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Abstract

Earthquakes deform Earth’s surface, building long-lasting topographic features
and contributing to landscape and mountain formation. However, seismic waves pro-
duced by earthquakes may also destabilize hillslopes, leading to large amounts of soil
and bedrock moving downslope. Moreover, static deformation and shaking are sus-
pected to damage the surface bedrock and therefore alter its future properties, affecting
hydrological and erosional dynamics. Thus, earthquakes participate both in mountain
building and stimulate directly or indirectly their erosion. Moreover, the impact of
earthquakes on hillslopes has important implications for the amount of sediment and
organic matter delivered to rivers, and ultimately to oceans, during episodic catas-
trophic seismic crises, the magnitude of life and property losses associated with land-
sliding, the perturbation and recovery of landscape properties after shaking, and the
long term topographic evolution of mountain belts. Several of these aspects have been
addressed recently through individual case studies but additional data compilation as
well as theoretical or numerical modelling are required to tackle these issues in a more
systematic and rigorous manner.

This dissertation combines data compilation of earthquake characteristics, land-
slide mapping, and seismological data interpretation with physically-based modeling
in order to address how earthquakes impact on erosional processes and landscape evo-
lution. Over short time scales (10-100 s) and intermediate length scales (10 km), I have
attempted to improve our understanding and ability to predict the amount of land-
slide debris triggered by seismic shaking in epicentral areas. Over long time scales
(1-100 ky) and across a mountain belt (100 km) I have modeled the competition be-
tween erosional unloading and building of topography associated with earthquakes.
Finally, over intermediate time scales (1-10 y) and at the hillslope scale (0.1-1 km) I have
collected geomorphological and seismological data that highlight persistent effects of
earthquakes on landscape properties and behaviour.

First, I compiled a database on earthquakes that produced significant landsliding,
including an estimate of the total landslide volume and area, and earthquake character-
istics such as seismic moment and source depth. A key issue is the accurate conversion
of landslide maps into volume estimates. Therefore I also estimated how amalgama-
tion - when mapping errors lead to the bundling of multiple landslide into a single
polygon - affects volume estimates from various earthquake-induced landslide inven-
tories and developed an algorithm to automatically detect this artifact. The database
was used to test a physically-based prediction of the total landslide area and volume
caused by earthquakes, based on seismological scaling relationships and a statistical



xiv

description of the landscape properties. The model outperforms empirical fits in accu-
racy, with 25 out of 40 cases well predicted, and allows interpretation of many outliers
in physical terms. Apart from seismological complexities neglected by the model I
found that exceptional rock strength properties or antecedent conditions may explain
most outliers.

Second, I assessed the geomorphic effects of large earthquakes on landscape dy-
namics by surveying the temporal evolution of precipitation-normalized landslide rate.
I found strongly elevated landslide rates following earthquakes that progressively re-
cover over 1 to 4 years, indicating that regolith strength drops and recovers. The re-
laxation is clearly non-linear for at least one case, and does not seem to correlate with
coseismic landslide reactivation, water table level increase or tree root-system recov-
ery. I suggested that shallow bedrock is damaged by the earthquake and then heals on
annual timescales. Such variations in ground strength must be translated into shallow
subsurface seismic velocities that are increasingly surveyed with ambient seismic noise
correlations. With seismic noise autocorrelation I computed the seismic velocity in the
epicentral areas of three earthquakes where I constrained a change in landslide rate.
We found similar recovery dynamics and timescales, suggesting that seismic noise cor-
relation techniques could be further developed to meaningfully assess ground strength
variations for landscape dynamics. These two measurements are also in good agree-
ment with the temporal dynamics of post-seismic surface displacement measured by
GPS. This correlation suggests that the surface healing mechanism may be driven by
tectonic deformation, and that the surface regolith and fractured bedrock may behave
as a granular media that slowly compacts as it is sheared or vibrated.

Last, I compared our model of earthquake-induced landsliding with a standard
formulation of surface deformation caused by earthquakes to understand which pa-
rameters govern the competition between the building and destruction of topogra-
phy caused by earthquakes. In contrast with previous studies I found that very large
(Mw > 8) earthquakes always increase the average topography, whereas only interme-
diate (Mw ∼ 7) earthquakes in steep landscapes may reduce topography. Moreover, I
illustrated how the net effect of earthquakes varies with depth or landscape steepness
implying a complex and ambivalent role through the life of a mountain belt. Further
I showed that faults producing a Gutenberg-Richter distribution of earthquake sizes,
will limit topography over a larger range of fault sizes than faults producing repeated
earthquakes with a characteristic size.



Zusammenfassung

Erdbeben gestalten die Erdoberfläche, sie tragen langfristig zum Aufbau von To-
pografie sowie zur Landschafts- und Gebirgsbildung bei. Die von Erdbeben erzeugten
seismischen Erschütterungen können Gebirge jedoch auch destabilisieren und grosse
Mengen an Boden sowie Grundgestein zum Abrutschen bringen und zerrüten. Erd-
beben wirken daher sowohl auf die Gebirgsbildung als auch auf ihre Denudation. Ein
detailliertes Verständnis der Auswirkungen von Erdbeben auf Hangstabilität ist eine
wichtige Voraussetzung um die Zusammenhänge mit anderen Prozesse besser nachzu-
vollziehen: der kurzfristige Transport von Sedimenten und organischem Material in
Flüsse und ihre Ablagerung bis in die Ozeane; der Verlust von Leben und Infrastruk-
tur durch Hangrutschungen verbunden mit episodischen, katastrophalen, seismischen
Ereignissen; die Störung und Wiederherstellung von Landschaftseigenschaften nach
Erdbeben; sowie die langfristigen topographischen Entwicklung von ganzen Gebirgs-
ketten. Einige dieser Forschungsfragen wurden kürzlich in einzelnen Fallstudien be-
trachtet aber zusätzliche Datenerfassung, theoretische und numerische Modellierung
sind erforderlich, um diese Prozesse detaillierter zu erfassen.

In dieser Dissertation werden Daten zu Eigenschaften der Erdbeben sowie aus
Hangrutsch kartierungen und die Interpretation seismologischer Daten mit physikalis-
cher Modellierung kombiniert, um die folgende übergreifende Frage zu beantworten:
Wie beeinflussen Erdbeben die Erosionsprozesse in der Landschaftsentwicklung? Auf
einer kurzen Zeitskala (10-100 s) und einer mittleren räumlichen Skala (10 km), habe
ich versucht sowohl unser Prozessverständnis zu vertiefen als auch Vorhersagen Ãijber
das gesamte Volumen der Rutschungen welche durch seismische Beben in der unmit-
telbaren Umgebung von Epizentren ausgelöst wurden, zu treffen und zu verbessern
Auf einer langen Zeitskala (1-100 ky) und über einen Gebirgsgürtel (100 km) habe ich
die durch Erdbeben ausgelösten konkurrierenden Prozesse von Abflachung von To-
pografie durch Erosion und den Aufbau von Topografie durch Hebung, modelliert.
Auf einer mittleren Zeitskala (1-10 Jahre) und einer relativ kleinen Hangskala (0,1-1
km) habe ich geomorphologische und seismologische Daten erhoben, welche die an-
haltenden Auswirkungen von Erdbeben auf Landschaftseigenschaften und deren Dy-
namic hervorheben.
Zuerst habe ich eine Datenbank von Erdbeben erstellt, welche erhebliche Hangrutschun-
gen ausgelöst hatten, einschliesslich einer Schätzung des gesamten Hangrutschungsvol-
umens und der Erdbebencharakteristiken wie z.B. seismischer Moment und Lage des
Hypozentrums. Ich habe auch beurteilt, wie die Kartierung von Erdrutschen die Ab-
schätzungen des Gesamtvolumens fehlerhaft beeinflussen können und prÃd’sentiere
einen Algorithmus, um solche Fehler automatisch zu erkennen. Diese Datenbank
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wurde verwendet, um eine physisch-basierte Vorhersage der durch Erdbeben verur-
sachten gesamten Hangrutschungsflächen und Volumen zu testen, welche auf seismol-
ogischen Skalierungsbeziehungen und auf einer statistischen Beschreibung der Land-
schaftseigenschaften basiert.
Zweitens untersuchte ich den Einfluss von starken Erdbeben auf die Landschafts-
dynamik durch das Vermessen der temporalen Entwicklung der Suszeptibilität von
Hangrutschungen. Ich habe gezeigt, dass die stark erhöhte Hangrutschrate nach dem
Erdbeben schrittweise nach einigen Jahren zurückging. Diesen Rückgang Ãijber die
Zeit interpretiere ich als die Zerrüttung von oberflächennahem Gestein durch das Erd-
beben und die Heilung der dadurch entstandenen Risse über der Zeit Meine Daten
deuten darauf hin, dass die Zerrüttungen und die anschliessende Heilung des Fest-
gesteins in dem epizentralen Gebieten mit ambienten, seismischen Hintergrundrauschen
überwacht werden kann. Möglicherweise wird die Heilung zusätzlich durch andauernde
post-seismische Deformation angetrieben.
Am Ende der Arbeit vergleiche ich meine entwickelten Modelle von erdbebenbed-
ingten Hangrutschungen mit einer Standardformel für erdbebenverursachte Oberflächen-
deformierung. Mit diesem Vergleich zeige ich welche Parameter den Wettstreit zwis-
chen der Hebung von Topografie und der gleichzeitigen Zerstörung von Topografie
durch Erdbeben bestimmen. Ich zeige, dass nur mittlere - Mw ∼ 7 - Erdbeben die
Topografie reduzieren können im Gegensatz zu stärkeren - Mw > 8 - Beben die im-
mer einen effektive Bildung von Topografie verursachen. Meine Ergebnisse zeigen die
komplexen Zusammenhänge von Erdbeben in der Gebirgsbildung.



Chapter 1

Introduction

Earthquakes represent an iconic process of Earth sciences, both for the hazard
they pose throughout the world and for their role in tectonic deformation. However, in
steep terrain ground shaking associated with earthquakes may also trigger widespread
landsliding. The detailed effects and implications of these earthquake-induced land-
slides on natural hazards and surface processes remain a challenging question that I
have tried to address in this thesis. I am first introducing this topic within the broader
context of research on interactions and feedbacks between tectonics, climate and ero-
sion. Then, I review some important aspects of earthquake and landslide processes
before focussing on the state of the art knowledge about earthquake-induced landslid-
ing and presenting the current research questions that I address in this dissertation.

1.1 Erosion, climate and tectonics

Erosion is the sum of all physical and chemical processes redistributing mass at
the surface of the Earth. It encompasses processes of weakening, wearing, dissolving
or breaking rocks into mobile products, such as sediment or solutes, as well as pro-
cesses transporting away from their source areas. Erosion agents are extremely varied
and act on different scales, from the microscopic, root or microbial enhanced weather-
ing (e.g., Bennett et al., 1996) to typhoon or earthquake-induced extensive landsliding
on regional scales (e.g., Keefer, 1994). Among the most common and universal agents
of erosion are hillslope processes, such as the various types of landslides, where grav-
ity drives an unstable mass of material towards the valley bottom, and incising and
transporting water bodies such as rivers and glaciers.
The evolution of landscapes is set by the competition between tectonic or non-tectonic
forms of uplift (such as isostatic uplift) and erosion. In mountain belts tectonic activity
can result in large, shallow earthquakes whereas older mountain belts or cratonic areas
may rather be dominated by isostatic re-adjustment or dynamic topography supported
by mantle convection (e.g., Braun, 2010). Although considered a major contributor of
uplift (Avouac, 2007), earthquakes are not the only agents of tectonic uplift in active
mountain belts, as diverse aseismic components of crustal deformation such as post-
seismic (e.g., Rousset et al., 2012) and interseismic (Grandin et al., 2012; Ching et al.,
2011) deformation or creeping faults may also produce uplift.
The competition between surface uplift and erosion is further complicated by the nu-
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Figure 1.1 – Interactions and feedbacks pathways for tectonics, climate, and erosional pro-
cesses. After Willett et al. (2006)

merous feedbacks existing between tectonics, erosion, and climate (Willett et al., 2006)(Fig-
ure 1.1). It has become clear that these three domains strongly influence each other but
a lively debate is still ongoing about which is the dominant driver in each orogen and
at which timescale. Below I present a non exhaustive overview of the multiple and
complex processes that link climate, erosion and tectonics.
In many places, surface elevation is the long term product of uplift due to tectonic ac-

tivity, and must be maintained in order to allow erosion to persist. From the early work
of Ahnert (1970) the relation between topographic slope and erosion rate has been es-
tablished. Further, a number of studies have observed and conceptually modeled a
non linear relationship between slope and erosion (Granger et al., 1996; Montgomery
and Brandon, 2002; Portenga and Bierman, 2011). Additionally, tectonic activity and
deformation through faulting has been proposed as an important mechanism of rock-
mass fracturing, decreasing rock strength and enhancing future erosion (Molnar et al.,
2007). Moreover, seismic waves generated by earthquakes are an important trigger
of earthquake-induced landslides (Keefer, 1994) that are important erosional agents in
most steep mountain terrain (Hovius et al., 1997; Shroder, 1998).
In the opposite direction erosion may also affect and drive tectonic activity by chang-
ing the distribution of mass at the surface of the Earth and therefore the distribution
of stress in the subsurface. This may lead to isostatic compensation producing uplift
and focussing further erosion, as proposed in various models and as deduced from
observations (Willett, 1999; Champagnac et al., 2012). At a more local scale erosional
unloading can also change the stress on fault systems, possibly changing fault slip rate
or loading state (Maniatis et al., 2009; Steer et al., 2014).
On the other hand, many of the most efficient agents of erosion are dependent on pre-
cipitation, whether rain or snow, and also on temperature. Variations of the amount
of precipitation or in the frequency of intense storms may increase landslide occurence
(Iverson, 2000; Dadson et al., 2003) and fluvial incision and transport (Hartshorn et al.,
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2002; Stark et al., 2010). Some research suggests that glaciers may be the most effi-
cient agent of erosion, responsible for a general increase in erosion rate with the onset
of glaciation during the Pleistocene and able to durably limit maximum topography
(Egholm et al., 2009; Herman et al., 2013). Many other processes are climate mediated
and modulate erosion, such as freeze and thaw cycles weakening the rock (Walder and
Hallet, 1985), or vegetation root-system enhancing ground cohesion (Sidle et al., 2006),
and tighten the link between climate and erosion.
Erosion is thought to affect climate by modulating the atmospheric concentration of
dioxide carbon. Silicate weathering may be a significant long term sink of CO2 (Brady,
1991; Raymo and Ruddiman, 1992). Erosion can also harvest carbon fixed in organic
matter and may remove it from the atmosphere if the organic matter bearing sedi-
ments are buried rapidly enough (cf., France-Lanord and Derry, 1997; Hilton et al.,
2008, 2011a).
Finally on longer timescales, tectonics have direct influences on climate. Active vol-
canism releases large amounts of greenhouse gases affecting global temperature, while
the formation of tall mountain belts such as the Andes or the Himalayas leads to oro-
graphic precipitation and regional changes in the atmospheric circulation (e.g., Insel
et al., 2009; Barnes et al., 2012). Climate controls, at short and long timescales, from
seasonal patterns to glaciation, the spatial distribution of water bodies weigh on the
lithosphere, leading to a modulation of microseismicity or post-glacial rebound (e.g.,
Bollinger et al., 2007; Hampel et al., 2007).
One of the important challenges for deepening our understanding of these complex in-
teractions is to go beyond gross characterization of the tectonic, climatic and erosional
processes. Many initial insights were gained by reducing tectonic forcing to uplift and
erosion to average lowering or river incision. Still, we need to describe and under-
stand the individual processes performing tectonic and geomorphic work in order to
constrain their interactions and feedbacks. Focussing on the coupling between tecton-
ics and erosion, earthquake and landslides represent key processes of each domain, the
role and characteristics of which need to be accounted for. In active mountain belts, a
significant part of uplift is caused by earthquakes that also have a dynamic compo-
nent, with seismic waves disturbing the landscape over very short time scales. In turn,
erosion in steep terrain is strongly modulated by hillslope processes, and especially
landslides, that are sensitive to the strong-motion caused by seismic waves (Meunier
et al., 2007). These processes are major agents of the tectonic and erosional dynamics
and it seems essential to focus on them and on the details of their interactions in order
to understand the couplings and feedbacks existing between tectonics and erosion.

1.2 Landslide processes

1.2.1 Theoretical and empirical understanding

Research on landslide processes is broadly aimed at answering three types of
questions that deal with their location and timing, their size, and their travel-path.
Where, and how often, will landslides initiate? How large/deep will the area that fails
be? How far will the mobilized material travel? The two first questions have important
implications for the erosive action of landsliding and all are essential for natural haz-
ard prevention. In the following I summarize our basic understanding of the landslide
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Figure 1.2 – Landslide volume against landslide area estimated for a compilation of more than
4000 landslides surveyed in the field. Soil, bedrock and undifferentiated landslides are plotted
with different symbols and exhibit slightly different scaling. After Larsen et al. (2010)

processes relevant for these three questions.
The main theoretical framework used to understand landslide initiation is that of fric-
tional theory, in which driving and resisting forces or moment are compared on a po-
tential surface of failure (e.g., Newmark, 1965). The ratio of resisting and driving forces
or stresses can be rewritten as a safety factor, FS, taking the following general form:

FS =
tanφ(P − p) + Co

τ
, (1.1)

with φ the friction angle of the material, P the pressure normal to the failure surface,
p the water pore pressure, Co the cohesion of the material and τ the shear stress on the
failure surface. P and τ are both the result of the projection of the weight of the mass
on the slope of the failure surface. When the safety factor of a slope is greater than one
it is theoretically stable whereas below one the slope is prone to failure. This simple
expression allows understanding of how various processes affect landslide probability.
Water infiltration changes the weight of the mass above the failure surface but also re-
duces the friction on it because the pore pressure increases, therefore leading to failure
(Iverson, 2000). Cohesion may be increased by tree roots (Sidle et al., 2006) as well as
by clay deposits (Selby, 1982), whereas processes fracturing the bedrock such as frost
(Walder and Hallet, 1985) or ground shaking (Sleep, 2010) will reduce cohesion and en-
hance failure. Seismic waves also add transient stresses that may repeatedly reduce the
FS by increasing τ or opposing P until failure (Newmark, 1965). Safety factor analysis
is widely used both for rain-triggered landslides and earthquake-induced landslides
(e.g., Wu and Sidle, 1995; Shou and Wang, 2003; Gorsevski et al., 2006; Baum et al.,
2010) but lacks a physical description of the mechanical processes at play when a rup-
ture initiates (Stark and Guzzetti, 2009), whether it is fracturing and crack propagation
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Figure 1.3 – Dependence of landslide probability density on landslide area, for three land-
slide inventories caused by: the 1994 Northridge (California) earthquake, heavy rainfall in
Guatemala and snowmelt in Umbria (Italy). Note that in spite of the different triggers and af-
fected regions the three inventories are very similar and can be fit with a single inverse gamma
distribution. After Malamud et al. (2004a)

within bedrock or plastic deformation in soil.
More exhaustive description of the physical process may be found in recent numeri-
cal simulations. However, they are limited to case studies because they require very
detailed information about the structure and geotechnical properties and are computa-
tionally expensive. Therefore, our understanding of landsliding at the landscape scale,
whether due to large triggering events or integrated over a longer period, is mostly
empirical. Two important empirical scaling relationships for landslides have emerged
out of a number of studies. The first one is the relation between landslide area and vol-
ume or area and mean depth (Figure 1.2), observed across many orders of magnitude
(e.g., Guzzetti et al., 2009a; Larsen et al., 2010) and apparently valid for subaerial and
submarine landslides (ten Brink et al., 2006). This scaling must in part relate to the me-
chanical properties of the substrate, and it has been inferred that the soil thickness con-
strains the area-volume scaling for shallow landslides (Larsen et al., 2010). In parallel,
the scaling between landslide size and frequency has been shown to be a power-law
with a roll-over at the mode of the distribution (e.g., Hovius et al., 1997; Brardinoni
and Church, 2004; Malamud et al., 2004a; ten Brink et al., 2006). As for the volume
area scaling, such distributions seem to hold for every type of landsliding and trigger
(Figure 1.3). In detail, models, experiments and observations have tried to relate the
power-law scaling exponent to physical parameters, such as the material strength and
cohesion (Densmore et al., 1998; Stark and Guzzetti, 2009; Frattini and Crosta, 2013;
Gallen et al., 2015), to the geometry or level of heterogeneity of the material (Katz and
Aharonov, 2006; Brunetti et al., 2009) or to the moisture distribution in a landscape
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(Pelletier et al., 1997). Though the roll-over may be due to the impossibility to detect
smaller landslides with low resolution imagery (Stark and Hovius, 2001), it may also
persist for exhaustive catalogues and has been interpreted to result from a mechanical
transition, whether a strength increase or a change in heterogeneity, going from the soil
layer to shallow bedrock (Katz and Aharonov, 2006; Stark and Guzzetti, 2009; Frattini
and Crosta, 2013). The most recent models (e.g., Stark and Guzzetti, 2009; Frattini and
Crosta, 2013) are converging somewhat but still give different quantitative solutions.
Additionally, mapping errors or incompleteness are frequent, rendering uncertain any
attempt to deduce local rock properties from landslide inventories. The forward prob-
lem of anticipating the frequency distribution of landslide sizes is equally difficult.
Theoretical progress together with efforts to find new ways to estimate and monitor
slope properties, such as friction and cohesion or pore pressure, at a meaningful scale,
are long term objectives to better understand and predict landslide occurence and size.
After landslide initiation a phase of downslope movement occurs until deposition in a
river channel or on a less steep slope. The distance from the landslide initiation point
to its deposition area may be called the runout length and is of primary interest in the
field of natural hazards. Indeed some large landslides have been observed to have
extremely long runout and to cause significant property and human loss (e.g., Evans
et al., 2009; Iverson et al., 2015). Various theories and observations have been gathered
to understand the processes at play within this mobile phase, such as flash-heating, air
cushions or fragmentation energy (cf., Legros, 2002; Staron and Lajeunesse, 2009; Lucas
et al., 2014). Further research to understand landslide initiation, size and mobility is
not only important to mitigate natural hazards, but also because landslides have been
recognized as a key erosion agent in steep terrain.

1.2.2 Landslide role in steep terrain

Over the past two decades many mountain belts have been described as thresh-
old landscapes - i.e., landscapes with steady-state topography in which the hillslopes
have reached their maximal slope or relief - and therefore display relatively stable slope
distribution across large variations of erosion or uplift rate (Burbank et al., 1996). Such
landscapes are considered to have attained a critical slope, set by large scale bedrock
strength (Schmidt and Montgomery, 1995), and therefore to respond with increased
frequency of landsliding to any increase in uplift rate or river incision rate (Burbank
et al., 1996; Montgomery and Brandon, 2002; Larsen and Montgomery, 2012) (Figure
1.4). The few studies that have investigated this, have confirmed that landslide and
uplift rates are spatially correlated and that lithology and rock strength have a de-
tectable topographic fingerprint (Korup, 2008; Korup and Schlunegger, 2009; Larsen
and Montgomery, 2012). More recent analysis with very high resolution topographic
data obtained by Lidar has suggested more complex variations between topographic
indices, such as mean slope or skewness, and erosion rates, highlighting the need for
better process scale understanding of hillslope erosion in threshold landscapes (DiBi-
ase et al., 2012).
Nevertheless, the dominant role of bedrock landsliding in threshold landscapes is con-
sistent with several studies that found that erosion attributed to landsliding seemed
to match mean catchment denudation rates (Hovius et al., 1997, 2000; Gallo and Lavé,
2014). The predominance of landslides as a sediment source has also been found in
some less steep catchments dominated by slow moving landslides (Mackey and Roer-
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Figure 1.4 – Sketch of a landscape evolving from low angle hillslope to threshold hillslopes. As
uplift rates increase (a), the relief of the mountain range will rise, but only up to a certain point
(b). This upper limit to topographic development is commonly attributed to the attainment of
a threshold hillslope, beyond which landslide erosion (c) will keep pace with uplift and stream
incision, limiting the height of the mountain range. After Roering (2012).

ing, 2011). Landslides are also important in the way they affect river channels, by de-
livering large amounts of sediment that impede bedrock incision or dam the channel
for long timescales (Lague, 2010; Korup et al., 2010; Yanites et al., 2010) or by shaping
incipient drainage networks (Hovius et al., 1998).
We have seen that landsliding may be one of the dominant players of erosion in the
steep, bedrock dominated landscapes that are typical of many active mountain belts.
Catastrophic landsliding may happen without obvious triggers but the two most com-
mon triggers of landsliding are rainstorms and earthquakes. Though earthquakes are
much less frequent than storms, they exert a spectacular forcing on hillslopes that can
lead to tens of thousands of slope failures and the mobilization of very large volumes of
debris (Keefer, 1994, 1984). Therefore, earthquakes are an outstanding and direct link
between tectonic and erosional processes, but with a still unquantified contribution to
the long term erosion budget of a mountain belt.

1.3 Earthquake processes

A review of fault and earthquake mechanics is outside the scope of this thesis.
Instead, this section aims to summarize some of the basic facts and theories used to
describe earthquakes and seismic waves responsible for the ground shaking. Ground
shaking is essentially the convolution of a source term, a wave travel term and a site
term. First, I review some essential aspects of fault rupture during earthquakes that
define the source term, and then I discuss how travel and site effects modulate the
seismic wave amplitude and associated ground shaking.
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Figure 1.5 – Scaling relationships for earthquake length and corner-frequency. A: fault length
against seismic moment for dip-slip earthquakes, with a model with a 2/5 scaling exponent
and its 1σ uncertainties shown as dashed and dotted lines. From Leonard (2010). B: Corner
frequency against seismic moment and moment magnitude, after Allmann and Shearer (2009).
The dashed lines show constant stress drops of 0.1, 1, 10, and 100 MPa. The gray shaded area
shows the resolution limit of the data. The vertical dashed line marks the lower magnitude
cutoff of the data.

1.3.1 Fault and earthquakes

Earthquakes can be explained as the sudden release of elastic strain that has accu-
mulated on faults due to regional crustal shearing motions. The faults are considered
quasiplanar breaks in the rock that are relatively weak due to repeated motion, and
therefore prone to the localization of displacement during earthquakes. When strain
reaches a threshold, best-described as a Coulomb failure criterion, abrupt frictional
sliding occurs, releasing energy through heating and fracturing of the rocks as well
as seismic waves. Importantly, once sliding starts, the friction on the fault plane is
reduced to a dynamic friction coefficient, lower than the pre-failure static one, promot-
ing the acceleration of the rupture and the occurence of an earthquake instead of stable
sliding. As long as regional deformation continues, the cycle of fault loading and rup-
ture may repeat many times over the active life-time of the fault.
Important scaling relations exist between, fault dimensions earthquakes and energy
release. The seismic moment, Mo, that is the total energy released by an earthquakes
can be linearly related to the mean static displacement, D̄, averaged over the fault area,
A, with:

Mo = µAD̄ = µLWD̄ (1.2)

with µ the shear modulus of the crust, and L and W the length and width of a simpli-
fied rectangular fault. Observations of aftershock distributions have allowed to con-
strain fault plane sizes revealing robust power-law scaling between Mo and L, W and
D̄ (Scholz, 1982; Leonard, 2010). These scalings have important implications for the
static stress drop, ∆σ, that is the difference between pre- and post-failure stress aver-
aged over the ruptured fault. This stress drop is proportional to the ratio between D̄
and the characteristic rupture dimension, that is L or W . Scaling between D̄ and L and
W suggests that the stress drop is independent of the moment (Leonard, 2010). This
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is consistent with stress drop catalogues based on seismic measurements of the corner
frequency of the seismic source emission spectra, that report a median stress drop of
about 5 MPa for a very large range of moment (Allmann and Shearer, 2009; Leonard,
2010; Baltay et al., 2011). Stress drop is an important seismic source parameter because,
through a simplified crack model, it can be related to the emission spectra of seismic
waves and therefore to ground shaking (Brune, 1970; Hanks and McGuire, 1981; Baltay
and Hanks, 2014). Beyond the source term, the effects along the wave path and at the
sites are essential to understand ground shaking, and this is discussed next.

1.3.2 Seismic waves and ground shaking

During wave propagation, elastic energy is reduced because of both geometric
spreading and attenuation. Geometric spreading simply reflects the fact that, as a wave
is travelling away from its source, the wave front is expanding, and the energy associ-
ated with the wave in a given point of this wave front must be reduced to conserve the
total energy (Wallace and Lay, 1995). This is purely geometric and for body waves that
travel away from a point source, the energy is distributed at the surface of a sphere,
meaning that the energy density decay is proportional to 1/R2, where R is the distance
of travel from source to site. In contrast, surface waves, that are conducted within a
shallow layer close of the surface, that is an expanding cylinder, have an energy de-
cay following 1/R. As the wave amplitude scales with the square root of the energy,
the amplitude decay due to the spreading of body waves and surface waves follows
1/R and 1/R1/2, respectively (Wallace and Lay, 1995). Further, the wave amplitude
is reduced by inelastic attenuation, due to energy loss through heat or damage of the
medium during each cycle, and by scattering of waves on discontinuities that reflect
and refract them, splitting the energy into different waves (Wallace and Lay, 1995).
These processes are complex and often described through an exponential decay of the
amplitude with distance. Importantly, these processes are strongly frequency depen-
dent, as higher frequency waves perform more cycles for a given travel distance and
interact with smaller, more frequent, discontinuities. This means that high frequency
waves (i.e.,> 10Hz) are attenuated to very small amplitudes and accelerations over rel-
atively small distances (i.e., a few tens of kilometers). However, at lower frequencies
(0.1-1Hz) and at distances below 60-80 km, these non-linear effects remain relatively
small compared to the attenuation due to geometric spreading (Boore and Atkinson,
2008).
In addition, ground motion can also be affected by what are commonly termed seis-
mic site effects, related to the amplification of seismic waves when they reach the sur-
face. Various processes may produce site effects, the most common being either the
transition from a stiff media to a softer one (typically the transition from bedrock to
sedimentary layers). When large, continuous layers of soft sediments cover stronger
bedrock, as in many shallow sedimentary basins, they may trap seismic waves and
act as a wave-guide for surface waves, or even enter in resonace with a certain seis-
mic wave frequency, and therefore experience much larger displacement amplitudes.
These site effects associated with sedimentary layers are of great concern for cities or
buildings. However, in steep terrain where bedrock outcrops in many sites and soil
is often discontinuous, these effects may be of lesser importance compared with topo-
graphic amplification. Topographic amplification refers to the fact that seismic waves
entering a topographic ridge are reflected and refracted by the surface, progressively
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focussing upward with constructive interference of the reflected waves leading to en-
hanced ground motion at topographic highs or convexities (e.g., Bouchon, 1973; Davis
and West, 1973). Thus, topographic amplification strongly depends on the character-
istic topographic length scale and on the wave frequency, which determines whether
constructive interference will occur.
I have reviewed some of the important processes modulating ground shaking caused
by earthquakes. Inspecting the safety factor equation, Eq. 1.1, it can be seen that the
stability of a given hillslope may be significantly changed by the cyclic accelerations
associated with ground shaking, as they affect P and τ , the normal and shear stresses
on potential failure planes. If sufficient ground shaking occurs in regions with many
marginally stable slopes, then widespread landsliding can occur. Next, I discuss the
importance and current understanding of this process.

1.4 Earthquake-induced landslides

The importance of earthquakes in terms of natural hazards and global erosion has
long been recognized through case studies (Mathur, 1953; Garwood et al., 1979; Harp
et al., 1981, 1984; Pearce and O’Loughlin, 1985) and compilations of events (Keefer,
1984, 1994; Hancox et al., 1997; Rodriguez et al., 1999). The seminal work of Keefer
(1984, 1994) has defined many key questions, such as: How many landslides will be
triggered by an earthquake depending on its seismic characteristics? What volume
will be transported downslope (Figure 1.6 )? How large is the surface area affected
by seismically-induced landslides? How does surface rock strength modulate the oc-
curence of earthquake-induced landslide? Twenty years later most of these questions
are still research challenges, in part because high quality datasets are very difficult to
obtain. Most of the earthquakes used in early compilation work (Keefer, 1984, 1994;
Rodriguez et al., 1999) were poorly documented both from geophysical and geomor-
phological point of view, impeding detailed quantitative analysis.

However, at the end of the 1990s the Northridge (USA) and the Chi-Chi (Taiwan)
earthquakes were recorded by a number of geophysical instruments (e.g., Shin and
Teng, 2001; Wald et al., 1996) whilst triggering a very large number of landslides that
were mapped in detail (Harp and Jibson, 1996; Liao and Lee, 2000). These two events
have yielded iconic landslides inventories from which many qualitative and quanti-
tative insights into earthquake-induced landslide (EQIL) have been derived. These
include the influence of ground shaking (Khazai and Sitar, 2004; Meunier et al., 2007),
of slope gradient, lithology and rock strength (Parise and Jibson, 2000; Lin et al., 2008),
of slope aspect (Parise and Jibson, 2000; Meunier et al., 2008), and site effects and to-
pographic amplification (Harp and Jibson, 2002; Meunier et al., 2008; Lee et al., 2010).
In the last decade or so, with the availability of high resolution satellite imagery, the
spread of Geographic Information Systems easing the production of digitized maps
and the growing interest in landsliding, many new inventories have been created and
landslide positions and characteristics have been correlated to a variety of topographic
and seismic parameters (e.g., Yagi et al., 2007, 2009; Meunier et al., 2008; Parker et al.,
2011; Gorum et al., 2011, 2013; Xu et al., 2013, 2014b,c). New insights have been gained
through this proliferation of catalogues. The link between the spatial pattern of land-
sliding and ground shaking has been tightened through new observations and new
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Figure 1.6 – Total landslide volume against earthquake moment for 15 earthquakes world-
wide. The data is well fit by a linear trend. After Keefer (1994).

methods (Yuan et al., 2013; Meunier et al., 2013). These advances are suggesting that
our understanding and ability to model earthquake strong-motion can be further used
to gain insights on EQIL. Moreover, using EQIL patterns to gain information on poorly
instrumented or historical earthquakes is also of great interest. EQIL have been con-
sidered as a potential tool to determine the strength of near-surface materials (Gallen
et al., 2015).

The impact of earthquake strong-motion and landsliding on the ensuing erosional
dynamics of the affected area has also been interrogated through recent studies. A
prolonged increase in suspended sediment transported by rivers and in landslide rate
has been reported after some earthquakes (Koi et al., 2008; Hovius et al., 2011; Dad-
son et al., 2004; Lin et al., 2008; Saba et al., 2010; Wang et al., 2015) (Figure 1.7), and has
been interpreted as a possible consequence of ground cracking and/or rock weakening
caused by the ground motion (Hovius et al., 2011; Owen et al., 2008). Using clast size
and geochemical properties along cores of lake sediment near the Alpine Fault of New
Zealand, a distinct post-seismic phase of sediment accumulation of about 50 years was
detected after each of the last major earthquakes (Howarth et al., 2012). These studies
suggest that the coseismic landslides may be only a fraction of the erosion caused by
large earthquakes, and that landscapes need significant time, up to decades, to recover
from seismic disturbances, with important implications for erosion dynamics and haz-
ard managment.
Additionally, the total landslide volume caused by the Mw7.6 1999 Chi-Chi (Taiwan)
and Mw7.9 2008 Wenchuan (China) earthquakes were found to be on the same order
and larger than the earthquake surface uplift, respectively, sparking debate about the
role of earthquakes within mountain building (Hovius et al., 2011; Parker et al., 2011;
Molnar, 2012) (Figure 1.8). Although it turned out that the landslide volume for the
Wenchuan case was significantly overestimated, recent work suggests that very large
earthquakes may produce more erosion than average uplift (Li et al., 2014). The orig-
inal calculations driving this debate were flawed, mainly due to mapping errors, em-
phasizing the need for new methods of landslide mapping and quality assessment (cf.,
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Figure 1.7 – Time evolution of the unit sediment concentration in major storm floods after the
1999 Chi-Chi earthquake, κstorm, at 4 stations in the Choshui catchment, Taiwan (error bars
show 1σ range). For direct comparison, values have been normalised to the mean of values
prior to September 1999 at a station. Water discharge, normalised to the average of 1984-2007
(∼ 150m3s1), is shown in the background. After Hovius et al. (2011).

Guzzetti et al., 2012).

The current grand challenges for the community working on earthquake-induced
landsliding can be summarized as follows. The first challenge is to better predict the
amount of landsliding and its spatial pattern. This requires better integration of seis-
mological aspects such as accurate spatial maps of ground shaking, the importance of
topography in focussing and amplifying waves, and the relation between the shaking
at a site and the ground failure and its geometry. Additionally, we need to find new
ways to characterize hillslopes in terms of rock strength and general susceptibility to
shaking. This is a long-term goal, as each component described above is a significant
challenge, and all seem required in order to have an effective and detailed prediction
of the effects of EQIL at short timescales.
The two next challenges are important for the whole landslide research community but
are specifically harder to reach when studying EQIL because of the very large number
of landslides produced at the same time.
The second challenge is to develop automatic mapping algorithms, suitable for in-
tensely affected areas: though the amount of data is increasing, the field is still rela-
tively data-poor and obtaining good quality inventories manually requires significant
effort. Further, refining automatic detection algorithms based on various type of im-
agery is an important topic. Finding ways to map or constrain the fine geometry of
landslides, with higher resolution images or differential DEMs are also important av-
enues to explore. Up to now, only the location and surface area of landslides are rou-
tinely obtained, but we have no direct ways to measure their depth, or subdivide them
into a scar, transport and deposit area. These are technical objectives but they are im-
portant in order to solve the other challenges.
The third challenge is to couple the effects of widespread landsliding together with
other surface process systems. Few studies have addressed the landscape response
to widespread landsliding, and it is essential for many theoretical and applied pur-
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Figure 1.8 – Comparison of erosion and uplif associated with the Mw7.9 2008 Wenchuan
(China) earthquake. From top to bottom: Landslide volume derived from the global bedrock
landslide scaling relationship applied to individual landslides within each 1-km wide strip.
Net coseismic volume change in each 1-km wide strip. Net volume change determined by
subtracting landslide volumes from coseismic volume change. All data are projected onto a
rupture-parallel line at 1 km intervals. Modified after Parker et al. (2011).

poses to understand how river networks will cope with the new sediment, and how
geochemical and geobiochemical processes, such as weathering, soil formation and or-
ganic carbon sequestration, will be affected by EQIL. This requires both acquisition of
detailed data on the interactions between landsliding and these other processes, and
modelling of the propagation, over intermediate timescales, of the EQIL perturbation
through the different process zones of the landscape.
The fourth challenge is to understand the feedbacks between erosion and tectonics,
operating over long timescales of one or several seismic cycles, requiring exploration
of how earthquakes affect the evolution of topography, and how EQIL and their evac-
uation influence fault development and activity or isostatic patterns.
These different challenges are entangled and lie at the interface of multiple fundamen-
tal disciplines of the Earth sciences. This thesis only addresses some subcomponents
of them, as detailed below.

1.5 Main questions and outline

The recent proliferation of new catalogues of EQIL and the observations suggest-
ing unrecognized short term and long term effects of earthquakes on the erosional
dynamics of mountain belts (Hovius et al., 2011; Parker et al., 2011) have led to a series
of questions that I have tried to address within this dissertation. These key research
questions mainly pertain to the 1st and 4th challenges that I have described above:

1/ First of all, what volume of debris is mobilized through EQIL and can this
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be better correlated to seismological parameters? The single published global analysis
has an order of magnitude of scatter and accounts only for the seismic moment mag-
ntiude (Keefer, 1994) (Figure 1.6), whereas more recent case studies suggest that other
parameters, such as ground shaking and earthquake depth, must be taken into account
(Meunier et al., 2007, 2013). To answer this question also requires the collection of un-
biased landslide inventories and to ask what mapping errors may remain unnoticed in
landslide inventories (e.g., Li et al., 2014).
In Chapter 2, Amalgamation in landslide maps: effects and automatic detection, I assess
the errors caused by amalgamation -the bundling of several landslides into a single
mapped polygon- in several EQIL inventories. I quantify the magnitude of errors on
estimates of the total volume of landslides and on the characterization of landslide
frequency-size distributions. I present and test an algorithm based on the polygon
shape and position within a digital elevation model to automatically detect amalga-
mated polygons.
In Chapter 3, A seismologically-consistent expression for the total area and volume of earthquake-
induced landslide populations, I present a new analytical expression to predict the total
volume or area of landslides caused by an earthquake. I build this relationship by con-
sidering the statistical relation between landsliding and ground shaking, a source term
for wave emission as a function of earthquake size, the attenuation of seismic waves
with distance and the sum effect of multiple seismic sources, the number of which
scales with the fault size. Further, I account for the availability of steep hillslopes in
the epicentral areas and for their characteristic steepness, which controls their sensitiv-
ity to shaking. The model is calibrated and tested against a database of 40 earthquakes
for which EQIL has been constrained. The accuracy and limitations of the model are
discussed.

2/ Second, I explore the intermediate timescale, to try to understand not just the
instantaneous mass wasting caused by the shaking, but also the impact on the land-
scape in the following years or decades after the main shock. If earthquakes do stim-
ulate hillslope erosion (Hovius et al., 2011; Owen et al., 2008; Saba et al., 2010) (Figure
1.7), is it related to ground cracking or to another process, and to what extent and for
how long are the hillslopes perturbed? How can we monitor post-earthquake erosional
change and relaxation?
In Chapter 4, Transient changes of landslide rates after earthquakes, I quantify the evolution
of landslide rates in the epicentral areas of 4 earthquakes. I produce a time series of
landslide maps and show that the landslide volume and area are non-linear function
of the total rainfall. However, landsliding for a given rainfall amount increased up to
20 times in the years following all earthquakes and then recovered over a time span
that apparently scales with the earthquake magnitude. This transient increase in the
landslide susceptibility is not explained by landslide reactivation, water-table eleva-
tion or root-system disturbance. I propose instead that it is due to ground damage due
to shaking, and that the recovery is likely due to a healing process, which remains to
be determined.
In Chapter 5, Co-evolution of shallow seismic velocity changes and landslide rates after earth-
quakes, I compare the evolution of landslide rates in epicentral areas with subsurface
seismic velocities obtained from the autocorrelation of ambient noise, finding that
these two observables co-evolve. This supports the common hypothesis that seismic
velocity drop and recovery is dominated by shallow ground cracking due to the strong-
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motion, and that the recovery is related to crack healing and closure. Time-series of sur-
face displacement of GPS stations in the same areas also show similar changes through
time, suggesting that deep tectonic deformation may be a driver of the healing of sur-
face rocks.

3/ Directly following from the first question, we can attempt to understand how
much net topography building is achieved by earthquakes in active mountain belts
(Figure 1.8). Can earthquake induced erosion be modelled accurately enough to go
beyond existing case studies (Hovius et al., 2011; Parker et al., 2011) and to under-
stand which parameters govern the proportion of the earthquake uplift that is eroded
through landsliding? And what is the contribution of post-seismic landsliding to the
mass balance of earthquakes ?
In Chapter 6, The mass balance of earthquakes and earthquake sequences, I combine the land-
slide model developed in Chapter 3 and the standard formulation used to compute
the surface deformation of an earthquake to determine which earthquakes may have a
negative mass balance, i.e., produce more erosion than uplift. I assess the role of dif-
ferent parameters such as the earthquake depth, the fault geometry and the landscape
steepness in modulating the mass balance of single earthquakes and of earthquake se-
quences. Earthquake sequences are modeled based on two plausible end-member: as a
series of characteristic earthquakes or as a sequence following a Gutenberg-Richter dis-
tribution of earthquake magnitudes. I find that intermediate size earthquakes (Mw67.3)
may cause more erosion than uplift, controlled primarily by seismic source depth and
landscape steepness, and less so by fault dip and rake. Earthquake sequences with a
Gutenberg-Richter distribution have a greater tendency to lead to predominant ero-
sion, than repeating earthquakes of the same magnitude, but fault large enough to
produce Mw > 8 will always be constructive over long timescales.

This dissertation ends with Chapter 7, which summarizes the work presented in
Chapter 2-6, and Chapter 8, which integrate the thesis within the broader discourse of
geomorphology and natural hazards research before suggesting some future work.
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Chapter 2

Amalgamation in landslide maps:
effects and automatic detection

Abstract

Inventories of individually delineated landslides are a key to understanding landslide physics
and mitigating their impact. They permit assessment of area-frequency distributions and land-
slide volumes, and testing of statistical correlations between landslides and physical parame-
ters such as topographic gradient or seismic strong motion. Amalgamation, i.e. the mapping
of several adjacent landslides as a single polygon, can lead to potentially severe distortion of
the statistics of these inventories. This problem can be especially severe in datasets produced
by automated mapping. We present 5 inventories of earthquake-induced landslides mapped
with different materials and techniques and affected by varying degrees of amalgamation. Er-
rors on the total landslide volume and power-law exponent of the area-frequency distribution,
resulting from amalgamation, may be up to 200% and 50%, respectively. We present an algo-
rithm based on image and DEM analysis, for automatic identification of amalgamated poly-
gons. On a set of about 2000 polygons larger than 1000m2, tracing landslides triggered by the
1994 Northridge earthquake, the algorithm performs well, with only 2.7− 3.6% wrongly amal-
gamated landslides missed and 3.9 − 4.8% correct polygons wrongly identified as amalgams.
This algorithm can be used broadly to check landslide inventories and allow faster correction
by automating the identification of amalgamation. 1

1. Originally published as: Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and
automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723–733, doi: 10.5194/nhess-15-723-2015, 2015
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2.1 Introduction

Regional landslide maps are a crucial component of many landslide related stud-
ies (Guzzetti et al., 2012) : they are necessary to improve our understanding of land-
slide rupture mechanics and test conceptual models, to produce landslide risk and
vulnerability maps, to understand how different climatic and tectonic mechanisms can
trigger landslides, and to estimate how mass wasting contributes to sediment produc-
tion and landscape evolution (Montgomery and Dietrich, 1994; Meunier et al., 2007,
2008; Hovius et al., 1997). Such maps used to be created by manual mapping from
remote sensed imagery, often accompanied by partial field checks (e.g., Harp et al.,
1981; Harp and Jibson, 1996) . Due to the high cost and time associated with manual
mapping of thousands or tens of thousands of landslides over large areas, automated
mapping techniques are increasingly used (e.g., Martha et al., 2010; Mondini et al.,
2011; Parker et al., 2011). These techniques have specific associated errors, amongst
which amalgamation, that is the bundling of several adjacent landslides into a single
map polygon, is prominent. Amalgamation typically occurs when the spatial den-
sity of landslides is high and the resolution of images from which they are mapped
relatively low, making it difficult to differentiate multiple landslides in a perturbed
area. Automatic mapping algorithms designed to detect change of surface properties,
irrespective of the shape of the changed area, are especially prone to this effect. If un-
corrected, amalgamation can lead to severely mistaken results and interpretations in
many domains. For example, studies using landslide maps to estimate the volume of
debris produced, whether to understand sediment transfer dynamics (Hovius et al.,
2000; Yanites et al., 2010), organic matter mobilisation (Hilton et al., 2011b), average
erosion rates (Hovius et al., 1997) or mountain building (Parker et al., 2011), rely on
empirical laws giving landslide volume as a function of landslide area (Guzzetti et al.,
2009a; Larsen et al., 2010). In this approach, landslide depth is assumed to scale with
area, giving rise to strongly non-linear area-volume relations, which assign dispro-
portionate importance to landslides with the largest surface areas. Accurate landslide
area mapping, differentiating precisely between individual events is therefore of the
essence (Li et al., 2014). This also applies to studies considering the area-frequency
distribution of landslides, whether to assess landslide hazard and risk associated with
extreme events (Malamud et al., 2004b), or to understand the underlying physics of the
distribution (Pelletier et al., 1997; Stark and Guzzetti, 2009; Frattini and Crosta, 2013).
Finally, any attempt to understand the physics of landslide triggering from mapped
landslide patterns could suffer from the effects of wrongly mapped landslide outlines
and artificial prominence of large disturbed areas (Montgomery and Dietrich, 1994;
Meunier et al., 2008).
Here, we survey why and where amalgamation can occur, and determine the min-
imum error it has introduced to estimates of total landslide volume and the area-
frequency distribution of several landslide inventories. Subsequently, we propose an
algorithm able to automatically detect amalgamation when provided with a raster file
of polygon shapes and a DEM. Performance of this algorithm is tested on a represen-
tative subset of the inventory of landslides triggered by the Northridge earthquake.
We finish with a short discussion of the benefits and limitations of this approach and
possible alternatives.
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Figure 2.1 – Some polygons from the Parker et al. (2011) dataset, representing landsliding
caused by the 2008 Wenchuan earthquake. Polygons are color coded by size (red being the
smaller polygons) and overlaid on a DEM and a river network. The density of landsliding is
correctly estimated but dozens of small landslides have been connected along slope or even
across rivers or ridges.
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Figure 2.2 – A, B, C: Landslide polygons on a DEM topography showing examples of amalga-
mation in the ChiChi and Northridge inventories. Geometric and topographic inconsistencies
that signal amalgamation are specified as follow: RC for ridge crossing, CC for channel cross-
ing, MH for multi-headed (multiple source area), MA for multi-armed (multiple deposit areas),
SI for slope inconsistencies (polygon elongated perpendicular to the slope) and B for blurring
due to insufficient resolution to differentiate different disturbed areas. D, E: Some polygons
mapped by Gorum et al. (2011) after the Wenchuan earthquake overlaid on a 15m-resolution
ASTER image (D) and on a 2.5m-resolution SPOT 5 image (E), of the same area. Note the pres-
ence of amalgamation but also the significant mapping extent exaggeration when mapping on
low resolution relative to the landslide density .
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2.2 Landslide Mapping and Amalgamation

Most landslide inventories are derived from analysis of optical or multispectral
imagery, exploiting the typical texture, colour and spectral properties of freshly dis-
turbed areas (Guzzetti et al., 2012). Often, landslides are conspicuous because they
clear vegetation that has a very different appearance or radiation intensity spectrum.
When landslides are mapped as polygons, whether by men or machine, the general
assumption is that the polygon represents a single landslide, most often combining a
scar area, a deposit area and sometimes a runout area. A mapped polygon is there-
fore assumed to contain direct or indirect information on the location and size and,
implicitly, the volume of one landslide but also potentially about the slope where the
landslide initiated and terminated, the runout distance, the drop of potential energy, or
the triggering mechanism, such as the local peak ground acceleration or pore pressure
at the time of failure.
Amalgamation, the combination of several individual adjacent landslides in a single
polygon, can be due to the actual coalescence of landslides, or the apparent contiguity
of disturbed areas in images with low resolution or poor contrast between affected and
unaffected areas (Figure 2.1). Indeed,where landsliding is very dense, several adjacent
landslides may have joint runout areas or overlapping deposits, or scars separated by a
distance too short to be resolved by the available imagery. At a given resolution, mul-
tispectral images contain more information than optical images, which may help in
delineating individual landslides but this does not always preclude amalgamation in
landslide mapping. Even where image resolution would permit accurate mapping of
individual landslides, amalgamation can occur when the primary goal of the mapper
is not to map landslide extent precisely, but rather to rapidly evaluate the area affected
by slope failure. This seems common for maps predating widespread use of land-
slide area-volume relationships as well as for more recent inventories, underlining the
current lack of care in avoiding or at least flagging amalgamation. In automatic map-
ping, algorithms that are not object oriented will usually classify single pixels based
on their various bulk properties (Guzzetti et al., 2012). If adjacent pixels are classified
as disturbed, then the algorithm will combine them in a single polygon, regardless of
how many separate landslides are contained within. When image resolution is not
very high, then automatic algorithms can bundle hundreds of small landslides, lo-
cated within a limited area with high propensity to failure, into a single, apparently
very large landslide polygon.
A striking example of amalgamation can be found in the JouJou Mountain area of Tai-
wan, where pervasive shallow landsliding occurred during the Mw 7.6 ChiChi earth-
quake in 1999 (Figure 2.2) (Liao and Lee, 2000). In available maps, these landslides
have been merged into a few complex shaped polygons, blanketing the steep, gullied
hills and covering 9.8km2. However, a separate, local survey has found more than one
thousand individual, shallow failures, many of which adjoined without making larger
landslides (Lee et al., 2010). Together, these landslides had a total area of 7.22km2, im-
plying a significant area exaggeration by the automated mapping procedure.The im-
plications of this extreme amalgamation are far reaching. For example, using common
landslide area-volume relations (Guzzetti et al., 2009a; Larsen et al., 2010), the total
volume of the six largest, automatically mapped polygons in the area would be esti-
mated at about 0.19km3, with the largest polygon (4.13km2) alone contributing about
0.11km3. If the total area occupied by these six polygons is arbitrarily repartitioned
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into 1000 landslides of roughly equal size, set by the characteristic local ridge spacing
and slope lengths of ∼ 100− 150m, then a 17-fold reduction of the estimated landslide
volume would result. This estimate could be refined with access to the local landslide
data (Lee et al., 2010), which can be seen to have a non-uniform area-frequency distri-
bution with hundreds of landslides with areas of 100m2 and one landslide of 0.1km2.
In this example, amalgamation of landslides is easily recognizable due to the complex
shape of polygons straddling multiple topographic features, with surface areas much
larger than permitted by the characteristic length scale of the topography. Formally,
the merging of several landslides can result in a range of geometric or topographic
inconsistencies, such as multi-branched polygons, or polygons with orientations in-
consistent with local topographic slope or transgressing ridgelines or channels (Figure
2.2). We consider that these features are unlikely characteristics of individual land-
slides, even though failure on multiple scarps, divergence in runout, runout crossing
rivers and spreading on the opposing valley side or occasional overtopping of divid-
ing ridges are known to happen.
Some polygons may also appear topographically and geometrically consistent, although
they are, in fact, a combination of several adjacent landslides close to or below the reso-
lution of available images, the combined effect of which is to alter the visual or spectral
properties of a larger area. This blurring can conjugate amalgamation and an exagger-
ation of the area affected by landslides, but it cannot be identified without use of very
high-resolution images (Figure 2.2). It is, therefore, out of the scope of our study and
remains a challenge and a caveat for landslide mapping.

2.3 Data

The recognition of geometric and topographic inconsistencies in landslide inven-
tories is a key to identification of amalgamation of individual landslides and miti-
gation of its effects. To develop a method for detection of amalgams in large land-
slide datasets, and to evaluate the effects of amalgamation on scientifically interesting
derivatives of these datasets, we have focused on earthquake cases. Large earthquakes
can trigger many thousands of landslides in a limited area, reducing possible effects
of geological heterogeneity on landslide populations and their statistics. Moreover, by
focusing on landslides with a shared trigger mechanism, we have removed possible
complications due to convolution of trigger-specific effects from our analysis. Finally,
earthquake-induced landslide populations tend to span a very large range of land-
slide sizes, allowing robust computation of area-frequency statistics, one of the key
attributes affected by amalgamation.
We have used 5 published inventories of earthquake-induced landslides, mapped over
areas of 103−104km2. Together, these inventories cover a range of mapping approaches
from manual mapping with extensive field checking, to fast automated mapping with
limited supervision and verification. The 1994 Mw 6.6 Northridge earthquake in Cali-
fornia triggered more than 10,000 landslides, which were mapped manually from air-
photos, with field checks at selected sites (Harp and Jibson, 1996). The same approach
was used to map more than 6,000 landslides triggered by a Mw 7.6 earthquake in 1976
in Guatemala (Harp et al., 1981). The 1999 Mw 7.6 ChiChi earthquake in west Taiwan
also caused severe landsliding, with more than 9,000 landslides larger than 625m2 (25
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m x 25 m) mapped manually from SPOT satellite imagery (Liao and Lee, 2000). Finally,
for the 2008, Mw 7.9 Wenchuan earthquake in China, many different maps of coseismic
landslides exist (Ouimet, 2010; Qi et al., 2010; Dai et al., 2011; Gorum et al., 2011; Parker
et al., 2011; Xu et al., 2014c), allowing comparison of independent and broadly equiv-
alent datasets. We have used two catalogues containing 50,000 polygons apiece. One
was mapped with a semi-automatic algorithm using 2.5 to 10 m-resolution SPOT 5 and
EO-1 satellite imagery (Parker et al., 2011). The other was mapped by hand, mainly
from 15 m-resolution ASTER imagery and locally higher resolution imagery (Gorum
et al., 2011). In all these inventories, the entire area perturbed by a landslide, including
scar, runout and deposit, is delineated by a single polygon.
In addition to these five inventories, we have used Aster GDEM-30 m data to evaluate
the topographic context of mapped landslide polygons and as an input of our algo-
rithm for detection of amalgams. In the case of the Wenchuan earthquake, we have
also used 15 m-resolution ASTER images and 2.5 m-resolution SPOT 5 images from
the epicentral area, taken shortly after the earthquakes, to verify the different landslide
maps.

2.4 Quantifying effects of amalgamation

The earthquake-induced landslide inventories summarized above are too large
for comprehensive manual verification. To assess the possible effects of amalgamation
in these data sets, we have focused on the largest polygons in each inventory. These
polygons dominate landslide volume estimates and can strongly influence the best fits
to area-frequency distributions. Thus, by checking and correcting a limited number of
large polygons, the quality of derivatives of landslide inventories can be substantially
improved. In checking individual polygons, we considered as anomalous any polygon
displaying a geometrical or topographical inconsistency such as branching, traversing
of ridges or rivers or orientation inconsistent with the local topographic slope. These
polygons were compared with local topographic data and, when appropriate split to
make residual polygons more consistent with the general topography. Nevertheless it
is clear that without high-resolution imagery, many landslide polygons were redefined
in a relatively crude way.
We have used published area-volume relationships to estimate the volume of land-
slides from the mapped disturbed areas (Larsen et al., 2010). It was assumed that land-
slides with area > 100, 000m2 involved bedrock, and that smaller landslides were mixed
bedrock and soil failures. Landslide maps typically do not distinguish between scar
and deposit, lumping the two in one area measure. According to Larsen et al. (2010),
scars and deposits have area-volume relations with the same power-law exponent, im-
plying constant size ratios between scar and deposit areas of 1.1 and 1.9 for mixed and
bedrock landslides, respectively. Hence, we have estimated the scar area by dividing
the mapped landslide area by 2.1 and 2.9 for mixed and bedrock landslides, respec-
tively, assuming that runout was equal to the scar length. Then we converted scar
area A, into volume V , for bedrock and soil landslides with V = aAb with a=0.146 and
0.234 and b=1.33 and 1.41 for mixed and bedrock landslides, respectively. Computed
landslide individual and total volumes appear to be consistent with field estimates for
cases where the whole perturbed area was mapped.
Comprehensive landslide inventories have a typical area-frequency distribution with
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a roll-over and a power-law decay with an exponent, ρ, commonly within a narrow
range of values (Malamud et al., 2004a). The roll-over can be caused by censoring of
the small landslides due to the mapping resolution (Stark and Hovius, 2001), but can
also be related to the physics of landsliding and the transition from cohesion-controlled
to friction-controlled hillslope stability with increasing landslide area and depth (Katz
and Aharonov, 2006; Stark and Guzzetti, 2009). The roll-over and power-law decay
have also been attributed to a combination of the size distribution of continuous local
topographic slopes and the distribution of moisture or increasing cohesion with depth
(Pelletier et al., 1997; Frattini and Crosta, 2013). We have assessed the impact of amal-
gamation by comparing the area-frequency distribution of the original datasets with
that of our partially corrected datasets. Because the frequency decay with increasing
landslide size is usually modeled as a power-law, a specific functional form does not
have to be prescribed if we only consider the distribution at areas ten times larger than
the roll-over. For these large areas we have obtained ρ with a linear least-square re-
gression of the log-transformed data (Figure 2.3).
In many cases a larger number of smaller polygons were also visibly amalgamated,

but we did not correct them, due to the effort and uncertainties involved. Thus, the esti-
mates of errors on total landslide volume and the power law exponent of the landslide
area-frequency distribution due to amalgamation, presented below, are likely mini-
mum values. Next, we review the individual landslide inventories and highlight the
varying degrees to which they are affected by amalgamation and its effects.
Landslides induced by the 1976 Guatemala and 1994 Northridge earthquakes were
mapped in detail, apparently to record where landslides had occurred, but not nec-
essarily to distinguish the boundaries of individual landslides. We have inspected all
356 polygons with an area larger than 10, 000m2 in the Northridge inventory and all
90 polygons exceeding 100, 000m2 in the Guatemala dataset. Together, these polygons
represent 56% and 73% of the uncorrected volume of the landslide populations of the
Northridge and Guatemala earthquakes, respectively. 162 out of 356 and 51 out of 90
of these polygons were found to be amalgams of several landslides. They were split
according to their shapes and relation to the local topography. This resulted in a re-
duction of the total volume of landslides by 16% in the Northridge case and 35% in the
Guatemala case, and an increase of the area-frequency scaling exponent, by 16% and
22%, from 1.57 and 1.33 to 1.82 and 1.62, respectively (Figure 2.3). Because polygons
smaller than the threshold represent only 44% and 27% of the total volume, respec-
tively, and because they must be less amalgamated and have much smaller individual
volumes, their correction would likely add only a minor contribution to the total vol-
ume change.
The ChiChi earthquake caused widespread landsliding in the mountains of central
west Taiwan. An inventory of these landslides (Liao and Lee, 2000) contains 9272 poly-
gons in an area 150 times larger than the JouJou Mountain, mentioned above, with a
total estimated volume of about 0.73km3. We have inspected all 173 polygons larger
100, 000m2, representing 85% of the total uncorrected volume of the ChiChi inventory.
We have found that 100 of them needed corrections ranging from the splitting of minor
branches to the artificial fragmentation of the largest polygons in the JouJou mountain
area, where precise correction was impossible. Together, these corrections resulted in a
volume reduction of 38% to 0.45km3, but an insignificant increase of the area-frequency
scaling exponent by 5%.
The two inventories for the Wenchuan earthquake have similar total landslide areas
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Figure 2.3 – Amalgamation effect on landslide area-frequency distributions. A: Compari-
son between the raw data from the coseismic landslide maps for to the 1976 Guatemala and
1994 Northridge earthquakes and the corrected catalogue where every amalgam larger than
100, 000m2 and 10, 000m2 was split, respectively. For the 2008 Sichuan earthquake, several
landslide maps were published. Of these, the Parker et al. (2011) dataset is severely affected by
amalgamation whereas the Gorum et al. (2011) dataset is relatively exempt from amalgams.

and similar total numbers of landslides, even though the mapping of Gorum et al.
(2011) extended further to the north along the seismogenic fault. We have compared
the maps where they overlap, along 150 km of the fault trace, where the majority of
landslides occurred (e.g., Figure 2.2). There is good overall agreement between the
data sets, but the manual mapping of Gorum et al. (2011) has clearly delineated many
more individual slides (Figure 2.2). Many examples of amalgamation are evident in
the Parker et al. (2011) data set (Figue 2.1), and although, there are some mapping
discrepancies between the two inventories, this appears to be the main difference be-
tween them. It has resulted in a total landslide volume reduction of 69%, from 6.30km3

for the automated-mapping inventory (Parker et al., 2011) to 1.96km3 for the original
manually-mapped inventory of Gorum et al. (2011). However, this inventory also con-
tains amalgamation artefacts (Figure 2.2). We have visually checked all 152 landslides
larger than 300, 000m2, representing 51% of the total volume of the manual inventory
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(including landslides mapped in areas not surveyed by Parker et al. (2011). Of these
87 required editing, leading to a final landslide volume estimate of 2.3km3 instead of
2.45km, equivalent to a modest reduction of 6%.
The landslide polygon area-frequency distributions of the Wenchuan inventories also
differ significantly (Figure 2.3). First, the amalgamated catalogue of Parker et al. (2011)
yields a discontinuous distribution, which does not exhibit the roll-over commonly
observed in well-mapped data sets (Malamud et al., 2004a; Brardinoni and Church,
2004). Instead the smaller polygons also have a decreasing frequency with increasing
size, and they appear to be relatively infrequent compared to medium to large slides.
In contrast, the manually mapped inventory has a area-frequency distribution with a
rollover at ∼ 1000m2. The exponent on the best-fit power-law for this data set, after
our correction for amalgamation is also much higher than for the Parker et al. (2011)
inventory, ρ = 1.5 and ρ = 1.0, respectively, confirming the relative abundance of large,
mostly amalgamated polygons in the latter (Figure 2.1,2.2). Correction for amalgama-
tion effects results in a slight rise of the scaling exponent of the manually mapped
inventory to ρ = 1.6.
From these analyses it is clear that amalgamation can significantly distort both land-
slide population volume estimates and the frequency distribution of mapped landslide
areas. However, the frequency distribution itself does not necessarily betray amalga-
mation, and exhaustive visual screening can be prohibitively time consuming. In the
following section, we propose an automatic algorithm, which can be used to differen-
tiate correctly mapped and amalgamated polygons and allow faster and more compre-
hensive cleaning of affected data sets.

2.5 Automatic detection of amalgamation

Because amalgamation leads to geometric anomalies and unusual positions of
putative landslides in the landscape it is possible to detect amalgams simply by look-
ing at their shape and at the underlying topography. Following the criteria defined
in section 2 (Landslide mapping and amalgamation) we have developed an algorithm
able to guide a mapper or an end-user towards suspicious polygons, and facilitate a
correction or an assessment of the catalogue quality. The algorithm requires a DEM, a
raster made from the polygon shapefile and a text file with polygon ID and informa-
tion. Below, we present the operation of the algorithm and assess its accuracy.
First, the algorithm considers the geometry of a landslide polygon. The branching of
polygons is the most common and visible effect of amalgamation. This affects the re-
lation between perimeter, P , and area A, of the polygons, biasing amalgams towards
high P . These attributes are easily extracted from a landslide inventory with any GIS.
A polygon with given P and A can be compared to an ellipse of equal P and A, and
aspect ratio K. Using the Fagnano (1750) approximation, the ellipse perimeter can be
written as:

P = π

(
3

2b
(K + 1)−

√
Kb2

)
(2.1)

where b is the small radius. Since A = πKb2, it can be shown that the perimeter of any
ellipse varies as

P =

(
3(K + 1)

2
√
K

− 1

)√
πA (2.2)
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Rearranging (2), K can be found from P and A as the solution of a second order equa-
tion:

K =
1

2

4

9

(
P√
πA

+ 1

)2

− 2 +

√√√√(4

9

(
P√
πA

+ 1

)2

− 2

)2

− 4

 (2.3)

Thus, any polygon can be described easily and objectively by the aspect ratio, K, of its
equivalent ellipse. For reference, a circle would yield K=1, a square K=2.3 and rectan-
gle twice as long as wide K=2.7. A polygon with high K is more likely to be incorrect
whereas a polygon with K < 2 has a compact shape from which any mapping error
cannot easily be recognized. Therefore, to accelerate the algorithm any polygon below
a critical aspect ratio, Kc, is assumed to be correct (Figure 2.4).
A high K value may signal amalgamation or simply an elongated landslide, for exam-
ple due to long runout. Therefore, K is a useful input parameter but ultimately it is
necessary to explicitly consider the geometry of the polygon. This is achieved by re-
ducing the mapped polygons to their skeleton with a standard image analysis method,
which iteratively thins a solid polygon to a branched centre-line (Figure 2.5). From this
skeleton, branch points and individual branches are easily found. However, even poly-
gons with a relatively simple shape may have skeletons with some branching points
and small branches pointing towards a polygon corner or irregular side. To eliminate
these spurious branches, we impose an arbitrary threshold size ratio of branches rel-
ative to the longest branch, RBc. A polygon with a main branch and several smaller
branches, all of which are shorter than the main branch by a factor 1/RBc or more is
considered to be a correctly mapped, single landslide (Figure 2.4). All other polygons
receive a score equal to the number of branches longer than the longest branch divided
by RBc, reflecting qualitatively the degree of amalgamation.
In a second step, the algorithm tests the consistency of a polygon with apparently cor-

rect geometry, with the local topography. This is done by extracting the DEM elevation
along the longest branch of the polygon, which is assumed to be an adequate repre-
sentation of the pathway of the landslide. First, the algorithm checks that the highest
and lowest elevations along the branch coincide with the top and toe of the mapped
landslide. A violation of this condition typically signals that the branch traverses a
ridge or valley floor, or that two landslides were merged into a crescent shaped poly-
gon, smooth enough not to be identified as a likely amalgam by the first part of the
algorithm. If the polygon passes this second test, then a last check is made to see if the
maximum variation of elevation along the main branch is above the minimum slope
for landsliding, Sc (Figure 2.4). Polygons failing this test are typically oriented per-
pendicular to the main topographic slope over long distances, as a result of the lateral
merging of several small, parallel failures along a ridge or cliff.
Thus, our algorithm is formally based on 3 adjustable parameters Kc, RBc, and Sc. Of
these, only RBc may be substantially tuned, depending on the smoothness of the input
raster, which in turn depends on the landslide mapping technique and the raster reso-
lution. Sc is a physical parameter which should normally be close to a 10◦threshold for
landsliding (e.g., Meunier et al., 2007; Lin et al., 2008), thus requiring minimal tuning,
unless the local substrate has exceptional properties. To minimize the number of false
negatives (i.e. undetected amalgams), Kc should be set at a low value of about 2, so
that only polygons without any geometrical complexity are screened out. Setting Kc

at a higher value can be useful to assess the degree of amalgamation and isolate only
those polygons that are likely to be composites of many landslides.
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Figure 2.4 – Flowchart of the algorithm for automatic detection of amalgamation. Inputs are
used to individually analyse polygons based on geometric and topographic characterictics,
following a series of conditional tests that lead to a polygon score. A score of zero means that
the polygon is considered clean and any other scores refer to some sort of amalgamation. K
is the equivalent ellipse aspect ratio (see Eq 3), Lmax is the length of the longest branch of a
polygon, RBc is an arbitrary critical length ratio and Sc is a critical slope angle.

To assess the accuracy of the algorithm we have applied it to an inventory of landslides
triggered by the 1994 Northridge earthquake in southern California (Harp and Jibson,
1996). Within the bounds of the Santa Susanna Mountains, we manually screened
all 2083 mapped polygons larger than 1000m2 for amalgamation. This is close to the
rollover in the landslide area-frequency distribution of the inventory, so that the test set
encompasses most of the landslide volume. The Santa Susanna subset is representative
of the diversity of size and shape that can be found in the Northridge inventory in its
entirety. Of all polygons in the subset, the amalgamation state of 136 (6.52%) could not
be ascertained visually. These polygons were removed from the test data set before
further analysis. Of the remaining 1950 polygons, 617 amalgams and 1187 single land-
slides were correctly classified by our algorithm. The algorithm missed 70 amalgams
(3.6% of false negatives, that is undetected amalgams) and wrongly classified 76 single
landslides as amalgams (3.9% of false positives, that is correct polygons classified as
amalgams) (Table 2.1). About two thirds of all polygons classified as amalgams were
detected using the branching criterium, in part because it is the most easily detectable
feature but also because it is the first step of the algorithm. One third of amalgamation
cases were only diagnosed by the second step of the algorithm, which considers the
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Table 2.1 – Confusion matrix of the algorithm tested on the 1950 independently verified poly-
gons larger than 1000m2, from an inventory of landslides triggered by the 1994 Northridge
earthquake. Positive and negative conditions refers to polygons considered amalgamated and
correct, respectively. Therefore, false positives are correctly mapped polygons erroneously
identified as amalgams whereas false negatives are amalgams that remain undetected by the
algorithm. Values are given as number of landslides and percent of the total population. The al-
gorithm was run with the following parameters: Resolution 2m, Kc = 2, Sc = 12◦and RBc = 5

for the upper part of the table and RBc = 6 for the lower part.

True positive: 617 (31.6%) False positive: 76 (3.9%) Positive predictive rate = 89.0%
False negative: 70 (3.6%) True negative: 1187 (60.9%) Negative predictive rate = 94.4%
Sensitivity = 89.8% Specificity = 94.0% Accuracy = 92.5%

True positive: 653 (33.5%) False positive: 94 (4.8%) Positive predictive rate = 87.4%
False negative: 52 (2.7%) True negative: 1151 (59.0%) Negative predictive rate = 95.7%
Sensitivity = 92.6% Specificity = 92.5% Accuracy = 92.5%

topographic context of a polygon. Taking results from these two steps together, the
overall accuracy of the algorithm was very good, with 1804 of 1950 (92.5%) polygons
in the test set classified correctly (Table 2.1). Thus, our algorithm provides a relatively
rapid and accurate way to assess the quality of a dataset and a partial guide to man-
ual correction. It can reduce the workload associated with manual splitting of amal-
gamated polygons, by shortening the amalgam identification phase, and enhancing
the detection of smaller amalgamated polygons that may have only subtle distortions.
However, the algorithm only yields a minimal number of branches and the automatic
and accurate splitting of complex polygons based on detected branching geometry re-
mains a challenge.
The algorithm can assess the quality of every polygon of an inventory as long as the

raster resolution is high enough for a polygon to be made up by at least a few tens of
cells, so that a skeleton can be defined. Therefore, at a raster pixel size of 2m, 100m2

polygons would have about 25 pixels and could be analysed by our algorithm. This is
lower than the usual roll-over of landslide area-frequency distribution (e.g., Malamud
et al., 2004a; Brardinoni and Church, 2004). DEMs with a high spatial resolution will
also yield better results and the accuracy of the detection is helped by the fact that the
algorithm uses raw elevation data rather than a local derivative such as slope, which
is calculated over several adjacent cells.

2.6 Discussion

We have proposed an algorithm based on polygon geometry and topographic
analysis, which allows automatic detection of polygons outlining amalgamated land-
slides with good but incomplete detection rates and minimal diagnostic error. How-
ever, depending on the objective of a study, even a few wrongly diagnosed polygons
may be of concern. Therefore, the algorithm must be tuned towards a reduction of
false negative results, by increasing RBc or Sc, even if the rate of false positive results
increases as a consequence. For example, raising RBc from 5 to 6 in the analysis of
landslides in the Santa Susanna Mountains results in a useful 24% reduction of false
negative results, from 70 to 52 polygons out of 1950, and a concomitant increase of
false positive results by 16% from 76 to 90 polygons (Table 2.1). However, increasing



29

Figure 2.5 – Part of the Northridge landslide polygon inventory overlaid on a hillshaded DEM.
The skeleton raster output is shown for all polygons larger than 1000m2 and with K >= 2

(35 polygons). Polygons with K < 2 are filled in white and considered clean. White labels
show erroneous polygons detected by the algorithm, with positive numbers giving the number
of secondary branches detected, -2 meaning ridge or river crossing and -1 indicating a slope
smaller than 12◦. Red labels show wrongly diagnosed or dubious results within this sample.
Polygons with skeleton but no labels have been correctly classified as unamalgamated.

Sc to 15◦or more may increase significantly the number of false positives but not nec-
essarily the number of true positives as the most common type of amalgamation is
related to multiple branches. An increase of false positives is not an issue, if amalgams
detected by the algorithm are subsequently split manually. In that case, the operator
can decide to leave an incorrectly diagnosed polygon intact. However, false negatives
will go unnoticed and could have a large impact. Therefore, it is advisable to perform
an additional manual check of the largest polygons in a data set, irrespective of how
the classification algorithm has diagnosed them, especially for applications where the
importance of polygons is proportional to their size. For example, one false negative
within the 10 or 20 largest landslides in an inventory could significantly affect esti-
mated total landslide volume.
A second, more fundamental issue is that the algorithm considers polygon geometry,
in a way which does not allow detection of ellipsoid-shaped amalgams. Examples of
this can be found, amongst others, in an inventory of landslides triggered by the 2008
Wenchuan earthquake (Gorum et al., 2011), where several landslides on the same slope
were sometimes merged into larger, relatively smooth, polygons with a low K value
and without any clear geometric or topographic indication of amalgamation (Figure
2.2). In this case, image resolution may have been too low to distinguish the separate
landslides, or the mapper may have simplified the geometry for convenience. For such
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amalgams, even if another criteria, such as alignment of the polygon long axis with the
strike of the topographic slope, hints at possible amalgamation, high-resolution im-
agery would be required to test the diagnosis, as single landslides with similar shape
and orientation may exist. Merger of parallel landslide outlines due to image resolu-
tion limitations may cause errors of similar magnitude as other types of amalgamation,
which are more easily detected, and could critically affect the common argument that
at a given pixel resolution small landslides are missed but everything above a cutoff
lengthscale of a few cells is properly mapped. Because the high-resolution imagery re-
quired to check visually for the occurrence of low-K amalgamation, or any other type
of amalgamation, is rarely available to end-users of landslide inventories, it is impor-
tant that it is mitigated for by those who develop the mapping techniques and acquire
the landslide inventories. This may not always concur with the principal objectives of
a particular mapping effort, for example in natural disasters when rapid assessment
of the location and total extent of landslides is of the essence. However, if a landslide
inventory is to be of general use to the research community, then the risk of amalga-
mation must be suppressed, both in manual and automatic mapping.
Suppression of landslide polygon amalgamation is hampered by deeper issues, such
as image resolution and the uncontrolled subjectivity introduced in binary landslide
mapping, where every pixel either is or is not a landslide. We draw into question the
general assumption that in a given inventory, every landslide larger than a few im-
age pixels is correctly mapped (e.g., Liao and Lee, 2000). Instead, it is reasonable to
expect that many disturbed areas mapped as single medium to large landslides could
in fact consist of groups of smaller landslides, giving potentially significantly differ-
ent erosion volumes and size statistics (Figure 2.2). Moreover, satellite imagery does
not always yield unambiguous information about the number and shape of landslides
which occurred on a given slope. Where this applies, subjective choices of the map-
per are crystallized within the landslide inventory. A Bayesian approach to mapping,
aimed at delivering probabilistic instead of binary maps (e.g., Mondini et al., 2013)
could be helpful in testing the different possibilities of splitting complex disturbed ar-
eas (see Figure 2.2) and ultimately deliver more accurate, objective and reproducible
datasets.
Short of a practicable, comprehensive solution, our method, which has a good relia-
bility, can be used in several ways to mitigate for amalgamation in landslide maps,
by helping the mapper to identify mistakes in automatic mapping, and the user to do
the same in existing landslide maps. Notably, sorting mapped polygons by K value
and size allows rapid, first order vetting of the largest landslides, which, when fol-
lowed by manual splitting of amalgams, will be enough to yield a reasonable estimate
of the total volume of landslides in an inventory. Then, for large populations, one
could exclude all polygons with K values above a threshold and consider the correla-
tion between the size or location of remaining landslides and physical parameters such
as local topographic slope or triggering effects. Finally, a K value criteria might also
be introduced in a semi automatic algorithm detecting landslides, to guide iteratively
towards a sound splitting of adjoining landslides.
In the end, we must recall that amalgamation even if it may be a major source of errors,
such as in the Wenchuan example , it is not the only one. Firstly, anthropogenic clear-
ance or other disturbance of the landscape may be mistaken for a landslide, especially
by automatic algorithms. Secondly, when scar, transport and deposit areas cannot be
differentiated the volume of landslides with long runout may be substantially over-
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estimated. Thirdly, when landslides are reactivated and previously stable parts of the
landscape are not involved, then it may be hard for the mapper to delineate the area
of the actual failure with accuracy and this new failure may also not yield a volume
as large as expected from area-volume relationships. These issues may be difficult to
deal with but their effects will be suppressed when high resolution imagery is used by
an experienced mapper. Additionally, systematic ways of dealing with these issues,
such as the flagging reactivated landslides, and the differentiation of the transport ar-
eas of debris flow or long runout landslides, should be practiced by mappers and also
considered by users analysing old data.

2.7 Conclusion

We have shown that amalgamation, the bundling of several adjacent landslides
into a single map polygon, is a common problem in landslide inventories and has in-
flated estimates of landslide volumes by up to a factor of three, and the power-law ex-
ponent of landslide area-frequency distributions by up to 50%. Even though the design
of comprehensive and fully reliable automatic corrective method remains a challenge,
we have presented and tested a practical algorithm for automatic detection of amalga-
mated polygons based on geometric and topographic considerations. The algorithm
performs well, with an accuracy of 92.5% and only 2.7 − 3.6% amalgams missed and
3.9−4.8% correct mapped polygons wrongly classified. It can, therefore, be used to au-
tomate the identification of landslide amalgams, accelerate the evaluation of datasets,
and guide the manual correction of amalgams. Thus, our algorithm is a first step to-
wards setting a quality standard for landslide maps in order to derive scientifically and
societally useful variables, such as risk estimates, erosion rates, organic matter fluxes,
or correlations between landsliding and physical triggers, as accurately as possible.
Further challenges lie in attempting to automatically correct amalgamation and in as-
sessing how mapping errors due to resolution blurring propagate into final products
derived from landslide maps.
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Link

In Chapter 2, I have investigated the effect of amalgamation - the bundling of
several landslides into a single mapped polygon - on common measures characteriz-
ing landslide inventories, such as total landslide volume and landslide frequency-size
distribution. Errors could lead to up to a factor of 3 of total volume over-estimation and
up to 50% change in the distribution scaling exponent. I have proposed an algorithm to
automatically detect potentially erroneous polygons and isolate them or correct them.
Detection and mitigation of such errors is required in order to confidently assess the
amount of erosion produced by a given landsliding event, whether due to an earth-
quake or a storm. Therefore, removing amalgamation of landslide inventories is essen-
tial to adequately constrain the total landslide volume caused by earthquakes and test
the predictions of any model of earthquake-induced landsliding, such as the model
presented in Chapter 3. Accurate volume estimates are also important to quantify
the temporal evolution of landslide rate before and after an earthquake, required in
Chapter 4 to assess persistent effects of earthquakes on hillslope susceptibility, and in
Chapter 6, where the contribution of both coseismic and post-seismic landsliding is
compared to the uplift due to the earthquake.
In the next Chapter, I develop a seismologically-consistent model with the aim of
predicting the total volume of landslides caused by a given earthquake. I build this
expression by acknowledging important seismological aspects controlling the strong
ground motions associated with an earthquake, which are responsible for the slope
failures. Such models critically need to be tested and calibrated against a large number
of earthquakes for which field reports or landslide maps give accurate constraints on
the amount of landsliding.
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Chapter 3

A seismologically-consistent expression
for the total area and volume of
earthquake-triggered landsliding.

Abstract

We present a new, seismologically consistent expression for the total area and volume of pop-
ulations of earthquake-triggered landslides. This model builds on a set of scaling relationships
between key parameters, such as landslide spatial density, seismic ground acceleration, fault
length, earthquake source depth and seismic moment. To assess the model we have assembled
and normalized a catalogue of landslide inventories for 40 shallow, continental earthquakes.
Low landscape steepness systematically leads to over-prediction of the total area and volume
of landslides. When this effect is accounted for, the model predicts within a factor of 2 the the
total landslide volumes for 63% of the 40 events (R2 = 0.76), against 23% of correct predictions
(R2 = 0.46) for the previously published empirical expression based on moment only. The pre-
diction of total area is also sensitive to the landscape steepness, but less than the total volume,
and seems also affected by controls on the landslide size-frequency distribution and possibly
the shaking duration. Some outliers in terms of estimated total landslide volume are likely
associated with exceptionally strong rock mass in the epicentral area, while others may be re-
lated to seismic source complexities ignored by the model. However, the close match between
prediction and estimate for 63% of the events suggests that, despite the variety of lithologies
and tectonic settings covered, rock mass strength is similar in many cases and that our simple
seismic model is often adequate. This makes our expression suitable for integration into land-
scape evolution models, and application to the assessment of secondary hazards associated
with earthquakes. 1

1. This work was in the final round of review at JGR-ES. By the time of the final thesis publica-
tion it has been typo-edited, formatted and published as : Marc, O., Hovius, N., Meunier, P., Go-
rum, T., and Uchida, T.: A seismologically consistent expression for the total area and volume of
earthquake-triggered landsliding, Journal of Geophysical Research: Earth Surface, 121, 640–663, doi:
10.1002/2015JF003732, 2016b. COPYRIGHT 2016 American Geophysical Union, All Rights Reserved.
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Notation

Symbols with a bar are average values for the whole fault or affected area (ex: R̄0,
ᾱ ...).
All acceleration terms are normalized by the gravitational acceleration, and therefore
non-dimensional.
ac, Threshold acceleration for ground damage ()
a, Ground acceleration ()
A′, V ′, Individual landslide area or volume ( m2 or m3 )
A, V , Estimated total landslide area or volume ( m2 or m3 )
Ap, Vp, Predicted total landslide area or volume ( m2 or m3 )
Asp, V s

p , Predicted total landslide area or volume normalized for steepness ( m2 or m3 )
Atopo, Available topography corrector (%)
b, Inferred acceleration due to waves at 1km from the seismic source and a given fre-
quency (m)
bsat, Saturation acceleration for the scaling of b (m)
C1, C2, Empirical constants for fault size scaling with moment (cf., Leonard, 2010)
e5, e6, e7, Empirical constants for b scaling with moment (cf., Boore and Atkinson, 2008)
f , Seismic wave frequency (Hz)
Hs, Seismogenic zone thickness (km)
L, Fault plane length (km)
lasp, Asperity length scale (km)
Mh, Hinge magnitude above which b saturates ()
Mo, Seismic moment (N.m)
Mw, Moment magnitude ()
PLSA, PLSV , Landslide area density (m2/km2) and landslide volume density (m3/km2)
R, Distance between earthquake source and considered topography (km)
R0, High frequency waves source depth (i.e., mean asperity depth) (km)
RH , Horizontal distance from the surface projection of the earthquake source (km)
RHMAX , Maximal horizontal distance at which landsliding occur (km)
S̄, dS, epicentral average and local deviation of the site effects amplification of a ()
Smod, Modal slope of the affected hillslopes (i.e., affected topography excluding flat
lands) (◦)
TSV , TSA, Empirical steepness constant for total volume and total area (◦)
αA, αV , Landscape propensity to failure for acceleration exceeding ac (m2.km−2 or
m3.km−2)
δA, δV , Material propensity to failure (independent of slope geometry) (m2.km−2 or
m3.km−2)
λ,γ, Empirical constants for area-volume scaling of landslides ()
µ, Elastic shear modulus (Pa)
ρ, Landslide area-frequency distribution decay exponent ()
θ, Angular coordinate (◦)
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3.1 Introduction

Earthquake-triggered landslides are a major hazard and cause of secondary losses
associated with earthquakes, with effects sometimes exceeding those of direct shaking
(Bird and Bommer, 2004). Moreover, due to widespread triggered landsliding, earth-
quakes can be important drivers of continental erosion (Keefer, 1994; Malamud et al.,
2004b) and they have been found to be important actors in mountain building and
landscape evolution (Hovius et al., 2011; Li et al., 2014). Models permitting the predic-
tion or rapid estimation of the total area or total volume of landsliding due to earth-
quakes can therefore aid in seismic hazard assessment and disaster management as
well as explorations of landscape evolution in tectonically active settings.
Not surprisingly, seismic moment has been shown to be a first-order control on the
area affected by landsliding (Keefer, 1984; Rodriguez et al., 1999) and the total volume
of triggered landslides (Keefer, 1994). However, the scatter in simple relations between
total landslide volume and earthquake moment amounts to an order of magnitude at
least. This is because the spatial density of landslides is, all else being equal, set by the
intensity of ground shaking (Meunier et al., 2007). Therefore, seismic wave attenuation
and site effects determine the spatial distribution of landslides in detail (Meunier et al.,
2008, 2013). Hence, a predictive and accurate model for the total volume of landslides
caused by earthquakes should incorporate not only the earthquake magnitude (e.g.,
Keefer, 1994) but also effects such as the loss of seismic wave energy with distance
from source or the non-linear scaling between seismic moment and ground shaking.
Importantly, the effects of strong motion are modulated by the local topographic slope
and the effective strength of its substrate (e.g., Parise and Jibson, 2000; Yagi et al., 2009;
Gorum et al., 2011, 2013). These parameters are at the core of slope stability analysis
(e.g., Newmark, 1965), which, although simplified, offers a physical description of the
probability of failure of a given slope during an earthquake. Ultimately, then, knowl-
edge of the earthquake rupture initiation and propagation, translated into a model of
ground shaking accurate at the hillslope scale and coupled with a robust slope stabil-
ity analysis would allow prediction of landslide areas and volumes without empirical
calibration.
Efforts to predict slope failure have mainly taken the form of pseudostatic (e.g., Terza-
ghi, 1950), stress-deformation (e.g., Clough and Chopra, 1966) and permanent dis-
placement (e.g., Newmark, 1965) analyses, the rationale, advantages and limitations
of which have been comprehensively reviewed by Jibson (2011). These approaches re-
quire extensive and detailed knowledge of the spatial distribution of ground shaking,
topographically induced driving stresses, and of the local rock mass strength (Dreyfus
et al., 2013). It is, therefore, impractical at larger scales, even if recent work suggests
that it can be used to invert rock strength a posteriori (Gallen et al., 2015). In the ab-
sence of the required local knowledge a priori, we propose not to model individual
slope failures, and introduce a model based on average properties of the forcing mech-
anism (i.e., the shaking) and of the landscape (i.e., steepness, strength and hydrology)
on which it acts. The model presented aims at the prediction of the bulk response of
a landscape to earthquake strong ground motion, giving the total volume and area
of the population of triggered landslides, based on seismological scaling relationships
and empirically adjusted for geomorphic sensitivity. It should allow for estimation of
secondary risks associated with an earthquake scenario with reduced predictive un-
certainties, and for improved evaluation of the role of climatic and seismic forcing of
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erosion in mountain belts where landsliding is the dominant erosion mechanism (Hov-
ius et al., 1997). To determine the accuracy of this model, we have calibrated it against
a compilation of landslide inventories for 40 earthquakes for which seismological in-
formation was available.
In this paper, we summarize the available landslide inventories and the methods used
to obtain conservative estimates of total landslide volume they represent. Then, we
derive a seismologically-consistent model predicting total landslide area and volume
for a given earthquake and landscape. To support this, we constrain empirically the
link between the probability distribution of the topographic slopes in an earthquake
area and the landscape response to seismic shaking. Finally, precision and limitations
of the model are discussed before we close with two example applications, exploring
the possible landsliding triggered by an expected scenario earthquake on the Alpine
Fault, bounding the Southern Alps of New Zealand and by the recent Mw7.8 Gorkha
earthquake in Nepal.

3.2 Data and Methods

3.2.1 Earthquake and Landslide Data

We compiled previously published information allowing estimation of total land-
slide area, A, and/or volume, V , for 40 shallow (< 25km), onshore earthquakes (Sec-
tion 2.2, Suppl. Fig 3.7, Suppl. Table 3.7). The estimated numbers of triggered land-
slides range from∼ 102 to∼ 105 per event, affecting a wide range of climates (from arid
to tropical to periglacial), lithologies (from carbonates to volcanic rocks and metased-
iments) and topographies (from active mountain ranges to fjords and volcanic land-
scapes). All types of landslides were considered, most inventories contain soil, mixed,
and bedrock landslides and do not explicitly discriminate between them. Mapped
landslides had variable amounts of displacement, but fissures and other disturbance
with negligible displacement (< 1m) are ignored. The complexities of landslide mecha-
nism and mobility are beyond the scope of this paper. For 10 cases, V could be derived
from published landslide area inventories (Harp et al., 1981; Harp and Jibson, 1996;
Liao and Lee, 2000; Yagi et al., 2007, 2009; Meunier et al., 2008; PWRI, 2009; Gorum
et al., 2011, 2013, 2014), using empirical V-A relationships (Larsen et al., 2010). To this,
we added the case of the 1991 Limon (Costa Rica) earthquake, for which we mapped
the landslides from 30m-resolution Landsat images (Suppl. Fig 3.8). These inventories
consist of mapped polygons delineating areas disturbed by landslides (i.e., scar, runout
and deposit) but excluding debris-flow transport and deposition along channels. They
were scanned and corrected for mapping errors including amalgamation (Marc and
Hovius, 2015) and for completeness for landslides larger than 10, 000m2, which dom-
inate the total eroded volume (Hovius et al., 1997). The 29 other cases are less well
constrained, because V was extrapolated based on published area-frequency distribu-
tions or on information about a limited number of large landslides (Bonilla, 1960; Govi
and Sorzana, 1977; Pearce and O’Loughlin, 1985; Harp and Jibson, 1996; Jibson et al.,
1994; Keefer, 1994; Schuster et al., 1996; Hancox et al., 1997; Antonini et al., 2002; Han-
cox et al., 2003, 2004; Jibson and Harp, 2006; Mahdavifar et al., 2006; Owen et al., 2008;
Evans et al., 2009; Guzzetti et al., 2009b; Alfaro et al., 2012; Has et al., 2012; Gorum
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et al., 2014; Xu et al., 2014a,b; Barlow et al., 2015; Tang et al., 2015) (see Suppl. Table
3.7, 3.7). Using landslide density gradients away from seismogenic faults or earth-
quake epicenters, we have ascertained that all comprehensive inventories and detailed
field reports in our catalogue have sufficient spatial coverage to capture the bulk of
landsliding caused by an earthquake. Amongst the 40 cases in our database, the to-
tal landslide area, A, could be constrained only for the 11 comprehensive inventories
and six further cases with detailed mapping of large and intermediate size landslides
(Suppl. Table 3.7). In the other 23 cases, information was limited to the larger land-
slides, which tend to dominate the total landslide volume, but not the total area. As
an example, in our 11 comprehensive inventories, the 1% largest landslides represent
53± 22% of V but only 21± 8% of A.
Though other studies have considered relations between the total landslide number
and earthquakes parameters (Keefer, 2002; Gorum et al., 2014), we did not focus on
this statistic because we consider it the most ill-constrained. Importantly, the total
landslide number is dominated by the smallest landslides. Such landslides are not
systematically accessible for most earthquakes, and tend to be easily censored or amal-
gamated even with recent imagery (Stark and Hovius, 2001; Marc and Hovius, 2015).
Therefore, even if the total landslide number is an important variable for landslide
hazard, the available counts are not sufficiently robust in most cases, and we do not
attempt to analyze or model them.
Our database includes earthquakes ranging from moment magnitude Mw 5 to 8.6 (Fig-
ure 3.1). These are mostly reverse fault earthquakes (N=25) but also strike-slip (N=11)
and normal fault events (N=4), as determined from their focal mechanism. The hypocen-
tral depths range from a few km to 24 km. However, it has been shown that the pat-
tern of landsliding in two particularly well-constrained earthquakes is best explained
by considering the main slip patch rather than the hypocentre as the dominant wave
source (Meunier et al., 2013). From a seismological point of view, asperities on which
most of the coseismic slip occurs are considered to be an important source of high fre-
quency waves (> 0.5Hz) (Ruiz et al., 2011; Avouac et al., 2015), that we consider dom-
inant for landslide triggering (See section 3.2). For about half of the earthquakes in
our database, the mean asperity depth along the fault rupture, R0, could be estimated
from published seismological rupture inversions (Yoshida and Koketsu, 1990; Wald
et al., 1991, 1996; Zeng and Chen, 2001; Hernandez et al., 2004; Hikima and Koketsu,
2005; Pathier et al., 2006; Tan and Taymaz, 2006; Elliott et al., 2007; Cirella et al., 2009;
Hashimoto et al., 2011; Wei et al., 2011; Cheloni et al., 2012; Fielding et al., 2013; Sun
et al., 2013; Zhang et al., 2014) (Suppl. Table 3.7). For less constrained cases, we set
R0 at the hypocenter, or at half the hypocentral depth when surface rupture occurred
or when the earthquake exceeded Mw 7.5 (Given et al., 1982; Kawakatsu and Cadena,
1991; Kikuchi and Kanamori, 1991; Stein and Ekstrom, 1992; Anderson et al., 1994;
Stevens et al., 1998; Doser et al., 1999; Abercrombie et al., 2000; McGinty et al., 2001;
Januzakov et al., 2003; Berryman and Villamor, 2004; Hancox et al., 2004; Hamzehloo,
2005; Legrand et al., 2011; Alfaro et al., 2012; Has et al., 2012), with the exception of the
1991 Limon (Costa Rica) case. The 1991 Limon earthquake ruptured a listric fault with
a hypocenter at∼ 24km depth, on a flat detachment, which steepened sharply offshore
(Suarez et al., 1995). Seismological evidence indicates that in this earthquake, most of
the moment was released at 15-20km North of the hypocenter, along the flat detach-
ment, and therefore we have set the mean asperity depth at 20km (Goes et al., 1993).
Under-constrained events were assigned a larger uncertainty in the modeling (Suppl.
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Table 3.7). Three events are very poorly constrained and we did not set a single mean
asperity depth but rather a range of 1.5 to 4.5 km, 4 to 12 km and 8 to 24 km for the
1957 Daly City (USA), the 1950 Assam (India) and the 1855 Wairapa (New Zealand,
NZ) earthquakes, respectively (Bonilla, 1960; Molnar and Qidong, 1984; Darby and
Beanland, 1992).
We assume that this database is sufficiently large and comprehensive to distinguish
first-order controls on earthquake-triggered landsliding from local, secondary effects.

3.2.2 Estimation of Total Landslide Volume

We used published area-volume relationships, V ′ = λA′γ (Larsen et al., 2010), to
estimate the volume of a landslide, V ′, from its mapped disturbed area, A′. Following
Larsen et al. (2010) it was assumed that landslides with A′ > 105m2 involved bedrock,
and that smaller landslides were mixed bedrock and soil failures. Landslide maps
typically do not distinguish between scar and deposit, lumping the two in one area
measure, although the relevant volume, in fact, would be that of the landslide scar.
As a systematic way to constrain runout variations is not available, we have applied a
blanket correction to reduce the total area of a landslide to its scar area, thus obtaining
a conservative volume estimate. According to Larsen et al. (2010), scars and deposits
have area-volume relations with the same power-law exponent, implying constant size
ratios between scar and deposit areas of 1.1 and 1.9 for mixed and bedrock landslides,
respectively. Hence, we estimated the scar area by dividing the mapped landslide area
by 2.1 and 2.9 for mixed soil and bedrock and solely bedrock landslides, respectively,
assuming that runout distance was equal to the scar length. This may lead to an over-
estimation of landslide scar volume where runout was much longer, mostly for small
slides, which do not contribute significantly to the total eroded mass. Conversely some
large landslides on gentle slopes have overlapping scar and deposit areas, meaning
that our correction may causes significant underestimation of the scar size and thus
the landslide volume.
Rare field estimates of the volume of one or a few large earthquake-triggered landslides
agree with our landslide volume estimates, supporting our assumption of a reduced
proportionality of perturbed area to scar area. In Nagano, the mapping was derived
from airphoto interpretation and seems restricted to scar areas. In this case, the un-
corrected mapped area of the landslide on Ontake volcano gave a volume estimate of
∼ 20Mm3, closer to the field estimate of∼ 34Mm3 (Voight and Sousa, 1994). Therefore,
we did not apply an area correction to estimate the scar areas in this inventory.
We calculated the volume of every individual landslide in a catalogue, and summed
to obtain a total volume of landslides for each earthquake. Uncertainties in our ap-
proach include the coefficient and exponent of the landslide area-volume relations,
with reported standard deviations of 0.005 for both σλ and σγ for mixed bedrock-soil
landslides and of 0.02 and 0.03 on σλ and σλ, respectively, for bedrock landslide scars
(Larsen et al., 2010). For mapping errors, a standard deviation of 20% of the mapped
area was arbitrarily assumed. Assuming no covariance between these three sources of
uncertainties, we used Gaussian propagation of error to obtain 1 − σ uncertainties on
the volume of each mapped landslide, V ′. Further, the standard deviation on the total
landslide volume for an earthquake was calculated assuming that the volume of each
individual landslide was unrelated to that of any other, ignoring possible co-variance.
Hence, the uncertainty on the total volume, reported in the supplementary Table 3.7,
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depends heavily on the size distribution of landslides. When the total landslide vol-
ume is dominated by many medium sized landslides in a population, then the uncer-
tainty on the total volume estimate is small, because it is unlikely that all important
individual landslide volumes are biased in the same way (e.g., the 1994 Northridge
(USA) and 2010 Haiti (Haiti) cases). However, when the total volume is dominated by
a few very large landslides, then the uncertainties on their volumes are less likely to
cancel out, which leads to a large uncertainty on the total volume estimate (e.g., 1984
Nagano (Japan) and 2008 Iwate (Japan) cases).
For earthquakes without exhaustive landslide inventories we estimated the total land-
slide volume using one of the following methods. In the best cases, published fre-
quency area distributions were used to estimate the number of landslide for a given
size range and converted to volumes as outlined above. However, for most larger
earthquakes, volumes were reported only for a limited number of very large land-
slides, typically < 20 landslides > 0.5Mm3 (Suppl. Table 3.7). For comparison, the ten
largest landslides of 8 of our 11 comprehensive inventories comprised 20% to 86% of
the total landslide volume, V , and 51±23% on average, excluding the Haiti, Northridge
and Limon cases, which did not have any landslides larger than 0.5Mm3. Hence, in
some cases all the small landslides together could have a smaller volume than the un-
certainties on the volume of the large landslides, but in other cases the total volume of
small landslides could be five times that of the large ones. For simplicity, we assumed
that the reported landslides were indeed the largest, that their volume VL represented
∼ 66% of V , and that the 2− σ uncertainty range of V extends between 75% and 400%
of VL, accounting for the uncertainties on the total landslide volume estimate in this
way. Finally, for a few earthquakes (1950 Assam (India), 1989 Loma Prieta (USA),
1987 Reventador (Ecuador), 1980 Mammoth (USA) and 1983 Coalinga (USA)), an es-
timate of the total landslide volume was published without further information on
uncertainties or on the size of individual landslides and for some others (2005 Kashmir
(Pakistan), 2002 Avaj (Iran) and 2013 Lushan (China)) only the largest landslide was
described. Assuming a universal area-frequency distribution, a total volume can be
estimated from the largest landslide (Eq 27 and 33 of Malamud et al. (2004b)). This
assumes implicitly a volume scaling that is biased upward (V ′ ∼ 0.05A′1.5), but given
the other sources of uncertainty on the landslide area-frequency distribution and on
the volume of the largest landslide, we simply use the relationship provided by Mala-
mud et al. (2004b). Note that estimates from the previous methods are not inconsistent
with, and mostly within a factor of 3 of this crudest type of estimate (Suppl. Table 3.7).
Nevertheless, these eight cases are certainly the least constrained in our catalogue, and
we therefore allocate an arbitrary uncertainty range of a factor 4 to them, greater than
the uncertainty range of any other methods (Suppl. Table 3.7). Finally, the 2011 Lorca
(Spain) and 2004 Rotoehu (NZ) earthquakes triggered only a few tens of slides and
100-200 small rock falls, and we estimated the total volume range based on field pho-
tographs and reported volumes. This too is crude, but, because of the limited number
of landslides and the small size of the larger events, we consider the total landslide
volume to be relatively well constrained compared with the eight uncertain cases dis-
cussed above.
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3.2.3 Case Specific Corrections

Robust and uniform estimation of landslide volumes from available maps relies
on the accuracy and consistency of mapping between the different datasets. An is-
sue of particular importance in this respect is amalgamation, that is the bundling of
multiple adjacent landslides into a single larger map polygon. Compounded with a
landslide area-volume relation favouring the largest landslides, this can give rise to
significant overestimation of the total landslide volume. We have discussed this issue,
its consequences and how to detect associated mapping errors elsewhere (Marc and
Hovius, 2015). Here, we briefly review how individual datasets have been corrected
for its effects.
Amalgamation has affected a previous estimate of the volume of landslides triggered
by the 2008 Sichuan (China) earthquake (Parker et al., 2011; Li et al., 2014), which,
at 5 − 15km3, was substantially higher than our value of 2.3 ± 0.25km3, even though
we have used a landslide map with larger extent (Marc and Hovius, 2015). However,
amalgamation is also evident in the mapping used for our volume estimate (Gorum
et al., 2011) and we manually split the largest 152 landslides of the catalogue, which
dominate the total volume. Because of our limited ability to comprehensively remove
amalgamation across the full range of polygon sizes, the total landslide volume for the
Sichuan event must be considered to have a slight upward bias. The same argument
holds for the 1976 Guatemala (Guatemala), 1999 Chi-Chi (Taiwan) and 1994 Northridge
(USA) earthquakes, for which the landslide inventories have been edited for amalga-
mation giving minimum volume reductions of 35%, 38% and 16%, respectively (Marc
and Hovius, 2015). Finally, for the Aysen Fjord inventory we split 11 polygons larger
than 0.1Mm2, including the three largest ones, into 37 and obtained a volume reduc-
tion of 29%. Although occasional amalgamation of relatively small landslides may also
affect the other datasets, it is not considered to be a major source of errors and it was
not mitigated for systematically.

3.3 Modeling the Volume of Seismically Induced Land-
slides

An empirical relation between total landslide volume, V , and the seismic mo-
ment, Mo, with the form of a sublinear power law, was first presented by Keefer
(1994). It was based on 15 earthquakes, spanning a large range of magnitudes and
hypocentral depths, including some subduction earthquakes. In assembling our ex-
tended database of 40 events, we eliminated the subduction earthquakes and focused
only on continental, crustal events with an uncertainty assessment, as described in the
previous section. Subduction events are typically deep (> 30km) and offshore, mean-
ing that only a fraction of the emitted waves reach onshore high standing topography,
after significant attenuation. Onshore strong ground motion in such earthquakes is
commonly only moderate, yielding relatively small landslide numbers, areas and vol-
umes (Lacroix et al., 2013; Wartman et al., 2013) (Fig. 3.1). In such cases, landsliding
tends to be strongly influenced by site characteristics and site effects, negating several
assumptions of our model approach. An orthogonal best fit to our data has the land-
slide volume scaling with the seismic moment to the power of three-halves (Mo3/2,
R2 = 0.6), but it does not capture all physical processes and their associated parame-
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Figure 3.1 – A: Estimated total landslide volume with 2− σ uncertainties plotted against seis-
mic moment for 40 shallow continental earthquakes (Suppl. Table 3.7). The gray line is the
empirical relationship proposed by Keefer (1994), derived from a smaller database. The solid
and dotted lines are the orthogonal least-squares best fit to our dataset and its 1 − σ uncer-
tainties. B: Comparison of the same data with our seismologically-consistent model. At this
stage the model lines do not depend on any fitted parameters but only on earthquake observ-
ables.Name codes abbreviated to their first 3 character, followed by the mean asperity depth
and S or N for strike-slip or normal events, respectively. The three black lines represent our
analytical prediction of landslide volume dependency in moment for various mean asperity
depths, R0. The solid and dashed gray lines represent our predictions for normal and strike-
slip fault mechanisms, respectively, for asperities at 10 km depth. For references, the estimated
total volume of two subduction earthquakes (Tohoku (Japan) and Pisco (Chile)) are plotted.
Landslide frequency-size distribution published by Lacroix et al. (2013); Wartman et al. (2013)
were converted to volume, using the relationship of Larsen et al. (2010), and integrated to ob-
tain the estimated total volume. Their volume is similar to the ones of events of Mw ∼ 6.

ters, which are relevant to landsliding. More than one order of magnitude of scatter
remains for a given earthquake moment (Figure 3.1), indicating that additional param-
eters affect the total volume of landslides triggered by earthquakes,
An accurate prediction of earthquake-triggered landslide volume requires the specific
acknowledgment of the role of a range of seismological, topographic and mechani-
cal parameters. The relation between ground shaking and landsliding has now been
firmly established for a number of earthquakes (Harp and Jibson, 2002; Meunier et al.,
2007; Yuan et al., 2013), highlighting the need to account for wave attenuation with dis-
tance from the earthquake source. Moreover, it is clear that hillslope-scale rock strength
and local topographic attributes of gradient and relief modulate the propensity to fail-
ure of a landscape undergoing shaking (e.g., Schmidt and Montgomery, 1996; Parise
and Jibson, 2000; Yagi et al., 2009; Gorum et al., 2013). Below, we combine recent ob-
servational constraints on earthquake-triggered landslides with seismological scaling
relationships and a statistical approach to landscape sensitivity.
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3.3.1 Model development

Typically, earthquake-triggered landslides are considered to occur when transient
driving stresses on a potential failure plane due to variable ground shaking exceed the
resisting stresses (Newmark, 1965). To predict the earthquake-triggered landsliding
across a landscape, this approach requires the assessment of the stresses and mechani-
cal properties over the whole topography (Dreyfus et al., 2013). We propose an alterna-
tive approach, relating landsliding primarily to strength reduction caused by ground
shaking, and argue that it is adequate for modelling of landsliding at the landscape
scale. We then consider effects modulating the ground shaking such as the scaling of
seismic source emission with moment, the wave attenuation with distance from the
source and the scaling of the number of point sources with the fault size. In order to
develop a simple analytical solution for our model, we made three major simplifica-
tions or assumptions that are discussed in section 3.2.
We neglected scattering and inelastic effects on wave attenuation and considered only
geometrical spreading (Assumption 1). We assigned to the landscape above the seis-
mogenic fault a uniform geomorphologic sensitivity and assumed the seismic directiv-
ity of the shaking may be neglected (Assumption 2). Lastly, we assumed that landslides
are triggered by relatively high frequency S-waves (∼ 1Hz) (Assumption 3).
To develop our model, we start with the widely observed relationship between lands-
liding and ground shaking a (Harp and Jibson, 2002; Khazai and Sitar, 2004), using the
simple statistical approach introduced by Meunier et al. (2007):

PLSV = αV (a− ac) (3.1)

where PLSV is the landslide volume density and αV is a volume sensitivity term that
sets the hillslope propensity to failure for a given shaking (in m3.km−2), and ac is the
minimum acceleration required for landsliding to occur. Note that throughout this
study all acceleration terms are normalized by the gravitational acceleration g and
therefore dimensionless. Equation 3.1 was originally proposed for landslide area, with
a landslide area density PLSA and area sensitivity αA (in m2.km−2), but it holds also
for a volumic density and sensitivity (Suppl. Fig 3.9). Though the original correlation
in Meunier et al. (2007) was obtained with measured peak ground accelerations, we
propose that Eq. 3.1 holds with a being the characteristic ground acceleration in the
range of frequencies relevant for landslide triggering (See section 3.2 ). Note also that
although we focus on acceleration in this work, ground velocity and strain have also
been discussed as potential landslide triggers (Harp et al., 2014).
As we are interested in the cumulative volume of landslides across the landscape, ac
should be a global, relatively constant parameter, rather than vary between individ-
ual slopes. Supporting this generalization is the observation that earthquake-triggered
landslides mostly occur in very steep slopes, > 35 − 50◦ (e.g., Parise and Jibson, 2000;
Lin et al., 2008; Gorum et al., 2013). Such slopes are typically steeper than the fric-
tion angle of the underlying material, and remain stable because of cohesion. In soil
covered slopes, clay or vegetation promote cohesion. In bedrock, even steeper slopes
(> 45◦) may retain some cohesion, in spite of jointing. Moreover, several studies have
postulated or found non-linear soil behavior or bedrock strength reduction, due to a
drop of cohesion or dynamic friction reduction, caused by earthquake strong-motion
(e.g., Wen, 1994; Sleep, 2011b,a; Marc et al., 2015). Therefore we propose that ac is the
threshold acceleration at which a sudden drop of cohesion, transient or permanent,
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occurs in slope materials. Even if ac may vary with the material properties at individ-
ual locations, these variations are likely much smaller than the variations of cohesion
observed in different material, making it a relatively constant parameter. This assump-
tion is supported by the fact that Eq 3.1 holds for different earthquakes in different
landscapes with an almost constant value for ac between 0.1 and 0.2 (Meunier et al.,
2007; Hovius and Meunier, 2012; Yuan et al., 2013). It is also consistent with non-linear
soil behavior starting at 0.15 g (e.g., Wen, 1994).
However, the number of slope failures does not only depend on the magnitude of the
shaking-induced strength reduction, but also on the frequency of slopes steeper than
the friction angle and on their cohesion ambient pore pressure. Therefore, the geomor-
phological complexity of the exact distribution of topographic relief, slope gradients
and cohesion, as well as, the hydrologic influence of pore pressure of the hillslopes in
a landscape are bundled into α while the term a − ac contains only the seismological
effects controlling the ground shaking. This makes Eq. 3.1 a statistical description of
a simplified slope stability analysis where the shaking term and the slope properties
are separated. Explicit modeling of α is a major challenge because the landslide area
and volume density depends not only on the number of slope failures but also on the
mechanical processes that will define the depth and extent of the ensuing landslides
(e.g., Stark and Guzzetti, 2009). Below we use seismological scaling relationships to
relate a to earthquake characteristics and propose a first order empirical constraint on
α based on landscape properties.
The ground shaking a mainly depends on the inferred source acceleration b (the ac-
celeration carried by waves at 1 km from the source), the wave attenuation between
source and surface and on the site and directivity effects (Boore and Atkinson, 2008).
In order to derive an analytical prediction we neglect non-linear attenuation of seismic
waves (Assumption 1), considering only their geometrical spreading. We also neglect
any effects of directivity but discuss below when this may affect our model accuracy
(Assumption 2). Further we consider that the site response of any hillslope can be writ-
ten as a constant average response over the whole landscape S̄ plus a deviation term
dS. Then,

PLSV = αV

(
b.(S̄ + dS)

R
− ac

)
(3.2)

withR the distance between the source and the landscape cell of interest. Eq 3.2 cannot
be solved because the spatial distribution of site effects, represented by dS, remains
a major unknown. However, we are not trying to resolve the spatial distribution of
landsliding but only the total volume caused by a point source, Vps, that is the spatial
integral of PLSV . By definition

∫ θ ∫ R
dS(R, θ)dRdθ → 0 and we can neglect this term,

giving:

Vps =

∫ θ ∫ RH

PLSVRHdRHdθ =

∫ θ ∫ RH

αV

(
b.S̄

R
− ac

)
RHdRHdθ (3.3)

where RH and θ are polar coordinates of any point at the surface above the projection
of the seismic source at a mean depth R0, with RH following R2 = R2

0 + R2
H (Fig. 3.2).

To progress, we consider an average landscape sensitivity ᾱV and a constant shaking
behavior in all directions (i.e., independent of θ) (Assumption 2), yielding:

Vps = 2πᾱV

∫ RHMAX

0

(
b.S̄√

R2
0 +R2

H

− ac

)
RHdRH (3.4)
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where RHMAX is the horizontal distance from the wave source at which we expect the
landsliding to end because the shaking drops below ac, that isRHMAX =

√
(b.S̄/ac)2 −R2

0.
It is important to note that because we neglected the spatial variability of site effects
(dS) and hillslope properties (α), our model does not retain any spatial information
and only predicts a bulk landslide volume or area over the whole affected landscape.
Integrating, we obtain:

Vps = πᾱV acR
2
0

(
b.S̄

R0ac
− 1

)2

(3.5)

Up to this point, only the ground shaking that a landscape would experience for a
single point source of wave emission has been considered. However, during an earth-
quake waves are emitted as the rupture propagates along the fault length, L, and mul-
tiple sources, at a mean depth R̄0, will shake the landscape over an extended area,
emitting multiple wave trains that will contribute to landsliding on a given hillslope
(Meunier et al., 2013). The simplest model representing this considers that the total
landslide volume for the whole fault, Vp, is the linear sum of all point sources along the
fault, that is Vp = Nps.Vps, with Nps the number of sources (Fig. 3.2A). Nps cannot be
constrained easily but it must scale at first order with the fault length L along which
the rupture propagates, and then with parameters such as the rupture velocity and the
antecedent stress distribution on the fault. Full representation of these effects is out of
the scope of our study and instead we assume that the number of point sources is the
number of asperities where high frequency waves are emitted, leading to:

Vp = Vps.Nps = πᾱV acR̄
2
0

(
b.S̄

R̄0ac
− 1

)2
L

lasp
(3.6)

with lasp the characteristic length of an asperity. Our approach considers the summed
effect of multiple wave trains, which is equivalent to a shaking duration in the sense
that ground shaking is applied several times on the landscape. Note, however, that
sites are assumed to respond linearly, meaning that the possibility of material weak-
ening or strengthening due to prolonged strong ground motion is ignored. Our ap-
proach ignores secondary effects that modulate shaking duration at a site, such as the
source-site distance or the resonance effect due to sedimentary layers (Kempton and
Stewart, 2006). Nevertheless, duration increases with Mo1/3 (Kempton and Stewart,
2006), similar to the scaling of L/lasp with Mo2/5 (cf., Eq. 3.7), suggesting that most of
the duration increase associated with moment is captured by our model. Because the
areal landslide density PLSA also scales with a − ac our prediction for the total area of
landslide Ap would have exactly the same form as Eq. 3.5 and 3.6 but with a differ-
ent landscape sensitivity term ᾱA. The parameter S̄ is included to be consistent with
current understanding of ground shaking but cannot be constrained in this paper and
is therefore assumed to be constant. Neglecting the spatial variability of site effects
(dS) and of geomorphic sensitivity α, as well as directivity of seismic waves are opera-
tional requirements that add potentially significant uncertainties to our prediction and
these factors represent important challenges for future work. Hence, the model inputs
are R0, to be estimated for each earthquake, ac, taken to be around 0.15 (cf., previous
discussion after Eq. 3.1), L and b, varying mainly with the seismic moment, and ᾱV ,
varying with substrate strength, local topographic gradient and conditioning factors
such as antecedent rain, and requiring empirical constraints.
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The most up to date scaling relation between L and Mo (Leonard, 2010) states that:

L =
Mo2/5

µC
3/2
1 C2

(3.7)

with µ the shear modulus, assumed to be 3.3 GPa, and C1 = 16.5m1/3 and C2 = 3.7.10−5

constants derived empirically from many earthquakes (Leonard, 2010). This scaling
holds for fault lengths of about 3.5 km to 225 km for thrust earthquakes of Mw 5 to 8.
Therefore, we assume that lasp = 3km, yielding 1 to 75 asperities or point sources for
earthquakes in this magnitude range. Note that, because we assume a uniform lasp for
all earthquakes, a different value would not change any of the results of our studies
apart from the numerical value of the material sensitivity (cf., Eq 3.11).

Strike-slip earthquakes need to be considered separately. When they reach a crit-
ical seismic moment, Mo∗, then their fault width reaches the size of the seismogenic
layer. After this, fault width cannot grow and the scaling becomes:

∀Mo > Mo∗, L =
Mo2/3

µC
3/2
1 .Hs

(3.8)

with, the seismogenic layer thickness assumed constant Hs = 17km (Leonard, 2010).
For the inferred source acceleration at a given frequency, b, we use the scaling relation
proposed by Boore and Atkinson (2008):

b = bsat exp
(
e5(Mw −Mh) + e6(Mw −Mh)

2
)

(3.9)
∀Mw > Mh, b = bsat exp (e7(Mw −Mh)) (3.10)

where Mw is the moment magnitude, Mh = 6.75 a hinge magnitude above which the
acceleration carried by seismic waves saturates at bsat, and e5 = 0.6728, e6 = −0.1826
and e7 = 0.054 are constants for 1Hz waves, which we consider to be the most relevant
for landsliding (Assumption 3), determined empirically from records of 58 earthquakes
(Boore and Atkinson, 2008). Earthquake magnitude is derived from the moment based
on the empirical relationship Mw = 2/3(logMo−9.1) (Hanks and Kanamori, 1979). Al-
though this relationship is empirical, it is consistent with theoretical predictions based
on earthquake emission spectra and attenuation (Baltay and Hanks, 2014). For earth-
quakes larger than Mw ∼ 6.8 with numerous strong motion measurements, bsat.S̄ can
be related to the epicentral ground acceleration a, with a = b.S̄/R0. However, only
a few of the earthquakes in our database were large enough and sufficiently well in-
strumented for this approach. Hence we chose bsat.S̄ = 4000m, meaning that large
earthquakes with a shallow source depth of 5-10 km would have mean PGA above
asperities of 0.4-0.8, ignoring ground shaking modulation due to site effects. This is
consistent with strong motion measurements from the 1999 Chi-Chi (Taiwan) and 2008
Sichuan (China) earthquakes (Lee et al., 2001; Li et al., 2008).
A further consideration is that different types of earthquake focal mechanisms nor-
mally give rise to different ground motion, due to interactions between fault geom-
etry and the free surface (Oglesby et al., 2000). Based on ground motion measure-
ments, Boore and Atkinson (2008) have proposed similar b for strike-slip and reverse
fault mechanisms, but 30% smaller b for normal faulting. Consequently, we prescribe
bsat.S̄ = 2800m for normal fault earthquakes.
In our model, then, the critical moment, above which Vp assumes a non-zero value is
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modulated by R0 and ranges between 1016− 1019N.m (Figure 3.1 B). Above this critical
moment, Vp rises sharply, driven by the exponential increase of the source acceleration
(b) with increasing earthquake moment (Eq 3.9). After reaching the hinge magnitude,
Mh = 6.75, the acceleration term saturates and Vp is primarily increasing due to fault
length (L) growth with moment. Therefore, for these large events Vp is scaling as a
power-law of the moment, with an exponent of 2/5 for dip-slip events, and an expo-
nent of 2/3 for strike-slip events (Eq 3.7,3.8). These exponent values are much less
than the exponent value of 1 or 3/2 obtained through direct fitting of a power law to
the earthquake moment and landslide volume data (Figure 3.1). In the case of earth-
quake sequences in which earthquakes preceding or following the main shock have
more than 30% of the main shock moment, we can compute and sum the associated
landsliding of all events, neglecting any possible effects of transient preconditioning of
the landscape (Marc et al., 2015). This was done for the 1980 Mammoth Lake (USA),
the 1993 Finisterre (PNG), the 1997 Umbria-Marche (Italy), the 2002 Aysen (Chile) and
the 2004 Niigata (Japan) earthquake sequences and the moment and depth of the sub-
events are reported in the supplementary Table 3.7.

3.3.2 Assumptions and Their Consequences

Three important assumptions enable a simple analytical solution of our model.
The relevance and associated uncertainties of these assumptions are explored, briefly,
in turn.
Assumption 1 is that geometrical spreading is dominant over inelastic attenuation. For
S waves with frequency f = 1Hz (cf., assumption 3) and velocity Vs ∼ 3km.s−1, the
inelastic attenuation at a distance R, is exp(−πfR/qVs), with q the quality factor, typi-
cally ∼ 100 in the uppercrust (Wallace and Lay, 1995). Therefore, at 10km, 20km and
25km the attenuation would reduce the shaking by about 10%, 19% and 23%, respec-
tively. The integrated effect over a larger earthquake area would be somewhere within
this range. Neglecting this effect causes over-estimation of the predicted total landslide
volume V p by about 15-20%, depending on the local q. In view of other sources of un-
certainty in the model, neglecting inelastic attenuation seems practical and reasonable.
Assumption 2 is that we can use an average topographic sensitivity relevant for the
landscape over the whole fault length. The topographic sensitivity may be relatively
homogeneous in steep mountainous terrain with moderately uniform lithology, topog-
raphy and climate, but not for events near coastlines (2007 Aysen (Chile) or 2010 Haiti
(Haiti)), or at a mountain front (2011 Lorca (Spain) or 2013 Lushan (China)). For such
cases, we cannot easily assess whether the shaking was equally distributed between
flat and steep areas and therefore, we must ignore this complexity. However, it is pos-
sible to anticipate the amount of missing landsliding due to insufficient topographic
steepness, i.e., areas where αV tends to zero. Therefore, we subdivide the total area
where shaking exceeded the critical acceleration into a zone of flat land where the
modal value of the topographic slope distribution is below 8◦ and not likely prone to
failure, and a zone where hillslopes are more likely to be sufficiently steep for lands-
liding to occur. We chose a modal slope of 8◦ because almost no earthquake-triggered
landslides have been detected on slopes below 8−12◦ (Parise and Jibson, 2000; Lin et al.,
2008; Gorum et al., 2013). In our calculations of local slope gradients, we have consis-
tently used the 30 m-Aster GDEM, which pairs a relatively high resolution with global
coverage, to obtain comparable characterizations of the epicentral topographies for all
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cases in our catalogue. For a given landscape and earthquake, we have computed
the slope gradient distribution within 1km2 cells (i.e., 33 x 33 = 1089 pixels) above the
fault and the expected PLS pattern, knowing L, R0 and b (Figure 3.2). This pattern is
a first order approximation that neglects directivity and site effects, and therefore not
necessarily suited to the prediction of landslide spatial distribution. However, it al-
lows computation of the total percentage of Vp expected in sufficiently steep cells. This
fraction is named Atopo (Figure 3.2). We note that using 6 or 10◦ as a threshold would
change Atopo by less than 5% in most cases. Multiplying the total landslide volume ob-
tained from Eq.3.6 by Atopo then yields a volume adjusted for the available topography.
For very simple topography, Atopo can also be estimated safely based on symmetry
(e.g., for coastal area or fault bounded topography Atopo ∼ 0.5). This correction will
fail if strong directivity effects apply. However we note that when Atopo is close to one
(> 50% of our events) and the earthquake area has steep slopes in all directions, di-
rectivity is not likely to change the total landslide volume, unless a strong anisotropy
in rock mass strength is aligned with the directivity. Given that significant directivity
effects are not normally systematic on regional scales, we do not expect any general
directivity-related bias, although it may affect the prediction of some cases, such as the
1994 Northridge (USA) earthquake (Figure 3.2). This correction will fail if strong direc-
tivity effects are present. However, we note that when Atopo is close to one (> 50% of
our events, Suppl. Table 3.7), as steep slopes are available in all directions, directivity is
not likely to change the total volume, unless a strong anisotropy in rock mass strength
exists and is parallel to the directivity. Adding that significant directivity effects are
not systematic, we do not expect a general bias related to directivity, although it can
obviously affect the prediction of some events (Figure 3.2).
Assumption 3 is that the most relevant seismic waves for landslide triggering are S-
waves with a frequency of about 1 Hz. For intermediate size earthquakes, landsliding
is most intense at the epicenter (Meunier et al., 2007), where surface waves have not
yet formed. This implies that body waves, and especially S-waves with larger acceler-
ations, are the dominant landslide trigger. In larger earthquakes, surface waves may
play a more important role in landslide triggering and neglecting them may cause the
model to underpredict total landsliding. The exact frequency range over which land-
slides are efficiently triggered is difficult to constrain precisely but can be bracketed.
Very high frequency waves, > 10Hz would loose energy due to inelastic attenuation
that would prevent landslide triggering at distances of 15-20 km or more from the
source, contrary to common observations. On the other hand, at a shallow S-wave ve-
locity of about 500 − 800m.s−1 (e.g., Picozzi et al., 2005) low frequency waves at 0.1
Hz have wavelengths of 5-8 km, unlikely to be responsible for shearing and damaging
of hillslopes with lengths of 10-500 m to trigger landslides. Observations of landslide
clustering on ridge crests where optimal topographic amplification of seismic waves
is at about 1Hz lends direct observational support to our assumption (Meunier et al.,
2008). In any case, the exact frequency band for landslide triggering is not a strict re-
quirement and we have modelled our source term (Eq 9,10) for different frequencies
(see Discussion).
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Figure 3.2 – A: Sketch of the geometry and relevant variables to describe the emission of
seismic waves along a fault and their effect at the surface. B: Example of digital elevation model
hillshade of the area affected by the 1994, Mw 6.6 Northridge earthquake. Triggered landslides
are shown in blue (Harp and Jibson, 1996). The fault plane with slip contours and aftershocks
is shown in black (Modified from Wald et al. (1996)). Multiple black circles represent areas
affected by seismic waves emitted by sources along the fault, from which the surface projection
is shown with a dashed black line. C : Modal slope map of the landscape affected by the 1994
Northridge earthquake, subdivided into 1km2 cells. D : Idealized shaking map converted into
a normalized landslide density. Sources and their effect on the surface, identical to panels A
and B are shown in black. E : Remaining normalized landslide density after setting all cells
with a modal slope < 8◦ to zero. The sum of all cell values of this map is between 0 and 1 and
represents Atopo, a first order correction for topographic availability. This is only first order as
the actual shaking map may be much more complex than the idealized representation in panel
D. For example, in the particular case of Northridge, the directivity must have amplified the
shaking to the north, meaning that the flatlands to the south did not limit landsliding as much
as our simplification assumes.
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3.3.3 Model Uncertainties

Our model requires precise knowledge of the seismic moment and source depth
of an earthquake. For these parameters, we estimated a most likely value with a range
of possible values. Without information on the uncertainty function we assumed it to
be normal, implying that the estimated range of values represents a 2 − σ range. It is
assumed that the other model parameters, that is the rupture velocity, critical acceler-
ation, saturation acceleration and hinge magnitude, have independent normal distri-
butions with mean and standard deviation of 2000± 200 m/s, 0.15± 0.02, 4000± 400m
and 6.75± 0.1, respectively. We performed a Monte-Carlo simulation sampling 50,000
times for each parameter distribution and built a distribution of the predicted total
landslide volume. This allowed us to constrain how the predicted volumes vary with
the model parameters and with moment and depth uncertainties (Suppl. Fig 3.10). As
the resulting landslide volume distributions are often strongly skewed, specification
of a mean and standard deviation is not meaningful. Instead we used a percentile
description, with the 25th, 50th and 75th percentile as our minimum, preferred and
maximum prediction.

3.4 Landscape Sensitivity

We compare the general pattern of the volume estimates from landslide inven-
tories with the model behavior, assuming αV = 0.05, for a thrust fault with a mean
asperity depth of 10 km and a rugged topography with Atopo = 1. Model results for
this specification intersect the bulk of our data within uncertainty (Figure 3.1B). Runs
with shallower or deeper sources, at 3 or 20 km, predict total landslide volumes that
bracket most of the estimates in our database. However, on closer inspection many
individual data points do not lie near to their equivalent model depth curve (Figure
3.1 B). It is clear that the landscape sensitivity term α, in which geomorphic variables
such as slope, strength and pore pressure have been bundled, cannot be kept constant.
Quantitative controls on αV are hard to derive theoretically. Therefore, we opted for
an empirical approach. With no or very limited information about rock strength and
antecedent moisture for most cases we start by constraining the dependency of the
sensitivity term on the distribution of local slope gradients.

3.4.1 Topographic Steepness

In order to constrain the effect of topographic slope on the sensitivity of an en-
tire landscape to seismic perturbation, we used first order statistical indicators of slope
distribution. Slopes vary across upland landscapes, often with a unimodal probability
distribution (Wolinsky and Pratson, 2005; Lin et al., 2008; Gorum et al., 2013) in which
the most common, or modal slope is a relevant measure of the landscape steepness.
For each earthquake, we extracted a slope histogram from the 30 m Aster GDEM for
the area where our model predicted significant earthquake-triggered landsliding. This
corresponds to the area used to determine Atopo, excluding any flat valley floors (i.e.,
cells with modal slope < 8◦) (Figure 3.3, Suppl. Fig. 3.11). Against this modal slope,
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Figure 3.3 – Probability distribution of local topographic slopes in the epicentral areas of the
11 earthquakes with comprehensive landslide inventories. Black dots and bars show the modal
slopes with an uncertainty range set arbitrarily at 98% of the modal frequency. The remaining
distributions of our database are shown in the supplementary Figure 3.11. After removal of
localized flat plains, all areas have unimodal slope distributions, but with diverse kurtosis or
skewness.

we plotted the estimated total volume of landslides triggered by an earthquake di-
vided by the volume predicted by the model, corrected for the available topography.
Results are shown in Figure 3.4, where horizontal whiskers represent an arbitrary mea-
sure of steepness uncertainty given by the range of slopes reaching 98% of the modal
frequency (Figure 3.3). Landslide volumes are predicted approximately correct for to-
pographies with modal slope Smod ∼ 35◦, but over-predicted for gentler topographies,
up to 50-fold for landscapes with Smod ∼ 12◦ (Figure 3.4). A general reduction of land-
slide incidence with decreasing landscape steepness is expected and explains much
of our data. Eleven cases (1980 Friuli (Italy), 1987 Umbria (Italy), 1994 Arthur’s Pass
(New Zealand), 2002 Avaj (Iran), 2002 Denali (USA), 2004 Rotoehu (New Zealand),
2009 L’Aquila (Italy), 2010 Cucapah (Mexico), 2010 Yushu (China), 2011 Lorca (Spain),
and 2011 Nagano (Japan)) remain as outliers compared to the broad trend defined by
the residual data (Figure 3.4). This is not a surprise, as the landscape sensitivity must
also depend on the geomechanical strength and hydrological saturation state of its hill-
slopes. Outliers may have a distinct hillslope strength or seismological specificities and
we will discuss them later. Note that cases without source depth constraints, the 1957
Daly City (USA), 1950 Assam (India) and 1855 Wairapa (New Zealand) earthquakes,
were not considered, because it is not meaningful to deduce the effects of steepness
based on residuals that do not have good first order constraints. We assume that those
cases within one standard deviation of our least-squares regression between modal
slope and the logarithm of the predicted total landslide volume over the estimated to-
tal volume, Smod vs log(Vp/V ), are adequately described by an average rock strength
and moisture content, whatever that may be. Notably, the exponential function defined
by those cases (R2 = 0.62, N=26) has a very similar trend to the equivalent one defined
by our 11 best constrained inventories (R2 = 0.67, N=11, Figure 3.4). Therefore, we can
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express the landscape sensitivity as a function of the landscape modal slope:

∀b.S̄ > acR0, V s
p = πδ̄V acR

2
0

(
b.S̄
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)2

.
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. exp

(
Smod
TSV

)
Atopo (3.11)

where δ̄V is an average material sensitivity term independent of slope geometry, but
still incorporating the effects of rock strength and wetness of the landscape, and TSV is
a steepness scaling constant. δ̄V and TSV were determined by orthogonal least-squares
minimization of the logarithm of the residuals against the modal slope values, yielding
δ̄V = 4174 ± 212m3.km−2 and TSV = 11.6 ± 0.6◦. This value of δ̄V can be taken to
represent an average strength and pore pressure state of the fitted events. Apart from
these two constants, every parameter in Eq. 3.11 has an unambiguous and distinct
physical meaning, even if it sometimes refers to the average or mode of a variable
parameter, and can be estimated for any earthquake scenario.
It must be emphasized that modal slope can only be a proxy for landscape sensitivity
because most landslides associated with earthquakes occur at sites steeper than the
modal slope of the landscape (Parise and Jibson, 2000; Lin et al., 2008; Gorum et al.,
2013, 2014). Implicit in this treatment is the assumption that the occurrence of steep
slopes (e.g., > 35◦) scales with the modal slope. We performed the same analysis,
using median instead of modal slope and obtained similar, but not better results.

3.4.2 Prediction of Total Area

The total area of landslides triggered by an earthquake must follow the same
scaling with earthquake magnitude as landslide volume. However, α lumps the geo-
morphic controls on the probability of failure with those on the development and the
final 3D geometry of a landslide (See section 3.1). As processes setting landslide runout
and width may not depend on slope, strength or moisture in the same way than the
ones setting landslide depth (for αV only), we may expect a different dependency for
ᾱV and ᾱA. Initially, we chose a value ᾱA = 0.05, and compared our model predic-
tions with 17 well-constrained cases. Fewer cases have well constrained total landslide
area, because this measure is less dominated by the largest landslides and therefore
cannot be extrapolated based on a limited number of large landslides. Similar to land-
slide volume, the ratio of estimated over predicted landslide area is also positively
correlated with the modal slope of the landscape (Figure 3.5A). Events over-predicted
(2002 Denali (USA), 2010 Yushu (China) or 2011 Nagano (Japan)) or under-predicted
(1957 Daly City (USA)) in the volume domain (Fig. 3.4) are likewise mis-predicted in
the area domain (Fig 3.5A). This is consistent with our interpretation that these events
have a specific material sensitivity and/or violate our seismological assumptions, and
we have ignored when determining the best-fit sensitivity constants in our total area
prediction:

∀b.S̄ > acR0, Asp = πδ̄AacR
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with δ̄A and TSA having a meaning analogous to δ̄V and TSV . With an orthogonal least-
squares minimization of the logarithm of the residuals against the modal slope values,
we obtained δ̄A = 3445±325m2.km−2 and TSA = 15.8±1.5◦, indicating that topographic
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Figure 3.4 – Ratio of the estimated and predicted total volume of triggered landslides plotted
against landscape modal slope for all events with sufficient data (i.e., excluding the 1950 Assam
(India), 1957 Daly City (USA) and 1855 Wairapa (NZ) earthquakes) (N=37). The largely over-
predicted Italian events (2009 Aquila and 1998 Umbria-Marche) (see Fig 3.6) plot outside of the
frame. Gray and black bars represent the 2 − σ uncertainties on the estimated volume for the
preferred model and the 25-75th percentile of the distribution of model results against the mean
estimated volume, respectively. Faded symbols are events excluded from the fit and assumed
to have a different landscape sensitivity or seismological process from the bulk of our data (See
discussion in section 5).
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steepness is a lesser control on total landslide area than on total landslide volume. Even
without the outliers, the best least-squares exponential fit only accounts for about 20%
of the variance (R2 = 0.23, N=13), further highlighting the limited control of landscape
steepness on A. In the following discussion, we show that another parameter, related
to the seismic source depth, is modulating A and is responsible for the poor variance
reduction associated with landscape steepness. However, even if steepness appears a
lesser control on landslide area than on volume, Eq. 3.12 yields predictions that are
within a factor of 2 of the total area estimates for 11 out of 17 earthquakes (i.e., 65%
success rate, Suppl. Fig 3.12) and R2 = 0.73, N = 17.

3.5 Discussion

We derived expressions for the total volume and area of populations of earthquake-
triggered landslides. These expressions aim to account for the principal characteristics
of seismological and landsliding processes involved, and thereby to improve the ac-
curacy and robustness of predictions of total landslide volume and area for relevant
earthquake scenarios. In the following, the accuracy of our expressions is compared to
previous and current empirical relationships. Then we discuss the limitations of our
model in accounting for landscape properties and seismological complexities for both
the landslide volume and landslide area predictions. We end with examples of appli-
cations to well-constrained settings with recurring large earthquakes, the Alpine fault
of the Southern Alps, New Zealand, and to the 2015 Gorkha earthquake in Nepal.

3.5.1 Strength and Limitations of our Prediction

Accuracy Compared to the Empirical Relationships

The relationship of Keefer (1994) and our empirical fit of earthquake-triggered
landslide volume against moment have scatter of one to two orders of magnitude (Fig-
ure 3.1). Moreover, in both relations, predicted landslide volume increases stronger
with earthquake moment than in our model. Here, we briefly consider the accuracy
and insight gained through our seismologically-consistent model compared to empir-
ical approaches.

At the outset, it should be stressed that the landslide data used to test the accuracy
of our model have diverse quality and uncertainties. Discrepancies between landslide
volume estimates for poorly documented cases (1983 Coalinga (USA), 1980 Mammoth
Lake (USA), 2002 Avaj (Iran), 1989 Loma Prieta (USA), 1987 Reventador (Ecuador),
2005 Kashmir (Pakistan), 2013 Lushan (China) and 1950 Assam (India)) and our model
predictions may be due to inaccuracy of the published estimates as well as to the limi-
tations of our model. Specifically, the landslide volume for the 1950 Assam earthquake
was obtained using a constant landslide depth for all the perturbed areas, based on a
few measurements only (Mathur, 1953). The published volume for this case is therefore
likely an overestimate, but it is harder to decipher the uncertainties of the other cases.
Other events such as Daly City, Wairapa or Rotoehu have relatively well constrained
landslide volumes, but lack detailed seismological information and are therefore hard
to predict.
Using Eq. 3.11, we predict the landslide volume triggered by a given earthquake with
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Figure 3.5 – A: Ratio of the estimated and predicted total area of triggered landslides plotted
against landscape modal slope for all events with sufficient data (N=17). B: Ratio of the esti-
mated and predicted total landslide area divided by the empirical slope correction from the
left panel, plotted against the mean asperity depth R0. Here, the 1991 Limon earthquake was
ignored from the fit because its estimate ofA is strongly under-estimated due to resolution cen-
soring of the small landslides. C: Power-law decay exponent ρ of the landslide area-frequency
distribution of our 11 comprehensive inventories (See Suppl. Figure 3.16) plotted against the
mean asperity depth R0. In panels A and B y-error bars represent model result uncertainties,
that is 25-75th percentile of the distribution of model results. In the fit of Panel A and B, The
1957 Daly City (USA), the 2010 Yushu (China), the 2002 Denali (USA) and the 2011 Nagano,
were eliminated because they likely violate key model assumptions or have a specific material
sensitivity (See Section 5.1.4).
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greater accuracy than with the empirical fit defined from our extended database or
than with the Keefer (1994) relationship (Figure 3.1). As 63% of model predictions
are within a factor 2 of the corresponding volume estimate, compared to only 23% for
both empirical fits (Figure 3.6). For the 11 best constrained inventories, this success
rate improves to 82%, against 45% and 18% for the Keefer (1994) relationship and our
empirical fit, respectively (Figure 3.6). Thus, our model represents a significant im-
provement on the accuracy of landslide volume predictions. Also of interest is the fact
that larger differences between model predictions and volume estimates provide in-
sight into those factors that also affect the landslide response to earthquakes but have
not been adequately represented in our model. It appears that many discrepancies are
due at least in part to an ill-constrained material sensitivity term, δ̄V . The fact that
the final residuals of our model, V/V s

p , has no remaining correlation with earthquake
moment, nor with modal slope, mean asperity depth or fault type (Suppl. Fig. 3.12),
strengthens our assertion that these parameters have been properly accounted for, and
that other parameters govern the outliers. Such parameters include seismological com-
plexities, specific rock mass strength or hydrological conditions
We also tested wave acceleration emission constants, b (Eq. 3.9), for different frequen-
cies (Boore and Atkinson, 2008) and obtained similar, but not better results, for fre-
quencies between 0.5Hz and 3Hz. However, frequency constants outside this range,
such as f = 0.25Hz or f = 6Hz introduced a systematic bias with moment and much
larger data misfits, supporting our assumption that frequencies of about 1Hz are the
most relevant for landslide triggering (Suppl. Fig. 3.7).
Finally, we assessed the effect of using hypocentral depth instead of the mean asperity
depth for R0 (Suppl. Fig 3.14). For many earthquakes in our database, the difference
between the hypocentre depth and the principal asperity depth is small, or assumed
to be small. However, in 16 earthquakes considered here, the hypocentre was located
substantially deeper than the asperity (Suppl. Table 3.7). The attendant reduction of
the predicted landslide volume in these cases degrade the correlation with the land-
scape modal slope (Suppl. Fig. 3.14) and the final accuracy of the model, supporting
our decision to consider that asperities are the most important sources of seismic wave
responsible for triggering of landslides.

Landscape Sensitivity and Rock Strength

Landscape sensitivity to seismic perturbation is set not only by the steepness and
relief of the local topography, but also by the geomechanical properties of the under-
lying soil and rock (Hoek and Brown, 1997; Schmidt and Montgomery, 1995). In our
model, this is represented by the material sensitivity, δ̄V , which was kept constant in
our treatment, even though it must vary with rock mass strength and could explain
some outliers. Before addressing the outliers we note that, with a constant material
sensitivity, our model predicts total landslide volumes within a factor of 2 of estimated
values in 25 cases in our catalogue, that is 63% (Figure 3.6), in spite of a large diversity
of lithologies amongst these cases (Suppl. Table 3.7). Antecedent rainfall is not accu-
rately quantified, but amongst these 25 cases only a few had heavy rainfall or notable
drought preceding the earthquake, suggesting that the average rock mass strength of
the various landscapes must be similar. Fracturing and subsequent weathering, re-
sulting from either tectonic or geomorphic reasons (Molnar et al., 2007; Clarke and
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Figure 3.6 – Predicted total landslide volume plotted against estimated total landslide volume
for 40 earthquakes in our database (Suppl. Table 3.7). For reference the one-one line, with a
factor of 2 interval are shown as solid and dotted lines, respectively. Earthquakes on strike-slip
or normal faults are indicated with (S) and (N) after the event name code. Inset: Histogram
of the residuals of our model and the empirical fits of Figure 3.1. The black and grey fillings
of the histograms refer to the number of comprehensive and partial inventories in each bin,
respectively.
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Burbank, 2010), is likely to have rendered a significant part of the landscape relatively
weak (e.g., Schmidt and Montgomery, 1995) in the majority of our cases and indepen-
dent of the lithology (Gallen et al., 2015). This does not preclude larger rock strength
variations at the local scale from playing an important role in setting the spatial dis-
tribution of landslides (e.g., Parise and Jibson, 2000). Three Italian earthquakes (1976
Friuli, 1997 Umbria-Marche and 2009 L’Aquila), which occurred in terrain dominated
by massive limestone cliffs, buck this trend. Landsliding due to these earthquakes
was over-predicted by our model by two orders of magnitude, and consisted mainly
of triggered rock falls and small rock avalanches (Govi and Sorzana, 1977; Antonini
et al., 2002; Guzzetti et al., 2009b), even though many other earthquakes of similar
magnitude have solicited significant landsliding. This suggests that the hillslopes in
the epicentral areas of the these Italian earthquakes had a much greater than average
strength, possibly due to the relatively high cohesion of calcareous substrate. The 1991
Racha (Georgia) earthquake is the only other case with substantial limestone in the
epicentral area. Its estimated landslide volume is very close to that predicted by the
model (Figure 3.6), but the landslide volume was dominated by a few giant earthflows
that occurred in slopes underlain by clay (Jibson et al., 1994). These flows make up
two thirds of the total landslide volume, suggesting that weak response to shaking in
limestone areas may have been compensated by more abundant landsliding in weaker
clay-rich substrates, coincidentally yielding a sum total landslide volume close to that
predicted. In addition to the permanent effects of substrate quality, preconditioning
of hillslope stability due to antecedent weather could also affect the sensitivity term.
For most cases, the relevant meteorological information is lacking, but it is likely that
many had some degree of substrate saturation and only some had exceptionally dry or
wet conditions just before the earthquake. For example, the degree of hydrological sat-
uration of hillslopes may have affected the 2002 Avaj (Iran) earthquake, which struck
after prolonged drought. In this case large cracks in hillslopes, that could have become
landslides in a wetter substrate, were widely observed (Mahdavifar et al., 2006). This
may explain why the Avaj event is over-predicted by our model by a factor of 6. The
2010 Cucapah (Mexico) earthquake was also over-predicted by a factor of 6, possibly
due to extremely dry conditions, although this case is difficult to evaluate because the
topography above the 100km-long fault is very flat except for the narrow Sierra Cuca-
pah (40 km long, 8 km wide) (Wei et al., 2011), yielding Atopo ∼ 10% and suggesting
our assumption that site effects average out is likely violated. In contrast, very intense
rainfall occurred less than a few days before the 1984 Nagano and 2004 Niigata (Japan),
possibly causing these earthquakes to have a landslide volume 2 and 1.6 times larger
than the model prediction, respectively.

Seismological Complexities

Besides substrate sensitivity, discrepancies between predicted and estimated land-
slide volumes may relate to seismological complexities or violation of the seismological
assumptions in the model. This is most clearly demonstrated in cases that appear not
to have been strongly affected by the substrate issues discussed in the previous section.
There are seven events where specificities of the ground shaking, rather than anoma-
lous rock strength or preconditioning, likely explain why documented and predicted
landslide volumes differ by more than a factor of four.
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The 1957 Daly City (USA) and 2004 Rotoehu (NZ) cases had poorly constrained source
depths with potentially major consequences for the predicted landslide volumes, as
both earthquakes were close to the threshold for landslide triggering (Mw 5.3 and 5.4).
In fact, for the range of mean asperity depths used, the 1957 Daly City (USA) earth-
quake should have produced between zero and half of the estimated landslide vol-
ume, according to our model. Additionally these cases are difficult to evaluate be-
cause the earthquakes struck in mostly flat or submerged areas (Atopo ∼ 15− 20%, with
Smod = 10◦), with occasional oversteepened slopes on ocean or lake shores (> 45◦),
where most landslides occurred (Bonilla, 1960; Hancox et al., 2004). In such cases, with
only a small fraction of the topography steep enough for landsliding, our tenet that the
mean shaking pattern is relevant and that the spatial pattern of site effects and direc-
tivity may be neglected is likely violated. Alternatively, the 2010 Yushu (China) earth-
quake triggered about seven times fewer landslides than expected from our model.
The source depth of this earthquake is reasonably well constrained (Sun et al., 2013)
and we could not find strong evidence of specific preconditioning or an anomalous
rock mass strength. However, seismological observations indicate that the rupture
propagated at speeds in excess of the seismic shear wave velocity, with vr ∼ 5km/s,
that is in super-shear (Wang and Mori, 2012). During the 2002 Denali (USA) earth-
quake, the third fault segment ruptured in super-shear, and was observed to emit
fewer high frequency waves than in sub-shear rupture (Frankel, 2004), with commen-
surately less attendant landsliding (Gorum et al., 2014). Thus, it is likely that these two
earthquakes had less landsliding than our model predicted due to a reduction of high
frequency wave emission in super-shear rupture. Super-shear has not been reported
for any other cases in the database, but we cannot exclude that some older cases may
have had super-shear ruptures that have remained unrecognized due to observational
limitations.
The 2011 Nagano (Japan) earthquake induced about five times fewer landslides than
expected from our model, possibly because the landscape was snow-covered. This has
been reported to damp ground shaking in numerical simulation (McColl et al., 2012)
and may also have played in the over-prediction of landslide volume for the 2002 De-
nali earthquake. The volume of landslides triggered by the 2011 Lorca (Spain) and
1994 Arthur’s Pass (New Zealand) were about four times and eight times smaller than
those predicted by our model, respectively. Both have reasonable depth constraints, on
their epicenter at least, and no specifically dry conditions reported (Hancox et al., 1997;
Alfaro et al., 2012). The Lorca areas contain possibly strong limestone cliffs, but also
weaker marls and slates units, complicating any interpretation based on rock strength,
while the Arthur Pass 1929 was adequately predicted with the average material sensi-
tivity. For these cases, the volume mismatch remains unexplained. Discrepancies be-
tween predicted and estimated landslide volumes may also reflect some of the many
aspects which have been overlooked in our model, such as strong local attenuation
of seismic waves, seismic directivity or a geologic site effect pattern interacting with
preferentially oriented topography, or specific seismic rupture processes affecting the
relative importance of waves with 1-2Hz frequencies. This is also true for the smaller
volume discrepancies of some other events, for example, we note that the three well-
constrained earthquake sequences (in Aysen, Niigata, and the Finisterre Range) are
undepredicted by about a factor 2, possibly reflecting a heightened propensity to fail-
ure after the initial damage of the hillslopes. The 2010 Haiti earthquake mobilized
only half the expected landslide volume, probably because almost the entire hanging
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wall of the seismogenic thrust was submerged and our topographic correction Atopo
did not account for the fact that, in addition to possible directivity effects, the strongest
shaking usually occurs in the hanging wall of thrust faults rather than in the footwall
(Oglesby et al., 2000). The directivity effect present during the 1994 Northridge (USA)
earthquake certainly focused strong shaking and landsliding North West of the fault
(Figure 3.2B) meaning that ourAtopo = 0.45 correction should rather be∼ 0.6−0.7 if we
were to impose a shift of the strong motion to the North West, reducing significantly
the current underestimation of this event. However, such case-specific effects seem to
be of limited importance for the majority of our examples.

Fault Style Influence on Earthquake Triggered Landslides

Fault style has often been proposed to be a control on earthquake-triggered land-
sliding (e.g., Tatard and Grasso, 2013; Gorum et al., 2014) and numerical models and
observations suggest it affects ground shaking (Oglesby et al., 2000). Our treatment
involves a 30% reduction of waves emitted by normal fault earthquakes (Boore and
Atkinson, 2008), as compared to reverse or strike-slip mechanisms. It also assumes
that large magnitude strike-slip earthquakes will occur on longer faults and induce
more landslides (see Eq 8). We have explored the effects of these two hypotheses.
Most of the normal fault events are difficult to evaluate because of their small magni-
tude, but also because of specific lithological (1997 Umbria-Marche, 2009 L’Aquila) or
topographic (2004 Rotoehu) constraints. Applying a reduction of shaking for normal
faults, consistent with seismic observations (Oglesby et al., 2000; Boore and Atkinson,
2008), may improve the model accuracy, but our landslide data are too scarce and noisy
to support it. Nevertheless, if the 30% reduction in wave emission for normal faults
is not applied, then the landslide volumes predicted by the model increase substan-
tially, predicting correctly the 2004 Rotoehu (NZ) event, while the 1980 Mammoth Lake
(USA) event, which was the only well-predicted normal fault case becomes substan-
tially over-predicted (Suppl. Fig 3.15). More well-constrained landslide inventories for
normal fault earthquakes are needed to test this aspect of the model. Removing Eq (8)
from our treatment reduces the fit quality of residuals against modal slope and results
in under-prediction, by more than a factor of 2, of landslide volumes triggered by large
strike-slip earthquakes such as the 1976 Guatemala and the 1931 Napier (NZ) earth-
quakes. However, our data do not support a major difference in earthquake-triggered
landslide volume between strike-slip and reverse fault earthquakes (Fig 3.6,Suppl. Fig.
3.12). The same is true, in general, for integration of seismological complexities and
sensitivity effects in our model and proper testing of predictions. The acquisition of
high-quality landslide data for a larger number of earthquakes with different mecha-
nisms remains an outstanding research challenge.

Total Landslide Area and Area-frequency Distribution

Residuals for total landslide area, A/Asp, are similar to those for volume, with 11
out of 17 of all well-constrained inventories within a factor of 2, or 65% of success, 4
within a factor of 5 and 2 significant outliers (Fig 3.5B, Suppl. Fig. 3.12). The esti-
mated total landslide area, A is more sensitive to inclusion of small and intermediate
size landslides (< 50, 000m2) than the total landslide volume. Low mapping resolu-



62

tion may cause significant reduction of A, because many small landslides cannot be
mapped confidently, as is clearly the case for our mapping of the 1991 Limon (Costa
Rica) earthquake which is likely to have a total landslide area 2 to 3 times larger as the
estimated presented here. However, a lower resolution can also lead to an overestima-
tion of the mapped area because disturbed areas may be blurred (Marc and Hovius,
2015). Therefore, we cannot exclude that resolution effects may bias the older events in
the databse with a relatively low image quality, but it is unlikely to bias events mapped
from high resolution imagery such as the 2004 Niigata, 1984 and 2011 Nagano, the 2008
Iwate, the 1976 Guatemala and the 1994 Northridge earthquakes (Suppl. Table 3.7).
Notably, the area residuals appear to be correlated with the earthquake mean asperity
depth (R2 = 0.58, N=12, Fig 3.5B), with the exception of the 1991 Limon event, for
which A is underestimated, and the 1957 Daly City, the 2002 Denali, the 2010 Yushu
and the 2011 Nagano earthquakes for which the landslide volume prediction were
poor. This trend is not visible for the volume residuals (Suppl. Figure 3.12), suggesting
that a process specific to small and intermediate size landslides, which are less impor-
tant in setting the total landslide volume, is modulating the total area estimate. This
is supported by the very strong correlation (R2 = 0.84, N=11, Fig 3.5B) between the
mean asperity depth and the exponent ρ of the landslide area-frequency distribution
for the 11 most comprehensive landslide inventories in this study (Fig 3.5C, Suppl.
Fig. 3.16). Note that here we included the Limon case because landslides smaller than
∼ 1000m2 that could not be mapped, do not affect the fit of the decay exponent. Thus
A is systematically under-predicted for deep earthquakes with a large number of small
to medium size landslides relative to large landslides (large ρ), and A is consistently
over-predicted for shallow earthquakes with relatively few small and medium size
landslides. Because most of the 11 comprehensive inventories are for earthquakes at
or above the hinge magnitude, Mh = 6.75 (i.e., when source accelerations b saturates),
ground shaking is decorrelated from seismic moment and primarily depends on wave
attenuation and the mean asperity depth. Thus, correlation between ρ and depth sup-
ports the tenet that the relative abundance of small and large earthquake-triggered
landslides is modulated by the shaking properties, consistent with observation on the
spatial distribution of landslide size for single earthquakes (Keefer and Manson, 1998;
Khazai and Sitar, 2004). However, few mechanisms could explain a larger number of
medium sized landslide for deeper earthquakes, as the shaking intensity due to such
earthquakes is likely to be lower. Possibly our description of attenuation is too conser-
vative, but this would not explain why the attenuation model should be different for
the prediction of landslide volume and area. Alternatively, it could be argued that the
shaking duration is an important control on small scale, shallow landsliding whereas
larger and deeper landslides may be primarily controlled by the shaking intensity. In
this case the increase of shaking duration with earthquake source depth (Kempton and
Stewart, 2006), that is neglected in our model, may lead to the correlation we observe
without affecting the predicted total landslide volume. Additional data are required
to evaluate the effect of shaking duration and intensity on slope stability on specific
length scales to be able and to better integrate these terms in our model framework.
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3.5.2 Application to Earthquake Scenarios

Our model can be used when an earthquake is anticipated or after it has occurred.
The seismic moment or the fault length, the mean asperity depth and the fault type
may be specified based on paleo-earthquake information or initial seismological data.
In either case, the active fault segment must be located, so that Atopo and the modal
slope of the overlying area can be computed based on a 30m DEM, for consistency with
our empirical correction for steepness (Fig. 3.2, 3.3). With these 5 quantities and their
associated uncertainties, Vp and Ap and their uncertainties can be computed, using Eqs
(11) and (12). Here, two examples are explored briefly: the 2015 Gorkha earthquake
in Nepal, for which preliminary seismological and geomorphological data are avail-
able at the time of writing (Collins and Jibson, 2015; Kargel et al., 2015), but not yet a
comprehensive landslide map, and an expected future large earthquake on the Alpine
fault of New Zealand.
TheMw7.8 Gorkha earthquake, which occurred in April 2015, had an estimated seismic
moment of 72.1019N.m and mean asperity depth of 15±2km (Avouac et al., 2015). From
the available digital elevation data, we estimate Atopo ∼ 1 and Smod = 33 ± 2◦. With
these constraints, our model prediction is: Vp = 0.30(−0.11/ + 0.16)km3. We assume
that the affected area has a rock strength similar to that of the majority of the cases in
our data base, but because the ground was very dry at the time of the rupture, propen-
sity to failure of hillslopes may have been relatively low, so that the model prediction
may be somewhat high, perhaps by a factor 2. Note that we used a slip distribution
inversion to accurately locate the mean asperity depth. Such inversions can typically
be performed some days or weeks after the earthquake, depending on the availability
and processing of InSAR, GPS and strong-motion data. However, a cruder landslide
volume estimate could be made within 1 to 2 days after the earthquake, when first
seismological constraints yielded similar moment estimates and a hypocentral depth
between 15 and 25km, leaving a wide range of possible mean asperity depths, be-
tween half the shallow hypocenter (i.e., 8 km) and the deep hypocenter, at 25 km. With
these initial constraints, the predicted total landslide volume was bracketed between
0.02− 0.7km3.
Next, we consider the Alpine fault, bounding the Southern Alps of New Zealand to the
west. This conspicuous tectonic feature has been shown to have consistently produced
Mw8.1 ± 0.1 earthquakes , every 330 ± 30 years, over the last 8000 years (Berryman
et al., 2012). The modal slope along the western Southern Alps is fairly constant, at
about 32◦(Clarke and Burbank, 2010), but decreases rapidly in the footwall of the fault,
and as a representative slope we chose 30±2◦. The mean asperity depth where most of
the wave emission is likely to occur cannot be predicted and is thus the major source
of uncertainty. Instead of a single value, we can test two reasonable extremes for an
earthquake of this size, 4±1 and 8±1 km. Along the∼ 300km of the fault trace there are
several sections where coastal plains or the ocean lie within 20 km of the fault, leading
to a 30% reduction of the total available area, mostly in the footwall of the fault, and a
correctionAtopo ∼ 85±5%. The shallow and deep earthquake scenarios yield predicted
total landslide volumes of 1.0 (-0.22/+0.28) km3 and 0.7(-0.17/+0.23) km3 and total ar-
eas of 420(-85/+105) km2 and 290(-70/+90) km2, respectively. Our model does not
provide any information about the spatial distribution of these landslides. However,
it is safe to assume that the landslides will be distributed along the fault trace, with
the highest density within a radius of ∼ 20km that means an area of about 1200km2.
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Hence, the average proportion of area affected by landslides along the fault is expected
to be 2.4 − 3.5%. This bulk measure can be refined using various assumptions about
the area likely to be affected more than average, based on local topographic steepness,
or the expectation of stronger shaking in the hanging wall close to the fault (Oglesby
et al., 2000). Coupled to a road or property density maps such estimates may help to
quantify risk due to triggered processes. The total landslide volume is likely to be a key
factor responsible for seismically induced changes in weathering and fluvial chemistry
(Emberson et al., 2015; Jin et al., 2015). The total landslide area is crucial to evaluate
the amount of standing biomass and soil biomass that will be harvested and may be
buried, influencing the long term and short term carbon budget of the mountain belt
(Hilton et al., 2011b). Moreover, the total landslide volume can be converted into mean
erosion rates over the recurrence intervals, (0.18−0.25mm.yr−1), and compared to land-
slide erosion due to precipitation to assess the relative role of climate and seismicity in
driving erosion in this setting (Hovius et al., 1997). Finally, as our model only requires
DEM information and the prescription of the earthquake moment or fault length and
depth, it can easily be integrated in landscape evolution models. This could enable as-
sessment of the relative importance of earthquake erosion and the role of earthquakes
in mountain building on longer time scales (Li et al., 2014). Beyond this, several issues
are not addressed by our model, such as the precise location of the seismically trig-
gered landslides, especially the larger ones that dominate the total landslide volume,
the possible controls on the magnitude-frequency distribution of seismically-triggered
landslides, and the amount and timing of debris reaching the river network and the
dynamics of its fluvial export.

3.6 Conclusion

We developed a seismologically-consistent model relating the total volume and
area of landslides triggered by an earthquake with the principal seismological charac-
teristics of that earthquake and the main topographic attributes of the affected land-
scape. This model considers explicitly the effects of seismic moment, source depth
and rupture mechanism on triggered landsliding. It also incorporates the modulat-
ing influence of landscape steepness, here defined as the modal slope of the affected
topography, on the amount of landsliding, constrained using an extensive database
of 40 shallow continental earthquakes ranging between Mw 5.1 to 8.6. However, varia-
tions of landscape sensitivity to seismic perturbation due to substrate strength remains
elusive and has not been included in the model. This may be a cause of marked depar-
tures between predicted and estimated landslide volumes for some earthquakes in our
database. However, model predictions are consistent with estimated total landslide
volumes for a majority of events, although the precision of predictions is likely limited
to a factor of 2 because of uncertainties on model input and simplifying assumptions.
Predictions of total landslide area, with R2 = 0.73 and 11 out of 17 events predicted
within a factor of 2, appear to be less dependent on landscape steepness and may be
affected by processes influencing the landslide area-frequency distribution, possibly
the shaking duration. Nevertheless, our model significantly outperforms previous,
empirical relations, with successful prediction rate (i.e., estimate within a factor of 2 of
prediction) of 63% against 23% and R2 = 0.76 against R2 = 0.46. It also predicts a very
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different scaling between landsliding and seismic moment for large earthquakes. Ad-
ditionally, it anticipates explicit representation of the role of earthquakes in landscape
evolution models, re-evaluation of seismically-driven erosion fluxes, and useful appli-
cation to risk analysis for earthquake scenarios. Further development of the model
should include the introduction of quantitative rock strength proxies and the inclusion
of more complex seismological processes, to achieve greater accuracy in predicting the
total amount and spatial pattern of landsliding caused by earthquakes.
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3.7 Supplementary materials to Chapter 3

Introduction
The supporting information contains 2 data tables (one is uploaded as an additional
excel file) summarizing the source, value and uncertainties of parameters used in the
main text. Additionally it contains 10 figures that support the conclusions of the main
text.
Suppl. Figure 3.7 shows the 40 earthquakes of our database on a world map.
Suppl. Figure 3.8 presents the imagery used to map and produce a new earthquake-
induced landslide inventory for the 1991 Limon earthquake (Costa Rica).
Suppl. Figure 3.9 supports one of our model assumptions in showing that horizontal
peak ground acceleration and landslide volume density seem linearly correlated.
Suppl. Figure 3.10 shows the model sensitivity to different parameters assessed through
Monte Carlo simulations.
Suppl. Figure 3.11 complements the main text Figure 3 and shows the slope histograms
of all the remaining earthquake areas.
Suppl. Figure 3.12 shows the final model residuals against depth, landscape steepness,
fault type and seismic moment.
Suppl. Figure 3.13 shows the final model residuals against moment, obtained when we
choose different frequencies (0.25 - 1 - 6Hz) for our seismic source scaling constants.
Suppl. Figure 3.14 shows the model accuracy changes when we consider the hypocen-
ter as the source depth instead of the mean asperity depth.
Suppl. Figure 3.15 shows the model accuracy changes when we remove the assump-
tion that normal fault earthquakes produce less ground shaking.
Suppl. Figure 3.16 shows the landslide area-frequency distribution for our 11 exhaus-
tive inventories.
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Table 3.1 – Data summary for published information about earthquake-induced landsliding.
The techniques used to calculate landslide area and volume are indicated with: M= scanned
and corrected inventory of mapped polygons converted to volume with empirical V-A rela-
tionship. N= estimation based on the total volume of ∼ 5 − 20 very large bedrock landslides
(> 0.5Mm). L= estimate from the literature. F= published frequency-size distribution con-
verted to volume and integrated. B= extrapolation based on the largest landslides, assuming
an universal frequency-size distribution. P = estimate based on field photographs and field
report More details in section 2.2 and Table 3.7. Total number of landslides is an order of
magnitude estimate only. Mapping resolution is given when the data comes from image in-
terpretation. Unless indicated, all mapping studies included some field surveys. G indicates
the data comes from field surveys and occasional aerial surveys only. Seismic moment, fault
mechanism, mean depth of asperities (R0) and fault style have been derived from published
seismological studies. ! indicates events where we could access an earthquake source rupture
inversion, whereas for other casesR0 is based on hypocenter depth and other assumptions (see
methods). * indicates that the event was an earthquake sequence, with aftershock or foreshock
with seismic moment larger than 30% of the main shock. Fault type abbreviations are used as
follows, SS for strike-slip, R for reverse and N for normal. Country abbreviations used are USA,
for United States of America, NZ for New Zealand and PNG for Papua New Guinea. Modal
slope estimates were extracted from 30m-Aster GDEM within the epicentral areas and ignoring
flatlands (< 8◦). The correction factor for available topography, Atopo was determined based
on our average PGA decay approximation and the distribution of DEM cells with modal slope
steeper than 8◦ (See Fig. 3.2). Typical landslide types reported are indicated with the follow-
ing abbreviations: RF = rock fall, RA = rock avalanche, RS = rock slump, DSS = disrupted soil
slides, SA = soil avalanche, SS = soil slump and EF= earth flow. Dominant lithologies grouped
as volcanoclastic, V, sedimentary, S, metasedimentary, MS, metamorphic, M, igneous, I and
limestone L. Climatic setting is also mentionned. The thick horizontal black line separates the
11 comprehensive inventories from the other 29 inventories in our catalogue.



Earthquake Landslide volume estimate, V [km³] , (range)   

1976, Guatemala, (Guatemala)

1984, Nagano, (Japan) 0.022 (0.004 – 0.042) (M)

1991, Limon, (Costa Rica) 8.0e-3 (7.8e-3 – 8.2e-3) (M)

1993, Finisterre*, (PNG) 0.16  (0.147 – 0.173) (M)

1994, Northridge, (USA)

1999, ChiChi, (Taiwan) 0.45  (0.26 – 0.64) (M)

2004, Niigata*, (Japan)

2007, Aysen*, (Chile)

2008, Iwate, (Japan)

2008, Sichuan, (China) 2.3 (2.05 – 2.55) (M)

2010, Haiti, (Haiti) 7e-3 (6.8e-3 – 7.2e-3) (M)

1855, Wairapa (NZ) 0.078 (0.04 – 0.2) (N)

1929, Arthur's pass (NZ) 0.15  (0.075 -  0.4 ) (N)

1929, Buller, (NZ) 0.9 (0.05 – 0.23) (N)

1931, Napier, (NZ) 0.25 (0.12 – 0.73) (N)

1935, Wairoa, (NZ) 0.046 (0.023 – 0.13) (N)

1949, Khait, (Tadjikistan) 0.48 (0.24 – 1.3) (N)

1950, Assam, (India) 47 (12 – 200) (L)

1957, Daly city,  (USA) 4.5e-5 (2.9e-5 – 6.1e-5) (F)

1968, Inangahua, (NZ) 0.027 (0.013 – 0.07) (N)

1976, Friuli, (Italy) 4.5 e-4 (2.2e-4  - 9e-4) (N)

1980, Mammoth Lake*, (USA) 1.2 e-3 (3e-4 – 4.8e-3 ) (L)

1980, Coalinga, (USA) 2 e-3 (0.5e-3 – 8e-3) (L)

1987, Reventador, (Ecuador) 0.1 (0.025-0.4) (L)

1989, LomaPrieta, (USA) 0.075 (0.02-0.3) (L)

1991, Racha, (Georgia) 0.16 (0.08-0.4) (N)

1994, Arthur's Pass, (NZ) 1.1e-2 (0.5e-2 – 2.8e-2) (N)

1997, Umbria-Marche, (Italy) 3.2 e-6 (1.5e-6 – 6e-6) (F)

2002, Avaj, (Iran) 5 e-4 (1.3e-4 – 2e-3) (B)

2002, Denali, (USA) 0.12 (0.06 – 0.32) (N)

2003, Fiorland (NZ) 5.7e-3 (4.5e-3 –  7.2e-3 ) (N)

2004, Rotoehu, (NZ) 4 e-5 (1.8 e-5 – 8 e-5 ) (P)

2005, Kashmir, (Pakistan) 0.53 (0.13 – 2) (B)

2009, L'Aquila, (Italy) 1 e-6 (0.8e-6 -2e-6) (F)

2010, Cucapah, (Mexico) 2.7e-3 (2.4e-3 – 3e-3) (F)

2010, Yushu, (China) 3e-3 (1e-3 – 5e-3 ) (F)

2011, Nagano, (Japan) 6e-4 (4.1e-4 – 8e-4) (F)

2011, Lorca, (Spain) 3.5e-6 (2e-6 - 8e-6 ) (P)

2013, Lushan, (China) 6e-3 (1.5e-3 – 2.4e-2) (B)

2013, Minxian, (China) 8e-4 (5e-4 – 1.1e-3) (F)

0.13 (0.115 – 0.145)  (M)

0.021  (0.02 – 0.022) (M)

0.011  (0.0094 – 0.0126) (M)

0.042 (0.032 – 0.052 ) (M)

0.032 (0.021 – 0.45) (M)
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Landslide area estimate, A [km²]     Landslide number  (Log10(N)) Mapping

61 3-4 (<1m)

1.72 2-3 (1m) (<1m)

8.16 3 (30m) (30m) No Field

56.6 3-4 (20m) (20m) No Field

23.8 4 (1m) (<1m)

128 4-5 (15m)

12 4 (<1m)

13 2-3 (1-2m) No Field

8.9 3 (<1m)

712 5 (15m)

8 3-4 (1-2m)

x >2 ? F

x 2-4 F

200 3-4 F

x >2 ? F

x >2 ? F

x >2 ? F

x >2 ? F

0.057 1-2 F

x 2-3 F

x 2 F

x 2-3 F

x 2-3 F

x >2 ? F

x 2-3 F

x >2 ? F

x 2 F

x 2 F

x 2 F

160 3 F

x 2-3 F

x 1-2 F

x 3 F

x 2 F

x 2 (2.5m)

1.2 3 (0.5-2.5m)

0.61 1-2 (<1m)

x 2 F

x 3-4 (0.5-5m)

0.76 3 (0.5m)
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Hypocentral depth, km

6 (2.5) 12

3(1) ! 4

20 (5) 24

9.5 (4) / 10 (4) / 12 (4) 19  / 20 / 24 

10 (0.5) ! 17

6 (1.5) ! 10

10 (0.5) ! / 12(1)! 9 / 12

4(1) / 4 (1) 4 / 

2 (0.5) ! 8

6 (2) ! 11

8(1.5) ! 11

? (8-24) 16

6 (4) 12

5 (4) 10

7.5 (5) 15

12 (4) 12

8 (5) 16

? (4-12) 8

? (1.5-4.5) 3

7.5 (3) 15

4 (1) ! 4

9 (4) / 14 (4) / 15 (4) 9

9 (2.5) 9

10 (4) 10

11(1.5) ! 17

6 (1.5) ! 6

9(3) 9

5(1) / 4 (1) ! 5 / 4

8 (2) 8

6 (3) ! 8

20(2) ! 21

5(3) 5

5 (1) ! 11

11 (2.5) ! 10

6(2) ! 6

5(3) ! 17

8 (2) 8

3(1) 3

13 (3) 13

10 (4) 10

Mean asperity depth, R0 [km], (1 s)
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Smod [°] , (range) 

18 (14 – 19) 0.5 32 (6) {SS}

19 (17 – 21) 0.75 0.28 (0.02) {SS}

20 (19 – 23) 0.4 38 (15) (R)

32 (29.5 – 34.5) 1

17 (16.5 - 18) 0.5 1.3 (0.2) {R}

31 (27-33) 0.9 30 (10) {R}

14 (13.5 – 14.5) 0.7 0.88 (0.2) + 0.32 (0.05)  {R}

28 (25 – 31.5) 0.85 0.25 (0.07) + 0.18 (0.05) {SS}

13 (12.5 – 13.5) 0.7 2.6 (0.2) {R}

31 (28.5-34) 1 95 (20) {R}

19 (16 – 21) 0.2 4.5 (1) {R}

25 (21.5-26) 0.25 190 (120) {SS}

34(30.5-35) 1 2.2 (0.7){SS}

29(26.5-31.5) 1 35 (12) {R}

11(9.5-12.5) 1 40(15) {S}

14 (12-16) 1 7.5(2.5) {S}

33 (30.5-35) 1 10 (8) {R}

33 (30-35) 1 800 (300*) {R}

9 (7.5-9.5) 0.15 9e-3 (3e-3*) {SS}

25 (21- 27.5) 0.6 4.5 (1.5) {R}

32 (28.5-33) 0.65 0.6 (0.15) {R}

27 (18 – 33) 1 0.29 (0.1) + 0.13 (0.4) + 0.11 (0.3) {N}

12 (10.5-13.5) 0.5 0.6 (0.2) {R}

25(22.5-29) 1 5.5 (2.5) {R}

17 (14.5-18) 1 3 (1*){SS}

22 (19.5-23) 1 3.2 (1) {R}

34 (32.5-36) 1 1.3 (0.3){R}

15 (12 - 18)  0.8 0.05(0.01) + 0.12 (0.02) {N}

16 (14.5-17) 0.27 0.7 (0.2) {R}

28 (24-  30) 0.65 75 (13) {SS-supershear}

32 (28.5-33) 0.3 7.5(2.5) {R}

9 (8-9.5) 0.2 0.023 (0.008) {N}

34 (31.5-35) 1 25 (5){R}

16 (14.5-17.5) 0.65 0.35 (0.05) {N}

25 (22-27.5) 0.08 10 (2) {SS}

15 (12-16) 0.85 2. 3 (0.3) {SS-supershear}

15 (12.5-16) 1 0.25 (0.08){R}

15 (14-18) 0.35 6.3 e -3 (1.5 e-3){SS}

19 (16.5-21.5) 0.8 1 (0.3) {R}

18 (17-20) 1 0.12(0.04) {R}

A
topo Mo [1e19 N.m] (2 s)  {Fault type} 

1.4 (0.15) + 0.72 (0.2) + 1.2 (0.4) {R}
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Landslide types reported Main Lithology Climatic setting

RS, RA, DSS, RF, SS Volcanoclastic Montane Temperate

RA, DSS, SA Volcanoclastic Temperate

DSS, SA, RA Sedimentary Tropical

RA, DSS, SA, RS Volcanoclastic Tropical

DSS, RF, RA, RS Sedimentary Dry Mediterranenan

RA, DSS, SA, RS Metasedimetary Sub Tropical

RA, DSS, SA, RS Sedimentary / Volcaniclastics Oceanic Temperate

RA, DSS, RF Igneous / Volcanoclastic Temperate

RA, DSS, SA, RS Volcanoclastic / Igneous Oceanic Temperate

RA, DSS, SA, RS Metasedimetary / Igneous Cool Sub Tropical

DSS, RF, RA Sedimentary / Limestone Tropical

RA, RS, DSS, SA, RF Sedimentary Oceanic Temperate

RA, RS, Metasedimetary Oceanic Temperate

RA, RS, DSS, SA, Sedimentary Oceanic Temperate

RA, RF Sedimentary Oceanic Temperate

DSS, RF, RA Sedimentary Oceanic Temperate

RA, SA, RF, DSS Metamorphic / Loess Semi-arid

RA, RS, DSS, SA, EF Sedimentary Tropical

RA, RS, DSS, EF Sedimentary Dry Mediterranenan

RA, DSS, RF Sedimentary Oceanic Temperate

RF, RA  Limestone Mediterranenan

RF, RA Metamorphic / Igneous Montane Temperate

RF, RA, RS, DSS Sedimentary Dry Mediterranenan

DSS, SA, RA Volcanoclastic / Sedimentary Tropical

RF, RA, RS, DSS Sedimentary Dry Mediterranenan

RF, RA, DSS, EF Limestone / Sedimetary Humid Temperate

RF, RA, DSR Metasedimetary Oceanic Temperate

RF, RA Limestone Mediterranenan

RF, DSS, RS Sedimentary Arid

RF, RA Sedimentary / Igneous Periglacial

RF, RA,DSS Metasidementary / Igneous Oceanic Temperate

RA, DSS, SA Volcanoclastic Oceanic Temperate

RF, RA, DSS, RS Sedimentary / Metasedimentary Sub Tropical

RF, RA Limestone Mediterranenan

? , DSS Igneous / Volcanoclastic Arid

RA, DSS, RF, RS Sedimentary Alpine Sub-Arctic

RS, RA, DSS Volcanoclastic Temperate

RF, RA, DSS Sedimentary Mediterranenan

RF, RA, DSS, SA, SS Metasedimetary Cool Sub Tropical

RA, DSS, SA, RS Sedimentary /Loess Sub Tropical
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Geomorpology Ref. Seismology Ref.

Harp  et al., 1981  Kikuchi and Kanamori, 1991

 PWRI, 2010 Yoshida and Koketsu, 1990 

This study Goes et al., 1993 ; Suarez et al., 1995 

Meunier et al., 2008 Stevens et al., 1998

Harp and Jibson, 1996 Wald et al., 1996 

Liao and Lee, 2000 Zeng and Chen., 2001

Yagi et al., 2007 Hikima and Koketsu, 2005

Gorum et al., 2014 Legrand et al., 2011

Yagi et al., 2009 Suzuki et al., 2010

Gorum et al., 2011  Fielding et al., 2013

Gorum et al., 2013 Hashimoto et al., 2013

Hancox et al., 1997 Darby and Beanland, 1992 

Hancox et al., 1997  Berryman and Villamor, 2004

Pearce and O'Loughlin, 1985 ; Hancox et al., 1997 Doser et al. 1999

Hancox et al., 1997 McGinty et al., 2001

Hancox et al., 1997 McGinty et al., 2001

Evans et al., 2009 Januzakov et al., 2003 

Mathur, 1953 Molnar and Qidong, 1984 

Bonilla, 1960 Bonilla, 1960

Hancox et al., 1997 Anderson et al., 1994

Govi and Sorzana, 1977 Cheloni et al., 2012

Keefer, 1994 Given et al., 1982

Keefer, 1994 Stein and Ekstrom, 1992 

Schuster et al., 1996 Kawakatsu and Cadena, 1991

Keefer, 1994 Wald et al., 1991

Jibson et al., 1994 Tan and Taymaz, 2006

Hancox et al., 1997 Abercombie et al., 2000

Antonini et al., 2002 Hernandez et al., 2004

Mahdavifar et al., 2006 Hamzehloo, 2005 

Jibson and Harp, 2006  Elliott et al., 2007

Hancox et al., 2003 McGinty et al., 2003

Hancox et al., 2004 Hancox et al., 2004

Owen et al., 2008 Pathier et al., 2006

Guzzetti et al., 2009 Cirella et al., 2009

Barlow et al., 2014 Wei et al., 2011 

Xu et al., 2014a Sun et al., 2013

Has et al., 2012 Has et al., 2012

Alfaro et al., 2012 Alfaro et al., 2012

Tang et al., 2015 Zhang et al., 2014 

Xu et al., 2014b Xu et al., 2014b
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Table 3.2 – Summary of the methods used to estimate total landslide volume and its uncer-
tainty from published information. VA is the total volume and uncertainties estimated from
converting into volume available landslide frequency-area distribution. VP is the total volume
estimated as 150% of the sum volume of (N ) large, reported landslides, assumed to represent
the largest triggered landslides (see Methods). In this case, the uncertainty range is assumed
to be defined between 50-270% of VP . When only area information was given, landslide vol-
umes were derived with area-volume relationships (see Methods). VM is the total landslide
volume based on the volume of the largest landslide and assuming a universal frequency-area
distribution (see Methods). Vmax is the largest landslide volume reported. VL is the landslide
volume estimate reported by other authors (see Table 3.7 for references). For VM and VL the
uncertainties are deemed large and assumed to extend between 25-400% of the estimated total
volume. We consider VA to be the most accurate, followed by VP , and then VM . The value in
bold is the one considered further in the study and reported in Table 3.7. ** indicates that some
deep-seated landslides with significant displacement (several meters), but not necessarily with
catastrophic failure, were included in the total volume estimate.
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Niigata 2004
Iwate 2008

Nagano 2011
Nagano 1984

Finisterre 1993

Wairapa 1855Fiorland 2003

Rotoehu 2004

Lorca 2011

Friuli 1976

Guatemala1976

Umbria-Marche
 1998

L‘Aquila 2009

Racha 1991

Assam1950

Kashmir 2005
Sichuan 2008
Lushan 2013

Yushu 2010

Mingxian 2013

Chichi 1999

Arthur‘s Pass 1929
Arthur‘s Pass 1994

Buller 1929
Inangahua 1968

Napier 1930
Wairoa 1931

Reventador 1987

Aysen 2007

Haiti 2010

Limon 1991

Denali 2002

Loma Prieta 1989
Northridge 1994

Coalinga 1983
Mammoth Lake 1980Daly City 1957

Cucapah 2010

Khait 1949

Figure 3.7 – World map with the locations of the 40 shallow earthquakes considered in this
study.
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Figure 3.8 – Landsat image (February 1992) of the epicentral area of the 1991 Limon (Costa
Rica) earthquake. Red represents vegetation whereas gray and white are bare rock or sediment
and clouds, respectively. Visible landslides were mapped down to about 1000m2. The area-
frequency distribution of 1643 large (> 1000m2) mapped landslides is shown in the inset. The
roll-over at 1000− 3000m2 is likely due to resolution censoring. The total number of landslide
is likely more than 3000.
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Figure 3.9 – Landslide volume density as a function of the horizontal peak ground acceleration
(normalized by 1g) in the Chi-Chi epicentral area. Available PGA records from seismic stations
in Taiwan and landslide volume density were averaged within circular bins with increasing
distance away from the earthquake epicenter. For reference the black curve represents the
linear function Y = 0.75(PGA− 0.11).
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Figure 3.10 – Cumulative distribution of total landslide volume predictions for one relatively
small and deep earthquake (in black) and a larger shallower one (in blue). In each panel a
single parameter is varied while the others are kept constant at their mean value. Considered
are the essential model parameters Mh, the hinge magnitude, bsat, the saturation acceleration
and ac, the critical acceleration. Also considered are the key input data, the seismic moment
Mo and the mean asperity depth, R0 as well as the modal slope Smod used to constrain the
landscape sensitivity. In this exploration, the small, deep earthquake is in the very non-linear
part of the model (i.e. before Mh) and is therefore much more sensitive to variations of the
input parameters or of the model constant than the larger earthquake. Note that the model
uncertainty ranges presented in Fig 4-6, are based on the same assumed variations of Mh, bsat
and ac, and on input uncertainties reported in Table 3.7.
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Figure 3.11 – Same as figure 3.3 of the main text but for the areas of the 29 earthquakes in our
compilation for which we do not have comprehensive landslide maps.
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Figure 3.12 – Ratio of estimated total landslide area or volume over predicted total landslide
area or volume plotted against asperity mean depth R0 (A,B), landscape steepness, Smod (C,D),
faulting mode (E,F) and seismic moment (G,H). Note the absence of residual correlation in all
panels except in panel A, suggesting that the mismatch between data and model prediction
arises from factors not included in the model, (such as rock mass strength, hydrological state or
shaking duration), and/or and/or from a discrepancy between actual earthquake characteris-
tics and our seismological assumptions in some individual cases (See Section 3). Nevertheless,
in the majority of cases, the ratio of estimated and predicted values is close to one, suggest-
ing that for these cases the model assumptions are reasonable and the neglected factors are
secondary relative to the ones considered.
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Figure 3.13 – Ratio of estimated total landslide volume over predicted total landslide volume
plotted against earthquake seismic moment for different source term frequencies (Eq. 11) A:
0.25Hz, B: 1Hz, C: 6Hz.
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Figure 3.14 – Same as Figure 3.4 but with source depth set as the hypocentral depth. Therefore
some events (e.g. Finisterre, Northridge, Napier, Buller, Khait, etc.) have a strongly reduced
prediction and thus a residual larger than in Figure 3.4 resulting in a stronger control of the
landscape modal slope and a larger scatter. For reference the fit obtained in Figure 3.4 is in-
cluded.
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diction, normal faults are assumed to produce as much shaking as reverse slip and strike slip
mechanisms. For comparison, the model prediction with 30% reduced shaking for normal
faults (as in Figure 3.6) are shown in grey.
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Figure 3.16 – Landslide area-frequency distribution for our 11 exhaustive inventories. Bins
were logarithmically spaced between the smallest and largest landslide area of each catalogue,
with a number of bins equal to the square root of the number of landslides in the inventory.
The decay exponent and its 1 − σ uncertainty were obtained by least-square minimization of
the bins with a probability density 10 times smaller than the probability density at the roll-over
to avoid to be biased by the roll-over of the distribution.



Link

In Chapter 3, I have proposed a new analytical prediction of the total landslide
area and landslide volume caused by an earthquake. This seismologically-consistent
prediction is derived from seismological and geomorphological scaling relationships
and accounts for important processes such as wave attenuation, ground shaking satu-
ration and fault size growth with moment. The landscape sensitivity to ground shak-
ing is empirically constrained with the landscape modal slope, and by considering
the proportion of the shaken area with hillslopes steep enough for landslides to occur.
I have shown that this prediction has a higher accuracy compared to previous rela-
tionships, although it fails for settings with exceptional rock strength or earthquakes
with exceptional ruptures. This prediction is easy to implement in landscape evolution
models and for rapid assessment of earthquake secondary hazards.
The development of this relation is an important step towards understanding the net
effect of earthquakes on long term topographic evolution, as discussed in Chapter 6.
Furthermore, explicit use of seismological and geomorphological parameters will per-
mit going beyond comparing earthquakes of different sizes and exploring which con-
ditions may lead to earthquakes with a negative mass balance, i.e., more erosion than
rock uplift. Its analytical form allows inexpensive computation of an earthquake mass
balance and therefore evaluation of the net topographic change caused by many earth-
quakes over longer timescales.
In the development of the analytical model I also suggested that landslide response to
shaking should be considered in the context of the fact that strong motion may cause
damage in the ground and reduce cohesion, in addition to the force balance changes
due to the transient accelerations of the ground (e.g., Newmark, 1965). If damage oc-
curs above a threshold of shaking, then many slopes may be damaged by an earth-
quake but not fail coseismically. We would expect these slopes to be more sensitive to
further perturbations and such persistent damage may explain the elevated fluvial sed-
iment transport rates and landslide rates observed after some earthquakes (Saba et al.,
2010; Hovius et al., 2011; Parker et al., 2015). These aspects will be quantified for var-
ious earthquakes in Chapter 4. We would also expect such ground damage to leave a
signature in the geomechanical properties of the subsurface, possibly related to hydro-
logical or seismological changes observed during and after earthquakes (Wang et al.,
2004; Sawazaki and Snieder, 2013; Nakata and Snieder, 2012). The relations between
co-seismic and post-seismic velocity changes in the subsurface, and ground damage
and landslide rates will be discussed in Chapter 5.
Before comparing the prediction of Chapter 3 to the uplift caused by earthquakes, we
will assess the contribution of post-seismic enhanced erosion that has been suggested
to be significant by preliminary studies (Hovius et al., 2011). To this end, in Chapter 4,
I will use time series of landslide maps from the epicentral areas of four intermediate
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to large earthquakes (Mw 6.6 to 7.6) to assess the influence of earthquakes on the linger-
ing landslide susceptibility of hillslopes. This requires correction for variable climatic
forcing. I will also probe which mechanism best explains the observed changes, and
estimates how the post-seismic erosion compares to the coseismic erosion.



Chapter 4

Transient changes of landslide rates
after earthquakes.

Abstract

Earthquake impart an impressive forcing on epicentral landscapes, with immediate and often
catastrophic hillslope response. However, their legacy on geomorphic process rates remains
poorly constrained. We have determined the evolution of landslide rates in the epicentral ar-
eas of four intermediate to large earthquakes (Mw 6.6-7.6). In each area, landsliding correlates
with the cumulative precipitation during a given interval. Normalizing for this meteorological
forcing, landslide rates have been found to peak after an earthquake and decay to background
values in 1-4 yr, with the decay timescale probably proportional to the earthquake magnitude.
The transient pulse of landsliding is not related to external forcing such as rainfall or after-
shocks, and we tentatively attribute it to the reduction and subsequent recovery of ground
strength. Observed geomorphic trends are linked neither with groundwater level changes nor
with root system damage, both of which could affect substrate strength. We propose that they
are caused, instead, by reversible damage of rock mass and/or loosening of regolith. Qualita-
tive accounts of ground cracking due to strong ground motion abound, and our observations
are circumstantial evidence of its potential importance in setting landscape sensitivity to mete-
orological forcing after large earthquakes. 1

1. Originally published as: Marc, O., Hovius, N., Meunier, P., Uchida, T., and Hayashi, S. Transient
changes of landslide rates after earthquakes, Geology, DOI:10.1130/1G36961.1, 2015. COPYRIGHT 2015
Geological Society of America. For permission to copy, contact editing.at.geosociety.org.
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4.1 Introduction

In steep terrain, large earthquakes can trigger widespread landsliding (e.g., Keefer,
1994; Meunier et al., 2007), which can persist long after coseismic activity has ceased.
This may affect the socio-economic recovery of epicentral areas (e.g., Huang and Li,
2014), but also the sediment load of rivers and adds to the total erosional effect of an
earthquake. High landslide activity has been observed, for example, during several
years after the Mw > 7.5 1999 ChiChi (Taiwan) and 2005 Kashmir earthquakes (Lin
et al., 2008; Hovius et al., 2011; Saba et al., 2010). However, the magnitude of the geo-
morphic legacy of earthquakes and the manner of its decay have not been determined,
in part because the seismic effect must be isolated from the strength of meteorological
forcing and other potential controls on landsliding. For this, knowledge of the local
relation between rainfall and landslide rate under normal, aseismic conditions is re-
quired.
We have compiled time series of landslide inventories in the epicentral areas of four in-
termediate and large earthquakes with similar mechanisms and source depths. These
inventories span periods before, during and after the earthquakes and can be com-
pared with matching records of precipitation and background seismicity. Normalizing
for meteorological forcing, we demonstrate that landslide rates were significantly el-
evated for periods of 0.7-4.5 yr after these earthquakes, and that order-of-magnitude
increases in landslide rate decreased exponentially to background values over this in-
terval. Aftershocks and subsequent seismicity, and biological and hydrological effects
of the earthquakes do not match this transient geomorphic response, leaving mechan-
ical ground strength reduction and progressive healing as the probable cause of the
observed geomorphic changes.

4.2 Cases, data and methods

Here, we consider four shallow thrust earthquakes of intermediate to large mag-
nitude: the 1993 Mw 6.9 Finisterre (Papua New Guinea) earthquake (Stevens et al.,
1998), the 1999 Mw 7.6 ChiChi (Taiwan) earthquake (Shin and Teng, 2001), and the
2004 Mw 6.6 Niigata (Hikima and Koketsu, 2005) and 2008 Mw 6.8 Iwate (Suzuki et al.,
2010) earthquakes in Japan. For each of these earthquakes, we have assembled data to
evaluate the co-evolution of mass wasting, seismicity and rainfall in epicentral catch-
ments. The 39km2 Imokawa (Niigata) and 430km2 of the Hazama (Ichi-, Ni- and San-
) and Iwai (Iwate) catchments in Japan have a temperate climate with winter snow
and larger rainstorms in summer and fall. They are mostly underlain by young vol-
canic tuffs and ignimbrites. The Finisterre Mountains of Papua New Guinea are also
dominated by volcaniclastic rocks, partially capped by marine sediments. They have
orographically enhanced tropical rainfall throughout the year. Our landslide mapping
covers a 1380km2 area mainly in the south flank of this mountain range. The Choshui
catchment in Taiwan is composed of Neogene shales and sandstones, with greenschist
facies metasediments in the eastern headwaters, and the climate is sub-tropical with
typhoons. There, landslide mapping was restricted to three southern subcatchments
with a total surface area of 1280km2.
We have used time series of satellite images or aerial photographs to map new land-
slides in vegetated topography and compute mobilization rates before, during and
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after the earthquakes (see the methods section of Appendix 4.7, and Suppl. Table 4.1
therein). Time resolution is particularly high for the ChiChi earthquake case, with 34
map intervals over the period 1994-2006 and five intervals between 2009 and 2013. We
covered 16 intervals between 1989 and 2010 for the Finisterre earthquake, 6 intervals
between 2006 and 2013 for the Iwate earthquake, and 7 intervals between 1999 and
2009 for the Niigata earthquake. The length and number of intervals was limited by
the available imagery. We computed the total volume of debris mobilized during a
map interval with global area-volume scaling relationships Larsen et al. (2010) (see
Appendix 4.7), avoiding landslide amalgamation to obtain conservative volume esti-
mates (Marc and Hovius, 2015).
In each area, we have compiled records of ambient seismic activity and rainfall, the
two main triggers of landsliding. The ambient seismicity, based on the catalogue of
Storchak et al. (2013), comprises all earthquakes other than those mentioned above.
This was restricted to earthquakes < 33 km depth and < 30 km away from the map-
ping area. The largest ambient earthquake in any of the records had Mw 6.3. Beyond
the defined depth and distance range, earthquakes of this size are unlikely to trigger
significant landsliding because of seismic wave attenuation (Meunier et al., 2007).
Meteorological conditions during map intervals were constrained with available data,
which varies between cases. For the Japanese cases, we used daily precipitation (solid
and liquid) measurements from local rain gauges, but for the New Guinea case, we
were restricted to monthly total precipitation interpolated from distant stations (see
the Appendix 4.7). In Taiwan mountain range, where rain data are scarce and dis-
continuous, we used daily records of river discharge near the outlet of the Chenyoulan
catchment, (23.72 ◦N, 120.84 ◦E), a major subcatchment of the Choshui river. We filtered
the hydrograph to remove the baseflow and obtain an equivalent daily precipitation
averaged over the whole catchment (Eckhardt, 2005) (See Appendix 4.7, Suppl. Fig.
4.4).

4.3 Precipitation variability and landsliding

To isolate the long-term effects of large earthquakes on landslide rates, we first
removed meteorological effects. During intervals without major seismic activity, the
rate of landsliding should be related chiefly to the amount of precipitation (Iverson,
2000), but the nature of this relation is underconstrained and probably prone to local
effects. We have sought to constrain the local relationship between the total landslide
volume per unit of mapped area, V , over a mapping interval and the cumulative pre-
cipitation, P , during this interval (Table 4.1 ; Fig. 4.1) for the ChiChi case with data
from 14 pre-earthquake intervals between 1994 and 1999. V correlates best with an
exponential function of P (R2 = 0.89). Hence, the total landslide volume, V p, expected
for an interval with known P can be found by:

V p = A exp

(
P

B

)
(4.1)

where A = 5m3.km−2 and B = 68mm are area-specific empirical constants, probably
reflecting the area ś pre-earthquake susceptibility to slope failure and the geomorphic
efficacy of rainfall (cf., Burtin et al., 2014), respectively (Fig. 4.1). Notably, the rate
of landsliding during 2009-2014, significantly after the end of the transient geomor-
phic response to the ChiChi earthquake according to Hovius et al. (2011), fits well with
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Figure 4.1 – Total landslide volume per unit mapped area against cumulative precipitation
proxy, P , in the ChiChi (Taiwan) area. In this case, P is obtained by hydrograph filtering. Note
that the pre-earthquake relationship between climate and landsliding is consistent with the
long term data (post 2009).

Equation 4.1. This interval included the exceptional rainfall during passage of typhoon
Morakot (Chien and Kuo, 2011), confirming the robustness of our empirical expression
for the precipitation control on landslide rates over a large range of rainfall. It also sug-
gests that intervals sufficiently long after a seismic perturbation can be used together
with the pre-earthquake data to derive a climatic normalization.
The Niigata and Finisterre cases are less well constrained, but follow the same pattern

as the ChiChi case, with landslide rates during post-seismic intervals systematically
above background levels, determined before or longer after the earthquake (Fig. 4.5).
Thus, it seems reasonable to define the climatic normalization based on post seismic
data only, as necessary for the Iwate case (Fig.4.5). Ideally, the parameters of this nor-
malization would relate to physical characteristics, such as rock strength, landscape
steepness and pore water pressure. However, the nonlinear nature of Equation 4.1
indicates that the interval over which landsliding and precipitation are summed mat-
ters, and that a physically sound relationship between precipitation and landsliding
must be based on individual rain events. Available remote sensed imagery stipulates
that most of our landslide mapping intervals span multiple rain events, precluding
an optimal approach. Despite this limitation, normalization for the rainfall control on
landslide rates according to Equation 4.1 is adequate for our purpose.

4.4 Enhanced post-seismic landsliding

The ratio V ∗ = V/V p, should track non-climatic changes in the landslide rate,
due either to secondary seismic forcing (i.e., aftershocks or ambient seismicity), or a
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Figure 4.2 – Normalized landslide rate against time in the (A) Chi-Chi, Taiwan (B) Niigata,
Japan (C) Finisterre, Papua New Guinea, and (D) Iwate, Japan, earthquake epicentral areas.
The right hand y-axis shows the magnitude of local earthquakes and the river water dishcarge
in (A). In each insets the black box shows the mapping area location. Each bar width repre-
sents the interval time span. Vertical whiskers represent the 1σ uncertainty on V ∗ obtained by
propagating the uncertainty of our climate normalization V p (Fig. 4.1, 4.5) and of our volume
estimate V . Note that the coseismic intervals are plotting off the scale.

change in the susceptibility of the topography to slope failure. In this section we ana-
lyze the temporal evolution of the precipitation normalized landslide rate V ∗ to reveal
and quantify the long-term effect of earthquakes on hillslope stability. In each case, the
earthquake disturbance is characterized with the peak change of V ∗ after the coseismic
interval, and the time until complete recovery, tr, defined here as the return of V ∗ to
within the range of values for background conditions.
In all cases, V ∗ is relatively constant before the earthquake, varying between 0.5 and
2, and then increases by several orders of magnitude in the coseismic interval (Fig.
4.2). After this, V ∗ decays rapidly over one to several years until values around 1, on
timescales always exceeding by far the period of aftershocks, which typically lasts one
to a few months (Fig. 4.2). The peak and decay sequence is best constrained for the
ChiChi earthquake, with 16 intervals of 32-256 days, over which the evolution of V ∗
is well described by an exponential decay function (R2 = 0.76). Scatter in this data
set may be due to the limitations of the rainfall correction but also to local seismicity,
such as the 2013 Mw 6.3 Nantou earthquake (Fig. 4.2), or the occurrence of rare large
landslides, possibly unrelated to instantaneous rain forcing, for example in late 2012.
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The exponential best fit to V ∗ values over the interval of landslide rate decay
after the ChiChi earthquake defines a 22x (-13/+28, 1σ) increase of the normalized
landslide rate, averaged over a year, with respect to the pre-earthquake period and a
recovery time tr = 3.8 ± 0.9 yr. The other cases only have 1-2 intervals with elevated
landslide rates, showing a fast and complete recovery that does not disagree with the
non-linear evolution observed in the ChiChi case. The peak change of V ∗ was 16x,
9x, and 5x, and tr = 1.5-2.7 yr, 1.0-2.4 yr and 0.5-0.9 yr, for the Finisterre, Iwate, and
Niigata, earthquakes, respectively. This suggests a correlation between the earthquake
magnitude and the recovery timescale (Fig. 4.6).
During this transient geomorphic response, landsliding at elevated rates adds to the
debris volume mobilized by an earthquake. In all four cases considered here, these
post-seismic landslides represent only∼ 2%−5% of the volume of coseismic landslides.
The post-seismic landslide volume for the ChiChi earthquake is considerably smaller
than previously suggested based on analysis of river suspended load measurements
(Hovius et al., 2011), implying that post-seismic landsliding may not be the principal
cause of heightened fluvial sediment transport rates after large earthquakes.

4.5 Temporary substrate weakening

Despite differences in substrate and climate the four earthquakes have induced
a common geomorphic response, with a rapid, possibly exponential recovery phase,
unrelated to aftershocks and rainfall forcing. This could have had several causes.
Oversteepened slopes can form in the crowns of landslides, promoting subsequent fail-
ures and expansion of erosion scars. Such secondary failures in the scarps of coseismic
landslides make up 15% − 20% of the total volume of post-seismic landslides in the
Finisterre and ChiChi areas and 30% − 50% in the Niigata and Iwate areas. Thus, this
mechanism alone cannot explain the transient geomorphic response.
The root system of the verdant hillslope vegetation in all study areas may have been
damaged by shaking, leading to bulk ground strength reduction. Studies at the tree
scale in seismically perturbed mountain terrain in New Zealand found very little dam-
age or growth disturbance caused by strong ground motion (Allen et al., 1999; Vittoz
et al., 2001). Moreover, in the ChiChi case, where the landslide rate excursion was the
strongest, no significant reduction of the canopy Normalized Difference Vegetation In-
dex could be found (Suppl. Fig. 4.7). In as far as the health of above ground biomass
is tied with its root mass state, we have no indication that the latter was pervasively
affected by the earthquake, resulting in a geomorphologically significant decrease of
ground strength.
Pore pressure variations due to seismically induced groundwater level changes were
also not a likely driver of the observed trends in landsliding, as they typically dissipate
within months (Muir-Wood and King, 1993). After the ChiChi earthquake, the ground-
water system recovered in 3 months (Wang et al., 2004), an order of magnitude faster
than landslide rates.
Finally, hillslope strength reduction could be due to mechanical damage affecting the
superficial layers, by decompaction of soil and colluvium, or an extension and dilation
of cracks, joints and bedding planes in regolith and rocks. Field investigations have
reported extensive ground cracking in earthquake epicentral areas (e.g., Tutton and
Browne, 1994; Owen et al., 2008), with possibly lasting geomorphic effects.
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If reduced hillslope strength is indeed a dominant cause of elevated post-seismic land-
slide rates, then their systematic decrease might be attributed to the erosional removal
of damaged layers, or to a healing mechanism. Although damaged layers may be re-
moved by post-seismic landsliding during the recovery time, this only involves 5−10%
of all steep slopes affected by strong ground motion. Spatial heterogeneity of the shak-
ing intensity and ground strength could explain why relatively few slopes fail during
recovery. However, if the removal of damaged slope materials would dominate the
recovery, then the recovery of V ∗ should be proportional to the occurrence of post-
seismic landslides. In that case, we would expect a very slow recovery during rela-
tively inactive periods and a sudden drop of V ∗ after major landslide episodes. In the
well documented ChiChi case, V ∗ decreased steeply over the relatively dry interval
10/1999-06/2001, preceding the typhoon Toraji. In contrast, it did not change much
over this first large typhoon after the earthquake, which caused substantial landslid-
ing (Fig 4.1 and 4.2, Appendix 4.7), suggesting that erosional damage removal was
not an important mechanism of recovery. Instead, the occurrence of non-linear soil
strength recovery after shaking has been shown by (Lawrence et al., 2009). This may
be due to rearrangement of aspherical clasts under overburden weight and enhanced
by groundwater percolation. Bedrock "healing" could be due to crack closure under
pressure, infilling with sediment and/or rapid mineral precipitation.
The size of landslides in the aftermath of an earthquake may hold information about
the depth range affected by seismic reduction of the substrate strength. As landslide
surface area and average depth are linked (Larsen et al., 2010), (see Appendix 4.7), the
range of landslide depths can be derived from the frequency distribution of mapped
landslide areas. In all four cases, this distribution can be described by a power-law
for large landslides with a roll-over at the mode of the distribution (Fig. 4.3), con-
sistent with earlier work (e.g., Malamud et al., 2004a). Area-frequency distributions
of landslides during the recovery periods were similar to those of background inter-
vals, albeit with higher rates. Hence, more landslides occurred at all sizes, implying
uniform ground strength decrease at all depths relevant to the observed slope failure
(∼ 0 − 10m). It also means that the post-earthquake increase in volumetric landslide
rate corresponds to an equivalent increase in areal landslide rate and landslide fre-
quency (Suppl. Fig. 4.8).

In the Finisterre Mountains and in the ChiChi area, many landslides had depths
> 2m (Fig. 4.3). In these steep terrains soil is mostly discontinuous and thin implying
that the underlying bedrock and regolith were damaged. Ultimately, further study is
required to understand the damage process and the relative contributions of damage
removal and healing to the landslide rate recovery.
Our data suggest that damage recovery is near complete, even though one might ex-
pect at least some damage to be permanent. Because seismically active areas have
damaged rock as a matter of cause, some additional damage due to a single earthquake
might easily blend in this background. Moreover, permanent damage is probably more
likely to accumulate in relatively intact rock below the soil and regolith layer, at depths
> 5m, which are only rarely sampled by landsliding. For these reasons our analysis
may not be able to detect permanent damage.
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Figure 4.3 – Area-frequency distributions for the background and post-seismic intervals in the
ChiChi, Taiwan, Iwate, Japan, and Finisterre, Papua New Guinea earthquake epicentral areas
(See Appendix B). The equivalent mean depth derived from area-volume scaling relationships
(Larsen et al., 2010) is also reported.

4.6 Conclusion

We have estimated evolving landslide rates in four areas affected by shallow
thrust earthquakes ranging from Mw 6.6-7.6. These rates reflect external forcing and
propensity to failure of local topography. To isolate the lasting effect of earthquakes,
we have empirically normalized observed rates of landsliding by the magnitude of
rainfall forcing. Our findings reveal that intense and widespread mass wasting during
an earthquake is followed by a possibly exponential recovery of landslide rates over
many months to years, unrelated to aftershock activity. In the studied examples, nor-
malized post-seismic landslides rates were initially 5-22x higher than equivalent pre-
seismic rates, recovering to background values in 0.7 ± 0.2 − 3.8 ± 0.9 yr, apparently
with greater peak rates and longer recovery times for larger earthquakes. However,
enhanced landsliding following initial coseismic shaking does not add significantly to
the volume of coseismic landsliding, 2%− 5% in our cases. Because the evolving land-
slide rates could not be linked to any external forcing we posit that they relate to a
transient ground strength decrease. Excluding root damage and water table change,
the most likely processes are reversible decompaction of soil and colluvium and/or
bedrock damage caused by the earthquake strong motion. Uniformity of changes in
the frequency of slope failure across the full size range of landslides indicates that
strength decrease is not limited to soil but also affects shallow bedrock.
These results underscore that landslide hazard may remain elevated several years af-
ter intermediate and large earthquakes and that improved understanding of reversible,
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seismically induced changes of ground strength may aid effective planning of socio-
economic recovery of earthquake epicentral areas. Importantly, regional ground strength
is not a static, but a dynamic parameter, that may vary significantly due to earthquake
disturbance and then recover through active but as yet unidentified processes.
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4.7 Supplementary materials to Chapter 4

4.7.1 Landslide mapping

We used pairs of satellite images or aerial photographs to map new landslides in
forested catchments at high temporal resolution and compute landslide rates (see Table
4.1). Landslide areas are detected because they clear standing vegetation that contrasts
strongly with bare rock or sediment. The resolution did not generally allow adequate
distinction between landslide scars and deposits. Therefore, landslides were mapped
as a single disturbed area. However, where landslides generated debris flows, or river
aggradation, we only mapped what appeared as the landslide source. In case of land-
slide reactivation we only mapped the portion of the previous slide where the new
collapse occured. We never mapped old landslide scar textural changes (where only
the interior of an existing scar appeared with a different texture), as they are likely
to be only minor reactivation and rockfalls with negligible volume. Mapping of an-
thropogenic clearings, often characterized by sharp, straight boundaries, was avoided
as much as possible. Areas with slopes gentler than 10◦, or corresponding to field or
human activities in higher resolution, more recent imagery (e.g., Google Earth) were
also avoided. The landslide polygons were all delineated by hand, using DEM (at 10m
resolution for Japan, 30m elsewhere), and GoogleEarth high resolution image to avoid
amalgamation of different, adjacent failures that would cause volume over-estimation
(Marc and Hovius, 2015). Thus we are confident that our landslide area mapping is
rather conservative and well suited to be converted into volumes with area-volume
empirical scaling (Larsen et al., 2010).

4.7.2 Landslide volume computation

We have used published area-volume relationships (Larsen et al., 2010) to es-
timate the volume of landslides from the mapped disturbed areas. It was assumed
that landslides with area > 105m2 involved bedrock, and that smaller landslides were
mixed bedrock and soil failures. Landslide maps typically do not distinguish between
scar and deposit, lumping the two in one area measure. According to Larsen et al.
(2010) scars and deposits have area-volume relations with the same power-law expo-
nent (Larsen et al., 2010), implying constant size ratios between scar and deposit areas
of 1.1 and 1.9 for mixed and bedrock landslides, respectively. Hence, we have esti-
mated the scar area by dividing the mapped landslide area by 2.1 and 2.9 for mixed and
bedrock landslides, respectively, assuming that runout was equal to the scar length.
This may lead to an overestimation of landslide scar volume where runout was much
longer, mostly for small slides, which do not contribute significantly to the total eroded
mass. Conversely some large landslides on gentle slopes have overlapping scar and
deposit areas, meaning that our correction causes a significant underestimation of the
scar size and thus the landslide volume. As a systematic way to constrain runout
variations is not available, we have applied a blanket correction for every slide, thus
obtaining a conservative total volume. We have calculated the volume of every indi-
vidual landslide in a catalogue, and summed to obtain a total volume of landslides for
each earthquake. The average depth of each landslide was simply obtained by divid-
ing the scar area by its estimated volume. Uncertainties in this approach include the
coefficient and exponent of the landslide area-volume relations, V = αAγ , for which
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standard deviations have been reported as σα = σγ = 0.005 for mixed bedrock-soil
landslides andσα = 0.02 and σγ = 0.03 for bedrock landslide scars (Larsen et al., 2010).
For potential mapping errors a standard deviation of 20% of the mapped area was arbi-
trarily assumed. Assuming no covariance between these three sources of uncertainties
we used gaussian propagation of error to obtain 1 − σ uncertainties on the volume
of each mapped landslide. The standard deviation on the total landslide volume for
an earthquake was calculated assuming that the volume of each individual landslide
was unrelated to that of any other, thus, ignoring possible co-variance. In all areas, the
uncertainties on the total volume of an interval was typically about 10 to 15% of the
total volume and reaching 30% for a few intervals where total volume is dominated by
individual events.
For one interval in the Niigata and Iwate time series we had non-homogeneous map-
ping and had to apply a specific correction. In the Iwate area, the last mapping, in
2013, covered only 143km2 in the upper part of our regular 430km2 mapping area.
However, this area was among the most affected by landslide in the previous inter-
vals, containing on average 60% of the landslide volume mobilized between 2009 and
2012. Therefore, we normalized the 2013 interval by multiplying its total volume by
1.4.
In the Niigata area, no airphotos were available to constrain the pre-earthquake land-
slide rates and we could only map landslide activity based on 15 m resolution pan-
sharpened Landsat 7 imagery (Table 4.1). Only a few landslides were detected and
we added landslides in neighbouring catchments, assuming that they must have sim-
ilar average landsliding rate. Given that we accessed only low resolution imagery the
1999-2003 minimum landslide area we could detect was about 1000m2 compared to
∼ 10m2 in more recent years. In the recent mapping, the average proportion of total
volume coming from landslides > 1000m2 is about 30% and hence it is likely that we
underestimate our pre-earthquake rate by a factor of 3 and have corrected this rate ac-
cordingly. This relies on a constant ratio between small and large landslides, before and
after the earthquake. This is consistent with our observation of constant size-frequency
distributions in the other study areas (Fig. 4.3).

4.7.3 Climatic forcing

In Japan we used daily precipitation data from rain gauges located near to the
mapped catchments (JMA, http://www.data.jma.go.jp/gmd/risk/obsdl/index.php,
last accessed February 2015). We averaged data from the Matsurube station (39.01◦N,
140.86◦E) and the Komanoyu station (38.94◦N, 140.82◦E) for the Iwate area. For the
Niigata area, we used data from the Sumon station (37.34◦N, 139.03◦E). In this two
cases snow precipitations were measured by the rain gages but we could not differ-
entiate the effects of rainfall and snowmelt on landslide triggering. In the Finisterre
range of Papua New Guinea local climatic data are completely absent. Therefore we
used interpolated monthly total precipitation, derived from surrounding rain gauge
data (Meyer-Christoffer et al., 2011). The closest stations are near the towns of Lae and
Madang in the coastal plains, about 130 km to the South-East and 90 km to the North-
West, respectively. These stations may have a markedly different rainfall pattern com-
pared to the mountain range and certainly do not provide better than an estimate of
the relative variations of the average regional climate.
In Taiwan, we have used long-term daily record of river discharge, Q, near the outlet
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of the Chenyoulan catchment (23.72◦N, 120.84◦E) (Fig. 4.4). These measurements were
almost continuous with only a small data gap in 2001 that was filled in using a down-
stream station (cf., Hovius et al., 2011). The runoff discharge, Qr, that can be turned
into a rainfall proxy if divided by the station drainage area, was obtained by removing
the base-flow of the hydrograph with the two parameters iterative filter proposed by
Eckhardt (2005):

Bk =
(1−BFImax)aBk−1 + (1− a)BFImaxQk

(1− aBFImax
(4.2)

WithBk andQk the baseflow and total discharge at timestep k followingBk < Qk,
a the groundwater recession constant and BFImax (defining the maximum long term
ratio between the baseflow and total discharge). The parameters used were a = 0.93
and BFImax = 0.85, apparently well suited to our data and consistent for perennial,
porous aquifers (Eckhardt, 2005). The runoff discharge was converted into a daily flux
and divided by the upstream area of the Chenyoulan catchment to obtain an equiva-
lent daily precipitation averaged over the whole catchment. River channel shifts occur
frequently and lead to inconsistent estimation of the baseflow that would significantly
bias any cumulative discharge estimate. In removing the baseflow our analysis be-
comes relatively insensitive to such issues. We have checked the empirical correlation
between the unfiltered river discharge and V, the landslide volume per mapped unit
area, and found it to be much lower (R2 = 0.6) than what we found with the filtered
hydrograph (R2 = 0.89) (Fig. 4.1), supporting our method. Note that, this river gauge
in the Chenyoulan catchment was the only one covering our whole period of analy-
sis (1994 -2014). Therefore the inferred precipitation based on the Chenyoulan river is
assumed to represent the precipitation forcing in the whole landslide mapping area,
encompassing the Chenyoulan catchment, and its neighbouring catchment to the East
and the West.

4.7.4 Landslide statistics and probability density function

Further insights on the characteristics of the landslides can be obtained from the
landslide area-frequency distribution. To be able to compare different inventories with
different number of events we computed the probability density function of a given
area of landslide (Malamud et al., 2004a), P (AL) as:

P (AL) =
NL

NTdAL
(4.3)

with NT the total number of landslides considered, AL the landslide area and NL

the number of landslides with area between AL and dAL . The bin widths, dAL , are
set to increase linearly in logarithmic space. For each earthquake area, we used 20 bins
distributed between the smallest and largest landslide recorded. The robustness of the
probability density function will depend on the number of landslides used to compute
it, therefore we had to merge all the post seismic intervals together and all the pre-
seismic intervals together, to obtain catalogue of a reasonable size. For the Niigata
case, the number of landslides in the single post-seismic interval was not large enough
to obtain a robust distribution.
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Table 4.1 – Summary of the different images used to produce the landslide inventories. L5, 7
and 8 stands for Landsat 5, 7 and 8. AP, AS, EO and IK stand for Airphotos, Aster, EO-ALI and
Ikonos satellites, respectively. The year and Julian day follows. The multiple airphotos used
for the mapping in Japan were typically taken over the course of one or two weeks hence an
approximate day is given only. Image resolution is sub-meter for the airphotos, 1m for Ikonos,
10m for EO-ALI, 15m for Aster and Landsat 7 and 8 and 30m for Landsat 5.

Finisterre Niigata Iwate ChiChi ChiChi (cont.)
L5-1989-171 L7-1999-189 AP-2006-∼255 L5-1994-86 L7-2001-225
L5-1990-142 L7-2002-245 AP-2008-169 L5-1994-246 L7-2001-257
L5-1992-260 AP-2004-∼315 AP-2009-∼165 L5-1995-109 L7-2001-321
L5-1993-262 AP-2005-∼135 AP-2010-∼325 L5-1995-204 L7-2002-132
SPOT-1994-60 AP-2005-∼255 AP-2011-138 L5-1995-249 L7-2002-180
L5-1994-201 AP-2006-∼165 IK-2012-176 L5-1995-345 L7-2003-71
L5-1995-156 AP-2006-∼315 AP-2013-∼295 L5-1996-204 L7-2003-151
L5-1996-111 AP-2007-∼315 L5-1996-236 AS-2003-189
L5-1996-223 L5-1997-94 AS-2004-58
L5-1997-161 L5-1997-238 AS-2004-282
L5-1997-225 L5-1997-318 L5-2004-306
L5-1998-181 L5-1998-113 L5-2005-228
L7-2000-355 L5-1998-225 L5-2006-71
L7-2003-027 L5-1999-84 L5-2006-199
L5-2008-022 L5-1999-228 L5-2009-175
L5-2010-150 L7-1999-316 EO-2009-244

L7-2000-79 EO-2012-187
L7-2000-175 EO-2012-297
L7-2000-271 L8-2013-106
L7-2001-49 L8-2013-154
L7-2001-177 L8-2013-278
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Figure 4.4 – Hydrograph from station 1510H049, on the Chenyoulan river, Choshui catchment,
Taiwan. Using Eckhardt (2005) filter we removed the baseflow and obtained a direct discharge
that relates to precipitation events. A precipitation proxy was formed by dividing the direct
discharge by the drainage area of the station (367km2).

Figure 4.5 – Total landslide volume per unit area for each mapping interval plotted against the
total rainfall during the same interval. Note that the open symbols representing the intervals
directly following the earthquakes plot largely above the exponential relationship defined by
the other intervals. The background intervals are regrouping pre and post earthquake intervals,
with 3, 1 and 0 pre earthquake intervals for the Finisterre, Niigata and Iwate cases, respectively.
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Figure 4.6 – Recovery time estimated for the 4 studied earthquakes against their moment
magnitude. Vertical bars give the range of estimated recovery time for each case.

Figure 4.7 – Normalized Difference Vegetation Index (NDVI) map derived from Landsat 5
imagery of January 1996 . NDVI values are strongly affected by seasonnal changes, or in place
of actual forest clearing due to landsliding (blue polygons). However, in significant portion
of hillslopes unaffected by landslides shades or clouds (red polygons), the mean NDVI values
remain fairly constant between January 1996 (pre-earthquake) and January 2000 (3 months after
the ChiChi earthquake).
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Figure 4.8 – Time series of climate normalized landslide rate in (A) Number, (B) Area and
(C) Volume (Thus (C) is equivalent to Figure 4.2 A ). The total landslide number or area was
first correlated to the total precipitation proxy (Same as Fig. 4.1), and then normalized by the
empirical relation based on the fit of the 14 pre-earthquake intervals. Note that the scatter is
significantly larger for the normalized number rate, N∗, probably because this number is much
more sensitive to censoring or mapping errors due to variations in resolution, shades coverage
or amalgamation.



Link

In Chapter 4, I have shown that landslide rates have increased by a large amount
in the epicentral areas of 4 earthquakes, independently of rainfall forcing, and then
recovered to background levels over 1 to 4 years. These changes in landslide suscep-
tibility seem independent of biological or hydrological processes and were attributed
to bedrock damage and subsequent healing. In contrast to previous estimates, I have
found that the volumetric contribution of post-seismic landsliding is small compared
to the coseismic one, less than 5%.
The small amount of post-seismic landsliding in these 4 different cases suggests that
post-seismic landsliding can be ignored in the long-term modeling of the topographic
evolution of epicentral areas, studied in Chapter 6. Nevertheless, we lack in-situ geo-
physical data to assess and constrain the ground strength decrease and its healing
mechanism. Chapter 5 aims to better constrain these coseismic and post-seismic me-
chanical changes of the subsurface with the use of seismic monitoring methods and
GPS data.
In Chapter 5, I use ambient noise recorded by seismometers in 3 out of the 4 earth-
quakes studied in Chapter 4 to monitor the local changes of elastic properties of the
subsurface. These temporal evolutions are compared to the temporal dynamics of
strength, inferred from landslide data, and to the surface deformation during the post-
seismic period, recorded by GPS networks, in order to assess which process can explain
short-term and longer-term mechanical evolution of the ground.
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Chapter 5

Co-evolution of shallow seismic
velocity changes and landslide rates
after earthquakes.

Abstract

Strong ground motion during earthquakes can result in damage at and below the Earth’s sur-
face. This is manifest in widespread co-seismic landsliding and may be a cause of the drop
in seismic velocity, commonly observed after earthquakes. A link between these two, through
changes in rock mechanical properties, is likely but has not been demonstrated. If they are
related, then landslide rates and seismic velocities should co-evolve during but also after an
earthquake, when both are known to restore toward background values. Here, we compare
landslide rate and seismic velocity in the epicentral areas of three crustal earthquakes. These
observables show significantly different evolution between events but striking similarities for
each earthquake, suggesting that they are both associated with significant weakening of the
very shallow substrate, and that this effect diminishes over time. We attribute this to pervasive
cracking at and near the Earth’s surface due to strong ground motion and subsequent, progres-
sive crack closure that we suggest to be driven by agitation during post seismic deformation. 1

1. This work is about to be submitted to Science.
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5.1 Introduction

Ambient noise interferometry and seismic wave deconvolution studies have re-
vealed significant changes of subsurface seismic velocity (0.1-10 km depth) after medium
to large earthquakes (e.g., Brenguier et al., 2008; Sens-Schönfelder and Wegler, 2011;
Takagi et al., 2012; Sawazaki and Snieder, 2013; Hobiger et al., 2014; Richter et al., 2014;
Gassenmeier et al., 2016), but the processes driving these changes and the depth at
which they occur have remained poorly resolved. Consistently, these studies have
found a velocity drop followed by a progressive, non-linear recovery of the seismic
velocity over months to years. The spatial pattern of these changes excludes changes
of the stress state or ground water level as cause in most cases. Instead substrate dam-
age related to strong motion or faulting at depth has been invoked (Rubinstein and
Beroza, 2004, 2005; Sens-Schönfelder and Wegler, 2011; Sawazaki and Snieder, 2013;
Takagi and Okada, 2012; Richter et al., 2014). Accordingly, the post earthquake re-
covery has been attributed to crack healing and was compared with the recovery of
strength or healing of damaged concrete and sandstone samples in laboratory exper-
iments, reflected in the increase of elastic moduli over logarithmic time-scales (e.g.,
TenCate et al., 2000; Tremblay et al., 2010). Notably, after the 2004 Parkfield, California
earthquake the seismic velocity recovery appeared to coincide with post-seismic de-
formation, which was interpreted to reflect stress variations in the fault zone at depth
(5-10 km) (Brenguier et al., 2008). However, the depth at which the velocity change oc-
curred was unconstrained and others have suggested that the Parkfield observations
could also be explained by healing of shallow damage (0-100 m) (Sleep, 2009). The
correlation of seismic velocity recovery and post-seismic deformation has otherwise
remained largely unexplored, and the relations between coseismic velocity changes,
superficial damage and post-seismic deformation are poorly understood.
Earthquake-induced landsliding offers a different perspective on the shallow damage
caused by earthquake strong-motion (Meunier et al., 2007, 2013). It has been demon-
strated that elevated landslide activity, resulting from a loss of substrate strength, per-
sists for months to years after an earthquake, decaying exponentially towards pre-
earthquake levels (Marc et al., 2015). Consequently, landslide activity does not only
reflect the coseismic excitation, but it may also be a measure of the landscape ´ s in-
creased susceptibility to failure resulting from structural damage of the hillslope mate-
rial. Three earthquakes for which this geomorphic transient has been shown, occurred
in areas with pre-existing networks of seismometers and GPS stations, and therefore
offer an opportunity to explore the links between slope failure, seismic velocity and
post-seismic deformation. Using joint geomorphic, seismic and geodetic observations
at these three sites, we aim at resolving the process responsible for the change of seis-
mic velocity and landslide rate, its characteristic depth, and the mechanism driving
long-term substrate healing.

5.2 Cases, data and methods

Time-dependent changes in ground strength have been inferred from landslide
susceptibility in the epicentral areas of the 1999 Mw 7.6 Chi-Chi (Taiwan) earthquake,
the 2004 Mw 6.6 Mid-Niigata, and the 2008 Mw 6.9 Iwate-Miyagi earthquakes in Japan
(Supplementary Methods, Fig 5.1, 5.2, 5.3-5.5). In these areas, we have assessed seis-
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Table 5.1 – Summary of the relaxation times estimated for landsliding, seismic velocity and
post-seismic displacement for the three earthquakes considered in this study. For the relaxation
times τS and τG we report the mean value with standard error of the mean based on N mea-
surements obtained at different stations and different frequencies or directions, respectively. *
indicates that τL was estimated from TL (Supplementary methods).

Earthquake Mw6.6+6.3 Niigata Mw6.9 Iwate Mw7.6 Chi-Chi
Recovery duration, TL, year 0.5-0.9 1-2.4* 3.8± 0.9
Landslide relaxation, τL, year 0.25-0.45* 0.5-1.2* 1.11± 0.2
Seismic relaxation, τS , year 0.32 [0.26-0.49] 0.83 [0.52-1.6] 1.10 [0.5-2.5]
Geodetic relaxation, τG, year 0.29 [0.18-0.43] 0.75 [0.55-1.05] 1.22 [1.10-1.47]

mic velocity variations by passive image interferometry (Sens-Schönfelder and Wegler,
2011), based on the correlation of the ambient seismic wavefield, and post-seismic de-
formation was constrained with GPS station time series in the epicentral areas (Supple-
mentary Methods, Fig 5.1, 5.2). The seismic and geodetic data were fit with a function
accounting for the different components of the signal, from which the relaxation time
constant, τ , could be deduced (Supplementary Methods).

5.3 Results

Near the epicenter of the Chi-Chi earthquake, a velocity drop of about 1% fol-
lowed by a non-linear recovery was found at station SSLB (Fig 5.1). A strong seasonal
cycle overprints this signal, likely related to seasonal variations of the groundwater
level (Hillers et al., 2014). Accounting for this cyclic component, the seismic velocity
recovers exponentially with a time constant of τS = 1.1[0.5 − 2.5] yr (Suppl. methods,
Figure 5.4) . Meanwhile, the landslide rate recovery after the Chi-Chi earthquake had
τL = 1.1± 0.2 yr. (Fig 5.1, Table 5.1). Thus, the post-seismic evolution of these two ob-
servables was substantially synchronous, even if at the end of 2003 the seismic velocity
recovery was incomplete (Fig 5.1).

More extensive seismic and geodetic observations in the two Japanese cases show
clearly that recovery time constants vary within a given epicentral area, but that this
intra-earthquake variability is small compared to the inter-earthquake differences. The
average seismic velocity recovery constants in the Iwate and Niigata epicentral ar-
eas are 0.67+/-0.07 and 0.37+/-0.05 years, respectively (Fig 5.2, 5.3, 5.5). The post-
seismic evolution of landslide rates in the Iwate and Niigata epicentral areas are less
well resolved, and only allow to constrain the total recovery duration. Assuming the
duration is 2 times τ (see Supplementary methods), we estimate τL = 0.5 − 1.2 and
τL = 0.25 − 0.45, in good agreement with τS for the Iwate and Niigata areas, respec-
tively (Fig 5.2, Table 5.1, Suppl Methods). We note that the magnitude of the seismic
velocity recovery varied between cases, from 30% to 100% of the coseismic drop, with-
out apparent correlation with seismic wave frequency (Fig S1,S2). These differencee
are probably related to the lithological and rheological diversity of the materials in the
epicentral areas and at different depths.
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Figure 5.1 – Time series of rainfall normalized landslide susceptibility (black bars), relative
velocity changes (in blue) and GPS measurements of surface displacements (in green) after the
Chi-Chi earthquake in Taiwan. The best least-square fit of the landslide data yield a relaxation
time of 1.1 ± 0.2 year. Inset: Map with the seismic and GPS stations as black and white dots,
the fault as dashed polygon with the thick line indicating the surface rupture, the epicenter as
a star, and landslide mapping area as a red polygon, respectively.

Figure 5.2 – Same as Figure 5.1, for the 2004 Niigata and 2008 Iwate earthquake in Japan.
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5.4 Discussion

We have shown that for 3 earthquakes in different locations, post-seismic land-
slide rates and seismic velocities have evolved simultaneously. Each event displays the
same consistent pattern of observations but with its own recovery period, suggesting
that these apparently unconnected measurements are linked by an underlying mecha-
nism.
It is well accepted and directly observed that strong motion causes a non-linear re-
sponse of the subsurface related to the formation of cracks and an increase of pore
space (Sleep, 2010). Opening of cracks in the substrate during earthquakes has also
been inferred from coseismic changes of river discharge (e.g., Wang et al., 2004), and
from the anisotropy of seismic wave propagation (Nakata and Snieder, 2012). Because
coseismic changes of seismic velocity cannot be explained by static stress changes or
hydrological effects but correlate well with coseismic shaking (Gassenmeier et al., 2016)
they are also interpreted as damage and crack opening (Sens-Schönfelder and Wegler,
2011; Hobiger et al., 2014), consistent with theoretical considerations (Ma, 2008; Sleep,
2009, 2010). This effect is strongest very near the Earth’s surface, where the confining
pressures are smallest. The immediate and strong increase of landslide rates after large,
shallow earthquakes is further evidence for significant coseismic cracking near the sur-
face. Marc et al. (2015) proposed that the post seismic decrease of landslide rates is
related to the reestablishment of material strength. The co-evolution of landslide rates
and seismic velocities after earthquakes suggests that they both relate to progressive
closure of cracks and the attendant recovery of strength in the shallow subsurface.
Landslide attributes can be used to put a minimum bound on the depth extent of sub-
strate weakening and healing. In all cases, landslides during the post-seismic recovery
period indicated failure depths between 0.5 and 10m, and a homogeneous landslide
susceptibility increase, and thus a ground strength reduction within this very shallow
layer (Marc et al., 2015). In this very shallow depth range, rock deformation on or near
the seismogenic fault (Brenguier et al., 2008; Obermann et al., 2014) cannot be responsi-
ble for laterally extensive weakening. Notably, very large earthquake-induced seismic
velocity changes (5% or more) in the first 100 m below the surface have been found in
boreholes (Nakata and Snieder, 2012; Takagi et al., 2012; Sawazaki and Snieder, 2013).
Although the material weakening implies that the velocity changes are maximal at the
surface with the strongest deformation, it is likely that part of the signal and/or some
seismic stations are influenced by changes at deeper levels (Obermann et al., 2014; Ho-
biger et al., 2014).

To investigate possible mechanisms responsible for the recovery of strength and
elastic moduli of the shallow substrate, we have evaluated the post-seismic displace-
ment measured by GPS stations in the epicentral areas of the 3 earthquakes (See Suppl.),
and found that it evolved like the seismic velocities and landslide rates (Table 1, Fig 1,
2). The geodetic relaxation times, τG, varied somewhat from station to station but av-
eraged to 1.10 [1.10-2.00], 0.75 [0.55-1.05] and 0.29 [0.18-0.43] years, in the epicentral
areas of the Chi-Chi, Iwate and Niigata earthquakes, respectively (Table 5.2, Fig. 5.6-
5.9), closely matching the relaxation times of the seismic velocity recovery and of the
landslide susceptibility in all cases. Healing is likely due to a mixture of mechanical
and chemical effects (Brantut, 2015), but our observations do not yield further infor-
mation about the detailed nature of these processes. Nevertheless, the match of the
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healing of near surface materials as documented in the landslide and velocity data,
and the post-seismic deformation allows for three possible explanations: (1) coinci-
dence, (2) the two processes depend on a common mechanism, and (3) one of the two
processes causes the other.
We exclude coincidence as the observation of matching geodetic and seismic recovery
times, T , does not only hold for our three cases, but also exists for the 2011 Tohoku
earthquake, with T ∼ 10 months (Sawazaki and Snieder, 2013; Delorey et al., 2015),
and for the 2004 Parkfield earthquake with T ∼ 3 years (Brenguier et al., 2008). A pos-
sible mechanism underpinning both the recovery of rock mechanical properties and
the post-seismic deformation could be associated with afterslip and healing of the fault
interface. Post seismic deformation may be the result of the reduction of fault friction
during earthquake rupture, allowing creep for a transient period set by the fault gouge
healing (e.g., Gratier et al., 2014; Kaproth and Marone, 2014). Moreover, fault gouge
healing, and healing of the shallow substrate may be due to similar internal processes
that could be depth independent. But, even though this scenario appears possible it
is very unlikely as the relaxation times of these processes should be vastly different
since they depend on temperature (TenCate et al., 2000), pressure and fluid availability
(Brantut, 2015), all of which differ strongly between the near-surface and mid-crustal
depths. Considering a possible causal link between processes, we deem unlikely any
significant influence of near surface healing on the post-seismic deformation. This is
because the thin near-surface layer is the weakest part of the rock column, which can-
not support more than a marginal part of the tectonic stress without any possibility to
affect fault behavior or mantle relaxation. Instead, this layer could well be affected by
geodetically recorded deformation, as contraction of the damaged substrate would be
accompanied by closure of cracks and increasing strength and seismic velocity. How-
ever, in all our cases, some parts of the earthquake-affected areas have experienced en-
hanced contraction over timescales compatible with the seismic recovery, while others
underwent little deformation or even dilation (Fig 5.10). Hence, large-scale (> 10km)
compression cannot explain the inferred crack closure directly. In addition, any re-
lation between crack closure and large-scale strain is likely complicated by the local
effect of topography on shallow stress redistribution and by the fact that crack distri-
butions may be anisotropic.
We suggest an alternative explanation based on observations of granular materials,
which exhibit pronounced "slow dynamics" (Richard et al., 2005). Experiments have
shown that disturbed granular materials progressively compact and strengthen when
activation energy is supplied by vibration or shear (Richard et al., 2005). This com-
paction is typically exponential, with a relaxation time set by the magnitude of the
agitation (Richard et al., 2005). We hypothesize that in the epicentral areas of shallow,
large earthquakes, the near surface materials, including rock mass, regolith and sedi-
ment behave as granular materials, damaged by strong dynamic strain and compacting
and strengthening subsequently at lower activation levels, induced by post-seismic de-
formation in the epicentral area. Testing this hypothesis requires data on crack density
and stress or strain observations at higher spatial resolution and remains a challenge
for future work. However, if proven correct, our hypothesis would offer an expla-
nation of Nakata and Snieder (2012) observation of anisotropy of the propagation of
shallow (0-200 m) shear waves in Japan, with a fast axis that is consistently oriented in
the arc-normal direction. Assuming that cracks opened due to coseismic shaking have
no preferred azimuth the observed anisotropy could result from preferential closure
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perpendicular to the convergence direction.

5.5 Conclusion

We conclude that geomaterials in the first tens of metres below the Earth’s sur-
face can be significantly weakened by earthquake strong ground motion, leading to
lower seismic velocities and higher propensity to failure of topographic slopes. Like
in disturbed granular material, the subsequent healing of this damage may be driven
by persistent agitation due to post-seismic deformation, the intensity and duration of
which are tracked by the recovery of seismic velocities and landslide rates. This im-
plies that geodetic constraints on surface deformation, and systematic monitoring of
shallow seismic velocities using passive image interferometry and borehole waveform
deconvolution may be a key to better understanding of the time-dependent evolution
of landslide hazard after an earthquake and the management of associated risks, but
also of the spatio-temporal patterns of seismically affected erosional, hydrological and
sedimentological processes in tectonically active areas.



112

5.6 Supplementary materials to Chapter 5

5.6.1 Supplementary methods

Landslide susceptibility changes

Ground strength variations have been inferred from landslide susceptibility ob-
served in the epicentral areas of three shallow earthquakes the 1999 Mw 7.6 Chi-Chi
(Taiwan) earthquake, and the 2004 Mw.6.6 Niigata and the 2008 Mw 6.8 Iwate earth-
quakes in Japan. We focus on these 3 earthquakes because they are the only ones for
which seismological data may be compared to time series of landslide rates. Land-
slides triggered by rainfalls were mapped using time-series of satellite imagery. To
correct for the variable amount of rainfall an empirical relationship between precipita-
tion and landsliding was developed based on time periods unaffected by earthquakes,
and used to normalize the whole dataset, thus creating a non-dimensional landslide
susceptibility (Marc et al., 2015). Variations of the landslide susceptibility in the Chi-
Chi earthquake epicentral area are best constrained and strongly supports an expo-
nential recovery with a relaxation time of 1.1 + / − 0.2 years. Post-seismic landslide
susceptibility is indistinguishable from background level after 3.8± 0.9 years, defining
a full recovery time, TL.
For the two Japanese cases, the landslide data did not allow for the determination of a
relaxation time but only for the estimation of an upper bound of the complete recov-
ery process duration, TL. Moreover, because the landslide rate remains noisy we are
limited to an accuracy of about 2-fold, meaning that as soon as the landslide suscepti-
bility perturbation L/L0 has decayed to less than 2 it may be hard to detect. Because
we can write L/L0 = 1 +A0exp(−t/τL), we considers that when t = 2τL , the perturba-
tion has decayed to 10% of A0 and is likely undetectable with our data which indicates
A0 ∼ 5− 10, for the two Japanese cases. Therefore, we bracket TL with the first time in-
terval in which the landslide susceptibility is close to background, that is TL = 0.5−0.9
yr and TL = 1 − 2.4 years and found τL = 0.25 − 0.45 yr and τL = 0.5 − 1.2 yr, for the
Niigata and Iwate areas, respectively (Fig 5.2).

Seismic velocity changes

Seismic velocity variations were observed with passive image interferometry (PII,
(Sens-Schönfelder and Wegler, 2011)) that is based on the correlation of the ambient
seismic wavefield. Here we use single station cross-correlation (See (Hobiger et al.,
2014)) because of the superior susceptibility to shallow variations in the high frequen-
cies (Figures 5.3-5.5). The seismic velocity change and recovery in the Iwate area have
already been constrained (Hobiger et al., 2014; Takagi et al., 2012) and we present here
our analysis of the velocity changes at stations ICEH and ICWH. Although NRKH sta-
tion show important changes we ignore it as it has been shown to be dominated by
deep processes (Hobiger et al., 2014; Takagi et al., 2012). Seismic velocity drop and
recovery were estimated for seismic stations YNTH and NGOH, nearby the Niigata
earthquake epicenter. For the Chi-Chi earthquake in Taiwan we have used records
from the seismic stations SSLB and TDCB, near the epicenter and at the northern ex-
tremity of the rupture, respectively. For the two Japanese earthquakes the selected
stations are within or very close to the area where landslides were mapped. They have
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the largest signal to noise ratio and show the strongest signal of velocity changes. In
Taiwan the two stations are the only ones of the BATS array that were recording before
the main shock. However, TDCB signal does not exhibit significant velocity changes
after the earthquake.

Post-seismic displacement and deformation

Post-seismic deformation was constrained based on GPS station displacement
time series in the fault zone nearby the seismic stations and the landslide mapping
area (Figures 5.6-5.9). As for the seismic stations, we focus on the stations closest to the
fault area and with a good signal to noise ratio and therefore the largest post-seismic
displacements. The collected GPS data are processed with GAMIT 10.42/GLOBK 5.16
software packages using the double-differenced ionosphere-free carrier phase obser-
vations (L3) as the basic observables. The residual tropospheric zenith delay is es-
timated every 2 hours per station simultaneously with the station coordinates by a
least squares adjustment. Fourteen IGS sites in the Asia-Pacific region are constrained
to their International Terrestrial Reference Frame 2008 coordinates and velocities in
GLOBK processing, together with the parameter estimates from GAMIT solutions to
obtain ITRF2008 coordinates of other GPS sites. In the Niigata area, we limited our
analysis to the period just before the occurrence of the Niigata-Chuetsu-Oki 2007 earth-
quake that impacted significantly the area. In the Iwate area, the data were only
recorded until August 2010. Nearby the Chi-Chi epicenter the post-seismic behavior
of the stations we use have been presented and analyzed in detail by (Rousset et al.,
2012). They showed that variable relaxation occurred along the fault. As our seismic
and landslide data are limited to the southern part of the rupture we have focussed on
the GPS station bracketing this zone only, SUN1 and YUSN. For each station we have
fitted Eq 1 to all components exhibiting a significant post-seismic relaxation while com-
ponents without transient behavior have been ignored (Table 5.2, Fig 5.6-5.9).
To assess the surface deformation associated with the post-seismic surface displace-
ments we computed areal strain. We estimate average areal strain within a polygon
composed by a number of cGPS sites using the method proposed by Shen et al. [1996].
Areal strain can be derived from variations of GPS displacement gradients on the
nodes of polygon. The contribution of each cGPS site is weighted as a function that
decays with increasing distance from the centroid of the polygon.

Relaxation times and confidence intervals

To estimate the relaxation time constant from the seismic velocity changes and the
displacement data we model the signal with a superposition of a background level, A,
a coseismic step change decaying exponentially, (C), and a sinusoidal function with
an annual pulsation w=2pi / yr and a phase Φ to account for the seasonal variations.
The model for the seismic velocity variations contains an additional permanent offset
following, Bsismo Hobiger et al. (2014). For the GPS time series, we have first removed
the linear interseismic trend from the whole time series, and then proceeded to fit the
same function, with Bsismo = 0.

F (t) = A+

(
Bsismo + Cexp

(
−t− teq

τ

))
H(t− teq) + sin(2πt+ Φ) (5.1)
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Table 5.2 – Summary of the relaxation time constants and confidence intervals for post seismic
GPS displacement on different directions. Components without value do not show significant
transient post-seismic displacement.

Earthquake/ GPS station Relaxation time (East) Relaxation time (North) Relaxation time (Up)
Niigata - 950240 0.45 [0.29-0.61] x x
Niigata - 950242 0.25 [0.10-0.45] x x
Niigata - 960568 0.16 [0.08-0.25] x x
Iwate - ICNS 0.82 [0.70-0.95] x x
Iwate - 0913 0.10 [0.06-0.14] 0.61 [0.34-1.10] 0.39 [0.22-0.61]
Iwate - HMYO 0.29 [0.25-0.34] 0.82 [0.61-1.10] x
Chi-Chi - SUN1 1.10 [1.10-1.27] 1.10 [1.10-1.10] 1.47 [1.10-1.98]

To estimate the relaxation time and its interval of confidence from the seismic and
geodetic data we used non-linear least-square fitting of models with fixed relaxation
time logarithmically spaced between 0.1 and 10 years. We computed the variance for
all model residuals and the variance ratio between each model and the best model.
With an F-test we assessed which models are statistically indistinguishable from the
best model at a 95% confidence level. The relaxation time interval producing mod-
els with fits similar to the best model gives the confidence interval of the relaxation
time. Because the variance weights equally all parts of the signal, forcing models to
adjust to various relaxation times resulted in poor estimates of the coseismic offset of
GPS signals, and for the determination of GPS signal confidence intervals, we kept
the coseismic offset constant and equal to the value determined by the best non-linear
least-square fit, with unconstrained relaxation time.
To obtain a regional average relaxation time comparable with the landslide data we
had to merge estimates and confidence interval from different seismic and GPS ob-
servations. For each seismic station in Japan, we performed an F-Test on the merged
residuals obtained from each of the 3 frequency bands to obtain a best relaxation time
and confidence interval. Then we consider that the averaged relaxation and intervals
for each station pair are representative for the epicentral area. The GPS displacement
is a vectorial measurement and in some cases different relaxation are visible along dif-
ferent directions, implying some rotation of the source process driving these displace-
ments. In any case, when comparable amplitudes of post-seismic displacement occur
with different temporal dynamics, the longest one is representative for the surface ac-
tivity. Therefore in the Iwate case, we have neglected the Up and East components of
stations 0913 and HMYO (Fig. 5.9). As for the seismic stations, we averaged relaxation
time and intervals boundaries to obtain a single, regional, estimate of the relaxation
dynamics in the epicentral area.
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Figure 5.3 – Model fit and estimation of the best relaxation time and confidence interval for the
relative velocity variations, at different frequency ranges, of the seismic station NGOH (A,C,E)
and YNTH (B,D,F) in the epicentral area of the 2004 Mid-Niigata earthquake. Data is in red,
best model in black, acceptable models in blue and other tested models in grey. The variance of
the best model over the variance of models with different relaxation times, used to determine
confidence intervals and best estimate of τS are shown for each frequency for both station in (G)
and (H). The black curve is combining the residuals at each frequency to determine a the best
relaxation time and confidence interval for a given station. The critical variance ratio above
which models are indistinguishable from the best model (at a 95% confidence level given the
number) is indicated with the black horizontal line.
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Figure 5.4 – Same as Figure S1 but for stations SSLB in the 1999 Chi-Chi earthquake epicentral
area.
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Figure 5.5 – Same as Figure S1 but for stations ICEH and ICWH in the 2008 Iwate earthquake
epicentral area. For station ICWH, at 2-4Hz, the signal does not allow to determine dv/v.
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Figure 5.6 – Model fit (B,D,F) and estimation of the best relaxation time and confidence interval
(A,C,E) for the continuous GPS stations in the Niigata epicentral area. Data is in red, best model
in black, acceptable models in blue and other tested models in grey. Station name and selected
direction are in the panels. To improve visibility of the interseismic and post-seismic signals
the amplitude of the coseismic drop has been cut.



119

Figure 5.7 – Same as Figure 5.6, for continuous GPS station in Chi-Chi area, Taiwan.
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Figure 5.8 – Same as Figure 5.6, for continuous GPS station in Iwate area, Japan.Only the
directions with a long transient behaviour are shown
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Figure 5.9 – Same as Figure 5.6, for continuous GPS station in Iwate area, Japan. Only the
directions with a shorter transient behaviour are shown
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Figure 5.10 – Areal strain computed between different cGPS stations in the 1999 Chi-Chi earth-
quake epicentral area (See Suppl.Methods). The areal strain indicates average, large scale con-
traction (upper panel) and dilation (lower panel) occur in the hanging wall of the fault where
landslide susceptibility and seismic velocity changes were measured.



Link

In Chapter 5, I have shown that the post-seismic relaxation times for landslide
rate, seismic velocity and GPS surface displacement appear to vary from earthquake to
earthquake, though they are strikingly similar for the 3 different observables in a given
epicentral area. This supports the common interpretation that the seismic velocity drop
relates to very shallow extensive coseismic ground cracking, and that thesubsequent
crack healing is responsible for the recovery of strength and elastic moduli. Further,
the recovery is consistent with the surface displacement but not with the inter-station
normal strain, suggesting the superficial regolith and fractured bedrock may compact,
and heals as a granular material agitated by the post-seismic deep deformation.
Although the landslide susceptibility presented in Chapter 4 suggested a complete re-
covery of the bedrock damage, the seismic velocity considered in Chapter 5 does not
always recover fully. This mismatch could arise if permanent damage occured deeper
than 10-20m, at depths that are sampled by the seismic velocity but not by landsliding.
It could also arise if specific, relatively rare, lithologies did not heal completely and
were coincidentally present at the seismic station sites. For now, these hypotheses are
difficult to test, and we cannot exclude that a small amount of permanent damage is
simply unresolved by our landslide susceptibility estimates. This issue will need fur-
ther attention, but in Chapter 6 I simply ignore any long lasting effects of earthquakes
on erosional dynamics of hillslopes, neglecting the relatively small amount of post-
seismic landsliding, and a potential cumulative weakening of hillslope materials.
In Chapter 5, I combine the coseismic prediction for earthquake-induced landslid-
ing developed in Chapter 3 with a standard solution for the surface displacement
caused by earthquakes. This allows me to evaluate in which conditions earthquakes
may cause more erosion than uplift, i.e., have a negative mass balance, and therefore,
limit rather than build average topography. I compute the mass balance for individual
earthquakes as well as for earthquake sequences, assuming that faults either produce
characteristic earthquakes with fixed magnitude or a range of earthquakes with mag-
nitudes following a Gutenberg-Richter distribution.



124



Chapter 6

The mass balance of earthquakes and
earthquake sequences.

Abstract

Large, compressional earthquakes cause surface uplift as well as widespread mass wasting.
Knowledge of their trade-off is fragmentary. Combining a seismologically-consistent model of
earthquake-triggered landsliding and an analytical solution of coseismic surface displacement,
we assess how the mass balance of single earthquakes and earthquake sequences depends
on fault size and other geophysical parameters. We find that intermediate size earthquakes
(Mw6.3−7.3) may cause more erosion than uplift, controlled primarily by seismic source depth
and landscape steepness, and less so by fault dip and rake. Such earthquakes can limit topo-
graphic growth, but our model indicates that smaller earthquakes and large events (Mw > 7.5)
systematically cause mountain building. Earthquake sequences with a Gutenberg-Richter dis-
tribution have a greater tendency to have predominant erosion, than repeating earthquakes of
the same magnitude, unless a fault can produce earthquakes with Mw > 8 or more. 1

1. The work reported here was in the final round of review at GRL. By the time of the final the-
sis publication it has been typo-edited, formatted and published as: Marc, O., Hovius, N., and Meu-
nier, P.: The mass balance of earthquakes and earthquake sequences, Geophysical Research Letters, 43,
2016GL068 333, doi: 10.1002/2016GL068333, 2016a. COPYRIGHT 2016 American Geophysical Union,
All Rights Reserved.
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6.1 Introduction

At the Earth’s surface, geological processes creating topographic relief compete
with geomorphic processes that level it. Where crustal deformation is fast, shallow
earthquakes can dominate the displacement of rocks and the surface (Avouac, 2007).
In the steep landscapes that prevail in such areas, shallow earthquakes can also induce
widespread landsliding (e.g., Keefer, 1994) by short-lived, cyclic changes of the normal
and shear stresses in hillslopes due to strong ground motion, shattering of the bedrock
and rapid changes in groundwater distribution. In active mountain belts most valleys
contain only small amounts of sediment, suggesting that, over multiple seismic cycles,
most landslide debris is evacuated. Therefore, erosion due to landslides should be
included in the mass balance of an earthquake. Here, this is defined as the difference
between the change in rock mass volume above a reference plane (e.g., sea level) due to
seismic and post-seismic surface deformation, and the volume of surface material mo-
bilized by seismically-induced mass wasting, adjusted for the local effects of isostatic
compensation. Strictly, this mass balance pertains to the area located above or in the
direct vicinity of shallow faults that are locked during most of the seismic cycle, where
seismic deformation is predominant. It does not include inter-seismic deformation or
erosion, which are not considered here.
Recent studies suggest that the mass balance differs between earthquakes. Despite
intense mass wasting, the 1999, Mw7.6 Chi-Chi earthquake in Taiwan caused growth
of the hanging wall topography (Hovius et al., 2011), but landsliding due to the 2008
Mw7.9 Wenchuan earthquake in China matched seismic surface uplift (Parker et al.,
2011; Li et al., 2014). And, Barlow et al. (2015) showed that tectonic subsidence was
much greater than topographic lowering due to seismically induced mass wasting for
the 2010 Mw7.2 El Cucapah Mayor earthquake. Li et al. (2014) also developed a more
general treatment of the balance of seismically-induced landsliding and uplift, assum-
ing that the rate of landsliding scales linearly with earthquake moment (Keefer, 1994).
Notably, they predicted that earthquakes larger than a critical magnitude (∼ Mw8)
would systematically have more erosion than uplift. If correct, this would have sig-
nificant consequences for the emergence and growth of mountain ranges due to seis-
mic processes. However, consideration of the spreading and attenuation of seismic
waves with increasing distance from their earthquake source, and the geometry of
faults likely to produce earthquakes of different magnitudes, suggests that the land-
slide rate is non-linear in earthquake moment (Marc et al., 2016b). Moreover, beside the
influence of local climate (Barlow et al., 2015), the amount of landsliding due to a given
earthquake should depend importantly on the steepness of the perturbed topography.
Tested against a comprehensive compilation of estimates of earthquake-induced land-
slide volumes, the seismologically-consistent model of Marc et al. (2016b) performed
better than any direct fit between earthquake moment and estimated landslide vol-
ume. We consider that this new model provides, for the first time, a robust basis for
comparison with the uplift volume, which can be computed for any given earthquake
from the surface deformation field using the approach of Okada (1985).
Here, we explore the parameters controlling the mass balance of earthquakes with a
thrust component, combining the approaches of Marc et al. (2016b) and Okada (1985).
In addition, we investigate the evolution of this mass balance for a fault experiencing
many earthquakes over the long-term. We finish by discussing the implications of our
results for the topographic evolution of fault-bounded structures and for mountain
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building.

6.2 Methods

6.2.1 Uplift Modeling

Okada (1985) has developed an analytical solution for the surface displacement
produced by slip on a plane in an elastic infinite half space. Fault slip distributions cal-
culated by inversion of geodetically measured surface deformation, using this solution
tend to be consistent with those derived from seismological inversions(e.g., Weston
et al., 2012). The vertical displacement caused by a thrust fault is dome-shaped, with
an extent scaling with the size and centroid depth of the fault (Figure 6.1A). This up-
lifted area is paired with two subsiding lobes, a major one above the footwall and a mi-
nor one in the hanging wall, above the down-dip extremity of the fault. This solution
requires specification of the fault dimensions (length and width), geometry (strike, dip
and depth centroid) and the amount of slip. We derived length, L, width, W , and aver-
age slip, D, from fault scaling relationships with seismic Moment, Mo, (Leonard, 2010)
and obtained the total uplifted volume, Vu, for earthquake scenarios by numerically
integrating all vertical surface displacement > 0.5% of the maximum, thus account-
ing for near-field subsidence at the periphery of uplift areas (Suppl. Methods). The
modeled uplifted volume Vu is approximately proportional to the earthquake moment
and independent of the fault centroid depth, as the large increase in the total uplifted
area with increasing centroid depth is balanced by the decrease in maximum surface
displacement (Suppl. Methods). The main parameters determining the uplifted vol-
ume are, therefore, the earthquake moment, Mo, and the dip, d, and rake, r, of the
fault (Figure 6.1). At d = 45◦ and r = 90◦ the amount of subsidence relative to uplift
due to earthquake slip is minimized and Vu is maximized. Vu decreases as d departs
from 45 ◦, tending to zero (with subsidence cancelling uplift) when r tends to zero or
180 (strike-slip) and becomes negative with net subsidence when r is negative (normal
fault).

6.2.2 Landslide Modeling

Complementing the surface displacement model, we have used a seismologically-
consistent model predicting the total volume of landslides triggered by an earthquake,
Vp, as a function of seismic moment, seismic source depth, R0, and landscape modal
slope, Smod (Marc et al., 2016b) Figure 6.1). The modal slope is easily extracted from a
Digital Elevation Model and is a first order indicator of the landscape sensitivity, that
is its propensity to failure (Marc et al., 2016b). This model derives from explicit consid-
eration of processes modulating the ground shaking that controls landsliding (Khazai
and Sitar, 2004; Meunier et al., 2007, 2013; Yuan et al., 2013), such as the amplitude of
high frequency waves emitted at the source and the wave attenuation due to geomet-
ric spreading. In our model, the critical magnitude, above which an earthquake causes
discernable landsliding and Vp assumes a non-zero value, is modulated by R0 and
ranges between Mw5 to 6 (Figure 6.1). Above this critical magnitude, Vp rises sharply,
driven by the exponential increase of the ground shaking with increasing earthquake
moment and by fault length increase. After reaching the hinge magnitude, Mh = 6.75,
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the acceleration term saturates (Boore and Atkinson, 2008; Baltay and Hanks, 2014) and
Vp is primarily increasing due to fault length growth with moment, Vp ∼ L ∼ Mo2/5

(cf. Marc et al., 2016b) (Figure 6.1). This model differs from the classic, empirical rela-
tionship proposed by Keefer (1994), in which landslide volume increases linearly with
earthquake moment.
The landslide model has been shown to be more accurate than empirical relationships,
with predicted landslide volumes within a factor of 2 of independent estimates for
earthquakes with magnitudes between 5 and 8 in two-thirds of 40 documented cases
(Marc et al., 2016b). However, it has been found to over-predict landslide volumes
where exceptionally strong lithologies, such as massive carbonates, are present, and
for earthquakes with complex rupture mechanisms, such as super-shear.

6.3 Mass Balance of single earthquakes

The mass balance of earthquakes is found as the ratio of the curves for total up-
lift and total landsliding. Here, we explore the role of earthquake magnitude and the
effects of source depth and landscape steepness, which modulate landsliding.
For a given fault geometry, the uplift term increases linearly with the seismic moment,
but the relation between landsliding and the seismic moment is more complex. In
small earthquakes, the ground shaking is insufficient to cause substantial landsliding
and uplift always dominates. However, above the threshold for slope failure, the land-
slide term increases much faster with moment than the uplift term, up to the hinge
magnitude, Mh = 6.75. Beyond this magnitude, landsliding scales with moment to
the power 2/5, and triggered landslide volume increases much slower than the uplift
volume. Therefore, for a given source depth and landscape steepness, the landslide
volume may exceed the uplifted volume around the Mh = 6.75, and intermediate size
earthquakes, with Mw6 to 7, may have a negative mass balance (Figure 6.1). But for
large earthquakes we find, in contrast to (Li et al., 2014), that the net surface uplift al-
ways exceeds the expected landsliding (Figure 6.1).

The range of earthquake magnitudes with a negative mass balance is strongly con-
trolled by the source depth and landscape steepness and is smallest for earthquakes
rupturing at greater depth or below gentle topography. For example, according to our
model, an earthquake with source at 8km or deeper below topography with modal
slope less than 23◦will never be erosive (Figure 6.1B). Even in very steep landscapes
with modal slope of 32◦, earthquakes deeper than 14 km will never be erosive (Fig-
ure 6.1C). These considerations apply to a thrust fault with a dip of 30◦and pure dip-
slip (Rake=90◦). The net surface uplift would be reduced if the rake increased or
the dip decreased (Figure 6.1), affecting the earthquake mass balance. For example,
shallow earthquakes on a fault with dip of 15◦and a rake of 120◦, could still have ex-
cess erosion at Mw ∼ 7.3 However, for values consistent with thrust earthquakes (i.e.
120◦ > Rake > 60◦ and 10◦ > dip > 45◦) these parameters have limited importance
compared to topographic steepness and source depth (Figure 6.1). .In summary, our
results indicate that the mass balance of earthquakes depends critically on the earth-
quake characteristics and that above a certain magnitude, uplift always dominates. For
a given earthquake the typical uncertainty of the total landslide volume predicted by
the model we use here is about a factor of two (Marc et al., 2016b), meaning that even
for a Mw6.8 event, uplift and erosion are the same within error for most earthquake
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Figure 6.1 – Sketch of the uplift and erosion caused by an earthquake above its causative
fault, (A), and coseismic uplift and landsliding against seismic moment for earthquakes with
different landscape modal slope (B) and different asperity depth (C).
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settings (Figure 6.1).

6.4 Mass balance of earthquake sequences

We have explored the effects of different physical parameters on the mass balance
of single earthquakes. However, growth of fault-controlled structures and mountain
ranges occurs over many earthquake cycles (King et al., 1988). To assess the long-term
mass balance of the locked portion of a seismogenic fault we have modeled two end-
member scenarios. One is a fault dominated by repeating earthquakes of characteristic
magnitude. Although such faults are relatively rare, the Alpine Fault of New Zealand
may be an example (Berryman et al., 2012). The other is a fault rupturing in earth-
quakes of various magnitudes on random sub-segments. In this second scenario, we
assume that the distribution of earthquake magnitudes follows a Gutenberg-Richter
(GR) relationship (Gutenberg and Richter, 1954), described by a power-law decay with
exponent ∼ 1, with at least one earthquake of maximum magnitude, MwX , ruptur-
ing the entire fault. The Gutenberg-Richter relationship applies at regional scales and
although we have limited empirical evidence, it seems to hold, for example for the
Himalayan front (Avouac, 2015). Therefore, both end-members are relevant as they
apply to specific, major fault systems, but many fault systems may have intermediate
behavior.
For these two scenarios, the long-term mass balance of a seismogenic structure, de-
fined as the mean volumetric change (MVC), is obtained by summing the erosion and
uplift caused by all earthquakes on the structure with 5 < Mw < MwX , and dividing
by the total number of earthquakes. In this calculation, the effects of smaller earth-
quakes, Mw < 5, are neglected because our model predicts little or no landsliding for
such events in most settings, and because the long-term surface uplift is dominated
by the largest events. The variations or evolution of other model parameters over the
long term must also be constrained. We find that the characteristic time needed for
a master fault to generate enough earthquakes to populate a full and representative
distribution, is typically shorter than a million years for both types of sequences (Sup-
plementary Methods) and therefore short compared to the structural evolution of a
mountain belt. Thus, it is reasonable to assume that the fault geometry and rupture
mode remain fairly constant over this period and that we can use mean values of dip
and rake angle. Moreover, we keep MwX fixed and neglect any fault growth, therefore
our calculations are best suited to relatively large and mature faults, the width and
length of which are constrained by structural discontinuities. Climate and erosional
conditions acting on the landscape may change importantly over such time scales but
for simplicity we assume a constant topographic slope distribution.
Finally, the distribution of source or asperity depths over the long-term must be con-
sidered. For a seismogenic layer of thickness Hs and a fully locked fault (i.e., moving
only in earthquakes), the cumulative seismic slip on the fault must be uniform over
the full depth range, and is set by the convergence rate. This is important because the
landslide volume assigned by our model is very sensitive to the depth of the main slip
patch (Meunier et al., 2013; Marc et al., 2016b), or asperity, that emits most of the high
frequency waves triggering landslides (Ruiz et al., 2011; Avouac et al., 2015). Therefore,
long-term mass balance calculations depend critically on the depth range over which
all earthquakes are distributed equally in order to satisfy equal slip. This range is set
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Figure 6.2 – Mean uplifted volume and landsliding for repeating earthquakes of a given seis-
mic moment or magnitude. Four fault geometries are considered, a 30◦dip thrust with varying
seismogenic thickness, Hs, (A) or rake (B), a 15 ◦dipping thrust with varying modal slope (C )
and a flat-and-ramp thrust (10◦and 30◦dip, respectively) with a varying ratio of aseismic over
seismic slip on the flat portion (ASSR, see Suppl. Methods) (D).

between the surface (1km depth for numerical convenience) and Hs, typically between
15 and 20km (Leonard, 2010). Additionally, for a given dip angle and seismogenic
thickness there is a critical earthquake magnitude beyond which the width of a fault
can’t increase. This mechanical boundary yields a break in fault size scaling, which is
clearly observed for strike slip faults (Leonard, 2010), but not for dip-slip faults, sug-
gesting that very large dip-slip earthquakes may extend to smaller depths because of
the low angle or flat-and-ramp geometry of the active fault.
Hence, our calculations of the long-term mass balance of seismogenic faults depend on
the fault geometry, fault length or maximum earthquake magnitude and the thickness
of the seismogenic layer. Here, our analysis can’t be exhaustive with respect to the
range of geometries. Instead, we consider three typical settings. The first is a textbook
thrust at 30◦dip. The second is a thrust gently dipping at 15◦, as representative of the
geometry of megathrusts in the Himalayan range. The third fault has a flat-and-ramp
geometry, with a ramp dipping at 30◦and a flat dipping at 10◦, as can be found in fold
and thrust belt settings. The flat is set to be twice wider than the ramp with a transition
between the two segments at a constant depth of 12 km, and with a variable ratio of
seismic and aseismic slip (seismic slip ratio, SSR) (Suppl. Methods).

6.5 Long-term Mass balance of faults

In the first end-member scenario, repeating earthquakes with a constant magni-
tude and geometry occur on a fault. The main difference with respect to a single earth-
quake is that to maintain equal slip on the locked portion of the fault, earthquakes
must rupture asperities at all depths, and the thickness of the seismogenic layer be-
comes the relevant parameter in the long-term. For large events, the average erosion
of all earthquakes is similar to the erosion of a single earthquake occurring at a charac-
teristic depth of approximately half the thickness of the seismogenic layer (Figure 6.2).
Earthquakes larger thanMw ∼ 7.0 orMw ∼ 7.3 are constructive, even under steep land-
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scapes, for 30◦dip faults or gently dipping and flat-and-ramp faults, respectively (Fig-
ure 6.2). For smaller earthquakes, the scaling of the landslide volume with earthquake
moment is different because deeper earthquakes do not trigger landslides (Figure 6.2).
The transition between these two regimes occurs below Mw6.5 when earthquakes at
the base of the seismogenic layer are expected to cause ground shaking which does
not exceed the threshold for landsliding. In either case, the averaging of landslide
erosion over N earthquakes of equal magnitude means that the standard error on the
long-term erosion is that of a single earthquake divided by the square root of N. For
a time interval covering a few tens of earthquakes the standard error on the average
long-term erosion is ∼ 20%.
As a second end-member scenario, we consider a sequence of earthquakes with mag-
nitudes distributed according to the Gutenberg-Richter relation, where the many small
and intermediate earthquakes modulate the effect of rare, large earthquakes. Notably,
because the exponent on the earthquake frequency-magnitude distribution is one, or
2/3 in moment, the surface uplift, which is linear in moment, is controlled by the
largest earthquakes. However, the landslide model has a break in scaling with seismic
moment atMw = 6.75 (Figure 6.1), and erosion is optimal around this break. Thus, with
a GR distribution, the long-term total erosion and its uncertainty are dominated by the
events between Mw6.5− 7, which become more numerous as MwX increases. The un-
certainty on the total erosion is about 22%, 12% and 7% , for a fault withMwX = 7.0, 7.5
and 8.0, respectively. In any case, we find that the long-term mass balance behaves
similar to that of the repeated earthquake scenario, but with a wider range of erosive
faults. This is due to the large number of net erosive earthquakes of Mw ∼ 7, the ef-
fect of which must be overcome by a few Mw ∼ 8 earthquakes with a positive volume
change to yield an overall increase in topographic volume.
Even in steep, landslide-prone landscapes with modal slopes around 32◦, single faults
with a dip of 30◦are never erosive unless earthquakes have a strike-slip component
or the seismogenic layer is thin (Figure 6.2, 6.3). However earthquakes on such faults
would break a seismogenic layer of thickness 18 km in its entirety at an earthquake
magnitude Mw7.6, and they would not be able to grow after this. Therefore, other
fault geometries with gentler dip or flat-and-ramp structure are especially relevant for
Mw >= 7.5. For steep landscapes, and especially with a Gutenberg-Richter scenario,
we observe that gentle dipping faults and faults with flat-and-ramp geometry are dom-
inated by erosion unless the fault system can generate earthquakes with Mw7.8− 8, re-
quiring a fault length of about 150-200 km (Figure 6.3). Even larger earthquakes would
be necessary for a positive long-term mass balance if some amount of strike-slip oc-
curred.

6.6 Discussion and conclusions

We have modeled the mass balance of earthquakes by comparing the coseismic
surface deformation with the volume of earthquake-triggered landslides, accounting
for the seismic source depth and topographic sensitivity. In contrast to previous stud-
ies that have not considered the specifics of faulting and topography, we have found
that earthquakes with a net erosive effect are not those with a large magnitude above
Mw ∼ 8, but rather those with intermediate magnitudes between Mw6.3 and 7.3. For
deeper earthquakes and/or landscapes with gentle topography this range may nar-
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Figure 6.3 – Long term mass balance for a Gutenberg-Richter distribution of earthquake on
a master-fault of length L and maximum magnitude MwX . Same scenarios as in Figure 6.2.
Transparent symbols indicate unrealistic setting where the fault width exceeds the seismogenic
thickness Hs.

row or disappear. Our model predicts that earthquakes deeper than 15 km or under
landscapes with topographic modal slopes less than 20◦are always constructive. We
also modeled the cumulative mass balance of a fault with repeating earthquakes of
similar magnitude and a fault with earthquakes following a Gutenberg-Richter dis-
tribution. In steep landscapes, we found that faults with repeating earthquakes will
systematically be constructive as soon as these earthquakes reach Mw ∼ 7 − 7.3, that
is when the length reaches 50 to 70km. In contrast, faults with earthquakes with a
Gutenberg-Richter distribution may remain dominated by erosion until they can gen-
erate earthquakes of Mw8 or more, which requires fault lengths in excess of 150km.
This is especially so if they dip gently or have a flat-and-ramp geometry, as we would
expect for settings with a normal thickness of the seismogenic layer. Such faults, which
are common in fold-and-thrust belts, may limit orogenic growth until the fault system
has grown enough to produce very large earthquake (Mw > 8), when net topographic
growth can resume.
Our model has important limitations. First, we have not considered the isostatic re-
bound, which would occur due the removal of any substantial amount of landslide de-
bris from the uplifted topography. As previously discussed, isostasy is certainly an im-
portant part of the problem but it is largely under-constrained because we do not know
the rate at which the landslide debris is exported, nor if it is redeposited close to or dis-
tant from the affected topography (Molnar, 2012; Densmore et al., 2012). Moreover,
the elastic thickness that sets the length scale over which the rebound is distributed is
variable (e.g., Jordan and Watts, 2005). For an elastic thickness of 20 or 40km, landslide
erosion distributed over 50 km across a fault would solicit 38% and 25% compensation
through isostatic rebound, respectively (Densmore et al., 2012). Even for a very large
earthquake, intense landsliding is unlikely to reach more than 25km away from the
earthquake source because the ground shaking saturates, and the area affected could
be much smaller for earthquakes ofMw6−6.5 (Marc et al., 2016b). With constant elastic
thickness this would reduce the amount of isostatic compensation within the eroded
area. Although isostatic compensation may change the sign of the earthquake mass
balance where the sum of surface uplift and erosion is relatively small, our findings re-
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main generally robust away from these cusps. For example in settings whereMw6.5−7
earthquakes induce 2 to 3 times more erosion than uplift the mass balance would re-
main negative even after accounting for 25-40% of isostatic rebound (Figure 6.2).
Further, we have neglected complexities such as aseismic slip and interactions with
neighboring faults. Neighboring faults may be close enough to cause uplift and/or
landsliding in the topography above the fault in question, and possibly also to affect
the way earthquake magnitudes on that fault are distributed in time. Therefore, de-
pending on the setting, seismic activity on neighboring faults can shift the long-term
mass balance of a fault in any direction. The effects of aseismic slip are more tractable
because, whether it occurs as post-seismic slip or as creep during the interseismic pe-
riod, it will build topography as earthquakes do, but without associated landsliding, as
modeled in the case of a fault with flat-and-ramp geometry (Figure 6.3). When aseismic
slip is limited to the deeper part of the fault, as often observed for post-seismic after-
slip (e.g., Rousset et al., 2012), it has a limited impact on the mass balance because it
"replaces" the less effective earthquakes of a long-term sequence (Figure 6.3). On faults
where creep is significant at shallow depth the mass balance will be more strongly
shifted towards uplift. However, examples of such faults are rare, but may include the
Longitudinal Valley Fault in Taiwan (Avouac, 2015), and our treatment likely applies
to most settings.
Finally, we have neglected any progressive evolution of the topography and effects of
fault growth. This is likely reasonable over 105 years, but not at the scale of mountain
building, that is 106− 107 years. The spatial and temporal extent to which earthquakes
may limit topographic growth will depend on how fast the landscape reaches a high
modal slope, on the geometry of the fault and the rate and mode of fault growth, and
on whether repeated or distributed earthquakes occur on it. We suggest that in order to
decipher the long term influence of faults and earthquakes on mountain building, and
to explore the feedbacks between erosion and fault mechanical behavior, a mechanical
model describing fault and crustal properties (e.g., Mary et al., 2013) would need to be
effectively coupled with a landscape evolution model characterizing topography and
incorporating earthquake-induced landsliding (cf. Steer et al., 2014). Short of this full
geodynamic approach, our mass balance model indicates that incipient faulting in a
relatively gentle landscape will always lead to the construction of topography because
coseismic landsliding is limited by the steepness of that topography, whatever the fault
and earthquake size. However, as topography rises and steepens, then intermediate
size earthquakes will quickly become destructive, limiting the rate of mountain build-
ing and eventually halting net mountain growth. During a certain period such faults
and associated topography may continue to expand laterally, while their average to-
pography is reduced. But when faults become large enough to produce earthquakes
of Mw > 7.8 − 8.2, effective mountain building could resume. Therefore, our study
does not challenge the role of earthquakes as a key mechanism of mountain building.
Rather, it demonstrates that earthquakes are ambivalent agents, which may limit to-
pographic growth during a given period or in a certain part of a mountain belt. For
example, historical records attest that very large continental earthquakes (Mw > 8.3)
have occurred relatively frequently on faults bounding the Himalayas (Bollinger et al.,
2014), and the earthquake sequences likely drive topographic growth. In contrast, in
many smaller mountain belts such as Taiwan, Papua New Guinea, or the mountain
ranges flanking Tibet to the north, such large faults may be absent and the average
topographic growth may be limited rather than supported by earthquakes.
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6.7 Supplementary materials to Chapter 6

6.7.1 Supplementary methods

Volume uplifted by an earthquake

Okada (1985) has developed an analytical solution for the surface displacement
produced by slip on a plane in an elastic infinite half space, which we have used to
model the uplifted volume due to an earthquake. We derived length, L, width, W , and
average slip, D, from fault scaling relationships with seismic moment, Mo, (Leonard,
2010) and obtained the total uplifted volume, Vu, for earthquake scenarios by numeri-
cally integrating all vertical surface displacement> 0.5% of the maximum. This thresh-
old is imposed to account for near-field subsidence at the periphery of uplift areas, but
avoid inclusion of the effects of far field elastic oscillations, which are unrealistic. In
order to always allow integration over areas of uplift and subsidence within a dis-
tance of 2-3 fault lengths away from the fault centroid (i.e., the distance required to
reach displacement smaller than our threshold), our model space is set to grow with
fault length, and width. Vu varies almost linearly with earthquake moment, typically
Vu ∼ Mo0.95, and the fault attributes L, W and D. Therefore, the uncertainty within
the scaling relationship is not an important source of error for our uplifted volume
estimate, and only the uncertainty on the seismic moment is important. Notably, the
analytical solution that we have used assumes an Earth surface without topography.
The uplifted volume Vu predicted by the model is mostly independent of the fault
centroid depth, as the large increase in the total uplifted area with increasing centroid
depth is balanced by the decrease in maximum surface displacement. However, the
use of a threshold of displacement, at 0.5% of the maximum displacement does not ex-
actly preserve the relative importance of uplifting and subsiding areas when centroid
depth is varied, especially for large earthquakes. This gives rise to variations of Vu of
up to 5-10% with centroid depth that have been ignored in further calculations.
We have tested for the sensitivity of solutions to effects of topography, using 3D Bound-
ary Element Modeling (cf. ?) and found that although local surface displacement could
differ by as much as 20%, the bulk effect of topography on the total uplifted volume
was typically of the order of 0.1-1% due to canceling effects of local uplift and subsi-
dence.

Characteristic time of earthquake sequences

We have considered sequences of repeating earthquakes of identical magnitude,
and of earthquakes with a magnitude-frequency distribution as described by Guten-
berg and Richter (1954). For repeating earthquakes, typical recurrence times for large
earthquakes in rapidly converging settings is on the order of 100 to 1000 years, mean-
ing that in 10,000 to 100,000 years, we can average the mass balance of 102 earthquakes.
Longer time is needed for a master fault to generate enough earthquakes to populate
a GR distribution, as many small and intermediate earthquakes are associated with a
major event of MwX , rupturing the whole fault. This characteristic time is computed
by summing the total horizontal slip caused by the largest earthquake of MwX and
the thousands of associated smaller earthquakes, and dividing by the shortening rate.
For MwX ∼ 8.2 and ∼ 13, 000 earthquakes with Mw > 5, and a convergence rate of 3
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cm/yr, as might be found in an active mountain belt, a characteristic time over which
a master fault may display a GR distribution is ∼ 150, 000 years. If several fault sys-
tems together accommodate the total convergence, then this characteristic time must
be multiplied by the number of major structures in the shortening zone.

Prescriptions for the flat-and-ramp scenario

For the flat-and-ramp scenario we allow the amount of seismic slip on the flat
portion of the fault as a proportion of total slip to vary. We consider that the amount of
seismic slip taken on the ramp may be equal to, or twice or four times larger than that
occurring on the flat, defining a seismic slip ratio. We assume that this ratio determines
the relative probability for an asperity to be on the ramp rather than on the flat. These
prescriptions represent a flat detachment that may be "smoother" or weaker than the
ramp and therefore less likely to rupture seismically. This implies that a proportion of
the total slip on the flat occurs aseismically, during post-seismic or inter-seismic peri-
ods. For example, for constant cumulative slip conditions, a seismic slip ratio between
ramp and flat of 1, 2 or 4 implies that the long-term ratio of aseismic over seismic slip
on the flat (ASSR in the main text) is 0%, 50% or 75%, respectively. For a given seis-
mic slip, an increase of the ASSR implies that the earthquake asperities are located
higher on the fault and produce more erosion. However, for a given long-term total
slip, a larger ASSR favors topographic growth because the aseismic slip will produce
as much uplift as seismic slip, but without any erosion.
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Chapter 7

Conclusions

Chapter 2 detailed how amalgamation, a mapping error in which multiple land-
slides are bundled into a single mapped polygon, can bias landslide volume estimates
and landslide size statistics. Short of an adequate way to automatically correct for this
effect I proposed an algorithm to automatically detect erroneous polygons, which can
inform manual correction.
For four earthquake induced landslide inventories, obtained by manual or automatic
mapping methods, I found various degrees of amalgamation. The simple screening of
mapped polygons over a Digital Elevation Model revealed geometric or topographic
inconsistencies that allowed me to manually split the larger polygons. Based on this
partial correction I estimated a minimal bias on the total landslide volume and the
area-frequency power-law exponent of up to 300% and 50%, respectively. Further-
more, I devised a simple algorithm implementing a systematic check of the geometric
and topographic characteristics of the mapped polygons, and able to detect potentially
erroneous polygons. Tested on the landslide inventory for the Northridge earthquake
(Harp and Jibson, 1996), the algorithm reached an accuracy of 92.5% with only 2.7-3.6%
of amalgams missed and 3.9-4.8% correct mapped polygons incorrectly classified. This
should permit checking of other inventories with such issues and guide and accelerate
manual corrections.

Chapter 3 presented a seismologically-consistent model predicting the total vol-
ume and area of landslides induced by an earthquake. I tested this new model with an
extensive database of earthquakes with information on their induced landsliding and
seismological characteristics. I have developed an analytical expression for the total
area or volume of landslides, by combining wave emission and fault size scaling rela-
tionships with magnitude, together with the theory of seismic wave attenuation and a
statistical description of the landscape properties. In this treatment, the dependence on
the distribution of slope and ground strength of the landscape required empirical cali-
bration. The calibration and accuracy of the model were assessed with a database of 40
earthquakes for which I gathered total landslide volume, moment, depth, and charac-
teristics of the overlying topography. I found that landscape steepness, characterized
by the mode of the topographic slope distribution, has an exponential influence on the
total landslide volume. Therefore, this prediction requires knowledge of parameters
controlling the shaking intensity and extent, controlled by the earthquake magnitude,
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fault size and depth, as well as constraints on the abundance of steep slopes that sets
the landscape sensitivity to shaking. The model performs relatively well, with a suc-
cess rate about twice that of previous models (Keefer, 1994) or empirical fits that can
be obtained between landslide volume and seismic moment. In absolute terms, the
model prediction is within a factor two of the estimate for 63% of the cases (R2 = 0.76,
N=40), while most outliers had specific environmental or seismological conditions. For
example, all three cases underlain by massive, unfractured limestone units - with an
above average rock mass strength - produced much less landsliding than predicted.
These cases underscore the need to develop methods to obtain quantitative estimates
of rock strength that are representative at the landscape scale (Clarke and Burbank,
2010; Gallen et al., 2015). Extremely dry conditions and peculiar earthquake ruptures
can also explain some outliers, and further data should be acquired to integrate these
aspects in the model. Though fewer estimates exist for total landslide area, the predic-
tion seems less dependent on the landscape modal slope than total volume, and more
on parameters affecting the area frequency distribution, possibly the shaking duration.
Nevertheless, our model predictions are also good with 65% of the events predicted
within a factor of 2 of the estimated area (R2 = 0.73, N=17).

Chapter 4 investigated the effect of earthquakes on landscape properties and dy-
namics. I assessed the changes of landslide rate due to earthquakes and their possible
mechanism by repeated landslide mapping. In the epicentral areas of four intermedi-
ate to large earthquakes I normalized landslide rates for rainfall forcing, empirically
estimated with cumulative precipitation, and found that landslide rates systematically
increased, by up to 20 times, after an earthquake. These elevated rates are unrelated
to aftershocks and normalized for rainfall and therefore indicate ground strength re-
duction. Further, I observed that normalized landslide rates decayed and returned to
pre-earthquake rates over 1-4 years, in a non-linear fashion for at least one case. I dis-
carded root-system damage, as trees damaged by the shaking seem rare (Allen et al.,
1999) as well as hydrological disturbance that typically dissipates in a few months to
a year (Wang et al., 2004). The favoured explanation is that the shaking was strong
enough to open or elongate existing fractures in the regolith or to cause decompaction
of soils. Based on landslide depth estimates I inferred that the damage could not be
limited to the soil layer, and must have affected the regolith and shallow bedrock. The
strength recovery, though it may be in part due to removal of the damaged layer, may
also be due to clast re-arrangement (Lawrence et al., 2009) or cracks closing under
pressure or through filling. An active healing mechanism is favoured because it could
explain the observed non-linear recovery apparently independent of the intensity of
subsequent episods of landsliding directly following the earthquake, contrary to what
would be expected if the recovery would be driven by the removal of damaged layers.

Chapter 5 presented the temporal evolution of seismic velocity, obtained through
autocorrelation of ambient noise registered at seismic stations located in the epicen-
tral areas of three out of the four earthquakes presented in Chapter 4. I compared the
temporal dynamics of seismic velocity to the dynamics of rainfall normalized land-
slide susceptibility and to the post-seismic deformation measured through GPS station
displacements. While each area has different relaxation time-scales, I found a striking
match between these three independent signals. The correlation between the dynam-
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ics of landsliding and seismic velocity supports the common interpretation that veloc-
ity drops co-seismically because of new cracks opening in the shallow ground due to
strong motions. This work also supports the idea that the change of elastic moduli
must occur at very shallow depths (0-20m), decreasing the ground strength (or cohe-
sion) enough to significantly increase landslide hazard. The correlation between post-
seismic surface displacement and the shallow mechanical properties may be causal
and analogous to the compaction and strengthening of granular material agitated by
shear or vibration, observed in laboratory experiments (Richard et al., 2005). In any
case, my observations suggest that the temporal evolution of mechanical properties of
the ground, key to many surface processes, may be driven by tectonic processes to a
larger extent than previously thought.

Chapter 6 aimed to model the competition between uplift and erosion caused by
earthquakes, making use of the newly built model of landsliding. The modelling com-
pared predicted landslide volumes based on the relation from Chapter 3 and analytic
prediction of coseismic surface deformation due to single earthquake scenarios or to
a series of earthquakes on a fault. First, I showed that large earthquakes, Mw > 7.5,
are always constructives because for Mw > 6.75 the ground shaking saturates, and
the landslide volume increase with moment is smaller than the increase in the up-
lifted volume. This result contrasts with earlier work by Li et al. (2014). For a single
earthquake, source depth and landscape steepness are the main controls on the mass
balance, modulating the range of moments that can be destructive. Over the long term
I considered that either repeated earthquakes or a distribution of earthquakes with
moments following the Gutenberg-Richter (GR) distribution could occur on a master
fault. Then, the seismogenic thickness controls the distribution of depth over which the
slip must be distributed and replaces earthquake source depth as a control on the long
term mass balance. In the case of GR-faults I found that common fault settings could
remain destructive until the fault is able to produce very large earthquakes, Mw > 8 or
8.2, suggesting that seismic faults in many mountain ranges may limit the topographic
growth until they reach very large dimensions (> 200km) that are able to produce very
large earthquakes. Faults may need a significant amount of time before reaching such
a large size, implying that their contribution to the building of topography will vary
during their lifetime and the evolution of a mountain belt. Currently some small and
young mountain belts, such as Taiwan or the Finisterre range in Papua New Guinea
may not have such large faults and may not build topography through earthquakes.
The co-evolution of landscape topography and fault geometry and behavior through
time has been neglected but should be studied to unravel possible feedbacks between
earthquake-induced erosion and fault mechanical behavior.

The results obtained through the different chapters have added some new con-
traints on the interactions between tectonics and erosion, mediated by earthquake-
induced landslides, and inform discussion of the ambiguous role of earthquakes in the
long-term evolution of the topography in seismically active areas. However, many of
the results derived from this thesis not only have geophysical or geodynamical impli-
cations, but also a significant importance for natural hazard assessment and mitigation,
and the potential for applications will be explored in the following synthesis.
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Chapter 8

Synthesis

8.1 Discussion

In this thesis I have addressed the feedbacks between tectonics and erosion that
are associated with earthquakes, and their consequences for erosion and landscape
evolution over different timescales. Finally, I would like to go beyond the individual
studies presented in the previous chapters and attempt to draft a more general picture
of the understanding acquired through this thesis.

8.1.1 Coseismic landsliding

The importance of direct feedbacks between tectonics and erosion through earth-
quake induced landslides has been recognized for a long time (Keefer, 1994; Dadson
et al., 2004). I have tried to deepen our understanding of the contribution of earth-
quakes to erosion by better quantifying the amount of landsliding triggered by an
earthquake. This was accomplished by collecting a database summarizing observa-
tions of earthquake-induced landslides and physical modeling of the seismic shaking
that triggers the landslides. This analytical approach is well suited for broad-brush
applications such as comparing erosion driven by climate and earthquakes, assessing
the impact of past or future earthquakes, evaluating damage and mitigating risk im-
mediately after an earthquake. The efficacy of this approach suggests that a simplified
earthquake and ground shaking model captures a large part of the variability in terms
of total landsliding from earthquake to earthquake. The model also predicts a depth
dependent cutoff for small earthquakes, predicting that Mw < 4.5 earthquakes will not
trigger significant slope failure, even when they occur at depths of only a few kilo-
meters. This is consistent with earlier compilations (Keefer, 1984). Further, the model
predicts that for deeper earthquakes, with sources at 5-10 km depth, Mw > 5 − 5.5
are required for significant landsliding. The model also predicts a total area affected
by landsliding, based on the fault length and on the maximum distance before waves
emitted at the source are attenuated to the critical acceleration required for landslid-
ing. This could be compared to early compilations (Keefer, 1984; Rodriguez et al., 1999)
and to currently available landslide maps. Obviously, as the model considers the sta-
tistical density of landsliding, rare or distant individual landslides may complicate the
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comparison with minimum earthquake magnitude for landsliding and the total area
affected by landsliding predicted by the model. The limitations of this approach lie
mainly in the fact that individual landslide locations are not modeled, as most param-
eters are averaged over the epicentral area. As long as geotechnical parameters are not
available at fine scales across landscapes, accurate prediction of landslide locations will
remain an open challenge (Dreyfus et al., 2013). However, refining the spatial pattern
of landsliding at intermediate scales seems possible, either through forward modeling,
or through statistical assumptions about the general behaviour of earthquake-induced
landslides, requiring far fewer details about the seismic source. This model is, by de-
sign, broadly consistent with the forward modeling of the spatial pattern of landslide
density proposed by Meunier et al. (2013). Therefore, knowing or assuming a slip
distribution on a fault plane, the analytical prediction could be combined with this
forward model and both the total landslide area and volume predicted, together with
their spatial distribution. However, a-priori knowledge of earthquake slip distribution
remains intractable and renders this approach of limited social utility, as it can be per-
formed only after the earthquake has been studied in detail. Alternatively, various em-
pirical observations made on different earthquakes could be combined in a set of sta-
tistical relationships about the relative probability of occurence of earthquake-induced
landslides as a function of slope angle and a proxy of lithological strength (Parise and
Jibson, 2000; Lin et al., 2008; Gorum et al., 2013; Meunier et al., 2013), distance from
the ridge (Meunier et al., 2008) and slope aspect relative to the seismic source (Meu-
nier et al., 2008; Barlow et al., 2015). These different factors could be integrated in a
single set of equations, which, together with the simple assumption of a line source
propagating at a given depth on a given fault plane, would give a spatial pattern of
relative probability of landsliding, according to which the total landslide volume and
area could be distributed. Although this would still ignore seismic effects that cannot
be predicted a priori, such as source directivity, such an approach is now within reach
and should certainly be developed and tested.

8.1.2 Bedrock fracturing and earthquake strong-motion

Bedrock fracturing and rockmass weakening is another important feedback be-
tween tectonics and erosion according to some studies (Molnar et al., 2007; Clarke and
Burbank, 2010). However, this is mainly attributed to large scale, homogeneous pro-
cesses, such as microseismicity or displacement on bent faults (Molnar et al., 2007).
The importance of earthquakes and dynamic fracturing has been invoked (Sleep, 2010;
Owen et al., 2008) but not clearly established. Combining remote-sensing observations
and ambient noise correlation techniques I have shown in Chapters 4 and 5 that sev-
eral earthquakes have induced simultaneous increases in landslide rate and decreases
in seismic wave velocity. This strongly suggests that dynamic fracturing is common
and has a strong effect on the mechanical properties of the shallow rocks. Such effects
are of first order at the annual time scale, with 5-20 fold increases in landslide sus-
ceptibility. It is unclear whether or not dynamic fracturing due to earthquakes may
accumulate and leave a long term signature in the landscape (e.g., Sleep, 2011b; Parker
et al., 2015). The landslide data are relatively noisy and may not be able to detect
small permanent damage. In contrast, the fact that seismic velocities do not recover
fully at all sites suggests that some permanent damage may occur within some parts
of the landscape. Further that analysis of the status of ground cracks and their healing



144

with in-situ measurements would certainly help in assessing where and how damage
is healed.
The study of increased landslide activity following earthquakes was largely motivated
by observations of enhanced post-seismic fluvial sediment transport (Koi et al., 2008;
Hovius et al., 2011; Howarth et al., 2012; Wang et al., 2015). My data indicate relatively
fast recovery times of only a few years for the disturbance on the hillslopes, whereas
studies of sediment transport reported disturbances up to 50 years long. Therefore, I
propose that enhanced suspended sediment transport is likely due to a lag in transport
and delivery of coseismic landslide materials to the river network, as observed after
intense landsliding due to typhoons (Huang and Montgomery, 2013). Hence, most of
what is transported in rivers in the years following an earthquake is probably still co-
seismic landslide material and my data shows that the additional mass wasting due to
elevated hillslope susceptibility is a minor contribution compared to the total volume
of coseismic landslides. This highlights the need to better constrain the transport and
evacuation dynamics of the landslide debris, particularly of the bedload fraction.

8.1.3 Earthquake mass balance

Several studies have suggested that, over longer timescales, the erosion due to
earthquake-induced landsliding is larger than the coseismic uplift for very large earth-
quakes, raising questions about the role of earthquakes in mountain building (Parker
et al., 2011; Li et al., 2014). The new predictive equation that I have developed, allows
better integration of the different physical effects that control the mass balance of earth-
quakes. I have modeled the mass balance as the ratio or difference between coseismic
landsliding and coseismic surface deformation, neglecting post-seismic erosion or de-
formation. In Chapter 4, I showed that the contribution of post-seismic landslides
to the total erosion caused by earthquakes was small in comparison to the coseismic
mass wasting. Still, permanent damage of shallow rocks remains possible (e.g., Parker
et al., 2015) and in this case progressive fracturing due to strong shaking may increase
the erosion term of the mass balance estimates. The post-seismic deformation that is
known to occur generally amounts to∼ 10−15% or less of the coseismic moment (e.g.,
Hsu et al., 2007; Ryder et al., 2007; Barbot et al., 2008), and is therefore a minor contri-
bution that would only nudge the mass balance towards construction.
Long-term storage of sediment produced through landsliding, if it happens signifi-
cantly within the epicentral areas, would also change the mass balance. For the Chi-Chi
earthquake, models suggested that the river transport capacity may be vastly exceeded
and that landslide debris may take centuries to be evacuated (Yanites et al., 2010).
These estimates are uncertain and require updating for various earthquakes for which
accurate estimates of the volume of landslide debris have been presented in Chapter
3. Nevertheless, landslide dams and giant landslide deposits have been identified in
many mountain belts (Korup et al., 2007, 2010) and probably contribute to long-term
storage. Recent work has estimated the total sediment stored in the Himalayan belt
in such deposits, as well as other valley fills, to ∼ 900km3, with age and/or residence
time varying between 50-200 kyr for the largest fills (Blöthe and Korup, 2013). This es-
timate can be compared to the frequency of large, shallow earthquakes that rupture the
Himalayan front and produce significant landsliding, such as the recent 2005 Mw 7.5
Kashmir or the 2015 Mw 7.9 Nepal earthquakes (Owen et al., 2008; Kargel et al., 2015).
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Earthquakes of Mw 7, 7.5 and 8 occur every 100, 300 and 900 years (Avouac, 2015) on
5 or more major fault segments along the range, and produce, about 0.15, 0.3 and 0.6
km3 of debris, respectively, assuming an average earthquake source depth of 8 km. Ne-
glecting any larger or smaller earthquake contributions, as well as other erosion terms,
these large earthquakes would produce 150 km3 in 9 kyr, and more than the total vol-
ume of all valley fills in 60 kyr, a time shorter than the age of most large fills (Blöthe
and Korup, 2013). This suggests that only a fraction of coseismic landslide debris is
stored and that a significant amount is effectively exported over the long-term. The
amount of export and its duration will likely vary significantly depending on the re-
gional setting, with a complex role of climate, topography and erosional dynamics, as
suggested by the large difference in storage between the Western, Central and Eastern
Himalayas (Blöthe and Korup, 2013).

8.1.4 Landslide hazard

I have discussed in detail the geophysical and geomorphological significance of
findings on earthquake-induced landsliding, but less so in terms of natural hazard ap-
plications. Secondary hazards such as landslides, and their indirect consequences such
as landslide dams, debris flows or floodplain aggradation and river avulsion, are a sig-
nificant part of the hazards induced by earthquakes in mountain regions. For some
earthquakes, coseismic landsliding may be the primary source of infrastructure dam-
age (Bird and Bommer, 2004), and the cause of a large proportion of casualties, as for
the 2008 Wenchuan (China) earthquake, where 25% of the total death toll (i.e., 20,000
out of 80,000 deaths) were attributed to landslides (Yin et al., 2009). These estimates
do not usually consider casualties or costs associated with the post-seismic period,
in which a part of landslides and sediment transport are still an indirect effect of the
earthquake (Huang and Li, 2014). My results have multiple implications for these is-
sues. First, the equations presented in Chapter 3 allow exploration of the magnitude
of secondary hazard associated with expected earthquake scenarios. Even if forecast-
ing of the location of landslides is the ultimate goal for risk assessment, the ability
to predict or rapidly assess the magnitude of landsliding, that may vary by orders of
magnitude with landscape properties and earthquake depth, is of definite value. Cou-
pling my prediction to estimation of the spatial patterns of landslides, as discussed at
the outset of the synthesis, is an important step to better constrained hazard estimates.
Second, the constraints on the elevated landslide rates after earthquakes, presented in
Chapter 4, indicate that landslide hazards in epicentral areas may increase by an order
of magnitude, and persist for one to several years. This should be taken into account
when planning remediation measures in rugged epicentral areas. The magnitude of
the landslide susceptibility increase appears to increase with the earthquake magni-
tude, but likely relates to additional earthquake characteristics. Indeed, the ground
damage and weakening is expected to be strongly dependent on ground shaking, scal-
ing non-linearly with moment and depth, as modeled in Chapter 3. The recovery time
is also important for risk management as it allows anticipation of the period over which
elevated risk and costs are likely. In Chapter 5, I observed that the material healing dy-
namics correlate with post-seismic displacement and may be driven by it. This would
mean that the recovery is not related to landscape properties, but rather to crustal be-
haviour that may be hard to anticipate after an earthquake. In contrast, Chapter 5 also
suggests that the progressive recovery of shallow bedrock strength could be monitored



146

through the monitoring of shallow seismic velocities. Therefore, ambient noise corre-
lation techniques could be used after earthquakes to constrain the initial phase of the
recovery and anticipate the total duration of the elevated risk period.

8.2 Future work

The results obtained through this thesis have also highlighted the need for fur-
ther research on several key aspects which are presented below.

8.2.1 Automatic mapping of individual landslides

First, with the rapid proliferation of landslide inventory maps, it becomes urgent
to define quality standards for mapping. Guzzetti et al. (2012) recognized that the di-
versity of imagery and mapping techniques would lead to variable results, limiting
the credibility of landslide maps, unless standards and best practice methods were de-
veloped. Accurate and comparable maps are important in order to build databases
or time series of landslide inventories, as exemplified in Chapter 3 and 4. The algo-
rithm to detect amalgamation presented in Chapter 2 is part of such efforts but the real
challenge is to implement automatic delineation of various landslide bodies within ar-
eas affected by intense landsliding. Developing other criteria and guidelines to assess
which derivatives, such as landslide volumes, landslide numbers, landslide locations
or size-frequency statistics, can be safely extracted from an inventory map would cer-
tainly help to make the best use of these maps. Another important aspect is the de-
lineation of landslide scar, runout and deposit, rather than the whole perturbed area
as is usually the case (e.g., Behling et al., 2014; Stumpf et al., 2014). This obviously
requires high resolution imagery, probably 5 m or better, and may not be possible for
all landslide types and configurations. Nevertheless, even partial inventories with re-
liable differentiation of the different components of a landslide would allow study of
the statistical behaviour of runout, and to better assess the relation between scar and
deposit areas and how they vary with landslide size and location. These are important
parameters required to improve the accuracy and precision of the conversion from
landslide area to volume, as well as to better assess and mitigate hazards.

8.2.2 Quantification of rock strength

Another issue that has been pervasive through the different aspects of this work
is the strength of hillslopes. Indeed, quantifying rock or ground strength seems es-
sential to constrain the amount of earthquake-induced landsliding (cf., Chapter 3) but
also to understand how it controls landslide dynamics of catchments (cf., Chapter 4).
The key problem is that laboratory measurements of strength from field samples are
usually orders of magnitude higher than what seems reasonable to explain the failure
behaviour of the hillslopes (Hoek and Brown, 1980). This arises from our inability to
account for heterogeneity of the material (e.g., fractures, multiple lithologies with vari-
able behaviour) at the hillslopes scale. Such heterogeneity can be partly assessed by
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methods yielding qualitative rock strength indices (Selby, 1982), but it is unclear how
such methods could be extended to a catchment scale. Still, several avenues may be ex-
plored to address this recurrent problem. One is to use geophysical methods based on
wave propagation that is sensitive to ground structure and properties (e.g., Clarke and
Burbank, 2010, 2011). In this sense, ambient noise techniques introduced in Chapter
5 present the advantage of yielding continuous measurements based on existing net-
works and averaging properties on various length scales. However, dedicated exper-
iments with these techniques are needed to better understand how to extract ground
strength from signals that are also sensitive to many other processes (cf., Richter et al.,
2014) and uncertainties. Another option is to try to model and quantify the effects
of fracture networks on superficial strength, making use of new theoretical progress
in the characterization of these networks (e.g., Davy et al., 2010, 2013) and new ways
to measure them in the field through laser scanning or photogrammetry. Finally, in
fast eroding threshold landscapes we may expect a specific topographic signature, and
therefore might be able to invert slope or relief characteristics to obtain mechanical
strength at the landscape scale (e.g., Schmidt and Montgomery, 1995). The potential of
such inversion should surely be assessed with newly available high resolution Lidar
DEMs (e.g., DiBiase et al., 2012).

8.2.3 Developing software for automatic earthquake-induced lands-
liding hazard assessment

Although the expression developed in Chapter 3 does not yield information on
the location of individual landslides it gives a rapid and accurate estimate of the mag-
nitude of landsliding expected along a seismogenic fault. In order to be useful for
rapid response risk management after earthquakes, this expression would need to be
implemented in an online platform and coupled to routine earthquake detection. We
plan to develop a web based application, that could take as input earthquake infor-
mation, such as Mw, fault type and location and output the total volume and total
area of landslides, as well as some other derivatives such as the percentage of affected
hillslopes. The application could be plugged in to an earthquake detection and assess-
ment platform such as the USGS PAGER service. With the fault coordinates and the
earthquake depth and magnitude, we would automatically extract the surrounding to-
pography from the ASTER GDEM and compute the local landscape modal slope and
the topographic availability correction factor. With these parameters and the earth-
quake characteristics, the total volume of landslides, total area of landslides and their
associated uncertainties would be computed. Therefore, routinely detected shallow
earthquakes could be immediately attributed some secondary hazard estimates, based
on landsliding expected from our model. The next step to take to improve such an
application and widen its potential use would be to combine it with current or future
knowledge about the spatial pattern of landslide density.
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