through two respective
functions that take the scene graph representation and return as a result a new
symbolic description representation:

1. (reconcile-declarative symbolic-description scene-graph)
2. (reconcile-direct symbolic-description scene-graph)

Note that these two functions are pure, and only expose the mapping mechanism
the reconciliation lenses provide. In order for reconciliation to actually affect the
world, Transmorphic provides two side effecting functions, which similar to the
direct manipulation operations, are bound to a certain world so we only need to pass
a reference to the component that is meant to be reconciled:

1. (reconcile-declarative! component-ref)
2. (reconcile-direct! component-ref)

The following will describe the mechanism, by which the lenses are able to recon-
cile the definitions of components to reflect changes applied through direct manipu-
lation.

4.5.1. Compile Time Analysis

In order to preserve all the symbolic expressions within a component’s render
method, Transmorphic performs static analysis of the symbolic description at macro
expansion time. For this, we make use of deep code walking macros [29] that traverse
the entire nested symbolic expressions of the render method’s lexical scope while
performing various adaptations. This static analysis phase traverses the symbolic
representation of the component’s render method in two phases: An initial breadth
first downwards traversal where analysis is performed, followed by an upwards
traversal which instruments the symbolic descriptions based on the results of the
previous analysis.

During the initial downwards traversal, Transmorphic handles the tagging of func-
tions, assignment of source locations and the extraction of source templates.

Tagging A function is tagged during static analysis if it has been identified to yield
either a morph or a component. This is determined based on resolving the names
of the called symbols in the current scope and testing wether or not they map to a
morph or a component function. Transmorphic is able to perform these tests, because
every instance of defmorph or defcomponent causes the environment to register
the respective abstraction together with its namespace as a morph or component
respectively.

61

4. Implementation of Transmorphic

® Tag
Component Render Function ® Source Location
(render [self props submorphs] Image 0
(image
{:extent {:x 200 :y 200} |-

rposition {:x 42 :y 42}
:url "kermit.png"
:on-mouse-enter (fn [e]
(prn "Mouse entered!"))}

(ellipse Ellipse 1
{:position {:x @ :y 0}
:fill "green"
rextent {:x 100 :y 100}})
(map (fn [i] [Expression] 2
(text {:id (str i) | o
:value "Hello World!"
rposition {:x (* i 10)
by C* 1100110 Text 3

(range 10))
(clock {:id "Clock"
rextent {:x 300 :y 300}
:position {:x 300 :y 300}})))

[Component] clock 4

Source Code Template (Samples)

(fn [props submorphs]

‘(image (fn [m_@]]
~(merge ‘(map (fn [i]
{:extent “($parent :extent) ~m_0)
:on-mouse-enter “(fn [e] (range 10)))
(prn "Mouse entered!"))}
props)
~submorphs))

Figure 4.5.: Visualization of the static code analysis that happens at macro expansion
time. The different stages, tagging, source location assignment and source template
extraction are exemplarily shown by means of the information artifacts they produce.

62

4.5. Source Transformation Lenses

Source Locations Inaddition, each tagged morph or component is assigned a static
source location, which is later also attached to the rendered morph or component
at runtime. Source locations are derived from a very simple enumeration scheme,
based on a counter starting at o (for the root) that is then incremented each time
a function is tagged. The source location allows Transmorphic to determine which
part of the symbolic description is responsible for a certain morph or component,
and alter the source at that particular location accordingly during the reconciliation
phase.

Source Code Templates Lastly, the static analysis also includes the extraction of
code templates, which are used to preserve symbolic expressions such as map, loop
or anonymous functions. Code templates are extracted when during traversal the
static analysis encounters a structure that is neither a morph nor a component. In this
case Transmorphic retrieves a copy of the symbolic expression, replaces all of the calls
to morphs or components inside with placeholder variables, and from there derives
a function that can replace these placeholders with the reconciled calls to morphs
or components. Before the downwards traversal continues, a map is assembled that
associates the current source-location of the symbolic expression with that template
function. Internally, Transmorphic refers to this stored mapping as the reconciler,
which once finished, is associated with the component to ensure that it is store inside
the key value store at runtime. Reconcilers are created and refreshed every time
the compilation cycle and therefore the macro expansion phase is initiated again.
Once this part of the reconciler is constructed, the analysis continues with all of the
morphs or components that appear within the symbolic expression we just analyzed
(basically the ones we replaced with the template variables in the code templates).
Here we will apply the same procedure checking for morph, component or symbolic
expression and adapt the reconciler accordingly.

Once the downwards traversal is finished, we end up with a reconciler that cap-
tures all of the symbolic expressions within the scope of the component’s render
function, together with a list of source locations that we assigned to the morphs and
components. In the now initiated upwards traversal of the symbolic description, we
transform each functional call within the component’s render function that creates
an entity, in such a way that it knows about its source location. At the same time
the reconciler that has been extracted from the analysis phase is inserted into the
component definition, such that in case the component is getting rendered, it has
access to the reconciler. An example for a complete reconciler that is derived from a

component definition, please take a look at|Listing A.6|in the appendix.

4.5.2. Reconciling Morphs and Components

Based of the information that is extracted at compile time, we are able to access each
morph’s or component’s source location and also the reconciler that is associated
with each component. We will now explain the steps that the PUTBACK operation
undertakes, in order to convert the original symbolic description together with the
scene graph into an updated symbolic description.

63

4. Implementation of Transmorphic

In order to understand the reconciliation process, we first need to differentiate
between two types of reconciliation, namely external and internal reconciliation. By
means of an external reconciliation, we map a change back to the symbolic descrip-
tion based on changing the parametrization of the function call of the affected morph
or component. This is essentially the set of transformations that were demonstrated
in the previous chapter, where we described the PUTBACK behavior of the different
lenses, i.e. removing, adding or adapting function calls to morphs or components.
External reconciliation by itself however, is not sufficient for the transformation to
take effect, since its independent of the lexical scope, namely the owner’s render
function that it resides in. We therefore also need a reconciliation step that reconciles
the owner’s definition, which is what the internal reconciliation achieves.

External Reconciliation During external reconciliation we translate the transac-
tions applied to the respective morph or component into transformations inside
the function calls. Note, that this does not yet affect the actual implementation of
a component or morph, hence the term external. This is the stage, where the dif-
ferent reconciliation strategies come into play: In case we reconcile with the direct
manipulation approach we check wether a source location is shared by more than one
entity. If this is the, case we need to isolate the change with the conditional to only
the entity where the transaction actually applied to, see If we follow the
declarative reconciliation, we do not check for shared source locations and instead
let the transaction that was applied most recently effectively override all of the pre-
vious transactions, see The external reconciliation of an entity always
stops at the respective submorph collection, where we will determine which of the
submorphs got added or removed, yet not bother with the actual reconciliation of
these entities. Also note, that we only need to apply external reconciliation, to those
entities that have actually been directly manipulated.

Internal Reconciliation After each component or morph has been reconciled ex-
ternally, we continue with the internal reconciliation, which is the redefinition of the
component’s render function. This is the phase, where the previously extracted rec-
onciler finally comes to use. Given a component that owns at least one entity which
got transformed in the external reconciliation step, we first fetch that component’s
reconciler. We now recursively pick a reconciliation function from the reconciler, be-
ginning with the one at source location o and evaluate it together with the external
reconciliations of all the entities that are comprised by the symbolic expression at
the current source location. We then continue the recursion with the submorphs
of the externally reconciled entities until all entities comprised by the render func-
tions scope are incorporated into the reconciled definition. Internal reconciliation
propagates upwards, till the root of the world is reached.

64

4.6. Bypassing Compilation

4.6. Bypassing Compilation

The way Transmorphic maps direct manipulation to transformations inside the sym-
bolic description may be elegant yet if applied naively, often leads to severe perfor-
mance degradations when interacting with the system. The frequent recompilation
of symbolic descriptions together with the separation of compilation environments
constitutes a significant bottleneck during execution that can lead to a very unre-
sponsive graphical representation. Especially in cases, where consecutive updates
happen quickly in a row, it is sensible to devise strategies that allow us to postpone
recompilation to a later point in time, when performance is not as critical.

We therefore enhanced the render pass such that Transmorphic is able to postpone
recompilation as long as all changes are induced via the direct manipulation APIL
The ways in which the render pass of Transmorphic is optimized, can be split into
three different measures:

Immediacy All direct manipulations that belong to morphs will immediately influ-
ence what the virtual DOM will be rendering.

Interception All direct manipulations to components will intercept the parametriza-
tion of the component at future render passes, emulating the effect the recom-
piled version of the component would have had.

Preservation All direct manipulations belonging to either morphs or components,
are being preserved over the render passes that update the scene graph.

Changes to a morph or component are discarded, once the corresponding part
of the symbolic description is updated. An update may happen by changing and
recompiling the initial source files of the project, or by reconciling the symbolic
description with the direct manipulation followed by a recompilation.

The concept of storing subsequently applying imperative adaptions after each ren-
der cycle is very closely related to the idea of shaders [10] in the domain of computer
graphics. Similar to direct manipulation changes, shaders operate on the vertices,
or pixels that have previously been produced by the render pass, in order to apply
adaptations which can not easily be expressed in a purely functional projection.

4.6.1. Manipulation Transactions

Transmorphic separates the different mutations into three different types of transac-
tions: Removing Transactions, Adding Transactions and Property Transactions.

Properties Changes to properties are independent to the order in which they were
applied and stored directly in the transaction collection of the respective holder
of the original properties. A property change will always strictly override the
original value of the property, also in cases, where the property was initially
declared dynamic or varying over time.

65

4. Implementation of Transmorphic

Removes If an entity is removed, the removal transaction is actually stored in the
parent and not in the entry of the removed entity. In case an entity is removed,
that once was added through an addition transaction, we do not insert a re-
moval transaction but instead just remove the transaction that caused the entity
to be added in the first place. This convention allows us to apply removal trans-
action without concerning ourselves with the order in which they were initially
applied. Removal transactions are stored as a set of uuips, specifying the enti-
ties that are to be removed from the submorph array of the entity holding the
removal transactions. When a removal transaction is registered, the removed
entity is also orphanized. As described in the previous chapter, this will detach
the entity from its original lexical scope, and prevent that future re-render
cycles will be updating the stored entity in the key value store.

Additions The only type of transaction where order is important, stored as a consec-
utive list of uuIps to entities that are meant to be concatenated to the existing
collection of submorphs.

4.6.2. Consolidating Morphs

When we want to postpone the costly recompilation of the symbolic description, we
need to ensure that the stored direct manipulations are being preserved throughout
future render passes. We call the process that preserves these, without touching
the symbolic description, the consolidation phase. In Transmorphic, the consolidation
is achieved by interpreting each enacted meta operation as a transaction that is
constantly replayed, every time the morph scene graph is re-rendered. Conceptually,
transactions are therefore not influencing the rendering process itself, but something
that is attached as a decorator to the result of the rendering process. Transactions are
registered once one of the mutation functions is called, which causes the respective
transaction to be placed into the transaction collection of the affected morph or
component in the key value store. Transmorphic then ensures that, in every re-render
cycle, the transaction collection is maintained and re-applied to the morphs and
components in order to receive a consolidated morph scene graph that can be finally
rendered by React.js.

4.6.3. Consolidating Components

When consolidating components, we first apply the same steps as in the case of
the morph consolidation described previously, which includes the preservation of
transactions and the corresponding adaption of the submorphs and properties be-
longing to the component. However after the application of the transactions, the
component is parametrized with a possibly entirely different set of properties and
submorphs, which requires the render method to be evaluated again together with
the new parametrization. The result that is retrieved from the newly evaluated ren-
der method is then stored within the key value store and the consolidation process
continues on the now updated submorph hierarchy of the component. Since every

66

4.7. Interfacing with React.js

parametrization of the render method may yield a unique collection of submorphs,
Transmorphic further ensures that none of the once yielded submorph hierarchies
are discarded, since they may at some point serve as the ingredient for other transac-
tions applied to other morphs or components in the scene graph. In the case of long
running sessions, Transmorphic may in fact accumulate a rather large amount of en-
tries in the key value store, making the introduction of garbage collection mechanism
necessary in order to prevent the exhaustion of memory. However in the current pro-
totypical implementation of Transmorphic, we have not yet addressed this problem,
making it part of the future work with regards to this project.

4.6.4. Propagating Changes

Besides emulating the effects of a changing parametrization for a morph or compo-
nent respectively, we further need to be able to emulate the behavior that is created
by symbolic expressions such as map statements. Fortunately we can make use of the
a morph or component’s source location that was assigned in the analysis phase for
the purpose of reconciliation. In the context of the reconciler, “created by the same
function call” essentially means that a group of morphs or a group of components
share the same source location respectively. This makes the reconciler an ideal place
to also store the information for change propagation that may become necessary
when we want to skip compilation in response to direct manipulation.

Reconcilers therefore also store the same types of transactions derived from the
mutations as the different entries for morphs and components in the key value store
already do. The difference is that, within the reconciler, a transaction collection is not
stored per entity but instead per source location. Despite being schematically equivalent
to the transactions that are associated with entities, the transactions associated with
source locations have the property of amplifying the respective transaction among all
entities that share the same source location. Whenever the reconciliation mode for an
entity is activated, Transmorphic will choose to apply the transactions corresponding
to the source location instead of the changes associated with the actual entity.

4.7. Interfacing with React.js

Once the consolidation and the reconciliation phases are finished, the final scene
graph is generated and then converted into a composite of React components that
can be passed to the React interface. The extraction of the scene graph, happens by
starting to traverse the key value store at the specially designated root entity, and from
there recursively resolving all uuip references inside the consolidated submorph
arrays. Since React.js already performs all the book keeping to transition the browser
DOM as efficiently as possible, we do not need to worry about confronting React
with a completely regenerated version of the scene graph.

67

5. Using Transmorphic and Outlook

In the following we will show how Transmorphic supports the programmer in vari-
ous ways when developing an application by comparing an example development
workflow to equivalent ones in Lively Kernel and Squeak. In particular, we will
demonstrate the class based approach in Squeak/Smalltalk and the object based
approach (i.e. “Parts”) of developing an application in Lively Kernel’s Morphic, and
contrast this to the way it is done in Transmorphic. Each approach will be presented
by examining different scenarios that may arise when developing an application.
This includes the initial creation of an application, the incorporation of existing li-
braries or abstraction, the reuse of the application in a different context and finally
the reconciliation of different changes by different users to the application.

5.1. Building a Clock

1 1

(]
X

10 2

o examples.playground/clock

(defcomponent
clock 9
IRender
(render

[{:as self, :keys [local-state]} {:keys [ic
(let [{:keys [time]} local-state 8 4
radius (/ (extent :x) 2)
{:keys [x y]} extent 7 5
ext (if G xy) {:y x, :xx} {:yvy, 6)
Cellipse () =
{:id id,
:position position, Clock
:extent extent,
:step
(fn []
(rerender! self {:time (get-current-

Figure 5.1.: Screenshot of the finished clock together with an open session of the
Function Editor on the corresponding component definition

As an example application, we will create an analog clock that shows us the current
time of the day together with the current date of the year. While this example may
be simple, it still covers all the important aspects about a development scenario in
Morphic within a nutshell:

68

5.2. Building a Clock in Transmorphic

1. Assembly Body and hands of the clock are suitable to be assembled by manual
composition, while the placement of the labels for the different hours will be
easier when generated programmatically. This will show how the different
approaches are able to combine symbolic and direct manipulation approaches
when defining the morph scene graph of the clock.

2. Incorporating Abstractions The widget that indicates the current date, is an al-
ready existing application that we will want to reuse in our clock and will allow
us to compare how the different approaches allow the developer to incorporate
existing abstractions.

3. Behavior and State We will then use the stepping mechanism of Morphic to
evolve the clock’s internal state, which also demonstrates how state can be
managed.

4. Collaboration Lastly we will let a different developer enhance our clock by adding
a checkbox that when selected, will let the hands of the clock go counterclock-
wise. The changes are then supposed to be reconciled with changes that we
have applied to the clock in the meantime. This will demonstrate how behavior
and appearance can be altered at runtime and then shared with other devel-
opers.

5.2. Building a Clock in Transmorphic

In the following we will illustrate, how the reconciliation process of Transmorphic
modifies the source code of the clock component we are about to define. We will
highlight the automatically changed parts of the source code in orange. Changes due
to editing of the source code, meaning by the programmer, will be highlighted in
blue.

During the process of developing the clock component, we will make use of a
couple small tools that were not mentioned when presenting Transmorphic earlier.
This includes the Namespace Viewer, which allows us to visually browse a certain
namespace by rendering samples of each defined component in that Namespace.
Each of the rendered samples can be grabbed and dropped into the scene in order
to incorporate it into new component definitions. We will also make use of a very
simplified Git [37] integration, which allows us to commit and push or pull changes
with regards to a certain component. Notice that all of the tools we will use from
within Transmorphic are themselves components defined in terms of morphs. We
think that this also demonstrates the wide range of programs that are possible to
create from within Transmorphic, indicating its universal applicability similar to
Squeak/Smalltalk or Lively Kernel.

69

5. Using Transmorphic and Outlook

5.2.1. Assembly

We start building the clock by evolving an existing ellipse morph in the scene, using
the halo to change appearance and shape to our preference and then opening a Func-
tion Editor in order to create a new component definition. After naming and saving
the component definition, it will be compiled and hot swapped by Transmorphic.
The upper right hand corner of the Function Editor will notify us, when this process
has been completed.

Listing 5.1: The initial component definition of our clock. Notice that the properties
such as :extent or :position are automatically merged into the properties of
the ellipse which forms the root of the component. They therefore do not need to
be specified in within the render function of the component.

(ns demos.clock)

(defcomponent
clock
IRender
(render
[self props submorphs]
(ellipse
{:border—width 4,
:border—color ”darkgrey”,
:fill
? —webkit—gradient(radial, 50% 50%, 0, 50% 50%, 250,
from(rgb(255, 255, 255)), to(rgb(224, 224, 224)))”,
:pivot—point {:x 0, :y 03}1})))

We then continue with creating additional shapes required for our clock, such
as hands and the labels which will represent the hours of the day. The hands will
be constructed out of polygon morphs that we will define through a convenient
halo interface that allows us to position the coordinates of the polygons vertices
accordingly. This poses an example of the halo providing specialized functionality,
depending on the type of the morph we are inspecting.

The label we will represent by a textmorph which we will stylize and place onto
the surface of the clock as well. Thanks to continuous reconciliation, the symbolic
description of our component has been updated accordingly such that we can now
save and compile the component to start working on the loop, which will render the
labels correctly.

The first thing we discover is that we might want to remove the complete defi-
nition of the hour label, to save some space and keep things more organized. We

70

5.2. Building a Clock in Transmorphic

Listing 5.2: Reconciled definition of the clock component, after hands and the sam-
ple of the label have been introduced

(defcomponent
clock
IRender
(render
[self props submorphs]
(ellipse
{:border—width 4,
:border—color ”darkgrey”,
fill
?” —webkit—gradient(radial, 50% 50%, 0, 50% 50%, 250,
from(rgb(255, 255, 255)), to(rgb(224, 224, 224)))”,
:pivot—point {:x 0, :y 0}}
(text {:value ”12”
tposition {:x —40 :y —5}
textent {:x 30 :y 30}
:font—size 12})
(polygon {:id ”seconds”
:fill ”red”
svertices [{:x —10
(polygon {:id ”minutes”
:fill ”darkblue”
:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]1})
(polygon {:id ”hours”
:fill ”darkblue”
:vertices [{:x —10
)

'y 0} {:x 0 :y 0} {:x —5 :y 30}]})

iy 0} {:x 0 :y 0} {:x —5 :y 30}1})))

71

5. Using Transmorphic and Outlook

therefore select the label, open a separate Function Editor, and create an additional
component which we will save and compile accordingly. Notice that Transmorphic
handles all the necessary source changes for us, and the call to the morph functions
is immediately replaced by a call to the component within our clock component

definition Listing

Listing 5.3: The reconciled source after the hour-Tabel has been extracted and we

manually wrapped it inside a map statement

(defcomponent
clock
IRender
(render
[self props submorphs]
(ellipse
{:border—width 4,
:border—color ”darkgrey”,
:fill
? —webkit—gradient(radial, 50% 50%, 0, 50% 50%, 250,
from(rgb (255, 255, 255)), to(rgb(224, 224, 224)))”,
:pivot—point {:x 0, :y 0}}

(map
(fn [hour]
:id (str hour ”h”),
:label hour,
thour hour,
:radius 150,

)
(range 1 13))
(polygon {:id ”seconds”
:fill ”red”

:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]})

(polygon {:id ”minutes”
:fill ”darkblue”

:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]1})

(polygon {:id ”hours”
:fill ”darkblue”

:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}1})))

)

We can then wrap the call to the label component in a map statement that repeat-
edly renders the labels for each hour of the day. We will further pass the information
such as position and the label contents as parameters to the component. Note that
the position is immediately interpreted correctly, since properties are merged by

72

5.2. Building a Clock in Transmorphic

default. In order for the label property to start having an effect, we need to switch
to the label component definition, which is easily reachable via halo and define that
the label property influences the contents of the textmorph Listing 5.4}

Listing 5.4: The definition of the extracted hour-Tlabel component. Custom adap-
tations through editing are highlighted in blue.

(defcomponent hour—Tlabel
IRender
(render [self props _]
(text
{:id (str (props :label) ”h”)
:position (point—from—polar
(* (props :radius) .8)
(angle—for—hour (props :hour)))
ttext—string (props :label)
:font—family ”Arial”})))

Lastly we want to fine tune the parametrization of the loop, which can be easily
done by scrubbing the value inside the Function Editor. Transmorphic immediately
compiles the map statement with the newly parametrized value, giving us a more
direct feedback while we determine which value is best for the radius parameter.
Notice that when we decide to adjust visual properties of the label in hindsight, we
can do so without the loop abstraction being removed, by activating the declarative
reconciliation and resizing one of the yielded labels to our liking.

5.2.2. Incorporation of Abstractions

As well behaved programmers we always strive to build on top of work that is already
done, so incorporating external, already existing components is a very common use
case. In Transmorphic, we are able to incorporate existing components (such as
the date indicator) into our application, through either the direct manipulation or
textual editing. In case we know the exact name of the component function, we can
insert a plain call to the component into our symbolic description, which once saved,
will cause the date indicator to appear within the clock. We can now go ahead an
adjust its visual properties, which are automatically reconciled with the symbolic
representation we have just updated. The other option is to perform incorporation via
direct manipulation, and just grab and drop an already rendered sample of the date
indicator into our clock: From the Namespace View that is opened on our namespace
demos. clocks, we can grab the date indicator, and drop it into our rendered sample
of the clock. With reconciliation enabled in the function editor, the required function
call with the needed parameters will be placed in the source code automatically

Listing

73

5. Using Transmorphic and Outlook

Listing 5.5: The call required for the data-view, placed and parametrized accordingly
in the symbolic description of the system (highlighted in orange)

(defcomponent hour—Tlabel

IRender
(render [self props _]
(ellipse { ... }

(date—viewer
{:position {:x 30 :y 40}}))))

5.2.3. Behavior and State

In Transmorphic the behavior and management of state are cleanly separate from
the visual representation. This means that no part of the logic concerned with data
management will ever reference a visual component directly, while the visual ele-
ments themselves should not be strongly coupled to the application state. We will
therefore not mix code that causes the hands to change with code that updates the
current time of the clock. The root of our component will be supply with a :step
callback which will compute the current rotation values for the respective hands as

seen in Listing

Listing 5.6: The step method we will attach to the root of the component. In principle,
any entity that is owned by the clock component could implement the :step
method, yet it is most convenient to pick the root of a component to serve this
purpose.

{ ...
:step (fn [_]
(swap! self assoc :time (get—current—time))}

We then wire up the rotation properties of the hand with the values inside the
state, so that the rotation of the hands always represents the value of the current
time, as seen in Listing Currently, all of this needs to be done through manually
editing the source code and triggering a recompile of the component definition.

When it comes to sharing our application with other Transmorphic environments,
it suffices to share the symbolic description that is required for clock we have just
created since all our changes are reflected in the symbolic domain. Thus, the sharing
of our clock can work with any type of text based versioning system. In fact, Trans-
morphic provides a simple interface to interact with a local git repository, which is
accessible via the halo. From here we can commit our changes and share our new
clock component with other users.

74

5.2. Building a Clock in Transmorphic

Listing 5.7: Excerpt of the clock component definition, where the hands : rotation
property has been hooked up to the component local state (highlighted in blue)

(polygon {:id ”seconds”

:fill ”red”

:rotation (x (+ —0.25 (/ (self :seconds) 60)) 2 PI)

:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]1})
(polygon {:id ”minutes”

:fill ”darkblue”

srotation (x (+ —0.25 (/ (self :minutes) 60)) 2 PI)

:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}13})
(polygon {:id ”hours”

:fill ”darkblue”

:rotation (x (+ —0.25 (/ (self :hours) 12)) PI 2)

:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}13})))

5.2.4. Collaboration

In the following we will describe how two different users, namely Alice, operating
on the system we have worked on so far, and Bob who will be working in a separate
instance of Transmorphic that has not yet retrieved the clock component. Bob can get
access to the clock’s implementation by retrieving the changes committed previously
by Alice, via some text based versioning system into his local repository. After this
is completed, we can, again, make use of the Namespace View in order to grab the
clock we just received, and start to evolve it by selecting the component with the
halo and starting up the function editor, see

We first want to change the shape of the root of the clock, so we simply alter
the symbolic description a little bit, and replace ellipse with polygon instead.
After compilation the shape of the clock switches to a triangle, which is the default
polygon shape when we do not supply any vertices. We can now shift back into direct
manipulation by using the halo interface for vertex manipulation of the polygon, and
add more vertices to the polygon, altering its overall shape, see[Figure 5.3} Again, by
triggering the reconciliation inside the Function Editor, we are able to incorporate
the source code transformations due to the added or changed vertices, see[Figure 5.3}

Meanwhile, Alice decides to further extend the behavior of the clock as follows: She
first adds the checkbox onto the clock by grabbing and placing it at the appropriate
position. Shifting back into the symbolic description of the clock, she implements
the callback inside the :on-change behavioral property of the checkbox, which will
in its turn modify the state of the clock to now turn in the opposite direction, see
Listing

She will also add a text morph that labels the checkbox to convey the effect it
will have on the clock’s behavior and alter the order in which the checkmark box is
rendered, since she does not want it to cover the hands of the clock.

75

5. Using Transmorphic and Outlook

[demo.clocks
11 12 4
2
9 <
4
7 ¢ 5
clock ' date-indicator

Figure 5.2.: Within Bob’s Transmorphic instance, we are able to retrieve the new
clock component via the Namespace View, once the changes have been pulled.

Figure 5.3.: Adapting the polygon vertices of the new clock root, through direct
manipulation

76

5.2. Building a Clock in Transmorphic

Listing 5.8: Manual changes by Alice, needed to implement the behavior of the
checkbox

(checkbox
{ ...

ton—change (fn [checked?]
(swap! self assoc :backwards? checked?)
-
(let [direction (if (self :backwards?) 1 —1)]
(polygon {:id ”seconds”
:fill ”red”
:rotation (*x direction (+ —0.25 (/ (self :seconds) 60))
— 2 PI)
:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]1})
(polygon {:id ”minutes”
:fill ”darkblue”
:rotation (* direction (+ —0.25 (/ (self :minutes) 60))
< 2 PI)
:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]1})
(polygon {:id ”hours”
:fill ”darkblue”
:rotation (*x direction (+ —0.25 (/ (self :hours) 12)) PI
— 2)
:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}1}))

Notice how up till now Alice has switched multiple times between both visual
and symbolic domain, almost effortlessly, regardless of changes to behavior, state or
appearance of the morph. The only requirement was that in between the symbolic
description got saved and recompiled, which however does require only little effort
from the perspective of the programmer. Alice and Bob finally commit their updated
clocks, via the halo menu in order to make it accessible for other users as seen in

Since now the branch that Alice and Bob have both worked on has diverged, they
will want to combine their changes. Fortunately all changes are reflected in the clock’s
component definition, and although Bob completely replace the body of the clock,
and Alice altered its behavior, both changes are completely independent from each
other: For example, if Alice decides to reject Bob’s visual enhancements it is “easy”
for her to differentiate, and to exclude the lines form the merge while still preserving
the checkbox including the altered behavior, since these are reified in a completely
separate part of the source code.

77

5. Using Transmorphic and Outlook

— commit changes... S

publish as new...

pull changes...

10

Figure 5.4.: Committing the changes applied to the clock via the simplified GIT
integration accessible through the halo

5.3. Comparison to other Morphic Implementations

We will now contrast the previously described construction of a clock in Transmor-
phic with two alternative ones possible in Lively Kernel and Squeak/Smalltalk re-
spectively. We will not repeat the required steps of each workflow section in detail,
and instead just emphasize the differences to the approach presented in Transmor-
phic.

5.3.1. Class Based Approach (Squeak/Smalltalk Morphic)

Morphic in Squeak/Smalltalk is based on classes and objects, which means
we develop the clock by working from the symbolic domain instead of starting in
the visual domain. This requires the programmer to perform the back link from
visual representation to code manually. We will frequently recreate an instance of
the clock by hand in order to check if our changes to the code have taken the desired
effects. This helps in reducing the possibility of transient errors within the state of
the application, since at creation the state of the clock is always “untouched”. The
class based approach also provides various benefits, when different users want to
collaborate different changes over time, since all changes are entirely symbolic and
therefore text based. We will not present each stage in detail as we did in the case of

78

5.3. Comparison to other Morphic Implementations

Transmorphic, however the whole definition of the clock morph can be found in the

Appendix at

1. Assembly When defining the clock based on an entirely class based ap-
proach, we will most likely start out by defining a class the serves as a base
for our desired clock morph, such as a subclass of E11ipseMorph. We will
then continue defining the visual appearance of the clock, by evolving the
initialize method of our clock with various subroutines that handle the
placement of the labels and the hands. Assembling a clock in this approach
requires the us to manually retrieve visual feedback whenever we want to
check how the symbolic description actually affects the end result. This will
lead us to either switch constantly between experimenting with manipulations
of the interface through the halo, reading off the corresponding values, and
adapting the symbolic description accordingly, or just defining everything in
terms of symbolic relationships, visualizing the eventual result in our head.
Compared to Transmorphic, we will need to spend more time on this stage
of the workflow, since there is no mechanism that allows us to quickly extract
symbolic descriptions from the graphical representation.

2. Incorporating Abstractions When we want to reuse an existing abstrac-
tion that already provides an interface we need (such as the date indicator),
the class based approach requires us to manually track down the symbolic
name for that abstraction, and also its required parametrization. Fortunately
Squeak/Smalltalkprovides various means to quickly determine the types of
visual objects or search the source for certain terms that may lead us to the
corresponding abstraction. Once we have found the class corresponding to our
date indicator, we just enhance the initialization routine with a call to the date
indicator’s constructor. By specifying the dependency solely in the symbolic
description of the clock, we guarantee that we always spawn the clock with
the most recent version of the date indicator as well, provided that our source
base is up to date. Again, fine tuning of the visual parameters becomes manual
work we have to perform by adapting the source and reinitializing the morph
accordingly.

3. Behavior and State Management of behavior and state does not differ signif-
icantly compared to Transmorphic, since this constitutes the part of the clock
where we do not get to benefit from direct manipulation at all. The implemen-
tation strategy is essentially the same, namely implementing the step method
wherein we ensure that the hands are updated accordingly each time the clock
is being stepped. A slight difference is that the hands, unlike in Transmorphic,
will be altered via side effects; that is, explicitly setting their rotation property
to a certain value inside the update routine. This is a less declarative and more
imperative style to define updates in the visual representation of the clock and
does not present the relationship between state and appearance as clearly.

4. Collaboration Similar to Transmorphic, long term collaboration is simplified
since everything about the clock is expressed in terms of symbolic descriptions

79

5. Using Transmorphic and Outlook

and we do not have to concern ourselves with versioning state. For example,
changing the shape of the clock’s body, can be done by changing the superclass
of the clock to a PolygonMorph, while the behavior can be altered through
the introduction of new methods, and the incorporation of a button morph,
which allows us to toggle the moving direction of the hand. Reconciling the
changes from Bob and Alice respectively, boils down to the same situation
described in Transmorphic, where we can precisely pick which changes we
want to incorporate and which to reject.

5.3.2. Parts Based Approach (Lively Kernel)

The parts based approach completely embraces direct manipulation authoring, mean-
ing that the programmer specifies the visual representation entirely through assem-
bling and mutating objects, i.e. instances of morphs. When working with parts, we
focus on the visual decomposition of a graphical user interface, where modulariza-
tion is defined by the visual entities the interface consists of. Being plain objects in
memory, parts can not be shared directly, but need special tool support that either
serializes them into another representation (i.e BuildSpecs) or provides an inter-
face to perform change management on the parts that are shared between different
environments.

1. Assembly In order to assemble the clock through parts, we mostly rely on
directly manipulating and copying of visual elements. We will only consider
working in the symbolic domain, when we determine that the manipulation
by hand, would turn out to be too tedious, as is the case with the placement
and alignment of the hour labels. In fact we can use Lively Kernel’s workspace,
to evaluate arbitrary code that helps us to change the appearance of our clock
in certain ways. A change once applied to one of the labels however, is not
automatically propagated among all the others, since each label is a separate,
independent morph. This requires us to manually clear, recreate and layout the
labels, each time we perform an adaption to one of the labels. In cases where
we frequently use custom setup code for certain elements, we should start
thinking about including this setup code into the behavior of the application,
in order to let other users easily restore the original layout of the elements, or
support them when they want to adapt the custom layout to their preference.
We will also want to assign names to each part that we may want to reference
in the future, since this allows us to easily retrieve references of these parts
later on.

2. Incorporating external Abstractions Similar to the parts we have been using
to construct the current element of the clock, also the data indicator exists in the
form of a part within Lively Kernel’s Parts Bin. We can just drag it from there
into the clock, and position it accordingly. Lively Kernel is able to internally
track the history of parts, and will allow the user to update parts in case new
versions of them have been released by the author. Therefore an update to

8o

5.3. Comparison to other Morphic Implementations

the date indicator can be merged into the clock, by using the morph menu
reachable via the halo.

3. Behavior and State When working with parts in Lively, we can easily en-
hance their behavior through the object editor, by selecting the morph that we
want to evolve via the halo and opening the Object Editor through the edit
menu. Here we can directly implement the step method similar to the way we
did in the class based approach. When updating the hands, we can refer to
them by retrieving a reference via their respective id, or by storing that refer-
ence inside a member variable that belongs to the clock part itself and then
using the member variable instead.

4. Collaboration After the clock has been completed, we can share it as a new
part, which means that we essentially share the state of the clock with other
instances of Lively Kernel. Other users can now retrieve the clock via the Parts
Bin and use it in their applications or enhance the clock, as we will do now.
Again we will employ the same halo interactions, as we did in the case of
the class based approach, while not concerning ourselves with a symbolic
description of the appearance.

The loss of object identity in the symbolic description in the case of Transmorphic,
becomes a benefit in the context of long term collaboration, since conflicting or di-
verged changes on the same entity are in the end always resolvable by reconciling
text. Reconciling changes from different users to a part, can therefore become difficult,
since we need collaborate on the serialized representation of parts and not a purely
text based, symbolic description. For example, when Bob changes the appearance of
the clock’s body, he will most likely replace the complete clock, copying the behavior
while also transferring labels and hands to the new body. From the perspective of ob-
ject identity, it now becomes more challenging to tell what stayed the same and what
actually changed, since essentially the whole clock was replaced. From a conceptual
point though, what only changed was the shape of the clock, while everything else
stayed the same, however this needs to be inferred manually or with the support
from tools that allow to compare and merge serialized parts with each other. Lively
Kernel provides an alternative, document like description for morphs, called the
BuildSpec, which can be automatically retrieved for each morph. BuildSpecs remove
the object notion of parts, and transform them to a purely declarative description
very similar to the way Transmorphic specifies morphs. Through this mechanism,
it again becomes easy, to differentiate between Alice and Bob’s respective changes,
and combine them accordingly. Unlike Transmorphic, BuildSpecs do not preserve
abstractions responsible for the visual representation, which makes them more space
consuming than the component definitions used in Transmorphic and also does not
allow them to leverage relationships between different morphs that may arise from
the symbolic description that spawned the morphs in the first place.

81

5. Using Transmorphic and Outlook

5.4. Limitations of Transmorphic

In its current form, Transmorphic also compromises on several aspects in the devel-
opment workflow, some of which are inherent to the approach, and others which
could be resolved in future implementations.

The first area, where Transmorphic is currently limited is the reconciliation of
properties that are expressed by a symbolic binding: In cases where Transmorphic
finds that a certain property has been changed, the symbolic binding within the scope
will be directly replaced, without taking the actual derivation of that property into
account. For example, reconciliation will not consider re-declaring local variables or
slightly altering computations that led to a certain value, but instead just replace the
variable that a property is bound to with a constant.

While this convention ensures correctness, it is in many cases not the most elegant
solution. By always replacing the value of a property inside the call of a morph
function, we require all properties to always be declared inline of the function call,
and do not support the style of binding properties at one point to a variable, and
then distributing them to different morphs or components through that variable.
Transmorphic currently also does not preserve the custom formatting of the code
provided by the user, but instead selects the pretty printed version of the recon-
ciled symbolic description. Thus, symbolic descriptions that are being rewritten by
the reconciliation mechanism are starting to look more “generated”, overriding the
author’s custom code formatting.

We further found that while the way of extracting identities from the scene graph
works in most cases, there are caveats to the current approach: While direct manipu-
lation does not interfere with the identity concept (in fact it requires the identity to
work), manual editing and recompiling components can lead to a completely dif-
ferent identity resolution, possibly invalidating all of the previously inferred vuips.
As mentioned in previous sections, this requires us to remove direct manipulation
changes from the scene graph, since we have not yet found a reliable mechanism
which allows us to re-infer the identities of the entities.

Transmorphic’s Function Editor currently does not support a way to simultane-
ously change code through keyboard input and incorporating reconciled symbolic
descriptions. This problem could be circumvented, by enforcing a certain structure
onto the code throughout the edit session, for example by turning the function editor
text input into a structural editor [34]. However for now we refrain from turing the
function editor into a structural one, since this would restrict the freedom of the
programmer to change the symbolic description of a namespace or component.

On a more fundamental level, there are also restrictions that come from the fact that
Transmorphic separates view and model very strictly from each other. This becomes
clear, when we look at example programs in “classical” Morphic that model physical
entities by directly using visual properties in order to influence the view as well as
the model at the same time. One example for this would be a morph which models
a particle that can be dragged and dropped by the user into various contexts. Once
dropped inside a certain morph, the particle then automatically detects its owner’s
bounds and then continues to move freely while always bouncing off the owner’s

82

5.5. Future Work

bounds. Real world scenarios, such as this particle simulation, are very elegant to
implement inside a Morphic where model and visual properties are combined in
the same object. In Transmorphic however, the programmer is always required to
provide a model that contains all the needed information to derive a view. The
example of the particle morph could not achieve the same amount of universality in
Transmorphic, since that would mean that all of the existing applications would need
to be made explicitly aware to react to the ball morph once it is dropped on them.
While Transmorphic preserves the close relationship between visual properties and
state management, both are still strictly decoupled which reduces complexity but
also flexibility of the view’s implementation.

5.5. Future Work
5.5.1. Time Travel

Since all information in Transmorphic is stored in persistent data structures, we can
keep a continuous history of how component local state, symbolic description or the
morph scene graph evolved over time. A mechanism that allows us to revert each
of these data structures respectively is therefore easy to implement, however one
also needs to provide a meaningful interface for the programmer, to incorporate this
time travel mechanism into the actual workflow. Also the question arises, wether
these three internal data structures in Transmorphic should be reverted indepen-
dently from each other, of if the history of user interactions should always be kept in
chronological order. While independently reverting state and symbolic description
may provide powerful means for the programmer, to experiment with behavior or
save time and compare different scenarios, it can also lead to confusing situations
which would be prevented by enforcing the chronological order of events.

5.5.2. Improving Reconciliation

Currently Transmorphic provides the direct manipulation and the more declarative
reconciliation approach. There are however several ways in which the existing recon-
ciliation mechanisms of Transmorphic can be further improved: For example what
may be solved by the conditional in case of a simple loop statement, may be solved
differently in the context of a let statement, where in case of removal, we may want
to just remove the binding and all the statements the bound variable ever occurred
in. Going even further, there are different conventions we can imagine for actually
placing the conditional, such as introducing them directly at the definition of the
property, or instead wrapping the whole morph call inside a conditional and so on.
Further diversifying the strategies with regards to the current symbolic expression,
increases the quality of reconciled code, and eventually provides the programmer
with reconciled symbolic descriptions that can be included into the source code with
little to no corrections necessary.

83

5. Using Transmorphic and Outlook

Furthermore, the reconciliation interfaces, such as the Function Editor, could also
be improved further: Leaving the programmer complete freedom when editing the
symbolic description comes at the price that throughout manual editing of the sym-
bolic description, we allow code to be syntactically, semantically incorrect. As men-
tioned, this forces us to limit the incorporation of reconciled code to a separate mode
where user input is turned off. A partial solution to circumvent this problem could
be, to leverage the nested list structure of lisp expressions: For example, we could
imagine a function editor that keeps track of the existing nested lisp expressions,
and continues reconciliation throughout the code being edited, yet only for those
parts of the symbolic description that have not yet been affected by edit operations.
This would decrease the need to actively switch modes every time the programmer
wants to incorporate the direct manipulations into the source code.

5.5.3. Expanding Reconciliation

It is worthwhile to consider reconciliation mechanisms between symbolic and graph-
ical representation that go beyond the domain of graphical user interfaces. For in-
stance the derivation of a domain model from data, can also be thought of as an
interactive process, where the programmer can define the decomposition of the data
and domain specific logic, by interacting with the data through direct manipula-
tion. Conceptually, we would translate the halo mechanism from a purely visual
domain, to the domain of data decomposition, providing various tools to actually
define the projection of data into visual entities, which currently still needs to be
done completely by hand in the symbolic domain. The halo could further provide
ways to manipulate visual representations of data flow inside the application, or
data outside of the component local state, such as data residing on remote servers.
Information could also be fetched in a much more declarative manner, by specifying
queries that are colocated together with the respective components. The halo could
then be used to dynamically specify queries associated with a component by direct
manipulation, while also providing a visual feedback that displays the data that is
retrieved by the queries.

We have seen declarative constructs such as relative properties, and how Trans-
morphic is able to propagate changes through the symbolic description of a morph
collection. This gives rise to the question, of wether there are further declarative
constructs that could be introduced to Transmorphic and thereby support the pro-
grammer. Examples for this include properties that are based on constraints, custom
defined events that directly react to changes in the properties of a certain morph or
abstractions that influence the layout of a whole group of morphs.

5.5.4. Realtime Collaboration
In the context of this work, we have only considered long term, asynchronous col-
laboration between users and how conflicts arising in symbolic descriptions can be

reconciled. It is however also worthwhile to explore the potential of Transmorphic’s
declarative descriptions in the context of real time collaboration: The bidirectional

84

5.5. Future Work

relationship between graphical representation and symbolic description, can also be
used to synchronize different Transmorphic development environments in realtime.
Realtime synchronization however also introduces similar questions that arose in the
case of time travel, namely what information to actually synchronize between clients.
Synchronizing the application state, scene graph and symbolic description, involves
further investigation on how to isolate collaborating environments, since we run
into conflicts with regards to code that assumes to be execute in a certain physical
context. Here we could include solutions provided by the Croquet project [32] which
encountered the same problems, while implementing a decentralized synchroniza-
tion mechanism based on state replication.

We could however also just restrict synchronization to the actually rendered scene
graph and component local state: This would have the benefit of removing the prob-
lems that arise from application code that is execution context dependent, yet provide
all of the look and feel that is required for meaningful collaboration in real time.

85

6. Related Work

6.1. Lively Kernel

The Lively Kernel is a live, self sustaining, Javascript based development environ-
ment, running in the browser. It combines a wide range of tools and frameworks for
developing and sharing various kinds of web applications inside a single environ-
ment. Among other things, this includes an easily extensible client server infrastruc-
ture, seamless communication between different Lively environments (Lively2Lively)
and an implementation of Morphic where the DOM can be directly manipulated
and transformed through a Morphic programming interface.

Unlike Transmorphic, Lively embraces the imperative programming paradigm in
Morphic which is derived from environments like Squeak [19] or Self [5]. In the con-
text of this work Lively’s object centric concept of Parts with its direct manipulation
authoring is of particular interest. The nature of parts resembles the real physical
world as closely as possible, enabling workflows that are very much like the craft-
ing of physical objects in real life. The decision to use objects instead of a symbolic
abstractions as the medium of collaboration has various implications: For one, the
changes that a programer enacts are automatically isolated, since every change is
contained by the current instance and not based on a symbolic abstraction that may
be instantiated in various different contexts. On the other hand, object identity is a
rather complicated basis for long term collaboration, since it requires that identity
of objects is constantly resolved, when different parts are updated or combined. Effi-
ciently collaborating with parts therefore requires a variety of tool support which
includes basic sharing interfaces such as the Parts Bin [23] that also keeps track of
the derivation history, preserves the modularity of the different parts, and allows
the developer to update the constituent parts of an assembled application in case
updated versions are being released. More advanced mechanisms for collaborations
such as Lively Groups [12] allow to share behavior among different parts. There
are also various approaches for realtime collaboration, providing mechanisms for
comparing different versions of parts, and even synchronizing the whole state of
remotely collaborating instances of Lively [4].

6.2. Easy Morphic GUI Framework [EMG]

The Etoys [20] direct manipulation based authoring scheme is similar to the object
centric approach in Lively Kernel [23] yet it does not revolve around objects but
instead uses Singleton classes to represent each entity. Similar to Lively, tool sup-

86

6.3. Live Programming in Touch Develop

port is an essential aspect about Etoys, since the singleton classes of Etoys do not
interface well with the usual source management tools such as the Class Browser. In
Etoys, tooling will usually provide a structural editing interface in order to be able
to map changes in the visual representation back into the respective singleton class
definition.

The Easy Morphic GUI Framework (EMQG), tries to combine the prototype based
approach of developing applications in Morphic with the class based approach for
implementing the Model logic of the application. Similar to Transmorphic, EMG
mediates between two different domains, namely the class based, symbolic domain
and the object based prototypes for the specification of the GUI In EMG the class
based symbolic domain is reserved for the Business Logic of the application, while
the visual interfaces are still programmed using the singleton class approach from
Etoys. EMG provides a default superclass for all of the Business Logic classes, which
defines a default interface for talking with the Business Logic of an application
defined in Etoys. The actual wiring of GUI to Business Logic can happen entirely
through direct manipulation with EMG automatically generating the necessary code
in the background,. This assumes that all of the business logic is implemented based
on the EMG classes that come with EMG. Similar to parts in Lively, the sharing of
the visual interfaces is solely based to serialization of the respective class objects.
Compared to Transmorphic, EMG does not provide a complete symbolic description
that encompasses visual as well as data specific aspects of the application.

6.3. Live Programming in Touch Develop

Microsoft’s Touch Develop [36] programming language is tailored for developing
simple (“non professional”) applications on devices restricted to touch user input.
Burckhardt et al. [3] provide an enhancement to Touch Develop that is able to establish
a symmetric relationship between graphical and symbolic representation, similar to
Transmorphic. Since Touch Develop is a structured and imperative programming
language, establishing a reliable symmetric relationship between graphical and sym-
bolic representation is challenging. Therefore, instead of imposing a functional de-
scription of the view like Transmorphic does, the mechanism presented in this exten-
sion of Touch Develop introduces restrictions to the procedures operating on view
specific information:

1. Like in Transmorphic, the view is stateless, meaning that any entity that is
visual can not be further modified once created. Changes can only be enacted
by referencing values in the application state and re rendering the view, once
user interactions have altered the state.

2. Render code can not mutate values at all and is only able to read information.

3. Code that is concerned with the application state, can not create visual ele-
ments. This restriction together with (2) enforces a unidirectional data flow
from data to view in an otherwise entirely imperative language environment.

87

6. Related Work

The programmer has to scope visual elements inside so called “box” statements,
which allow the system to precisely determine, which part of the symbolic descrip-
tion is responsible for the visual representation of the application. In the end this
approach achieves an effect similar to Transmorphic, in that we are able to translate
changes in state into source code transformations. Note however that in the case of
Touch Develop, the restrictions are not apparent from the symbolic description of
the application, but need to be enforced by the runtime. In case side effects, or other
“forbidden” operations happen to be executed in the context of code that provides
the graphical representation of an application, evaluation is terminated.

6.4. QML

QML is a declarative description to describe graphical user interfaces in the QT
Framework. The QML programming language is syntactically based on JSON, and
allows to seamlessly integrate Javascript code into the document based description,
which allows the programmer to combine imperative and declarative abstractions.
Very similar to Transmorphic, QML presents each UI component by declaring the
component type and also each of its properties respectively. In addition, QML pro-
vides various additional declarative constructs, such as the custom definition of
events, the concept of relative properties and declaratively specification of anima-
tions.

Direct Manipulation authoring is also possible in QML through the QT Quick
Designer, which provides a wide variety of tools to evolve the visual representation
of a GUI while automatically keeping the symbolic description in sync. Editing in
QT Quick Designer is automatically disabled, as soon as imperative abstractions are
being used in the symbolic description of an interface and a reliable back mapping
of changes in the visual representation to the symbolic domain becomes unfeasible.
Compared to this, Transmorphic does not stop reconciliation in cases where side
effects become present, though the reconciled code may turn out to be incorrect. In
this regard QML is more restrictive but also more precise about what it can and can
not do, which is necessary since QML is being widely used in various “production
ready” commercial contexts. In addition to that, direct manipulation in QT Quick
Designer or changes in the QML code in general are no applicable at runtime, but
require the application to be recompiled and relaunched. There is a strict differenti-
ation between compile time and runtime, which does not allow for an interface to
be evolved at the actual runtime of the application.

6.5. Apparatus
Apparatus [30] is a recursive drawing tool, which allows the user to define visual and

interactive diagrams. Derived from recursive referencing of prototypes in Suther-
land’s Sketchpad, the user is able to incorporate a definition inside a new definition

88

6.6. KScript

of an object. Apparatus evolves the idea of Sketchpad to an environment with a func-
tional declarative description and a visual representation. Unlike Transmorphic, the
declarative domain is not represented by code, but instead a separate visualization
of the object properties, reminiscent of a structural editing interface. Since all of the
objects are defined in a purely declarative way, unbound properties can be mapped
back and forth, just as in Transmorphic.

In order to achieve interactiveness of the diagrams, Apparatus pursues a purely
declarative approach, and does not resort to imperative abstraction like Transmor-
phic does. For instance, objects do not carry a set of functions defining their behavior
(e.g. a step function) but instead define dependencies between the different proper-
ties, through variables. Variables define how the properties of the different objects
in a scene relate to each other. Apparatus then starts treating the property to vari-
able relationship as a system of constraints that is then solved with respect to the
unknown variables. The user can specify what part of the relationship is supposed
to be the unknown from the Apparatus interface, namely the free and fixed variables.
In this way Apparatus allows the user to vary the way the declarative representation
is interpreted by the system, thereby varying the interactive behavior of the objects.
Compared to this, Transmorphic only enforces the purely functional nature of the
morphs with regards to rendering the graphical representation, not regarding the
application logic. Apparatus on the other hand requires the user to be aware of all
datasource and also establish a functional dependency network between the sources
and the values they affect. From a software architectural point of view, Apparatus
does something desirable, namely it nudges the user into discovering a way to find
a functional dependency between the inputs and the outputs. For an example of a
Clock that relationship may be straight forward to find. However, given an interac-
tive application, that interacts with the user in more complex patterns, the functional
programmer needs to incorporate more thought into the underlying denotational
semantics of the domain. In this case, mutable state is helpful, despite being more
error prone, and the development of a prototype application is feasible in much less
time. It is not possible to model procedural execution, conditionals or recursion in
Apparatus, making it a non Turing complete programming environment. Therefore,
in its current form, Apparatus is restricted to the domain of self contained diagrams
that are based upon a mathematical model.

6.6. KScript

KScript is a mostly declarative, and dynamic language that uses the functional but
time aware approach known from FRP to describe a large variety of an applica-
tions behavior. In KScript, dictionary like objects, equivalent to the ones found in
Javascript, are combined with FRP style data flow programming. Unlike classical
FRP, KScript does not enforce a purely functional description of the application, but
rather encourages mixing imperative and functional abstractions in order to create
brief and concise symbolic descriptions, that closely resemble the intention of the
executed program.

89

6. Related Work

The imperative programming model is also required in order to provide support
for direct manipulation tools such as the halo. The mixing of imperative and FRP
based abstractions greatly reduces the lines of code necessary to express a certain
program, but gives rise to problematic runtime behavior: For example, imperative
changes are not immediately propagated inside the graph of FRP values, since no
observer mechanism is installed by default. This leads to partially inconsistent states
inside the FRP signal graph, potentially leading to unexpected behavior. In practice,
the mixing of FRP abstractions and imperative statements can lead to bugs that are
very hard to track down, despite the reduced amount of code. FRP streams and
behaviors are able to trigger code execution from multiple different starting points
within a block of code, which can create a complexity problem that is similar to the
one of carelessly used goto statements. While KScript does not provide a symmet-
ric relationship between symbolic and graphical representation, it does present a
possible approach to combining imperative and functional abstraction for GUI pro-
gramming. However in order to be used in a meaningful way, further tool support
needs to be devised that supports the programmer when dealing with bugs that
may arise due to the combination of these two paradigms.

6.7. Elm

Elm [8] is a functional programming language for declaratively creating web browser-
based graphical user interfaces. It employs a customized type of functional reactive
programming [40] and similar to Transmorphic, performs its updates in the view
completely based on functional projections. Elm is directly derived from Haskell,
syntactically extremely close, and in many case exactly the same. Similar to Haskell,
there is no use of mutations or other destructive behavior in Elm, which means that
even the model domain of an Elm program is completely free of any side effect,
effectively pushing the “imperative shell” of the program to signals that are part of
the FRP model.

Elm tries to enable liveness through immediate and quick recompilation of the
code, while also providing a very fast emersion since all of the state management is
happening in a non destructive manner. The rigid functional frame, that comes with
each Elm program however, currently prevents any form of direct manipulation au-
thoring or inspection of visual entities. The programmer has to evolve an application
within the symbolic domain at any time, though feedback is quickly accessible.

6.8. Sketch-N-Sketch

Sketch-N-Sketch [7] is a development environment for developing interactive vec-
tor graphics by combining direct manipulation and source code editing, similar
to the way it is done in Transmorphic. Ravi Chugh et al. refer to this combination
of domains as Prodirect Manipulation, since it allows direct (visual) as well as pro-

90

6.8. Sketch-N-Sketch

grammatic (symbolic) manipulation. Sketch-N-Sketch tries to preserve the symbolic
description in a much stricter fashion than Transmorphic, making the direct ma-
nipulation in the graphical representation of the system quite different to the one
known from Morphic. Sketch-N-Sketch comes with its own custom programming
language called little which enables effective tracing of values inside the definitions
of the vector graphics. This allows the system to preserve symbolic relationships in
cases manipulation happens, while also allowing to vary how much of the symbolic
description is supposed to be preserved. Similar to Apparatus, Sketch-N-Sketch is
currently limited to stateless applications such as interactive diagrams. We could not
find examples for interactive applications that provided services such as tooling for
development environments etc.

91

7. Conclusion

We have presented Transmorphic which provides a functional and declarative way
of describing Morphic applications. We identified the potential of combining imper-
ative and functional concepts in the context of developing applications in Morphic.
We took the mutable-abstraction-based Morphic as a starting point and turned it
into a functional and declarative version, while trying not to compromise on the
liveness and directness properties that are vital to the Morphic programming expe-
rience. To do that, we established a symmetric mapping between code and graphical
representation, that is built upon the concept of functional lenses, which allows us
to not only preserve liveness and directness in a functional environment but also
provide entirely new perspectives on how a morph can be evolved at runtime.

Switching between the symbolic and the visual domain becomes instantaneous.
Abstractions in one domain and metaphors in the other can be combined without
requiring the programmer to manually reconcile both worlds with each other. We
presented a very basic set of tools, which are modified versions of tools already
known from other Morphic implementations, yet demonstrating the possibilities
that are opened up by this new implementation approach of Morphic. We further
presented an example development workflow in Transmorphic, and compared it
to the alternative workflows possible in Squeak/Smalltalk and Lively Kernel. Here
we saw, how we were able to interactively explore and adapt the functionally de-
fined scene graph and evolve the functional description both programmatically and
through direct manipulation interchangeably. We also indicated the areas of Trans-
morphic, that need improvement such as the reconciliation process itself, where
besides correctness the preservation of the quality and intent within the symbolic
description is of great importance. Furthermore in some scenarios, Transmorphic
requires support from the programmer to successfully infer entity identity making
the current reconciliation approach not as transparent, as one would like it to be.

There is still a lot to be discovered with regards to spreading the Transmorphic
approach to other domains, that transcend the visual and spacial domain. Between
the poles of functional and imperative programming concepts, a wide range of ap-
proaches to aid, support or guide an beginning, intermediate or professional devel-
oper can be found. In that sense the combination of imperative and functional world
as demonstrated in Transmorphic, is just scratching the surface of the potential that
lies in connecting and leveraging the synergetic effects between both worlds.

92

References

[1]
[2]

(3]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

P. Bagwell. Ideal hash trees. Technical report. 2001.

A. Bohannon, B. C. Pierce, and J. A. Vaughan. “Relational lenses: a language
for updatable views”. In: Proceedings of the ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM. 2006, pages 338—347.

S. Burckhardt, M. Fahndrich, P. de Halleux, S. McDirmid, M. Moskal, N.
Tillmann, and J. Kato. “It’s alive! continuous feedback in UI programming”.
In: ACM SIGPLAN Notices. Volume 48. 6. ACM. 2013, pages 95-104.

C. Calmez, H. Hesse, B. Siegmund, S. Stamm, A. Thomschke, R. Hirschfeld,
D. Ingalls, and J. Lincke. Explorative authoring of Active Web content in a mobile
environment. Technical report. 2013.

C. Chambers and D. Ungar. “Customization: Optimizing compiler technology
for SELF, a dynamically-typed object-oriented programming language”. In:
ACM SIGPLAN Notices. Volume 24. 7. ACM. 1989, pages 146-160.

R. Chugh. “Prodirect Manipulation: Bidirectional Programming for the
Masses”. In: arXiv preprint arXiv:1510.06788 (2015).

R. Chugh, B. Hempel, M. Spradlin, and J. Albers. “Programmatic and Direct
Manipulation, Together at Last”. In: arXiv preprint arXiv:1507.02988 (2015).

E. Czaplicki. “Elm: Concurrent FRP for Functional GUIs”. 2012.

C. Elliott and P. Hudak. “Functional reactive animation”. In: ACM SIGPLAN
Notices. Volume 32. 8. ACM. 1997, pages 263—273.

W. Engel. Programming Vertex and Pixel Shaders. Charles River Medjia, Inc., 2004.

Facebook. React. 2013. URL: https://facebook. github .io/react/ (last accessed
2016-04-14).

T. Felgentreff,]. Lincke, R. Hirschfeld, and L. Thamsen. “Lively groups: shared
behavior in a world of objects without classes or prototypes”. In: Proceedings
of the Future Programming Workshop (FPW) 2015. ACM. 2015, pages 15—-22.

A. J. Goldberg. SMALLTALK-80: the interactive programming environment.
Addison-Wesley, 1984.

D. Goodman. Dynamic HTML: The Definitive Reference: A Comprehensive Resource
for HTML, CSS, DOM & JavaScript. O'Reilly Media, Inc., 2002.

R. Hickey. Runtime Polymorphism. 2009. URL: http://clojure.org/about/runtime_
polymorphism| (last accessed 2016-04-14).

R. Hickey. “The clojure programming language”. In: Proceedings of the
symposium on Dynamic languages. ACM. 2008, page 1.

93

https://facebook.github.io/react/
http://clojure.org/about/runtime_polymorphism
http://clojure.org/about/runtime_polymorphism

References

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

R. Hickey. Values and Change: Clojure’s approach to Identity and State. 2009. URL:
http://clojure.org/about/state (last accessed 2016-04-14).

G. Inc. Minimizing Browser Reflow. 2015. URL: https://developers.google.com/speed/
articles/reflow#guidelines| (last accessed 2016-04-14).

D. Ingalls, T. Kaehler,]. Maloney, S. Wallace, and A. Kay. “Back to the future:
the story of Squeak, a practical Smalltalk written in itself”. In: ACM SIGPLAN
Notices. Volume 32. 10. ACM. 1997, pages 318-326.

A. Kay. Squeak Etoys authoring & media. 2005.

B. W. Kernighan, D. M. Ritchie, and P. Ejeklint. The C programming language.
Volume 2. Prentice-Hall Englewood Cliffs, 1988.

G. E. Krasner and S. T. Pope. “A description of the model-view-controller user
interface paradigm in the smalltalk-8o system”. In: Journal of object oriented
programming 1.3 (1988), pages 26—49.

J. Lincke, R. Krahn, D. Ingalls, M. Roder, and R. Hirschfeld. “The Lively
PartsBin—A Cloud-Based Repository for Collaborative Development of Active
Web Content”. In: System Science (HICSS), 2012 45th Hawaii International
Conference on. IEEE. 2012, pages 693-701.

J. H. Maloney and R. B. Smith. “Directness and liveness in the morphic user
interface construction environment”. In: Proceedings of the ACM symposium on
User interface and software technology. ACM. 1995, pages 21—28.

J. McCarthy. “Recursive functions of symbolic expressions and their
computation by machine, Part I”. In: Communications of the ACM 3.4 (1960),
pages 184-195.

M. McGranaghan. “Clojurescript: Functional programming for javascript
platforms”. In: IEEE Internet Computing 6 (2011), pages 97—102.

E. Meijer, M. Fokkinga, and R. Paterson. “Functional programming with
bananas, lenses, envelopes and barbed wire”. In: Functional Programming
Languages and Computer Architecture. Springer. 1991, pages 124—144.

Microsoft. Retained Mode Versus Immediate Mode. 2010. URL: https://msdn.mic
rosoft.com/en-us/library/windows/desktop/ff684178(v=vs.85).aspx| (last accessed
2016-04-15).

S. M. Paramedics. An introduction to deep code-walking macros with Clojure. 2013.
URL: http://blog.fogus.me/2013/07/17/an-introduction-to-deep-code-walking-macros-
with-clojure/| (last accessed 2016-03-18).

T. Schachmann. Apparatus. 2015. URL: http://aprt.us/ (last accessed 2016-03-18).

B. Shneiderman. “Direct manipulation: A step beyond programming
languages”. In: ACM SIGSOC Bulletin. Volume 13. 2-3. ACM. 1981, page 143.

D. A. Smith, A. Kay, A. Raab, and D. P. Reed. “Croquet-a collaboration system
architecture”. In: Creating, Connecting and Collaborating Through Computing.
IEEE. 2003, pages 2—9.

94

http://clojure.org/about/state
https://developers.google.com/speed/articles/reflow#guidelines
https://developers.google.com/speed/articles/reflow#guidelines
https://msdn.microsoft.com/en-us/library/windows/desktop/ff684178(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff684178(v=vs.85).aspx
http://blog.fogus.me/2013/07/17/an-introduction-to-deep-code-walking-macros-with-clojure/
http://blog.fogus.me/2013/07/17/an-introduction-to-deep-code-walking-macros-with-clojure/
http://aprt.us/

[33]

[34]

[35]

[36]

[37]

[38]

[39]

References

A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz. Web browser as an
application platform: The lively kernel experience. 2008.

T. Teitelbaum and T. Reps. “The Cornell program synthesizer: a syntax-
directed programming environment”. In: Communications of the ACM 24.9
(1981), pages 563-573.
S. Thompson. Haskell: the craft of functional programming. Volume 3. Addison
Wesley Reading, 1999.

N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. “TouchDevelop:
programming cloud-connected mobile devices via touchscreen”. In: Proceedings
of the SIGPLAN symposium on New ideas, new paradigms, and reflections on
programming and software (Onward!) ACM. 2011, pages 49—60.

L. Torvalds and J. Hamano. “Git: Fast version control system”. In: http://git-scm.
com (2010).

G. Van Rossum. “Python Programming Language.” In: USENIX Annual
Technical Conference. Volume 41. 2007.

P. Wadler. “Monads for functional programming”. In: Advanced Functional
Programming. Springer, 1995, pages 24-52.

Z.Wan and P. Hudak. “Functional reactive programming from first principles”.
In: ACM SIGPLAN Notices. Volume 35. 5. ACM. 2000, pages 242—252.

95

A. Appendix

Listing A.1: Helper functions, required for the clock to work

(def PI js/Math.PI)
(defn angle—for—hour [hour]
(x (+ —0.25 (/ hour 12)) PI 2))

(defn angle—for—minute [min]
(x (+ —0.25 (/ (self :seconds) 60)) 2 PI))

(defn point—from—polar [radius angle]
{:x (*x radius (.cos js/Math angle))
:y (* radius (.sin js/Math angle))})

Listing A.2: Hour label component, used in the clock’s implementation

(defcomponent hour—Tlabel
IRender
(render [self props _]
(text
{:9d (str (props :label) ”h”)
:position (point—from—polar
(* (props :radius) .8)
(angle—for—hour (props :hour)))
ttext—string (props :label)
:font—family ”Arial”
:allow—input falsel}l)))

Listing A.3: The final definition of the clock component

(defcomponent clock
IRender
(render
[{:as self, :keys [local—state]} {:keys [id extent position]} _]
(let [{:keys [time]} local—state
radius (/ (extent :x) 2)
{:keys [x y]} extent
ext (if > xvy) {:y x, :xx} {:yy, :xy}]
(ellipse
{:id 4d,
:position position,
extent extent,
:step

96

A. Appendix

(fn [_]
(rerender! self {:time (get—current—time)})
(refresh—scene!)),
:border—width 4,
:border—color ”darkgrey”,
:fill
” —webkit—gradient(radial, 50% 50%, 0, 50% 50%, 250,
from(rgb(255, 255, 255)), to(rgb(224, 224, 224)))”,
:pivot—point {:x 0, :y 03}}
(map
(fn [hour]
(hour—T1label
{:id (str hour ”h”),
:label hour,
:hour hour,
:radius radius,
rextent {:x 30 :y 30}
:font—size 121}))
(range 1 13))
(polygon {:id ”seconds”
:fill ”red”
:rotation
tvertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}1})
(polygon {:id ”minutes”
:fill ”darkblue”
:rotation (angle—for—minute (self :minutes))
:vertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}]1})
(polygon {:id ”hours”
:fill ”darkblue”
:rotation (angle—for—hour (self :hours))
cvertices [{:x —10 :y 0} {:x 0 :y 0} {:x —5 :y 30}1}))))
=)))

Listing A.4: Overview of the clock morph’s implementation in Squeak /Smalltalk

EllipseMorph subclass: #TiClock
instanceVariableNames: ’secondHand minuteHand hourHand’
classVariableNames: ’°
poolDictionaries: ’’
category: ’Clock’

TiClock>>handVertices
1{5@130 . 10@0® . 0@O}

TiClock>>step
| time |
time := Time now.
secondHand rotationDegrees: (time seconds * 6) + 180.
minuteHand rotationDegrees: (time minutes * 6) + 180.
hourHand rotationDegrees: (time hours * 30) + 180.

97

A. Appendix

Listing A.5: Initialize method of TiClock

TiClock>>initialize
| label |
super initialize.

self color: Color white darker;
extent: 300@300.

minuteHand := PolygonMorph
vertices: self handVertices
color: Color blue darker darker
borderWidth: ©
borderColor: nil.

minuteHand rotationCenter: 0.05@0.05;

position: 0@0;
rotationDegrees: 180.
self addMorph: minuteHand.

hourHand := PolygonMorph
vertices: self handVertices
color: Color blue darker darker
borderWidth: 0
borderColor: nil.
hourHand rotationCenter: 0.05@0.05;
position: 0@O;
rotationDegrees: 180.
self addMorph: hourHand.

secondHand := PolygonMorph
vertices: self handVertices
color: Color red
borderWidth: 0
borderColor: nil.
secondHand rotationCenter: 0.05@0.05;
position: 0@0;
rotationDegrees: 180.
self addMorph: secondHand.

1 to: 12 do: [:hour |
label := TextMorph new
contents: hour asString;
position: (Point r: 130 degrees: (hour * 30) — 90).
self addMorph: label].

self shiftSubmorphsBy: 145@145.
Listing A.6: Example of a complete reconciler that is extracted during macro

expansion

{0 {:reification

98

A. Appendix

(fn [{:keys [m_11}]
¢ (IRender
(render [self props submorphs]
~m_1))),
:type :expr,
:submorph—locations [1]},
1 {:reification
(fn [self props submorphs]
‘(image
~(merge
*{:extent {:x 200, :y 200},
:position {:x 42, :y 42},
curl ?kermit.png”,
:on—mouse—enter (fn [e] (prn ”Mouse entered!”))}
props)
submorphs)),
:type :morph,
:submorph—Tlocations [2 3 5]},
2 {:reification
(fn [self props submorphs]
‘(ellipse
~(merge
>{:position {:x 0, :y 0},
:fill ”green”,
cextent {:x 100, :y 100}}
props)
submorphs)),
:tag :morph,
:submorph—Tlocations []},
4 {:reification
(fn [self props submorphs]
‘(text ~(merge
*{:id (str 1),
:value ”Hello World!”,
tposition {:x (x i 10), :y (x i 10)}}
props)
submorphs)),
:tag :morph,
:submorph—Tlocations []},
3 {:reification
(fn [{:keys [m_4]}]
“(map (fn [1]
~m_4)
(range 10))),
:type :expr,
:submorph—Tlocations [4]},
5 {:reification
(fn [self props submorphs]
“(clock ~(merge
>{:id ”Clock”,
cextent {:x 300, :y 300},

99

A. Appendix

:position {:x 300, :y 300}} props)
submorphs)),
:type :component,
:submorph—Tlocations []},
ractive? false}

100

Band

109

108

107

106

105

104

103

102

101

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

ISBN

978-3-86956-386-2

978-3-86956-377-0

978-3-86956-373-2

978-3-86956-372-5

978-3-86956-360-2

978-3-86956-355-8

978-3-86956-348-0

978-3-86956-347-3

978-3-86956-346-6

Titel

Software-Fehlerinjektion

Improving Hosted Continuous
Integration Services

Extending a dynamic
programming language and
runtime environment with access
control

On the Operationalization of
Graph Queries with Generalized
Discrimination Networks

Proceedings of the Third HPI
Cloud Symposium
"Operating the Cloud" 2015

Tracing Algorithmic Primitives
in RSqueak/VM

Babelsberg/RML : executable
semantics and language testing
with RML

Proceedings of the Master
Seminar on Event Processing
Systems for Business Process
Management Systems

Exploratory Authoring of
Interactive Content in a Live
Environment

Autoren / Redaktion

Lena Feinbube, Daniel Richter,
Sebastian Gerstenberg, Patrick
Siegler, Angelo Haller,
Andreas Polze

Christopher Weyand, Jonas
Chromik, Lennard Wolf,
Steffen Kotte, Konstantin
Haase, Tim Felgentreff, Jens
Lincke, Robert Hirschfeld

Philipp Tessenow, Tim
Felgentreff, Gilad Bracha,
Robert Hirschfeld

Thomas Beyhl, Dominique
Blouin, Holger Giese, Leen
Lambers

Estee van der Walt, Jan
Lindemann, Max Plauth,
David Bartok (Hrsg.)

Lars Wassermann, Tim
Felgentreff, Tobias Pape, Carl
Friedrich Bolz, Robert
Hirschfeld

Tim Felgentreff, Robert
Hirschfeld, Todd Millstein,
Alan Borning

Anne Baumgraf3, Andreas
Meyer, Mathias Weske (Hrsg.)

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wolff,
Bastian Steinert, Lauritz
Thamsen, Macel Taeumel, Jens
Lincke, Robert Krahn, Daniel
H. H. Ingalls, Robert
Hirschfeld

ISBN 978-3-86956-387-9
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	1.1 The Morphic GUI Framework
	1.2 Functional Graphic User Interfaces
	1.3 Lifting the Concept of Direct Manipulation
	1.4 Contributions

	2 Technological Foundations of Transmorphic
	2.1 Immediate Mode and Retained Mode Rendering
	2.2 React and the Merits of Functional Programming
	2.3 Functional Lenses
	2.4 Clojure
	2.4.1. Persistent Data Structures
	2.4.2. Atoms
	2.4.3. Code is Data
	2.4.4. Clojurescript

	3 The Transmorphic GUI Framework
	3.1 Morphs
	3.1.1. Defining new Morphs

	3.2 Components
	3.2.1. Owners and Parents
	3.2.2. Component Lifecycle Protocol
	3.2.3. Hand

	3.3 Direct Manipulation in Transmorphic
	3.3.1. Halo
	3.3.2. Reconciliation Lens
	3.3.3. The Role of :id
	3.3.4. Orphanization
	3.3.5. General Abstraction Preservation
	3.3.6. To Isolate or not to Isolate

	3.4 Function Editor
	3.4.1. Editing Morphs
	3.4.2. Editing Components
	3.4.3. Incorporating the Reconciled Source

	4 Implementation of Transmorphic
	4.1 Setup
	4.2 Scene Graph Representation
	4.2.1. Identity Inference
	4.2.2. Component Submorphs

	4.3 Representation of the Symbolic Description
	4.4 Direct Manipulation API
	4.4.1. Walking the Scene Graph
	4.4.2. Manipulating the Scene Graph

	4.5 Source Transformation Lenses
	4.5.1. Compile Time Analysis
	4.5.2. Reconciling Morphs and Components

	4.6 Bypassing Compilation
	4.6.1. Manipulation Transactions
	4.6.2. Consolidating Morphs
	4.6.3. Consolidating Components
	4.6.4. Propagating Changes

	4.7 Interfacing with React.js

	5 Using Transmorphic and Outlook
	5.1 Building a Clock
	5.2 Building a Clock in Transmorphic
	5.2.1. Assembly
	5.2.2. Incorporation of Abstractions
	5.2.3. Behavior and State
	5.2.4. Collaboration

	5.3 Comparison to other Morphic Implementations
	5.3.1. Class Based Approach (Squeak/Smalltalk Morphic)
	5.3.2. Parts Based Approach (Lively Kernel)

	5.4 Limitations of Transmorphic
	5.5 Future Work
	5.5.1. Time Travel
	5.5.2. Improving Reconciliation
	5.5.3. Expanding Reconciliation
	5.5.4. Realtime Collaboration

	6 Related Work
	6.1 Lively Kernel
	6.2 Easy Morphic GUI Framework [EMG]
	6.3 Live Programming in Touch Develop
	6.4 QML
	6.5 Apparatus
	6.6 KScript
	6.7 Elm
	6.8 Sketch-N-Sketch

	7 Conclusion
	References
	A Appendix
	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

