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Chapter 1

Motivation

A topological insulator is a strange kind of system. You can describe it within one sentence:
It is insulating in its interior and conducting on its boarders. But you can also write a full
thesis about a system called a topological insulator that does not even fulfill both of these
two basic properties: Bi

2

Se
3

and Bi
2

Te
3

, the systems under investigation in this thesis,
su↵er from the drawback of a strong intrinsic electron doping that makes these systems
conducting in their interior. Nevertheless, they are the systems that are, up to now, most
intensely studied under the label of topological insulators.

Significantly, these systems are described by a topological invariant that is odd in their
case and even in the case of a trivial insulator. From this oddness, one can derive what
makes these systems so special, or distinct from their trivial counterparts. To do so it
is instructive to first describe what a topological invariant is. A topological invariant is
an integer that classifies topologically distinct objects or groups of objects. A glass, a
cup, a donut and an orange can be ordered into two classes according to their genus, the
topological invariant that counts holes in surfaces. Thus the cup goes with the donut and
the glass goes with the orange. In other words: there exists a continuous transformation
from the cup to the donut and from the glass to the orange. But in order to transform a
donut into an orange one has to tear a hole into the orange’s surface. Tearing a hole is,
however, a discontinuity: a hole is a full hole, something like half a hole does not exist.

Insulators can be classified topologically according to the kind of gap they show at
the Fermi level. The trivial insulator has a gap according to its definition in band theory.
In topological insulators, however, the gap is inverted. This is not unusual by itself as
Shockley noticed in 1939 that inverted band gaps give rise to surface states. However, in
the up to date known topological insulators it is strong spin-orbit coupling that causes
the band inversion. One can calculate the band structure of a system with and without
spin-orbit coupling. If, by switching the spin-orbit coupling on, the conduction band takes
the role of the valence band and vice versa then the gap is called inverted and the system
might1 be a topological insulator and the invariant becomes odd. If one smoothly increases
the spin-orbit coupling then at some point the gap of the trivial insulator will close and
this is the discontinuity where the invariant changes.

The interesting physics starts to happen when the topological insulator is not considered
to be infinite but shares an interface to a trivial insulator, e.g., vacuum. Obviously, at the
interface the topological invariant changes from odd to even but this may not happen

1One has to investigate the e↵ects of spin-orbit coupling on the band order at all time reversal invariant
momenta of the Brillouin zone. Details will be discussed in Chapter 3
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continuously. The gap will have to close at the interface and this is the reason why there
is always a metallic state at the surface.

Such kind of topological surface states are known from the quantum Hall e↵ect. The
di↵erence is that the latter requires a magnetic field, which breaks time reversal symmetry,
while in the topological insulator, time reversal symmetry explicitly holds. They have in
common, that they are extremely robust against perturbations. However, in the case of
topological insulators, the metallicity of the surface state is guaranteed by time reversal
symmetry. In turn, breaking time reversal symmetry will open a gap in the surface state
and the surface may become insulating.

An aspect closely related and of particular importance is that it is an odd number of
surface states that provides the metallicity which in turn implies that the surface state is
spin polarized. Chapter 3 of this thesis gives a more detailed description of the concept of
the topological insulator and how topology applies to solid state physics.

A lot of prospects are placed onto these new materials. First and foremost, there are
the potential applications in spintronic devices. The idea behind spintronics is that instead
of the charge the spin degree of freedom is the quantity that is controlled and manipulated
within a device. While this idea promises nonvolatility, an increased dataprocessing speed,
a further increase of the integration densities and a decrease in electric power consumption,
the issues connected to spintronics turn out to be rather challenging. Up to date, the
attempts for an e�cient spin injection, e�cient spin current generation and spin conserving
transport are still unsatisfying. Great hope lies in the topological insulator especially in
terms of spin current generation and injection of this current into a spin conserving medium.
While the generation of spin currents can also be achieved very well in ferromagnetic metals,
the injection into a spin conserving medium like, for example, a magnetic semiconductor
is very ine�cient due to the great mismatch between the conductivities of a metal and a
semiconductor. This mismatch could get significantly reduced with an ideal topological
insulator with very low bulk conductivity.

At present stage the residual bulk conductivity, however, turns out to be the biggest
drawback of the known topological insulators to overcome in order to be able to use them
as e�cient spin current generators that allow for an e�cient injection. There is a long path
ahead to go and great need for understanding the fundamentals of the materials that fulfill
the preconditions for being real topological insulators.

In this sense, this thesis tries to deliver a contribution to understand the fundamentals
of the materials. That is, first of all, a reliable measurement of the spin polarization
of the topological surface states. This is the topic of Chapter 4 in which, after a basic
description of the electronic structure measured with angle resolved photoemission, the
spin polarization of the surface states in Bi

2

Se
3

and Bi
2

Te
3

is determined by means of spin
resolved photoemission.

Still fundamental, but aiming already on possible applications, is the topic of Chap-
ter 5. Therein, the e↵ect of impurities deposited on the surface of Bi

2

Te
3

and Bi
2

Se
3

is
investigated. From a fundamental point of view it is the robustness, that is tested in
such kind of experiments. From an applied point of view it is also important to generate
knowledge about the impact of an interface on the electronic structure. Integration of a
topological insulator into electronic devices will undoubtedly necessitate a contact with
metallic circuits.

As pointed out above, time reversal symmetry is the ultimate precondition to observe
the topological insulator phase. Thus, the e↵ect of a time reversal symmetry breaking
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perturbation such as magnetic impurities on the surface is of great fundamental interest.
Is there a di↵erence to non-magnetic impurities, and can we open an energy gap in the
surface state by breaking time reversal symmetry? A gap in the surface state could lead
to a system that hosts an anomalous quantum Hall state and would also be of interest for
device applications since the surface state system would be a two dimensional equivalent
of a magnetic semiconductor with oppositely spin polarized electron and hole states.

Chapter 6 is focused on the decay mechanisms for photoholes. From an analysis of
the linewidth of angle resolved photoemission spectra the lifetime of photohole states is
gained and related to the scattering properties of the topological surface states. It is thus
again a fundamental property of the topological insulator that is probed. Time reversal
symmetry forbids a backscattering of electrons and promises dissipationless currents or at
least currents with reduced dissipation.

Together with the number of ideas for spintronic devices or the number of materials
suggested to host interesting physics for spintronic applications, the demand for experi-
mental techniques that are capable of investigating such e↵ects, materials, and ideas grows.
One of the most powerful tools in this aspect is spin resolved photoemission. However, it
is a very demanding technique due to the low e�ciency of spin detectors. Thus, the begin-
ning of the age of spintronics is intimately related to the development of new techniques
dedicated for the investigation of ”spintronics”. Chapter 7 discusses a promising candidate
for an e�cient alternative to conventional spin resolved photoemission.

To help those readers not familiar with photoemission to understand the results pre-
sented in the experimental part of this thesis the following chapter is dedicated to an
introduction to the basic knowledge of this powerful technique.
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Chapter 2

Photoelectron Spectroscopy for
the Investigation of Topological
Insulators

The distinction of topological insulators from their trivial counterparts is found –as the
name already indicates– in the topology of the electronic band structure. Since the most
direct probe of the band structure of solids is photoelectron spectroscopy, it has become the
method of choice to experimentally find and characterize new topological insulators [1, 2, 3]
and to investigate their unique properties.

To guide those readers not familiar with photoelectron spectroscopy through the re-
sults of this thesis I will give in this chapter a short introduction to the basics of spin
and angle resolved photoemission (SARPES). Specific aspects, like the lifetime broaden-
ing of photoemission peaks due to manybody interactions (Chapter 6), or the dependence
of photoemission spectra on the polarization of light (Chapter 7) will be discussed in the
respective chapters.

Additionally, the experimental setups used for spin and angle resolved photoemission
will be sketched at the end of this chapter.

2.1 Basic Knowledge

Photoemission is a very established technique. Developed to study the electronic structure
of solids already in 1957 by Kai Siegbahn [4], it is based on the process of photoemission
discovered already in 1887 by Heinrich Hertz [5]. Later it has been explained by Albert
Einstein [6, 7, 8] as a manifestation of the quantum nature of light which is expressed in
the fundamental photoelectric equation:

Emax
kin = h⌫ � �f .(2.1)

Here Ekin denotes the kinetic energy of the photoelectron and h⌫ is the energy of the
exciting photon with frequency ⌫. The quantity �f is a characteristic material and surface
dependent constant of the solid and is called work function. If a monochromatic source of
photons is used and �f is known, then measuring the kinetic energy of a photoelectron is
in a first approximation equivalent to the determination of its binding energy EB in the
solid making use of the following equation:

EB = h⌫ � Ekin � �f .(2.2)
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Figure 2.1: The photoemission process. a) Energy diagram illustrating the photoexcitations
with monochromatized light. b) The photoemission spectrum is entailed by secondary electron
background that increases drastically towards low kinetic energies. Redrawn from Ref. [9].

Here we use the common convention that the binding energy is a positive quantity for
bound electrons, with the Fermi level EF , i.e., the chemical potential µ1 being the zero
of energy by definition. Eq. 2.2 can be visualized in the well known sketch of Fig.2.1 a),
which shows the density of occupied states of a solid as a function of binding energy and
the number of detected electrons as a function of kinetic energy.

While photoemission has to be viewed as a quantum mechanical measuring process
in order to treat all possible forms of interactions between the incoming photon and the
excitations that may occur within a specimen, it is much more instructive to start with
a simplified picture. In this, so called three-step model of photoemission one divides the
photoemission process into three independent steps [9]: i) optical excitation, ii) transport
to the surface, and iii) escape from the crystal.

2.1.1 Optical Excitation Process

The first step is further simplyfied in terms of a single-particle approximation [9] and is the
optical excitation of an electron from an initial eigenstate | i(Ei,ki, si)i into an unoccupied
final eigenstate | f (Ef ,kf , sf )i by a single photon of an incoming monochromatic light
beam of energy h⌫. Here, the indices i and f mark the initial and final state properties,
respectively. The important quantities are the electron energy Ei,f , the electron momentum
ki,f , and the electron spin si,f . The probability for the transition between the the two states

1By definition, the Fermi level is defined only at T=0K and at finite temperature the term chemical
potential is used instead. Following general usage, I will use the term Fermi level throughout this thesis
being aware of the inconsistency.
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(wif ) is given by Fermi’s golden rule:

wif / 2⇡

~
��h f (Ef ,kf , sf )|H 0 | i (Ei,ki, si)i

��2 � (Ef � Ei � h⌫) .(2.3)

The �-function is responsible for the energy conservation and the operator H 0 denotes the
Hamiltonian of the interaction between the electron and the electromagnetic field of the
incoming beam with vector potential A. By neglecting two photon processes and setting
the gauge of the electromagnetic field such that the scalar potential � = 0 the Hamiltonian
may be written as [9]:

H 0 =
e

2mc
(A · p+ p ·A) ,(2.4)

where e and m denote electron charge and mass as usual and p = i~r is the momentum
operator. Making use of the commutation relation [p,A] = 2A ·p+ i~r ·A together with
the dipole approximation, i.e, r ·A = 02 one finds:

H 0 =
e

2mc
A · p.(2.5)

Thus, to describe the excitation process we simply have to replace the momentum operator
in the Hamiltonian of the Schrödinger equation by Eq. 2.5. However, since we will deal
with spin-polarized electrons and perform spin resolved photoemission, the Schrödinger
approach is not adequate and should be replaced by the Dirac equation, since in the
former the electron is treated as spinless [10]. The Dirac Hamiltonian is written

HDirac =
1

2m

⇣
p� e

c
A
⌘
2

+ eV (r)

� e~
2mc

�r⇥A+
ie~

4m2c2
E · p� e~

4m2c2
�(E⇥ p),

(2.6)

where the first two terms, i.e., the first line, is equivalent to the Schrödinger approach.
The electron spin is denoted as � and we identify three spin dependent terms in the second
line. The first spin dependent term represents the interaction of the spin with a magnetic
field �r ⇥ A = � · B. The second spin dependent term is called Darwin term and can
be understood as a relativistic energy correction to the electron energy. The last spin
dependent term reflects the spin-orbit coupling.

For high photon energies the �·B term may lead to spin flip transitions. Thus, the initial
state spin si is not a priori conserved during the excitation process and may thus di↵er
in the final state. However, for the photon energies used for the investigations presented
within this thesis, typically several tens eV, spin flip transitions are about two orders of
magnitude less probable than spin conserving transitions [11, 10]. For convention, we can
therefore assume the optical excitation process as a spin conserving transition and thus
si = sf .

It goes without saying that the spin-orbit interaction may lead to a spin polarization in
the initial state. But also electrons from an unpolarized initial state may appear polarized

2It is assumed that the vector potential A is constant within the crystal, because the wavelength of the
incoming light is typically much larger than atomic distances inside a solid [9]. However, this is valid only
for translational symmetry which is always broken at the surface. In a finite area close to the surface A
changes to the vector potential of the vacuum. Since photoemission is a very surface sensitive technique
the change of A may become important. An example of this will be discussed in Chapter 7.
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in the final final state, due to the relativistic selection rules [12]. The initial state spin may
couple to wavefunctions of di↵erent spatial symmetry. If the incoming photon couples to
one of the wavefunctions selectively, then only photoelectrons of a specific spin orientation
will get excited. This process, called optical orientation, will be discussed again with
respect to the circular dichroism in Chapter. 7. Explicitly, the relativistic selection rules
are written �j = 0,±1 and �mj = ±1 with j and mj referring to the total, spin-orbit
coupled momentum [10].

Concerning the final state, one typically assumes that it can be approximated by a
free electron state for high enough excitation energies. However, this largely depends on
the system under investigation and it will be shown in Chapter 7 for Bi

2

Te
3

that this
approximation fails for final state energies ten times higher than those considered free
electron like for other systems. Furthermore, the reader should note that the photoemission
process can explicitly not take place for a free electron. Making use of the relations [p, H

0

] =

�i~r·V (r) and [r, H
0

] = i~p/m, whereas H
0

= p2

2m+V (r) with an arbitrary potential V (r)
the matrix elements of Eq. 2.3 with the Hamiltonian H 0 of Eq. 2.5 and with A = const.
can be written as

h f |p | ii / h f | r | ii / h f |r · V (r) | ii .(2.7)

Thus, the transition matrix element is zero if r · V (r) = 0, which is the case for a free
electron.

2.1.2 Transport to the Surface and Surface Sensitivity

The second stage in the three-step model is the transport of the photoelectron to the crys-
tal surface. From this stage one can intuitively understand that photoemission is a very
surface sensitive technique. While the radiation can be assumed to penetrate deep into the
bulk without significant reduction of its intensity, the photo-excited electron has a rather
high probability to get scattered inelastically. The inelastic scattering is encoded in the
secondary electron background which is found to increase drastically at low kinetic ener-
gies, as sketched in Fig. 2.1 b). The most important scattering mechanism at commonly
used excitation energies is the electron-electron interaction. Electron-phonon interaction
becomes important at very low energies only and can be neglected for the moment. Es-
sentially, the inverse inelastic mean free path ��1

i is determined by the dielectric function
✏(q,!), where q is the momentum and ! the energy transfer of an inelastic scattering event.
The dielectric function is material specific and one should thus expect a strong variation
of the inelastic mean free path of photoelectrons over various materials. Nevertheless, the
dependence of �i on the electron energy (final state energy) is, for high enough energies,
found to be roughly described through a universal curve given by the empirical formula [13]

�i = 0.41a3/2
p

Ekin.(2.8)

Here, a denotes the lattice constant of the material through which the electrons have to
pass and is expressed in nm, whereas the kinetic energy of the electrons is expressed in
eV. The reason for this almost universal behavior of �i is that for high enough energies
(Ekin � 10 eV) the electrons in a solid can again be approximated as a free electron
gas. For this case the plasma frequency which is a function of only the electron density
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Figure 2.2: Angle resolved photoemission. a) The broken translational symmetry perpendicular
to the surface causes a refraction of the electron of momentum kcrys within the crystal and leads
to a di↵erence in the total momentum kvac outside of the crystal. The component parallel to the
surface is conserved (kcrys

k =kvac
k ) while the component perpendicular to the surface gets reduced

(kcrys
? >kvac

? ). b) By varying the emission angles ✓, ⌘, and ' and measuring the kinetic energy of
the photoelectrons the in plane bandstructure is mapped.

determines the loss function. Hence, the dependence of the inelastic mean free path on
the material is reduced as compared to a dependence of the loss function on the dielectric
function [9].

The number of photoelectrons N(d) excited at a depth d perpendicular to the surface
which contribute to the photoemission signal at the detection angle ✓ relative to the surface
normal depends exponentially on d:

N(d) = N
0

exp� d

� cos ✓
.(2.9)

One defines further the escape depth de as the layer thickness from which 1/e of all detected
electrons have been excited:

de = � cos ✓.(2.10)

Two aspects should be noted: First, by evaluating Eq. 2.10 for ✓=0�, i.e., normal emission,
and Eq. 2.8 for moderate energies it becomes clear, that the major contribution to the
photocurrent corresponds to the first few atomic layers. This holds up to several hundred
eV in general and especially for the photon energies used for the investigations presented
throughout this thesis (mostly between ⇠20 and ⇠50 eV). And second, the dependence on
the detection angle allows for a depth profiling of the system under investigation. This is,
however, only interesting if a substantial depth is reached that covers more than only a
few atomic layers like for very high photon energies in the x-ray regime. Since such high
energies are not available at the beamlines of BESSY II at which the data for this thesis
have been collected (mostly UE112 and U125/2) such methods have not been applied and
are mentioned to demonstrate their potential.

The last step in the three-step model is the escape of the photoelectron through the
surface barrier. Naturally, only electrons that have a final state energy Ef higher than the
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vacuum level, i.e., work function �f can escape the crystal and would thus have the kinetic
energy

Ekin = h⌫ � EB � �f .(2.11)

Hence, to determine the binding energy of an electron the explicit knowledge of the work
function of the sample is necessary. However, practically if one deals with a metallic sample
only the work function of the spectrometer �s needs to be known: sample and spectrometer
are connected to the same potential and thus the chemical potential of sample and detector
are equal. As a consequence, the kinetic energy of the photoelectrons that escape the crystal
get retarded by the potential di↵erence between the work functions of sample and detector
and this retarded energy E0

kin is the one which is measured [14]. Explicitly,

Ekin + �f = E0
kin + �s(2.12)

and the determination of EB is straightforward if the Fermi edge is determined in experi-
ment, as sketched in Fig. 2.1.

2.1.3 Escape from the Crystal and Angle Resolution

An aspect of particular importance is the refraction of the photoelectrons at the surface.
Translational symmetry is given only for the directions parallel to the surface, while it
is broken in the direction perpendicular to the surface. In Fig. 2.2 a) an electron with
momentum kcrys inside the crystal gets excited by an incoming photon and travels to
the surface without being scattered. Since the photon wave vector is negligible at typical
energies used in angle resolved photoemission (< 100 eV) the transition from the initial
to the final state is direct, i.e., the electron has practically the same momentum in the
final as in the initial state (ki = kf ⌘ kcrys). We divide the total momentum up into
its components parallel and perpendicular to the surface: kcrys = kcrys

k + kcrys
? . The

surface barrier refracts the passing electron but only the component kcrys
? is changed,

while the in-plane component is preserved (kcrys
k = kvac

k ). Outside the crystal the electron
propagates with momentum kvac in a new direction described by the angle ✓ relative to

the surface normal. Combining the basic energy-momentum relation Ekin = (~kvac
)

2

2m and
simple trigonometry one yields

|kcrys
k | = 1

~
p

2Ekinm · sin ✓.(2.13)

An experimental setup as sketched in Fig. 2.2 b) allows the angle resolved detection of the
emitted electrons of energy Ekin and the result translates into the band structure E(kk)
making use of Eq. 2.13 and Eq. 2.11.

For a two dimensional dispersion such as the one of a surface state, this is already
su�cient since kcrys

? ⌘ 0 due to the two dimensional confinement. For a three dimensional
state, however, the situation is more complicated. The determination of kcrys

? is only
approximately possible by making use of the following equation [15]:

kcrys
? =

r
(kvac

? )2 +
2mV

0

~2 ,(2.14)

where the inner potential V
0

is an empirically adjustable parameter.
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For completeness it should be mentioned that by varying the photon energy h⌫ of the
excitation source and detecting the photoelectrons at normal emission it is possible to de-
termine the perpendicular component of the wave vector quite easily. This is possible due
to the di↵erent dispersions of initial and final state bands in k? and due to energy conser-
vation. Since energy conservation has to be obeyed, by changing h⌫ in reasonably small
steps one reaches di↵erent points of the k? dispersion. This method requires knowledge of
the final state dispersion in order to trace back the dispersion of the initial state. Typically
it is assumed to be a free electron parabola or one relies on band structure calculations
where available. In turn, this method is applied for the identification of surface and other
two dimensional states since they have vanishing k? dispersion and thus their energetic
position in the measured spectrum is not altered by a change of h⌫.

2.1.4 Many-Body Aspects

Up to now, the photoemission process has been viewed in a single-particle picture. To
introduce many-body aspects we follow the excellent review article by Damascelli, Hussain
and Shen [16].

In general, we are dealing with an N -electron system from which a single electron
is removed by the excitation process and an (N � 1)-electron system is left behind. The
(N�1) particle system is in an excited state and is about to relax during the photoemission
process. To simplify one thus assumes, that the photoelectron is removed from the system
instantaneously and does not ”feel” the relaxation process of the system left behind. This is
called sudden approximation. This is again justified for relatively high excitation energies.
Under this assumption it is possible to factorize the final state into the wave functions
of the photoelectron  k

f with momentum k and the one of the (N � 1)-particle system

�N�1

f [16]:

 N
f = A · k

f · �N�1

f .(2.15)

The antisymmetric operator A satisfies the Pauli principle for the N -electron final state
wave function  N

f . However, for the (N �1)-electron system a manifold of possible excited

states �N�1

m with energies EN�1

m are possible and the total transition probability is then
given by the sum over all possible excited states m. If one assumes that the initial state is
given by a single Slater determinant [16] a similar factorization is possible where the state
of the electron that is going to be excited, i.e.,  k

i is a one electron-orbital:

 N
i = A · k

i · �N�1

i .(2.16)

Now the matrix element of Eq. 2.3 may be rewritten as:

⌦
 N

f

��H 0 �� N
f

↵
=

D
 k

f

���H 0
��� k

i

E ⌦
�N�1

m

��H 0
����N�1

i

E

⌘ Mk
f,i · cm,i

(2.17)

The total photocurrent I(k, Ekin) measured at a momentum k, i.e, under the emission
angle ✓, as a function of Ekin is then proportional to

X

f,i

���Mk
f,i

���
2

X

m

|cm,i|2 �
�
Ekin + EN�1

m � EN
i � h⌫

�
,(2.18)
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If only one final state is possible for the (N � 1) particle system then Eq. 2.18 resembles
again Eq. 2.3. In general many of the cm,i contribute to the photoemission signal and this
will become of particular importance in Chapter 6 where we analyze the lifetime broadening
of the surface state in Bi

2

X
3

. Therein we will show that all kinds of possible final states
can be approached by the one-particle spectral function.

We have now already introduced two powerful tools for the investigation of topological
surface states. The surface location can be investigated by excluding a dispersion in k?
with photon energy dependent photoemission. In turn, by measuring the dispersion in
kk (Chapter 4) the metallicity of the surface state can be confirmed by investigation of
the dispersion close to the Fermi level. Also the Fermi surface can be mapped with the
presented methods: all that one needs is a second rotational degree of freedom besides the
angle ✓ in Fig. 2.2 a). One may either measure the full E(✓) dispersion at di↵erent angles
about the surface normal (⌘) or at di↵erent polar angles (') as indicated in Fig. 2.2 b).
The method allows to count the number of surface states that cross the Fermi level, and as
will be discussed in Chapter 3 this number should be odd. However, we are not yet able to
exclude a degeneracy of states with di↵erent spin. To do so, one has to resolve the spin of
the photoelectrons and the method that has been applied in this thesis is based on Mott
scattering.

2.1.5 Spin Resolution by Mott Scattering

Instead of a detector that, in principle, simply counts the number of electrons as a function
of their emission angle and kinetic energy one may use a detector that is capable to dis-
tinguish the spin direction of the photoelectrons in terms of a spin polarization P defined
as

P =
n " �n #
n " +n # .(2.19)

The most widely used detectors3 in this sense are Mott-type spin detectors which make use
of the spin dependent scattering of high energetic (Eacc �20 keV) electrons from targets
of high nuclear mass. This type of scattering mechanism was first discussed by N.F. Mott
in 1929 [18]. The principle is based on the fact that due to the spin-orbit interaction fast
electrons have a higher probability to be scattered to the left (right) by the target atoms
if they have spin up (down)4. If the electrons are detected under their spin dependent
deflection angles, one measures an intensity asymmetry PI = IA�IB

IA+IB
in the two electron

detectors A and B if the incoming electron beam is spin polarized. Ideally, the asymmetry
PI would be equivalent to the polarization P of the incoming beam. However, in reality it
is largely reduced by the ability of the detector to distinguish the spin components which
is encoded in the so called Sherman function S. If S is known, the spin polarization of the
incoming beam is determined by

P =
1

S

IA � IB
IA + IB

.(2.20)

The intensity asymmetry is, hence, a measure for the initial state spin, if polarization
e↵ects in the final state can be excluded (see Chapter 7 for details). However, an additional

3For an introduction to other spin detection methods see for example the review articles by Johnson [10]
and Dil [17] and references therein.

4Up, down, left, and right are chosen arbitrarily.
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asymmetry arises if the two electron detectors have di↵erent e�ciency which is typically the
case. This will be discussed with respect to our spin-resolved measurements in Chapter 4.
For magnetic systems, two di↵erent counters are already su�cient, since the quantization
axis may in principle be aligned to the detection axis, such that the full polarization will
show up in these two counters. However, for the investigation of spin-orbit split systems
like the Rashba splitting or the topological surface states, the spin quantization axis is not
defined in real space but only in k-space and is locked to the momentum of the electrons.
In order to investigate the spin structure of such spin-orbit split bands, the detection of
more than one spatial component of the spin is necessary [17]. This becomes particularly
important if the spin is not anymore fully locked perpendicularly to the momentum and
further rotates out of plane as it has been proposed for Bi

2

X
3

[19, 20].

2.2 Experimental Setups

In this section a description of the experimental setups that have been used to obtain the
data presented in this thesis shall be given. In favor for presenting as much results as
possible in the experimental part, this section is kept as short as possible.

2.2.1 The ARPES 12 Setup

Depicted in Fig. 2.3 is the BESSYII user endstation ARPES 12. Most of the data pre-
sented within this thesis has been measured with this machine. It is equipped with a VG
Scienta R8000 hemispherical electron analyzer that allows for an ultimate nominal energy
resolution below 1meV at low kinetic energies (<25 eV).

The setup is connected to the PGM2a branch of the UE112 beamline which is an
undulator beamline designed for ultimate energy resolution in the VUV-XUV regime (⇠20-
200 eV). The APPLE II type undulator has a period length of 112mm and a minimal gap
of 22.2mm. The di↵erence of the APPLE II to a standard planar undulator is that the
bottom and top magnet rows are separated horizontally into two parts that can be shifted
relative to each other. In addition to linearly polarized light these undulators are capable
of producing eliptically and circularly polarized light which has been used to obtain the
data presented in Chapter 7. Details on the beamline and the APPLE II undulator can be
found on the homepage of the Helmholtz Zentrum Berlin [21], which operates the BESSY II
storage ring, and in the references given there.

The ARPES 12 setup is devided into two connected ultra high vacuum chambers,
whereas the lower analytical chamber can be shut o↵ from the upper preparation chamber
by a gate valve, which allows to use preparational methods, such as adatom deposition
by evaparation, without a↵ecting the vacuum conditions of the analytical chamber. For
this purpose the preparation chamber o↵ers several ports which can be equipped with
exchangeable evaporators in a standard setup as shown on the photography of Fig. 2.3.
Typical pressures lie between 1·10�10 and 1·10�11mbar with the gate valve between upper
and lower chamber open. During evaporation the pressure is typically in the low 10�9mbar
range.

The load lock allows a relatively fast way of exchanging the samples, an important
aspect for the Bi

2

Se
3

and Bi
2

Te
3

systems studied by us. Before the samples are placed
into the vacuum system they are cleaved several times with common adhesive tape in air.
The idea behind this procedure is that the crystal will tend to cleave first at the plane
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Figure 2.3: The ARPES 12 setup used for ultra high resolution angle resolved photoemission
measurements. Left: CAD drawing of the chamber with only basic components attached (drawing
courtesy of A. Varykhalov). Right: Photography of the chamber in working conditions at the
UE112PGM2a undulator beamline of BESSY II.

with the lowest surface quality and, hence, the surface quality gets iteratively improved
over several cleavages. Afterwards copper adhesive tape is attached to the samples which
is lifted in ultra high vacuum with the help of a wobble stick. Once the samples are
contaminated they cannot be reprepared in situ but have to be taken out of the vacuum.

To allow for k-space mapping, the chamber is equipped with a 6-axis manipulator,
which o↵ers three translational and three rotational degrees of freedom. The three possible
rotation angles (✓, ⌘,') are shown in Fig. 2.2 b).

The light incidence  is rotated by 45� with respect to the detection plane of the
analyzer, which is vertical in this setup. In addition, the incidence is tilted by ⇠6� above
the horizontal plane.

The entrance slit of the analyzer defines the angle dispersive axis, while its width defines
the lateral angular resolution. A slit width of 0.2 µm has been used for most of the data
presented within this thesis. The maximal acceptance angle on the angle dispersive axis is
±15� but for most of the measurements presented within this work the acceptance has been
set to ±7�. This is enough to detect the topological surface state of Bi

2

Se
3

and Bi
2

Te
3

at
±ky simultaneously for all used photon energies and up the Fermi level where the surface
state shows its largest expansion in k-space.

The radius between the inner (ri) and outer hemisphere (ro), as sketched in Fig.2.2 b),
is given by r=(ri+ro)/2=200mm. The potential di↵erence between inner and outer shell
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Figure 2.4: The PHOENEXS setup used for spin resolved measurements. Left: CAD drawing
of the chamber with only basic components attached (drawing courtesy of A. Varykhalov). Right:
Photography of the chamber in working conditions at the UE112PGM1 undulator beamline of
BESSY II.

(UP ) defines the pass energie EP according to

EP =
eUP

r
2

/r
1

� r
1

/r
2

.(2.21)

Electrons get deflected by the electric field between inner and outer hemisphere and only
electrons in a finite energy window pass through the analyzer and get mapped on the
detector. All data presented in this thesis is measured in a constant analyzer transmission,
which means, that electrons get retarded to the pass energy. The retardation voltage
is ramped according to the size of the predefined energy step to allow electrons of the
predefined kinetic energy window to pass through the analyzer.

The passed electrons are detected by a multi-channel plate which is monitored by a
CCD camera. The two dimensional detector image is seen in real time on the computer
screen which allows for an easy adjustment of the sample in angle resolved photoemission.
The detector system is capable to resolve 1060 energy channels and ⇠750 angular channels
simultaneously. The energy window covers about 12% of the pass energy and for angle
resolved photoemission three di↵erent lens modes project ±15�, ±7�, or ±3� on the angular
channels. The angular resolution is between 0.1� and 0.4� depending on the spot size of
the excitation source.
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2.2.2 The PHOENEXS Setup

Fig. 2.4 shows the PHOENEXS5 setup which is equipped with a SPECS PHOIBOS 150
hemispherical energy analyzer.

The PenteAx 5-axis manipulator has 3 translational degrees of freedom and 2 rota-
tional degrees of freedom, that are, rotation about the surface normal ' and about the
manipulator axis ⌘. The precission of rotation is about 0.5� for both directions.

Sample cleavage has been done in the preparation chamber similarly to what has been
described above for the ARPES 12 setup. In addition, the PHOENEXS chamber o↵ers a
second preparation chamber above the analytical chamber.

The geometry of the photoemission setup is such that light incidence and electron
detection direction are rotated by 45� to each other. The light incidence is horizontal. The
analyzer entrance slit is oriented horizontally, i.e., within the plane of light incidence and
normal emission. Dispersions can be measured by several energy distribution curves at
di↵erent emission angles ⌘.

For in situ sample characterization a low energy electron di↵raction (LEED) facility
is mounted in the analytical chamber. In principle this allows an exact orientation of the
samples for angle resolved photoemission, however, this turns out to be complicated for
the case of Bi

2

Se
3

and Bi
2

Te
3

since they show a tendency to surface facetting, meaning
that the surface contains areas which are oriented di↵erently with respect to each other,
a fact which can be observed directly in LEED. A one to one matching of photoemission
and LEED position is therefore hardly achieved. This leads to some uncertainties for the
case of spin resolved measurements, presented and discussed in Chapter 4. All chambers
are under ultra high vacuum of typically ⇠10�10mbar.

For electron detection, two sets of channeltrons are available. The front-channeltrons
are optimized for a high transmission of electrons, to allow spin-integrated photoemission
with high intensities and good statistics. They consist of 6 separate channeltrons that are
added for a higher e�ciency.

However, the special feature of this setup is the Rice University type Mott detector [23]
which is visible on the photography on the right hand side of Fig. 2.4 and which allows to
resolve the two in-plane components of the electron spin on the surface under investigation.
After the electrons have passed the analyzer the beam is deflected into the Mott detector
where the electrons are accelerated to high kinetic energies by the applied high voltage (be-
tween 23 and 26 kV). The electrons get scattered o↵ spin dependently by a thorium target
and are detected by two pairs of channeltrons, where the pairs are oriented perpendicular
to each other and the two channeltrons of each pair are positioned symmetrically at ±120�

with respect to the thorium target.
The energy resolution of the analyzer in a spin resolved measurement is only about

100meV. Nevertheless, the setup is capable of resolving extremely small energy splittings
below 10meV between states of opposite spin at room temperature since the electrons
are detected in separate channeltrons. The spin resolution is not a↵ected by the energy
resolution and this is practically used to increase the flux of photoelectrons by opening
the exit slit of the beamline, to increase the light intensity which in turn increases the
photocurrent.

More critical, especially when it comes to the determination of the absolute initial spin
polarization in topological insulators turns out to be the increase of the acceptance angle of
the analyzer by opening the built-in aperture. The relatively small diameter of the surface

5A more detailed description of the setup is given in Ref [22]
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Fermi surface in Bi
2

Se
3

and Bi
2

Te
3

(<0.2Å�1) may lead to an admixture of the states
with opposite spin since the signal is integrated over the full acceptance angle. Assume
that the electrons are 100% spin polarized in the initial state and a finite contribution
of the other half of the Brillouin zone which is also 100% polarized but in the opposite
direction is detected simultaneously. Then the measured spin polarization will appear
reduced since the polarization is calculated by the intensity di↵erence in the two separate
counters, according to Eq. 2.20.

Another problem arises from the detection of the spin components with individual chan-
neltrons. Since each channeltron shows a di↵erent sensitivity there is always an asymmetry
in the intensity, even for an unpolarized electron beam. This has to be taken into account
in the data procession and will be discussed in Chapter 4.

The use of Th as a target increases the e�ciency of the Mott polarimeter in terms of
the Sherman function (S) introduced above. In a simplified picture, the Sherman function
is proportional to the atomic number Z. Commonly used as a target is Au, and compared
to this we can estimate an increase of the Sherman function by about 14% [22]. If operated
at a high voltage of 26 kV the Sherman function is about 0.16. The figure of merit of the
Mott detector is defined as:

FOM = S2 · I

I
0

,(2.22)

where I
0

and I are the intensities of the incoming beam and Mott scattered electrons,
respectively. This ratio is typically in the range of 5⇥10�3 [23] which gives a FOM of
1.4⇥10�4.

From the low figure of merit of a state of the art Mott detector that is used in this
thesis it becomes clear that the increasing demand for spin resolved studies in material
research is hard to satisfy. For a spin resolved spectrum of good statistics a measurement
time of several hours has to be taken into account. This is acceptable in many cases, but
if, for example, the sample surface is very sensitive, or if a detailed knowledge of the spin
texture is required, then such a setup reaches its limits quite soon. Thus, there is a high
need for more e�cient spin detectors or, alternatively, high e�cient methods that allow an
indirect probe of the spin. One such possibilty will be discussed in Chapter 7 and we will
see that one has to be very careful with indirect probes.
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Chapter 3

On the Distinction of Topological
Phases

As the name topological insulator readily indicates, the key for understanding this new
quantum phase of matter lies in a basic understanding of topology and how it applies to
solid state physics. Even though the experimental results of this thesis may be understood
without a deeper understanding of topology, the idea and motivation behind will stay buried
under the unfamiliar language connected to it. Therefore, I will review some prominent
e↵ects and their explanation in a historical framework to give a comprehensive introduction
into this new and fast growing field. For a more detailed introduction the reader may
be referred to reviews by Hasan and Kane [24], Hasan and Moore [25] as well as Qi and
Zhang [26].

3.1 The Integer Quantum Hall E↵ect

Basically, the mathematical discipline of topology deals with properties that are preserved
under continuous deformation of objects. Thus, topologically distinct objects cannot be
transformed into one another without going through some discontinuity. One has to tear
a hole into a sphere in order to get a torus and the topological invariant which accounts
for the distinction of the two is the genus which indeed counts the number of holes in their
surfaces.

The gate for an application of topology to solid state physics was opened by the dis-
covery of the integer quantum Hall e↵ect by von Klitzing, Dorda, and Pepper in 1980 [27].
They found that in the two-dimensional electron gas of a MOSFET1 device at low tem-
peratures (T << 10K) and in high magnetic fields (B > 10T) the Hall conductance (�xy)
is quantized to extremely high accuracy as

��xy = n · e
2

h
,(3.1)

where n is an integer, e the electron charge, and h is Planck’s constant.
With increasing gate voltage the Hall voltage (UH) is decreasing following a step like

curve as can be seen in the original measurement shown in Fig. 3.1 a).

1Metal-Oxide-Semiconductor-Field-E↵ect-Transistor
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Figure 3.1: Quantum Hall e↵ect. a) Original measurement reproduced from Ref. [27] and
schematic of the measurement arrangement (Copyright (1980) by the American Physical Society).
b) Landau quantization of the density of states (top) and broadening in real systems (bottom). c)
Schematic of Laughlin’s Gedankenexperiment.

On the one hand this e↵ect can be readily explained with the condensation of electron
orbits on Landau levels in a magnetic field [28]. The density of states of a perfect two di-
mensional system is then represented by a sequence of �-functions which are energetically
separated by �E = ~!c (upper panel of Fig. 3.1 b). The cyclotron frequency !c is deter-
mined by the magnetic field B penetrating perpendicular through the plane of electron
motion. Also the degree of degeneracy is determined by the magnitude of the magnetic
field. At some critical values of B all states on the highest occupied Landau level are
occupied and the Fermi level lies half the way between this level and the lowest unoccupied
level. By applying a gate voltage one can move the Fermi energy to match the energy of
the highest occupied Landau level, thus increasing the carrier concentration. The latter is
quantized with the density of states. The next increase of carrier concentration will only
appear as the gate voltage again drives the Fermi level to energetically match a Landau
level. The Hall voltage is proportional to the inverse of the carrier concentration ⌫.

UH =
B

⌫e
· I(3.2)

⌫ = n · eB
h

(3.3)

Since the carrier concentration increases stepwise, the Hall voltage decreases in steps.
On the other hand this explanation has two important shortcomings which cannot be

explained within the framework described above. First, it was assumed that the system
is perfect. In a real system there is always disorder present and the Landau levels get
broadened, thus leading to partially filled Landau levels irrespective of the applied magnetic
or electric field (lower panel of Fig. 3.1 b). But the quantization of the Hall voltage is
observed in real systems and is independent of the sample purity. And second, a fully
occupied band does not contribute to any ohmic current since the carriers transported in
all directions average to a net conductance of zero.

It was Laughlin who pointed out that the exactness and the insensitivity of the Hall
conductance must be due to a fundamental principle [29]. Even though his argumenta-
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tion was not based on topological concepts, his famous gedanken experiment has inspired
research in this field up to today.

Instead of the plane he considered a looped two dimensional metal, subjected by a
uniform magnetic field B with the field vector perpendicularly pointing outward everywhere
on the surface (Fig. 3.1 c). The interior of the loop is threadened by a fictitious flux � which
can be varied adiabatically. The electron gas is kept at temperatures where quantum
coherence holds and therefore states extending around the whole loop are present and
can be described by wave functions [30]. Furthermore, there are Anderson localized states
between the extended states. The latter are energetically within a finite width around the
Landau levels of the unperturbed system described above. The Fermi energy is pinned to
the localized states (mobility gap) and this can be understood as an explanation for the
appearance of finite plateaus in the Hall conductance of a real system.

Laughlin related the total current around the loop induced by a change of the flux d�
to the potential drop �V between the two edges of the loop. Quantization is achieved by
assuming gauge invariance as the fundamental principle behind the quantum Hall e↵ect:
According to Bloch’s theorem the free energy of the equilibrium state of such a loop is a
periodic function of the flux � with a period h/e [31]. In addition to the classical condition
that the potential may be altered in a way such that

�r�U =
@�A

@t
, r⇥ �A = 0,(3.4)

where �U is the change in the electrical and �A in the vector potential, there are further
restrictions for a quantum mechanical particle moving in a not simply connected space.
Since the vector potentials enter the Schrödinger equation Aharonov and Bohm found that
the system is only invariant if

I

system
�A(r)dr = n

h

e
,(3.5)

where n is an integer [32].
If the flux through Laughlin’s loop changes by one flux quantum, then the system is

back to its initial state. Apart from trivial changes of the phase of the wave functions there
may have been particles transported between the two edges of the loop. The number of
electrons transported this way determines the change in the free energy as �F = neV . The
current through the ring is given by the partial derivative of the free energy with respect
to the magnetic flux. Together one can derive the desired relation

I =
@F

@�
=
�F

��
= n

e2

h
V(3.6)

The result shows that the quantization can be derived from gauge invariance. However, in
quantum mechanical systems running a sequel of equivalent flux changes does not imply
that the amount of transported charge is always the same [30]. Therefore one would not
expect an exact quantization on average.

In addition it is still unclear how the fully occupied Landau levels can give a finite
conductance especially since there is a lack of mobile states at the Fermi level. Halperin
pointed out that there are quasi one-dimensional edge states that carry a conductance and
do not become localized even in the presence of disorder [33].

For the special case of two dimensional electrons moving simultaneously in a magnetic
field and in a periodic potential, Thouless, Kohmoto, Nightingale, and den Nijs (TKNN)
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obtained topological invariants for the Hall conductance [34] as they calculated it with the
Kubo formula [35]. The latter gives the linear response of the system to an applied electric
field in standard perturbation theory [31]. They found that the Hall conductivity is then
given by

�xy =
�2e2

2⇡h
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where the sum is over the occupied states with energies ✏↵ and |ui denotes an eigenfunction
of the Hamiltonian which satisfies the periodic boundary condition. This way it was shown
that the subbands of the Landau levels, which are introduced by the periodic potential,
carry a current which is an integer multiple of e2/h and not as one might expect a fraction
of the total Hall conductance of the entire Landau level.

The point that the TKNN integers are a result of the underlying geometrical nature
of the problem and therefore the first explicit connection to topology was made by Avron,
Seiler, and Simon [36]. With this it became clear that the TKNN integers are equivalent to
the first Chern number2. In another paper Simon showed that the geometrical phase factor
which was discovered by – and therefore named after– Michael Berry (Berry’s phase) [37]
is closely related to the TKNN integers. One can show that the integrand of Eq. 3.7 fulfills
the characteristics of a Berry curvature K in momentum space [38].

The integral of the Berry curvature over the whole Brillouin zone gives the Berry
phase. By applying the Gauss-Bonnet-Chern theorem it directly follows that the value of
this integral must be an integer. Since the two dimensional Brillouin zone can be viewed
as a Torus (T 2) due its periodic boundary conditions this integer is identified as the first
Chern number.

That the Hall conductivity reflects a topological invariant readily explains the plateaus
in the measurement. A smooth change of any parameter of the Hamiltonian changes the
curvature. But the integral of the curvature over the Brillouin zone, which is proportional
to the Hall conductivity must be an integer and can therefore not change smoothly. The
argumentation implies that the bands are not degenerated in the Brillouin zone which is
provided by the assumed periodic potential. If the variation of the parameters is strong,
states may become degenerate. For this case the Chern number is no longer well defined
since the curvature diverges when the levels cross. A further increase of the perturbation
will lift the degeneracy again. The Hall conductivity may have changed now but is again
an integer multiple of e2/h. Nevertheless, it is now assigned to a di↵erent topological phase
since the Chern number must have changed as well.

There is a general statement, that at the interface between topologically di↵erent phases
there must be boundary states with reduced dimensionality. This can be understood if
one keeps in mind, that in order to change the topological invariant, states have to get
degenerated, i.e., the energy gap must close. Consider the interface between a quantum
Hall insulator and a trivial insulator. At the interface the Chern invariant changes abruptly.
This fact necessitates the existence of gapless boundary states [39] since the gap must be
closed to change the Chern number. It follows that these states are extremely robust
against disorder and chiral in the sense that they move in one direction only along the
edge of the sample [24]. The only way to remove the states is to have both materials in
the same topological class. A typical boundary state is destroyed easily by contamination

2Topological invariant named after Shiing-Shen Chern. He generalized the Gauss-Bonnet formula, which
counts the number of handles of a geometric object, to be applied to the geometry of eigenstates [30].
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of the sample’s boundary. This is indeed one way to identify trivial surface states in
photoelectron spectroscopy, for example by a controlled oxygen deposition. Topologically
protected surface states can neither get destroyed nor localized by disorder. This will be
the main subject of Chapter 5.

That the Hall conductance is related to such edge states was already suggested by
Halperin [33] but they have not been discussed in the framework of topology. Hatsugai was
able to find the missing link in 1993 [40, 41] by pointing out that the Hall conductance
of the edge states equals that of the bulk. Interestingly, the value of the Chern number
and therefore the multiple of the Hall conductance equals the number of robust edge
states. Each edge state contributes one conductance quantum to the total Hall conductance.
Nevertheless, it should be noted that the Chern number is a characteristic of the bulk and
the quantum Hall e↵ect can therefore not be simply understood as an edge e↵ect.

The integer quantum Hall e↵ect is observed only in the presence of a strong magnetic
field (B ' 10T ). Therefore, time reversal symmetry is broken. In the absence of any
magnetic field or any other time reversal symmetry breaking perturbation the total Chern
number is trivial and equals zero, which implies of course a zero Hall conductivity. But in
recent years several theoretical approaches have shown that a trivial Chern number is not
tantamount to a trivial topology. Moreover, new topological invariants have been identified
in two [42, 43, 44, 45] and three dimensions [46, 47]. This has led to the prediction of new,
nontrivial phases which have subsequently been experimentally observed [48, 1].

3.2 Quantum Spin Hall E↵ect and Topological Insulators

Typically, these new phases are characterized as two or three dimensional band insulators
which exhibit one or two dimensional gapless boundary states, respectively. But they
are clearly distinct from the quantum Hall phase since time reversal symmetry is obeyed.
Conservation of time reversal symmetry is the precondition for observing these phases.

3.2.1 Two Dimensional Systems

In two dimensions the quantum spin Hall e↵ect was first proposed by Kane and Mele [43]
taking the two dimensional carbon allotrope graphene as a model system. A su�cient spin-
orbit interaction provided, they predicted a sizable spin-orbit gap in the two dimensional
bulk at the two distinct time reversal invariant points K and K 0 [49]. In contrast to a
gap due to the breaking of the AB-symmetry of graphene’s sub-lattices, the spin-orbit
gaps would have opposite signs (sic) for opposite spin �z = ±1 at K and K 0 [43]. An
applied electric field would induce a current where spin up and spin down electrons counter-
propagate along the edges (Fig. 3.2 a). Thus, the net charge current would be Jc = 0
whereas the spin current would be given by Js = (~/(2e)) (J" � J#). In absence of �z-non-
conserving terms, the current would be characterized by a quantized spin Hall conductivity
�sxy = e/(2⇡). However, in real systems such terms are always present and therefore the
spin Hall conductivity is not expected to be quantized in general like the Hall conductivity
in the quantum Hall e↵ect is; the quantum spin Hall e↵ect cannot be characterized by the
spin Hall conductivity [50].

One can regard the quantum spin Hall e↵ect as two copies of a quantum Hall e↵ect
for the two spin directions, where the spin-orbit interaction acts like a magnetic field
penetrating the surface of the sample perpendicularly with the field vector pointing up
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Figure 3.2: a) A quantum spin Hall system (right) can be thought as two copies of a quantum
Hall system (left) where the magnetic field points out of (top) or into (bottom) the surface plane.
Spin orbit coupling takes the role of the magnetic field in the quantum spin Hall e↵ect. b) Original
proposal of the quantum spin Hall phase in graphene (reprinted from Ref. [43]; Copyright (2005) by
the American Physical Society). A finite spin orbit gap in the two dimensional electronic structure
should lead to the formation of one dimensional spin polarized edge states in the considered stripe
geometry (inset). c) Band structure of HgTe (left) and CdTe (right). If both systems get arranged
in a heterostructure such that HgTe is sandwiched by CdTe then above a critical thickness d

c

of the
HgTe layer a band crossing of the �6 and �8 bands occurs leading to the quantum spin Hall phase
(reprinted from Ref. [44]; Copyright (2006) by the American Association for the Advancement of
Science).

for the one and down for the other copy (Fig. 3.2 a). From this consideration, one can
intuitively understand that the spin current is carried by edge states, since an integer
quantum Hall phase has always edge states as described in the previous section. Indeed,
the tight binding model calculated for a strip geometry of graphene (inset of Fig. 3.2 b) by
Kane and Mele [43] reveals a single pair of gapless and spin filtered edge states which form
a Kramer’s doublet. These states obey time reversal symmetry

E(k, ") = E(�k, #),(3.8)

and are thus protected from elastic backscattering. Moreover, the degeneracy of the
Kramer’s doublet cannot be lifted by perturbations that do not break time reversal sym-
metry. It follows, that the edge states of the quantum spin Hall e↵ect are robust and
therefore distinct from usual boundary states. A common surface state of for example the
Shockley type is easily localized by disorder.

In a subsequent paper Kane and Mele characterized the quantum spin Hall insulator
with a newly introduced topological invariant ⌫, named Z

2

invariant [42]. For a trivial
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insulator the Z
2

invariant takes an even value, for the quantum spin Hall insulator it is
odd. In contrast to the quantum Hall e↵ect, where every Chern number characterizes a
di↵erent phase, all odd and all even Z

2

numbers are in the same phase. Thus, ⌫ being
either 0 (even) or 1 (odd), two elements are enough to characterize the distinction and
from this the name Z

2

is derived.
There have been di↵erent approaches formulated to determine the Z

2

invariant [42,
51, 45, 46, 52, 50]. Also, a very general description by a topological field theory for time
reversal invariant insulators was given [53] which takes into account many-body interactions
for which the Z

2

invariant is not well defined. Nevertheless, the most commonly used
approach is based on single particle Bloch wavefunctions |uk,ni of the occupied states that
are non-degenerate in the Brillouin zone except for special points ki (in momentum- or k-
space) where a double degeneracy may occur due to time reversal symmetry. The invariant
⌫ is then determined over the zeros of a Pfa�an3 (Pf[. . .]) as [42]

(�1)⌫ =
4Y

i=1

�i,(3.9)

where the factors �i are given by

�i =

p
det[w(ki)]

Pf[w(ki)]
= ±1.(3.10)

The elements of the unitary matrix w(ki) are given by

wmn(k) = hu�k,m|⇥ |uk,ni ,(3.11)

where the operator of time reversal is denoted with ⇥ and m,n are the indices of the occu-
pied bands. In general the formalism implies the knowledge of the phase of the wavefunc-
tions in the whole Brillouin zone. But in inversion symmetric systems the determination
of the �i is greatly simplified to a product over the parity eigenvalues ⇠

2m of the 2mth
occupied energy band at the four time reversal and parity invariant momenta �i, which
share the same eigenvalue ⇠

2m = ⇠
2m�1

with its Kramers degenerate partner 2m� 1 [52]:

�i =
NiY

m=1

⇠
2m(�i).(3.12)

The product runs over all occupied bands Ni, where the index i accounts for a di↵erence in
the number of occupied bands at the indivdual �i. The invariant ⌫ is determined according
to Eq. 3.9.

Carbon’s low spin-orbit interaction requires very low temperatures to cause a finite band
gap and the quantum spin Hall insulating state in graphene is experimentally inaccessible.
Bernevig, Hughes, and Zhang have suggested CdTe/HgTe quantum wells as a system which
undergoes the topological quantum phase transition above a critical thickness of the HgTe
layer sandwiched between CdTe layers [44]. In resistivity measurements König et al. were
able to show that above the critical thickness of 6.3 nm the system is indeed in the quantum
spin Hall state [48]. The band structure then shows the predicted band inversion of s and p

3For any 2n⇥2n skew-symmetric matrix A the determinant may be written as the square of a polynomial
of the matrix entries: Pf(A)2 = det(A). Source: http://en.wikipedia.org/wiki/Pfa�an
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derived bands which occurs due to the strong spin-orbit coupling in this system (Fig. 3.2 c).
Even though the method applied in Ref. [44] for identifying the quantum spin Hall state in
HgTe quantum wells was a di↵erent one and furthermore, HgTe is of zincblende structure
and therefore not inversion symmetric, one can apply the method of Fu and Kane [52] just
by assuming a model Hamiltonian for HgTe which is inversion symmetric. The Z

2

invariant
is then found to be odd, which can be viewed as a proof of concept. The full power of this
approach is revealed in three dimensional systems for which other methods to determine
the topological class of the systems are even more tedious than in two dimensions.

3.2.2 Three Dimensional Systems

In three dimensions theZ
2

characterization has to be extended to four invariants (⌫
0

; ⌫
1

⌫
2

⌫
3

) [46].
If, and only if ⌫

0

is odd the system is a strong topological insulator whereas ⌫
1�3

charac-
terize a weak topological insulator. Only the strong phase is robust: the gapless surface
states in the weak phase get localized by weak disorder similar to an ordinary insulator.

To determine ⌫
0

the formulas given for inversion symmetric and asymmetric systems
in two dimensions have to be modified only slightly. The product of equation (3.9) is now
over the occupied Kramers pairs at the eight time reversal and parity invariant momenta
(�

1�8

) of the three dimensional Brillouin zone:

(�1)⌫0 =
8Y

i=1

�i.(3.13)

Again, if the system is inversion symmetric, the problem is reduced to the determi-
nation of the parity eigenvalue of the occupied bands at these eight points. The �i are
also called parity invariants [54]. They are indeed a topological invariant as well, but lose
their meaning in the absence of inversion symmetry whereas the ⌫i hold independently of
inversion symmetry. With this method it was possible to predict the first three dimen-
sional topological insulator to be observed experimentally: the alloy Bi

1�xSbx [52, 1, 55].
Interestingly, the realization of a three dimensional topological insulator in an alloying
compound readily approves the robustness of the topological phase since an alloy typically
involves a non negligible amount of disorder. Another interesting aspect of Bi

1�xSbx is
that the phase transition can be tuned by the amount of Sb substituting Bi in the com-
pound. Therefore, the phase transition can be examined not only theoretically like in the
stoichiometric compounds Bi

2

Se
3

and Bi
2

Te
3

, which are the subject of the experimental
part of this thesis, but in principle also in experiment.

3.2.3 The First Realization: Bi
1�xSbx

Bi and Sb are both group-V semimetals and crystalize in the rhombohedral A7 structure
where two layers are paired to bilayers (Fig. 3.3 a). Within a bilayer the trivalent atoms
form strong covalent bonds to the three nearest neighbors. The inter-bilayer coupling is of
a weak van der Waals-type. Both systems exhibit a finite direct bulk energy gap in the
whole Brillouin zone (Fig. 3.3 b) but an indirect negative gap due an overlap of bands that
are separated in k-space [56]. By calculating the product of Eq. 3.13, Bi is characterized
to be in the Z

2

class (0;000) and Sb in the Z
2

class (1;111) [52]. Even though this means
that the Z

2

class of Sb is nontrivial, it is not a topological insulator: since the band gap is
indirect it is semimetallic. The di↵erence between Bi and Sb is found in the parity invariant
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a b

c d

FIG. 5. Schematic representation of band energy evolution of

FIG. 6. a Band structure of -Sn near the
describes zero gap semiconductor due to the inverted
bands. b In the presence of uniaxial strain, the degeneracy at
lifted, opening a gap in the spectrum. The parity eigenvalues remain
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Figure 3.3: Bi1�x

Sb
x

a) Rhombohedral crystal structure and b) bulk and hexagonal surface Bril-
louin zone (reprinted from Ref. [54]; Copyright (2008) by the American Physical Society). Schematic
of the band inversion as a function of Sb concentration x (reprinted from Ref. [52]; Copyright (2007)
by the American Physical Society). Left hand side reflects the energetic order of the bands L

a

, L
s

and T in pure Bi, whereas the right hand side corresponds to pure Sb. The band inversion occurs
at x=0.04 but the indirect bulk gap becomes positive between x=0.07 and x=0.09. d) Angle re-
solved photoemission result for x=0.09 (reprinted from Ref. [55]; Copyright (2009) by the American
Association for the Advancement of Science). Arrows indicate the di↵erent spin polarization for
the individual bands. White dashed lines correspond to band structure calculations.

at the three L-points of the Brillouin zone which give �(L) = +1(�1) for Bi (Sb). The
evolution of the band structure of Bi with an increasing amount of Sb substitution was
already sketched in 1996 by Lenoir and co workers [57] and is adapted in Fig. 3.3 c). On
the left hand side, the energetic order of the pure Bi bands of interest in valence (La) and
conduction band (Ls) at the L point are sketched. Of further interest is the band labeled
with T which, together with Ls, defines an indirect negative band gap between the T and
L point of the three dimensional Brillouin zone. The right edge shows the same but for
pure Sb, where Ls and La are inverted compared to pure Bi thus reflecting the di↵erent
parity invariant. If Sb is added into the Bi matrix, the Ls conduction band of Bi is lowered
whereas the La valence band is elevated until they resemble the situation in pure Sb, when
all Bi is substituted with Sb. In between, the direct gap at the L point is closed at a
relative Sb concentration of x = 0.04. At this band touching point the Z

2

invariant ⌫
0

changes its value from even (0) to odd (1). With increasing x, the direct gap at L reopens
with inverted order of Ls and La, but the system is not yet in an insulating state, since the
indirect band gap between L and T is still negative. At x = 0.07 the indirect gap changes
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Figure 3.4: Schematics of a) a Rashba split and b) an ideal topological surface state (Dirac cone).
In the Rashba case, there are two (an even number of) crossings with the Fermi level E

F

between
the time reversal symmetric momenta �and �‘, while in the case of a topological insulator there is
only one (an odd number of) intersection(s).

its sign when the T band crosses the bottom of the La conduction band. The alloy is now a
semiconductor with an indirect band gap unless x exceeds 0.09. At this concentration the
T band energetically crosses the Ls valence band and the energy gap becomes a direct gap
at L. The evolution from a semimetal to a direct band insulator is reversed at x = 0.18
where the gap becomes indirect again as the H band is lifted above the Ls band and finally
becomes an indirect semimetal again when the maximum energy of the H band crosses the
minimum energy of the La band at x = 0.22. Please note that at the crossings of the T and
H bands with the La or Ls bands the Z

2

invariant is not allowed to change its value since
the bands are well separated from each other in k-space and the phase transition requires
a band touching [58].

The surface state spectrum of Bi
1�xSbx in the topological insulator phase is the most

interesting part, since the interesting physics is placed at the surface. As theory predicts,
the topological surface state must obey time reversal symmetry from which the two most
important features can be derived: protection of the gapless surface states against pertur-
bation that do not break time reversal symmetry and spin polarization of the surface state
which is distinct from any other known spin polarized surface state. To justify this claim
the topological surface state spectrum is compared to topologically trivial surface states
which obtain a Rashba-type spin-orbit splitting due to the broken inversion symmetry at
the surface. The splitting in the Rashba e↵ect is proportional to the component of an
external or intrinsic electric field perpendicular to the surface under investigation Ez [59].
Assuming a parabolic dispersion of the surface state like the surface state of the Au(111)
surface [60, 61, 62] the splitting along an arbitrary direction kx of the surface Brillouin zone
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is characterized by

E",#(kx) =
~k2x
2m⇤ ± ↵Rkx,(3.14)

↵R / hEzi ,(3.15)

where ↵R is the Rashba parameter, and m⇤ denotes the e↵ective mass. A sketch of the
e↵ect is given on the left of Fig. 3.4 together with a sketch of an ideal topological surface
state (right). Both show a crossing at the time reversal symmetric momentum � and the
Fermi surface is circular with the spin locked perpendicular to the momentum. The obvious
di↵erence is that in the Rashba case there are two circles or two intersections of surface
states with the Fermi level along a given direction of the two dimensional Brillouin zone,
whereas in the case of the topological insulator there is only one. This di↵erence has some
important consequences.

First, if the system is two dimensional, meaning one dimensional topologically pro-
tected edge states instead of two dimensional surface states, backscattering is in general
forbidden for the two dimensional topological insulator (or quantum spin Hall insulator)
whereas the Rashba e↵ect only suppresses elastic backscattering: a spin up electron can-
not be scattered into a spin down state without flipping the spin4. In a three dimensional
topological insulator with a circular Fermi surface only a scattering process with the angle
⇡ is forbidden whereas scattering in other angles is allowed but the probability is reduced
as a function of the scattering angle.

Second, the fact that there is only one intersection of the surface state spectrum with
the Fermi level in the nontrivial system implies that there is no smooth transition to a
gapless state at the boundary. The surface states traverse the gap all the way from the
bulk valence to the bulk conduction band. Thus, an absolute gap into which the Fermi
level could be moved by doping or applying a gate voltage does not exist. In addition, time
reversal symmetry guarantees that the boundary states remain gapless even in the presence
of disorder or impurities. The contrary applies for example to the trivial surface state of
Au(111) which lies in the so called L-gap and exhibit a Rashba type spin splitting [60, 61,
62]. There, it is possible to push the Fermi level below the band minimum of the surface
state. All branches connect to the bulk conduction band and none to the valence band.

The protection of the topological surface states goes even beyond the absence of backscat-
tering or the guaranty of being gapless. Topology dictates the existence of gapless boundary
states whenever the Z

2

invariant changes at an interface between two materials. Since the
invariant is an integer there is no continuous way to change it. At the interface a phase
transition takes place. Therefore, the band gap has to close at the interface what is pro-
vided by the boundary states. Thus, the only way to remove the boundary states is to
have both systems building up the interface in the same Z

2

class. In contrast, the trivial
boundary states at an interface with another trivial system, most likely vacuum, can simply
be removed by a small amount of disorder or impurities.

One can summarize the characteristics given above to the theorem that an odd number
of surface states crossing the Fermi level between two time reversal symmetric momenta

4A spin flip may occur by scattering on a magnetic impurity via exchange interaction. Spin orbit
interaction is also able to rotate the spin in a scattering process. But the probability for a clockwise and
a counterclockwise rotation of the spin are equal and this leads to destructive interference of the electron
wavefunctions. The phase di↵erence between clockwise and counterclockwise rotation is 2⇡ and thus the
spin 1/2 particle wavefunctions are related as  � = �  [26].
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is the hallmark of a three dimensional topological insulator. Thus, angle resolved pho-
toemission is perfectly suited for the identification of topological insulators. But since
degenerated states cannot be distinguished, spin resolution is crucial to unambiguously
identify a topological insulator.

As can be seen in Fig. 3.3 d) the surface state spectrum of Bi
0.9Sb0.1 below E

F

measured
with angle resolved photoemission does not consist of a single surface state crossing but
five [1] between the two time reversal invariant momenta of the two dimensional surface
Brillouin zone � and M. With the help of spin resolved photoemission Hsieh and co-workers
were able to suggest which of the five states connects the valence and the conduction
band [55], thus establishing the Z

2

topological order in this material. However, due to
the very low intensity of the bands labeled with 4 and 5 they were unable to conduct a
successful spin resolved measurement close to the L point. In principle, the fifth branch
could be doubly degenerated which would alter the number of crossings from odd to even
and the Z

2

invariant would equal zero. For a higher Sb concentration of x = 0.12 � 0.13
in a very detailed spin resolved study Nishide et al. where able to remove last doubts [63].

Today’s research is focused on the so called second generation of topological insulators,
the ternary compounds Bi

2

X
3

where X=Te, Se. Over Bi
1�xSbx these systems have the

advantages of being stoichiometric, exhibiting a much larger bulk band gap, and they have
a much simpler surface state structure with only one Dirac cone at the center of the surface
Brillouin zone �. Details for these systems will be given in the next chapter.

Their simple surface band structure make these systems ideal candidates to investigate a
manifold of interesting proposals on the physics of topological insulators in general. These
proposals reach from applied topics like the exploration of the electron spin for future
electronic devices (spintronics) over unusual superconductivity and quantum computation
to such exotic topics as Majorana fermions. To discuss all these e↵ects is far beyond the
scope of this thesis. The reader may thus be referred again to the reviews mentioned
in the beginning of this chapter, which give at least an excellent starting point. Where
appropriate, I will discuss interesting e↵ects and proposals in the prefaces of the individual
experimental chapters.



Chapter 4

Second Generation Topological
Insulators: Bi2X3

Soon after the discovery of the three dimensional topological insulator phase in Bi
1�xSbx

the focus of research has moved over to the so called second generation of topological insu-
lators: Bi

2

Te
3

, Bi
2

Se
3

and also Sb
2

Te
3

[64]. These systems share some peculiar advantages
over Bi

1�xSbx: First, being stoichiometric compounds which have been studied extensively
due to their thermoelectric properties [65, 66, 67], high quality single crystalline samples are
available and easy to produce [68]. Moreover, the amount of disorder is reduced compared
to the alloy compound Bi

1�xSbx. Second, the layered crystal structure allows for an easy in
situ preparation of clean surfaces by cleavage through common adhesive tape; an advantage
far from negligible for surface sensitive techniques such as angle resolved photoemission.
Third, and most importantly, these systems exhibit a single Dirac cone-like surface state
at the Fermi level which is centered at the high symmetry point � of the surface Brillouin
zone. Due to their extraordinary simplicity these systems have been named the hydrogen
atom of topological insulators [3].

4.1 Basic Properties of Bi2X3

While the surface electronic structure is rather simple in Bi
2

Se
3

and Bi
2

Te
3

as shall be seen
later on in this chapter, the bulk electronic structure as well as the crystal structure carry
some peculiarities and complexity which shall be discussed in the following as a starting
point

4.1.1 Crystal Growth and Structure

As mentioned before Bi
2

Se
3

and Bi
2

Te
3

are well established materials. Their thermoelec-
tric properties have been studied for years and can be tailored through alloying [69] or
the fabrication of nanostructures [70, 71, 72, 73] with reduced dimensions or heterostruc-
tures [74]. But the lack of theoretical concepts and understanding has kept their topological
properties secret until recently [64, 2, 3]. Nonetheless, today’s research on the topological
properties benefits from the progress in fabrication of high quality samples.

Large single crystals of Bi
2

X
3

can be grown by the Bridgman method which is the
method of choice for the samples used for the investigations presented within this thesis.
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Figure 4.1: Crystal growth. a) Cartoon of the Bridgman method. 1) The ampoule is placed at a
position where the temperature is constant and above the melting temperature (T
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) of the high
purity elements. 2) The ampoule is driven through a linear temperature gradient at a constant
speed. In the tip of the ampoule solidification starts at temperatures below T
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. 3) At the end
the ampoule is kept at a constant temperature well below T
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before it is cooled down slowly.
The resulting crystal structure is sketched in b).

Since the growth was carried out by our collaborators from the Moscow State University
only a short description of the method will be given in the following. Fig. 4.1 a) shows a
drawing of the Bridgman setup. High purity (6N) powders of Bi and Te/Se are placed inside
a sealed and evacuated ampoule. For Bi

2

Te
3

the source materials are excessed with Te to
avoid the trend of intrinsic p-doping. The shape of the ampoule is decisive for the growth
of single crystalline samples as it exhibits a diminuition on its lower end. The driving
force of the condensation is given by a nearly linear temperature gradient of 10K/cm
along the ampoule. First, the ampoule is driven at a speed of ⇠5mm/h up to the starting
position where it is kept for about 0.5-2 h while it gets stirred periodically. Afterwards
the ampoule is driven at a speed of ⇠0.5mm/h through the gradient from the hot (top)
region to the cold (bottom) region. As it passes into the cold region the solidification
begins. Outside the gradient region the ampoule is kept at a constant temperature well
below the melting temperature. From this procedure large single crystalline ingots of a
length of approximately 10 cm and a diameter of 2-3 cm have been obtained. From the
ingot, samples of about 1 cm length, 0.5�1 cm widths and with a thickness of 0.1�0.3mm
are cut, as exemplified by a Bi

2

Te
3

sample in Fig. 4.2 a).

The excellent crystal quality, as shown in Fig. 4.2, has been confirmed by transmission
electron microscopy (TEM) (b,c), low energy electron di↵raction (LEED, with the surface
Brillouin zone overlaid) (d), as well as scanning tunneling microscopy (STM) at room
temperature (e,f). The lattice spacing obtained from TEM is in rough agreement with the
values from Ref [75] given in Tab. 4.1.

As already pointed out, the crystal structure allows for an easy cleavage for surface
preparation. This can be understood from the crystal structure sketched in Fig. 4.1 b).
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Figure 4.2: Characteristation of Bi2Te3 samples. a) Picture of a typical sample cut from the as
grown ingot. b) Transmission electron microscopy of a sample before cleavage on a large scale and
c) with high resolution. The lattice spacing is ⇠0.22 nm. d) Low energy electron di↵raction pattern
measured with 80 eV. Overlaid is the surface Brillouin zone with the high symmetry directions
�M and �K. e) Scanning tunneling microscopy at room temperature and f) a zoom in. All
characterization methods demonstrate the excellent crystal quality.

Both compounds crystallize in a rhombohedral structure with space group D5

3d (R3m).
Along the [111] direction we find a sequence of atomic layers with only one species per
layer. Each of this layers forms a triangle lattice with three possible positions A, B and
C [76]. Along the [111] direction the layers stack in the sequence A-B-C-B-A—A. Five of
these layers form a so called quintuple layer and the atomic elements alternate like X(1)-
Bi-X(2)-Bi-X(1)—X(1). The total crystal is then build of stacked quintuple layers which
are bound by relatively weak van der Waals forces between two layers of X(1) atoms. This
weakness allows for the easy cleavage and the (111) cleavage plane is always terminated by
X(1) atoms as indicated in Fig. 4.1 c). Within a quintuple layer bonds are covalent. The
X(2) atoms have a distorted octahedral coordination with three Bi atoms from the layer
above and three Bi atoms from the layer below as nearest neighbors. A similar coordination
exists for the two equivalent Bi layers but the six nearest neighbors are three X(1) and
three X(2) atoms. The bonding length between two X(1) layers is larger as compared
to the covalent bonds such that the coordination lacks a clear symmetry for the X(1)
atoms (Tab. 4.1). This crystal structure exhibits three discrete symmetries: A threefold

X X(1)-X(1) X(1)-Bi Bi-X(2) X(2)-Bi Bi-X(1) X(1)-X(1)

Te 3.72 3.04 3.24 3.24 3.04 3.72
Se 3.30 2.99 3.06 3.06 2.99 3.30

Table 4.1: Bonding lengths between di↵erent neighbors in Bi2X3 given in Å [75].

rotation about the z-axis, a twofold rotation about the x-axis and inversion symmetry with
the X(2) atom as a center of inversion. The latter allows the application of the method
introduced by Fu and Kane to determine the Z

2

invariant [52, 64] like it has been described
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in Chapter 3.2.1.

4.1.2 Electronic Structure

As pointed out in Chapter 3 the Z
2

number is a characteristic of the bulk electronic struc-
ture. Even though an experimental proof of the topological insulator phase always has
to probe its peculiar surface state structure, a reliable prediction for a specific compound
always has to be based on the bulk electronic structure. For Bi

2

X
3

and Sb
2

Te
3

a very
instructive theoretical investigation was given by Zhang et al. [64] and more detailed by
Liu et al. [76]. The authors have at first compared the bulk electronic structure of Bi

2

Se
3

without and with spin-orbit coupling. Despite some shifting of occupied and unoccupied
bands they found at the �-Point a band gap opening together with an inversion of the
band mass of the occupied band closest to the Fermi level.

Regarding the bond formation from atomic orbitals in Bi
2

Se
3

this inversion can be
understood even though the picture is simplified. One can divide the formation into four
independent steps [76]. Taking the strong covalent bond within the quintuple layers into
account it is reasonable to focus on the bonds between Bi and Se atoms and all atoms in
the crystal matrix exhibit at least three such bonds.

The electron configurations are 6s2p3 and 4s2p4 for Bi and Se, respectively, and expect-
ing the bonds to be build from p orbitals is reasonable since they are the outmost ones.
In total there are 15 orbitals per unit cell since the five atoms in the unit cell contribute
with three (px, py, pz) orbitals each. In the first step the coupling between Bi and Se atoms
leads to a level repulsion and hybridization into new orbitals which are elevated in energy
for Bi and lowered in Se, accordingly. On the Se side there are two energy levels, where
the one closer to the Fermi level has six degenerated orbitals. The three other orbitals can
be neglected since they are split o↵ in energy and do not contribute to first approximation.
On the Bi side there is one energy level which also contains six orbitals. Due to inversion
symmetry, the second step divides the hybridized states in bonding and anti-bonding states
with a defined parity, either odd or even. Orbitals with odd parity gain energy while the
ones with even parity get reduced in energy on both, Bi and Se sites. In Bi, orbitals with
an even parity are now closest to the Fermi level while in Se odd parity is found near EF ,
and these are thus considered only. Crystal field splitting lifts the degeneracy between pz
and px,y such that the pz orbital in Bi is reduced in energy while it is lifted in Se. The
unequality of the pz and px,y orbitals is a direct consequence of the layered structure de-
scribed above1. If the Z

2

value was evaluated now, according to the method described in
Ref. [52], it would be trivial. The Z

2

number changes to be odd if the spin-orbit coupling
is taken into account.

A level crossing between the Se and Bi derived pz orbitals occurs and conduction
and valence band change their roles compared to the system without or reduced spin-
orbit coupling [64]. Since the two bands involved in the crossing have opposite parity the
parity eigenvalue, defined in Chapter 3 changes from ”�” to ”+” at and only at the time
reversal invariant point � of the three dimensional Brillouin zone (Fig. 4.4 b). It is now
straightforward from the considerations of Chapter 3 to conclude that the Z

2

number also
changes from ”0” to ”1”. Similar results can be obtained for Bi

2

Te
3

and Sb
2

Te
3

.
The strength of the spin-orbit coupling is determined by the atomic number Z of the

involved nuclei, which is Z = 83 for Bi, Z = 52 for Te, Z = 51 for Sb and Z = 34 for

1The coordinate system is chosen such that the z direction is along the [111] direction and the x and y
direction lie inside the layers.
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Se. Consequently, Sb
2

Se
3

is found to be a trivial band insulator as the spin-orbit coupling
strength is not strong enough to change the orbital order. On the other hand, a high
Z-value does of course not guarantee the topological insulator phase to be realized, as can
be seen in the example of Bi. Even though it has one of the highest Z-values of the stable
elements, it has a trivial Z

2

value[54]. In contrast, Sb carries a nontrivial Z
2

number
despite the reduced atomic number as compared to Bi [54]. However, both materials are
semi metallic in the pristine crystal and only the alloy of the two materials shows the
topological insulator phase as described in Chapter 3.2.3. It is the interplay of di↵erent
degrees of freedom that controls the topological phase transition and consequently systems
like NaCoO

2

where spin-orbit coupling is not expected to be extraordinarily strong are
proposed to exhibit a nontrivial topology [77].

Bi
2

Se
3

This interplay of di↵erent degrees of freedom is also reflected in the distribution of the
resulting sizes of the bulk band gaps over the di↵erent compounds. While in Bi

2

Te
3

one may expect the strongest spin-orbit interaction, due to the heaviest elements, the
size of the gap is with ⇠ 150meV significantly smaller than in Sb

2

Te
3

(⇠ 200meV) and
Bi

2

Se
3

(⇠ 200 � 300meV)(see references in [67] and [64]). Band structure calculations
without considering the spin-orbit interaction result in a direct band gap at the �-point for
Bi

2

Te
3

[78] while the band gap is indirect if spin-orbit interaction is taken into account (see
Fig. 4.4 a), reproduced from Ref. [79]). The same behavior has been found in calculations
for Bi

2

Se
3

[64] as shown in Fig. 4.3 a) and b) (reproduced from Ref. [79]). The band gap is
indirect as soon as spin-orbit e↵ects are introduced. Clearly visible is the band inversion
as explained above. At the � point of the bulk Brillouin zone (see also Fig. 4.4 b) two
parabolic bands with opposite e↵ective masses are visible if the spin-orbit interaction is
neglected (Fig. 4.3 b) and the transition from the valence band maximum to the conduction
band minimum is direct. In contrast, the inverted band structure (Fig. 4.3 b) has a local
minimum in the highest occupied band at � which is surrounded by local maxima in the
di↵erent directions of k-space. The valence band maximum is now found between F and Z
while the conduction band minimum is still at �, thus giving an indirect band gap. While
the band inversion takes place at the �-point only, bands are influenced by the spin-orbit
interaction everywhere in the Brillouin zone and this qualitatively explains why the position
of lowest energy separation between valence and conduction band shifts in k-space and also
why the size of the gap is not simply defined by the strength of spin-orbit coupling.

The results from first principle calculations can be compared to angle resolved pho-
toemission results conducted with h⌫ =50 eV undulator radiation as excitation source
(Fig. 4.3). The sample is oriented with the �K-direction along the angle dispersive direc-
tion of the analyzer. We find overall qualitative agreement in shape and energy position of
the bands. Most of the discrepancies which are found can be traced back to the limitation
of angle resolved photoemission that it probes the occupied bulk energy bands only at one
specific kz-point which is determined by the excitation energy. Throughout this thesis we
are mainly interested in the surface electronic structure. Thus, methods to determine the
full band structure have not been carried out.

The most obvious di↵erence between calculations and measurement is the state close
to the Fermi level. Clearly, a ”V”-shaped band is crossing the Fermi level while the
calculations predict the Fermi energy in a bulk energy gap. To emphasize this discrepancy,
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Figure 4.3: Bulk and surface electronic structure of Bi2Se3. First principles calculations with
(a) and without (b) spin-orbit interaction e↵ects (dobted from Ref. [79]). The gray shaded area has
been added to mark the bulk energy gap. c) In gap surface state (TSS) together with bulk valence
(BVB) and bulk conduction band (BCB) along the �K-direction. The Dirac point is nicely visible
and its energy position (E

D

) is marked with a red dashed line. d) Angle resolved overview of the
valence band along the �K-direction. The superimposed semitransparent area corresponds to the
bulk electronic structure projected on the (111) plane (calculation adopted from Ref. [80]).

a projection of a calculated bulk electronic structure on the (111) plane (semi-transparent
area in the left half of Fig. 4.3 d), adopted from Ref. [80]) is overlaid with the angle resolved
photoemission spectrum, measured by us. The state appears to be within the bulk energy
gap, a typical characteristic of surface states. Indeed, it has been shown that this state
exhibits no significant kz-dispersion by exciting electrons with di↵erent photon energies [3]
(see also Chapter 2), as it is expected for a two dimensional surface state.

A closer view on the surface state structure is shown in Fig. 4.3 c), where the photon
energy is set to 18 eV and the sample temperature is T ⇠10K. The dispersion of the
surface state is close in shape to an ideal Dirac cone of linearly dispersing or massless
Dirac fermions. At the Dirac point, however, the surface state deviates from the light-like
dispersion and gains an e↵ective mass. This fact is widely ignored in the literature, but
by definition the band e↵ective mass is proportional to the second derivative of E after
k (m⇤ / r2

kE), which is nonzero whenever the dispersion is not linear. Strictly, it is
thus not correct to speak about Dirac fermions for the surface state of Bi

2

Se
3

(and also
Bi

2

Te
3

), since a Dirac fermion is massless by definition. Nevertheless, the surface states
of topological insulators are typically addressed with this nomenclature in the community
and for simplicity it will be used in this thesis, as well.

The energy of the Dirac point (ED) is marked with a red dashed line and is found
320meV below the Fermi energy. In addition to the surface state two pronounced features
are visible below the Dirac point (labeled with BVB) and between the surface state branches
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Figure 4.4: Bulk electronic structure of Bi2Te3. a) First principles calculations including spin-
orbit interaction e↵ects (adopted from Ref. [79]) The gray shaded area has been added to mark the
bulk energy gap. b) Brillouin zone of the rhombohedral crystal structure. The [111]-direction is
perpendicular to the plane of cleavage. c) Angle resolved photoemission spectrum of the valence
band measured with a photon energy of 55 eV along the �K direction.

(BCB) at the Fermi level. BCB is not seen in the valence band overview of Fig. 4.3 d) which
hints at its bulk origin: The state disperses in the kz-direction which excludes a surface
localization in agreement with Ref. [3]. In the same way, the second, M-shaped feature can
be identified as a bulk valence band state. Its ostentatious dispersion can also be identified
from the bulk band structure calculations. While the necessary condition for a topological
surface state, an odd number of surface state crossings through the Fermi level, seems
to be fulfilled the bulk electronic structure resembles a metal, and hence Bi

2

Se
3

cannot
be called a topological insulator. The bulk metallicity is caused by a stochastic electron
doping which is caused by Se atoms which occupy Bi sites in the crystal matrix. Control
over this intrinsic doping can be achieved by varying the initial Se weight during the crystal
growth or by doping the crystals with Ca in the bulk [81]. This shortcoming appears to be
technically vincible and speaking about an insulating phase is therefore well justified with
respect to the relatively large band gap which allows for room temperature applications
once the Fermi level is set into the gap.

Bi
2

Te
3

Figure 4.4 c) shows results from angle resolved photoemission on Bi
2

Te
3

over a wide energy-
and k||-range where electrons have been excited with 55 eV photons. The crystal is oriented

with the �K direction of the surface Brillouin zone along the angle dispersive direction of
the electron analyzer (details are described in Chapter 2). The temperature has been set
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to T = 50K. If we check the measured band structure against the band structure obtained
from ab initio-calculations [79] (Fig. 4.4 a) we find overall a nice qualitative agreement in
shape and position of the bands taking into account the insu�ciencies of photoemission
described above. An in-gap surface state is also present in Bi

2

Te
3

with a pronounced
degeneracy point at � and ⇠310meV below the Fermi level. That this state is indeed
surface localized has been shown by Chen et al. in 2009 [2] using photon energy dependent
angle resolved photoemission to exclude a kz-dispersion. Even though our measurements
do not show the full first Brillouin zone, the necessary condition for a topological surface
state seems to be fulfilled, as there is only one state crossing the Fermi level between
the two time reversal invariant points of the surface Brillouin zone � and M as can be
seen in Fig. 4.5 a) where a zoom-in into the region of the surface state dispersion is shown
along both high symmetry directions (�K and �M) measured with 21 eV photons. The
equivalent condition, that the Fermi arc encloses only one (or an odd number of) time
reversal symmetric momenta is nicely proven by the constant energy surface at 0 eV shown
in Fig. 4.5 b).
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Figure 4.5: Bulk and surface electronic structure of the (111) plane. a) In-gap surface state
(TSS) as well as bulk valence (BVB) and conduction band (BCB) along both high symmetry
directions �K and �M. The energy of the Dirac point (E

D

) is marked with a red dashed line. The
semi-transparent shaded area corresponds to the projected bulk electronic structure calculated in
Ref. [80]. Black dashed lines are a guide to the eye to follow the surface state dispersion. b) Surface
(TSS) and bulk Fermi surface (BCB). c) Hexagonal surface Brillouin zone of the (111)-plane and
Fermi surface. The topological surface state crosses the Fermi level only once between two time
reversal invariant momenta � and M [2]. Both, bulk and surface state show a six-fold symmetry.
The surface state experiences strong hexagonal warping while it approaches the bulk conduction
band [19].
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The topological surface state (TSS), however, deviates strongly from the ideal shape of
a Dirac cone. Along the �K-direction it disperses highly linearly down to the Dirac-point
(ED). Along �M the surface state is linear only in the vicinity of the Dirac-point. Around
150meV above ED the group velocity is reduced and the dispersion not anymore linear.
This leads to a deformed surface Fermi-surface which exhibits concave parts around the
�K-direction and a convex shape in the vicinity of the �M-direction. Overall, the surface
Fermi surface resembles a snowflake-like shape with the three-fold symmetry of the crystal
structure around the [111]-direction.

These, so called hexagonal warping e↵ects have been explained as the rhombohedral
counterpart of cubic Dresselhaus spin-orbit coupling [19] and are currently under strong
investigation due to their implications on the spin texture of the surface state (see below).
Even though the k · p Hamiltonian given by Fu was able to reproduce the right shape of
the constant energy surfaces of the topological surface state [19], it failed with the correct
dispersions. While the dispersion along �M comes out linear, the group velocity appeares
increased along �K, which is clearly not the case as can be seen in Fig. 4.5 a) and was
first observed in Ref. [2]. On the basis of ab initio calculations Zhang et al. proposed the
dispersion of the surface state more accurately along the high symmetry directions of the
surface Brillouin zone [64]. The size of the bulk band gap is, however, underestimated; a
typical shortcoming of first principles calculations.

Like for Bi
2

Se
3

we find a di↵erence between the calculated and measured position of
the Fermi level. While the bulk band structure in calculations exhibits a clear absolute
band gap, thus no bulk states at the Fermi level, photoemission reveals states enclosed
in k-space by the Fermi surface of the topological surface states. These states exhibit a
pronounced kz-dispersion [2] and are therefore assigned to bulk states (see Chapter 2 for
details). Since these states lie above and furthermore cross the Fermi level2, Bi

2

Te
3

is also
not in an insulating state. However, we can apply the same argumentation as presented
above for Bi

2

Se
3

and thus Bi
2

Te
3

can in principle be assumed to be in or easily converted
to an insulating regime.

The extraordinary shape of the surface Fermi surface was proposed to have implica-
tions on important properties like the spin orientation and the scattering rates which are
intimately connected to each other. For the spin orientation there are mainly two e↵ects:
the out of plane rotation of the spin [19] and the fact that the in plane component is not
perpendicular to the momentum like it should be for an ideal Dirac cone [20]. These de-
viations follow the symmetry of the crystal structure discussed above. Mirror symmetry
dictates the spin to be fully in plane in the �M-direction independently of the warping.
When cycling around the Fermi surface the z-component of the spin rotates alternately
into the surface or out of the surface having its maxima along the six �K-directions of the
surface Brillouin-zone. The in plane component is always tangential on the curvature of
the surface Fermi surface[20]. Thus, it is still always perpendicular to the momentum along
the paths connecting the high symmetry points � with K, or � with M and 180� backscat-
tering is still strongly suppressed. Please note, that in order to backscatter an electron
propagating along the �K direction, the spin polarization vector has to be fully reversed
since the out of plane component is threefold symmetric and thus points in the opposite
direction on the reversed side. The same holds away from the high symmetry directions

2Please note that the Fermi level defines the zero of energy and the occupied states have positive binding
energies. Thus, the occupied states are above the Fermi level. In most of the angle resolved photoemission
intensity plots of this thesis, the binding energy increases from top to bottom and one may intuitively think
that above the Fermi level is devoted to unoccupied states, which is misleading
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and thus 180� backscattering is still strongly suppressed. This is easy to understand if one
keeps in mind that the warping does not violate time reversal symmetry.

Nevertheless, the warping is influencing the scattering away from the 180� backscatter-
ing angle [82, 83]. Since a non-magnetic impurity does not allow a spin flip, the probability
( (k,q)) for elastic scattering is proportional to a spin dependent matrix element [84]:

 (k,q) / T (q,k) = |hS(k)| S(k+ q)i|2 .(4.1)

Here k is the electron momentum, q is an arbitrary scattering vector and S contains the
spin orientation. Thus the probability is proportional to the spin overlap of initial (k) and
final state (k+ q) and the matrix element equals zero if the spins are antiparallel. A more
detailed discussion of the spin dependent scattering will be given with respect to our own
experimental results in Chapter 6. For completeness it shall be mentioned that similar, but
much weaker warping e↵ects have also been reported for Bi

2

Se
3

[85].
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Figure 4.6: Constant energy cuts from the topological surface state of Bi2Te3 measured at 55 eV
photon energy at 50K. The shape of the constant energy surface alters from being snowflake-like
(0-50meV) over a hexagon (75-125meV) and an ideal circle (150-250meV) to merge into the Dirac
point at 275meV binding energy. Black dotted lines emphasize the actual shape.

In Figure 4.6 we present several constant energy cuts from the Fermi level to the Dirac
point in 25meV steps measured with 55 eV photons at a sample temperature of 50K. The
evolution from the snowflake-like shape of the surface Fermi surface to the Dirac point can
be followed and goes through three di↵erent shapes, which are retraced with black dotted
lines in the cuts at 0, 75, 150, 200, and 275meV. For the cuts at 0, 25 and 50meV binding
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energy we observe a snowflake before it smoothly deforms into a hexagon between 50 and
100meV. Between 125 and 150meV the shape becomes more and more circular and stays
like this up to the Dirac point. While at the Dirac point the constant energy surface really
appears as a point in Bi

2

Se
3

[85] we again find a threefold symmetric pattern in the case of
Bi

2

Te
3

. This is explained by the appearance of the bulk valence band, i.e. the topological
surface state which disperses to lower binding energy after the Dirac crossing point and
thus follows the behavior of the valence band (compare Fig. 4.5 a) and Fig. 4.4 a)+c)). They
first appear along the �M-direction between 175 and 200meV binding energy making the
constant energy surface look like a sun. Between 225 and 250meV the valence band maxima
along the �K-direction become visible and the constant energy surface becomes star-like.

The Dirac point of the topological surface state is thus buried in a valley formed by itself
and the valence band and the so called topological transport regime [81], where the bulk
density of states vanishes and the Dirac-point is at the Fermi level can not be accessed
without tayloring the dispersion. A way out of this inaccessibility will be presented in
Chapter 5.1.1. It shall be noted that the bulk conduction band states seen in the constant
energy cuts of Fig. 4.5 are not visible here because of the di↵erent kz values that we probe
at di↵erent photon energies. The di↵erence in ED is not caused by the change in photon
energy since surface states have a vanishing kz-dispersion due to their two-dimensionality.
The reason is instead that the intrinsic doping varies from sample to sample since it is
caused by defects hence following a stochastic behavior.

Band Inversion

According to band structure calculations the spin-orbit interaction causes a band inversion
between the bonding and antibonding states of Bi and Se. This inversion is the key to
the nontrivial topology. Hence we can draw a similar picture for Bi

2

Te
3

if we replace Se
atoms by Te atoms and the corresponding antibonding state is derived from Te5p instead
of Se4p orbitals. Bonding and antibonding states have opposite parity and we can make
use of the photoemission matrix element to show that the highest occupied band has even
parity thus corresponding to the bonding state of Bi atoms as predicted [64]. As discussed
in Chapter 2 the photoemission intensity is proportional to the dipole matrix element of
the transition:

I
0

/ |Mk
f,i|2 / |

D
�kf

��� ✏ · r
����ki

E
|2.(4.2)

A contribution is thus only found if the whole integrand of the overlap integral in Eq. 4.2
has even parity with respect to the mirror plane shown in Fig. 4.7. The final state �kf must
be even, otherwise the mirror and the detection plane would lie in a nodal plane of the final
state and the intensity would vanish. The scalar product ✏ · r is even if the polarization
vector ✏ lies within the mirror plane, thus for p-polarized light. Odd parity is then found
for s-polarized light, i.e., the polarization vector being perpendicular to the mirror plane.
The parity of the initial state may have either parity, but ✏ · r

���ki
↵
must be even to have

the full integrand even. This means that we expect the highest occupied band of Bi
2

Te
3

to
give high intensity for p polarized light only, since it should have even parity if the band
inversion has taken place.

The results of the described experiment are summarized in Fig. 4.7 b) for Bi
2

Te
3

along
the �M-direction of the surface Brillouin zone measured with 50 eV photons and with the
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Figure 4.7: Angle resolved light polarization dependent photoemission of Bi2Te3. a) Sketch of
the experimental setup. A real space representation of atomic p

y

(red) and p
z

(blue) orbitals is
shown, having di↵erent parity with respect to the mirror plane defined by the incoming light and
the direction of electron detection. b) Obtained intensity distribution of the photoelectrons for p-
(left) and s-polarized (center) light. The right panel shows the normalized di↵erence spectrum.

sample kept at T=50K. When changing the light polarization from p (left panel) to s
(center panel) the photoemission intensity around � gets strongly reduced between 0.6 and
0.0 eV binding energy. To emphasize this e↵ect further the di↵erence of the two spectra
divided by their sum is shown in the right panel. In addition, we can conclude that surface
state and highest occupied valence state share the same symmetry, since they show the
same polarization dependence.

4.1.3 Temperature induced gating e↵ects in Bi
2

Te
3

In 1992 Thomas et al. reported an unexpected temperature dependence of the charge car-
rier density in Bi

2

Te
3

observed in optical measurements [78]. In contrast to most metals,
where the charge carrier density is constant with temperature and lightly doped semicon-
ductors, where the charge carrier density decreases with decreasing temperature due to a
carrier freeze-out Bi

2

Te
3

shows an increase of the charge carrier density with decreasing
temperature. It was argued that cooling causes a condensation of above gap states into the
metallic states. As the samples under investigation were grown with an excess of Bi atoms
they exhibited p-doping and a metallic hole band. For such samples Noh et al. reported
a time dependent shifting of the band structure which they found to be independent of
the sample temperature [86]. The authors also argued that the formation of the V-shaped
surface state, which we have assigned to the topological surface state, appears only with
time and they have ascribed this surface state to a band bending caused by a relaxation
of the inter quintuplelayer distance with time. The authors were however not aware of the
concept of the topological insulators and it is thus more likely that the surface state is
always present and that it became visible with the time dependent shift of the Fermi level.

As stated above, the ARPES results from our samples show an n-type doping which is
due to an excess of Te atoms during the growth. In these samples we did not observe a time
dependent change of the band structure as described by Noh et al. which is an indication
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that the given explanation might not be true. At least we would expect a similar relaxation
of the inter quintuplelayer distance. In Ref. [78] it was already pointed out, that the excess
of Bi during crystal growth should lead to a substitution of Te atoms by Bi atoms in the
Te(2) layer of the quintuplelayer, i.e., the central layer. Thus we can assume the inter
quintuplelayer bonds being una↵ected by the doping.
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Figure 4.8: Temperature induced shift of the Fermi level (E
F

) in Bi2Te3. a) Energy distribution
curves at � for room temperature (red) and for low temperature (blue). The Dirac point appears
shifted to higher binding energy after the sample is cooled to 50K. The insets show the angle
distribution along �K for T=300K (left) and T=50K (right). b) By comparison of the valence
band structure along the �K-direction a rigid shift of all bands to higher binding energy is observed.
The energy scale is given relative to the Dirac point (E

D

) to allow for a straightforward comparison.
The horizontal white dashed lines mark the positions of E

F

for each temperature, while the outer
vertical dashed lines at the bottom mark the position of the Fermi wave vector k

F

. The inner
yellow dashed line marks the wave vector given by the intersection of the Fermi level at 300K with
the dispersion at 50K

We, however, do observe a strong change in the band structure with temperature.
Upon cooling the Fermi level shifts towards the unoccupied states which is in agreement
with the observations in Ref. [78]. In Fig. 4.8 a) we show photoemission spectra integrated
over k||. The pronounced peaks gain their spectral weight mostly from the Dirac point as
becomes clear by a comparison with the angle resolved intensity plots in the insets. The
red curve and intensity plot represent the spectra obtained at room temperature while
the blue curve and color scale represent the spectra obtained at T=50K. We observe a
strong shift of �E ⇠ 140meV between the red and the blue peak maximum of the angle
integrated plot. The insets report a clear shift of the whole surface band structure.

In Fig. 4.8 b) we compare directly a valence band overview for room temperature (left
half, red color scale) to a spectrum measured at T=50K (right half, blue color scale). The
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energy axis of each spectrum is scaled relative to the energy position of its Dirac point,
such that ED = 0 for both cases. This allows for a better comparison and one finds that
the band structure has shifted rigidly in the whole energy and momentum range shown in
the figure. The position of the Fermi level is marked with horizontal white dashed lines
for each half to make the di↵erence more clear. On the k||-axis the white dashed line mark
the position of the Fermi wave vector kF . The yellow dotted line marks the position of
kF assuming that the Fermi levels would match for both temperatures. As can be seen
in both cases we obtain a value of |kF | ⇠ 0.057Å�1. In addition, the results of a fit to
momentum distribution curves (white dots in the insets of Fig. 4.8 a)) reveals that the group
velocity for low and room temperature is approximately |vg| ⇠ 3.0 eV·Å(⇠4.5·105m/s),
thus the bandstructure really appears to shift rigidly. As already visible with the naked
eye, the topological surface state peak widths appear broader at room temperature and
the fit reports an average reduction of the full width at half maximum of the momentum
distribution curves at low temperature by a factor of 0.7. This qualitatively confirms the
findings by Thomas et al., who reported a reduced inelastic scattering upon cooling [78],
as the peak width is proportional to the imaginary part of the electrons’ self energy which
in turn is proportional to the scattering rate. A more profound discussion of this topic will
be given in Chapter 6.

A similar, but less pronounced e↵ect was observed in Bi
2

Se
3

[87] and it was shown that
the e↵ect is fully reversible and reproducible. It was therefore assumed that the e↵ect is
intrinsic and not caused by adsorption of residual gases in the chamber. That for example
Shockley type surface bands show a strong temperature dependent shift is well known [88]
and understood. Thermal expansion of the lattice is modifying the periodic potential
experienced by the electrons and it is straightforward to expect an e↵ect on the band
structure [89]. Also the phonon distribution has a temperature dependence and the lattice
vibrations a↵ect the band structure as well. In semiconductors, an increase of the band
gap with decreasing temperature is quite common and similar e↵ects have been observed in
metals. Since the Shockley-type surface states exist within E(k) regions that are forbidden
in the bulk band structure two statements are evident: first, the size of the gap will e↵ect
the energy position of the surface state. For the surface states of Ag(111), Cu(111) and
Au(111) it was shown that they follow the behavior of the valence band and thus shift
to higher binding energies with decreasing temperature [88]. And second, the topological
surface states, like the Shockley ones, exist within a gap and similar temperature e↵ects
on their dispersion appear hence likely.

Further insight into the mechanisms behind the energy shifts can be gained from core
level spectroscopy. On the one hand we do not observe any pronounced changes in the
shape of the Bi5d and Te4d core levels of Bi

2

Te
3

(Fig. 4.9) like the shoulders that appear
besides the Bi5d peaks upon deposition of adatoms (compare Chapter 5.2.1). This may
indicate that the shifts are intrinsic and not caused by adsorption of residual gases. On
the other hand the core levels exhibit a shift which is in size and sign comparable to the
one of the bulk valence band and the topological surface state (Fig. 4.9). Temperature
dependence of core levels is known from other materials and a connection to the thermal
expansion was drawn [90]. But the absence of shoulders does not rule out the possibility
of a shift due to an enhanced adsorption of residual gases with decreasing temperature.
Gas adatoms or molecules might be only physically adsorbed which will not have the e↵ect
of a chemical shift in the core level spectra but may alter the surface potential and give
rise to the shift of the band structure (compare Chapter 5.1.1). Contrary to the argument
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Figure 4.9: Te 4d (left) and Bi 5d (right) core levels excited with 150 eV photons at room tem-
perature (red) and at 50K (blue). The core levels exhibit a similar energy shift as the valence band
and the topological surface state. The peak maxima are marked by black lines.

given in Ref. [87] this would also fit to the reversal and reproducibility of the e↵ect upon
warming up and re-cooling the sample, respectively. Physisorbed molecules will be released
and re-adsorbed during warming up and cooling down again.

Sample A B C D E

ED/meV (T=300K) 155 150 270 150 190
ED/meV (T=50K) 295 260 320 240 300

�E/meV 140 110 50 90 110

Table 4.2: Binding energies and energy shifts of E
D

upon cooling Bi2Te3.

Remarkable appears also the non-reproducibility of the shift over di↵erent samples.
Table 4.2 contrasts the energy shifts of di↵erent samples and cleavages. In the first two
lines, the initial energetic position of the Dirac point at 300K and its position at 50K are
given. Relative shifts between 50meV (Sample C) and 140meV (Sample A) have been
obtained. The large di↵erence may be explained by the large di↵erence in the intrinsic
doping. While the Dirac point in Sample A is found at 155meV at 300K it resides at
270meV in Sample C. Such large di↵erences in the occupation of states should also a↵ect
the potentials and could therefore influence the e↵ect of thermal expansion on the band
structure. However, for comparable initial Dirac point energies in samples A, B and D
(150meV) we observe also a significant di↵erence in the shift upon cooling. In Sample B
it amounts to 110meV and in Sample D to only 90meV both significantly less than the
140meV shift observed in Sample A. By comparing with Sample E we can additionally
conclude that the impression of a less pronounced shift for higher intrinsic doping is not
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confirmed. With 190meV the Dirac point resides at significantly higher binding energy
than in Sample D but the shift amounts to 110meV thus larger than in Sample D. Of course,
there is an uncertainty in the determination of the temperature as the sample temperature
was not measured directly on the sample. But the experimental setup was identical for all
samples and temperature should thus not vary too much among the samples. The position
of the Dirac point is determined from spectra measured with 55 eV excitation energy in all
cases and thus the error of the energy position is with ⇠ ±3meV the same for all. If the
temperature induced shift was purely intrinsic we would expect the shift being the same
for all samples at least for similar intrinsic doping. On the other hand the di↵erences can
be explained easily in an extrinsic scenario, since we expect the partial pressure of the
residual gases causing the e↵ect in the chamber to di↵er over the span of time in which the
samples were measured (two years).

Another noteworthy observation is that all occupied energy bands measured seem to
shift by the same amount and rigidly while di↵erent temperature coe�cients for di↵erent
valence bands and for the surface state have been reported, e.g., for Cu(111) [91]. At the
chosen photon energy of 55 eV we cannot trace the bulk conduction band in angle resolved
photoemission since it has dispersed already above the Fermi level along the �Z direction of
the bulk Brillouin zone (compare Fig. 4.4 a) and b)). Thus a di↵erent shift of the conduction
band, i.e., all unoccupied bands of the ideal undoped system cannot be ruled out directly.
However, the relative photoemission intensities for the bands at 300K and at 50K shown in
Fig. 4.8 b) appear similar for both temperatures. Since the unoccupied bands take the role
of a final state in photoemission we may expect changes in the relative intensities of the
di↵erent bands if the unoccupied final state band would shift di↵erently. This would be
similar to a change of the photon energy which leads to a di↵erent final state with di↵erent
matrix element of the transition. It is, however, not clear how the bands at ⇠55 eV above
the Fermi level behave as compared to the conduction and valence band, and the argument
has to be viewed as speculative. An investigation of the photon energy dependence of the
intensities for relatively low photon energies h⌫ < 10eV at high and low temperatures may
deliver information needed to confirm this argument, but has not been carried out so far.

More important could be the e↵ect of the lattice expansion on the dispersion of k?. A
di↵erent shift of occupied and unoccupied bands with the temperature would be similar to
a change of the photon energy to map di↵erent k? values as shortly described in Chapter 2
and should thus show up in a di↵erence of the energetic positions of bulk states at normal
emission. But again, such e↵ects are not observed in Fig. 4.8 which thus delivers a further
indication, that all bands shift more or less rigidly.

All observations taken together suggest that at least in the case of Bi
2

Te
3

the temper-
ature induced shifts cannot be explained by thermal expansion and compression only. But
since thermal expansion is a generic phenomenon and e↵ects on the band structure are
likely, we believe that both extrinsic and intrinsic e↵ects may play a role here.

We can only speculate on the type of gas which could be the reason of the observed
shift. Oxygen can be ruled out as it causes a non-rigid shift of the bands to lower binding
energies as will be shown in Chapter 5.1.1. Other quite common residual gases are CO and
CO

2

. The former has been reported to cause shifts of the band structure to higher binding
energies if adsorbed on Bi

2

Se
3

[92]. It thus goes without saying that CO could cause similar
e↵ects if adsorbed on Bi

2

Te
3

.
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4.2 Spin Polarization in Bi2X3

Probing the spin polarization of topological surface states is the most direct possibility to
unambiguously distinguish them from trivial surface states in photoemission. One may for
example think of a degenerated pair of surface states or a surface state with a spin splitting
below the detectability of state of the art angle resolved photoemission setups. Such states
would show no spin polarization. Concerning the hexagonal warping described above, in-
teresting predictions about the orientation of the polarization vector were made [19, 20].
Yazyev, Moore and Louie used DFT calculations to show that the strong spin-orbit interac-
tion in Bi

2

X
3

reduces the spin polarization to values ⇠50% [80]. This would of course have
direct implications for any spintronic application. In addition the first spin resolved mea-
surements for Bi

2

Te
3

given in the literature where rather unsatisfying, showing a measured
spin polarization of only 20% [81].
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Figure 4.10: Spin- and angle-resolved photoemission from Bi2Te3. a) Dispersion measured with
spin-channeltrons (left) without high voltage at the Mott detector and its second derivative plot
(right). We can distinguish several energy regions: below ⇠0.6 eV the topological surface state
(TSS) is not present (BS2). Between ⇠0.2 eV and ⇠0.6 eV the TSS falls together with the bulk
valence band (BS1). Above ⇠0.2 eV only the TSS is present. b) Spin-resolved spectrum taken at
the angle, i.e., k

x

-value marked with white dashed lines in a). Spin up (I") and spin down (I#)
intensity are represented by red and blue triangles, respectively. Curves are guides to the eye. The
black dashed line marks the background intensity (I

B

) above E
F

. c) Asymmetries of spin channels
1 and 2 (green diamonds), and 3 and 4 (turquoise diamonds). Channels 1 and 2 show a strong
asymmetry and represent the S

y

direction. d) The spin polarization of the TSS after background
removal amounts to (70±10)%. In the TSS/BS1 and BS2 range we also observe a high polarization.

The spin texture of an ideal Dirac cone would be such that the spin is always perpen-
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dicular to the momentum vector and it would lie within the surface plane. But as pointed
out above, deviations from the ideal form do a↵ect the spin such that it should show a finite
out of plane rotation, which is momentum dependent and also the perpendicular locking of
the in-plane component to the momentum parallel to the surface is not anymore guaran-
teed [20]. Thus for Bi

2

Te
3

we expect a more or less complicated spin structure depending
on the actual shape of the constant energy cuts of Fig 4.6. Which of these shapes can be
accessed depends on the intrinsic doping and the sample temperature as discussed above.

4.2.1 Bi
2

Te
3

In Fig. 4.10 a) an angle resolved spectrum of Bi
2

Te
3

measured with 50 eV photons at room
temperature is shown. Please note that the photoemission setup with spin-resolution is
not equipped with a two-dimensional detector and also the spin averaged dispersions have
to be assembled from energy distribution curves measured at di↵erent emission (polar)
angles. In order to do this on a reasonable time scale, the number of angle steps is chosen
such that it contains just enough information to decide on the angles to be measured
with spin resolution. In addition we have used the spin channeltrons without an applied
high voltage to the Mott-detector. This directs a large number of photoelectrons into
the spin channeltrons, however without any spin sensitivity. The advantage lies solely in
the identity of the electron trajectories and one avoids readjustment to the di↵erent focus
positions between spin- and front-channeltrons. This advantage has to be paid for with
a reduced resolving power and the overall quality of the obtained spectra is reduced. We
are nevertheless able to identify the important features as described above and the second
derivative of the intensity along the energy axis shown in the right panel of Fig. 4.10 a)
enhances them even more.

The ”V”-shaped topological surface state (TSS) is clearly seen dispersing up to the
Fermi level and also the states at higher binding energy (TSS/BS1 and BS2) are resolved.
The white dashed line marks the angle at which we have obtained the spin-resolved spec-
trum of panel b) where the surface state is close to the Fermi level. The red (blue) triangles
mark the spin-resolved intensity of the arbitrarily defined spin up (down) components Sy
perpendicular to the momentum component kx. The topological surface state shows inten-
sity mainly in the channel defined as spin up which is emphasized by the red line. Around
the state at ⇠0.4 eV binding energy we find intensity in both channels but a clear peak is
seen only for the spin down component which reflects the behavior expected for an ideal
Dirac cone where the upper and the lower half would have opposite spin helicity due to the
crossing of the spin-polarized dispersions at the Dirac point. The third feature (BS2 in the
Fig. 4.10) appears also with di↵erent intensity for the two components, but as emphasized
with the red and blue line the peak maxima for the two components appear shifted against
each other which indicates a pair of states that might be spin split. A similar pair of states
was found in Sb

2

Te
3

and identified as a Rashba split surface state by means of spin- and
angle-resolved photoemission in combination with DFT calculations [93].

Panel c) shows the spin asymmetry as it is obtained from the raw data by calculating
((I#� I")/(I#+ I")�A"#)/S), where I# is the intensity in spin channel 2 (i.e., spin channel
4 for the component Sx parallel to the momentum as explained in Chapter 2), I" the
intensity in channel 1 (3), A"# is a constant o↵set between the channels3 and S is the
Sherman function of the detector as introduced in Chapter 2. Green (torquoise) diamonds

3This apparative o↵set is due to the di↵erent sensitivity of the di↵erent channeltrons and may change
over a long time span.
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reflect the asymmetry obtained for channels 1 and 2 (3 and 4 for Sx) and the line is obtained
from a smoothing routine applied to the data.

Important is that we find for channel 1 and 2 the expected reversal of the sign between
the upper and the lower half of the Dirac cone and also an asymmetry in the range of BS2
is seen. For channel 3 and 4 the asymmetry is negligible within the errors. The asymmetry
values obtained for the topological surface state do not exceed 0.4 and 0.2 for the upper
and lower half, respectively. But these do not represent the true spin polarization as
they contain a background signal of an order of magnitude comparable to the signal itself,
marked with IB in panel b). To obtain the spin polarization, this background must be
subtracted:

P"# =

✓
I# � I"

I# + I" � 2IB
�A"#

◆
/S(4.3)

The result is shown in panel d) and the spin polarization amounts to (70±10)% for the
upper and (40±10)% for the lower part of the Dirac cone. In the range of BS2 we find a
similar polarization as in the lower half. Please note that above the Fermi level we still
show the spin asymmetry of panel c) since the denominator in Eq. 4.3 gives hardly finite
values above EF and thus the spin polarization would fluctuate between values much higher
or lower than +100% and -100% which is of course unphysical.

On the one hand the polarization values obtained constitute a substantial progress
compared to the 20% polarization measured before [81] and with 70% polarization for the
upper half the polarization is still significantly higher than the 50% predicted from first
principles calculations [80]. On the other hand there is a missing polarization of 30% left
compared to the expectation of 100% polarization for the ideal topological surface state.
If we think about future applications in spintronic devices this lack of polarization does
matter. But for our measurements there are a few shortcomings which have to be taken
into account and which might explain the reduced polarization without excluding that
the states are really 100% polarized. First, as can be seen in Fig. 4.10 a), especially in
the second derivative plot, the dispersion exhibits a gap where the Dirac point should
be. This gap is due to a small tilt of the sample surface which was impossible to correct
since the available manipulator does not o↵er the required extra degree of rotation. As
a consequence we cut in the ky direction slightly o↵ normal through the Dirac cone and
miss the point (compare also Fig. 4.13 b)). Thus, we would expect a finite component in
counters 3 and 4 as the spin would have a component in the x direction which, for the case
of an ideal Dirac cone is not expected if we cut the cone exactly at �, i.e., through the
Dirac point. The warping in Bi

2

Te
3

may enhance these e↵ects further, on the one hand.
But as can be seen in the spin asymmetries shown in panel c) of Fig. 4.10 chanels 3 and
4 do not deliver the missing polarization as it is below 10% even if we would subtract the
background to obtain the polarization. But on the other hand the warping may also rotate
the spin such that the in plane component is still fully aligned with the Sy direction even
for a cut o↵set in the kx direction as the spin vector is not anymore locked perpendicular to
the momentum [20]. Unfortunately, due to the lack of resolution we are not able to specify
how the sample is oriented and therefore where exactly we cut through the Dirac cone in
k-space. Typically, one would use information from low energy electron di↵raction (LEED)
to assign the high symmetry directions of the crystal structure in the sample. But for the
single crystalline Bi

2

Te
3

samples it is not straightforward to reproduce the sample position
observed in LEED for the photoemission measurements because of a strong faceting of our
samples which results in di↵erently rotated and tilted surface regions. The large scattering
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of the data points of channel 3 and 4 does however not allow to conclude about any spin
rotation, neither that it is fully aligned along the Sy direction nor that there is a finite
polarization along the Sx direction. To decide this question much better statistics would
be needed.

Second, the available setup does not allow the measurement of the component out of
plane, Sz. For strong hexagonal warping, however, an out of plane rotation of the spin
is predicted [19] and also observed in experiment [94]. This rotation is also k dependent
and may, according to theory, amount up to 30% along the �K direction while it is, due to
mirror symmetry, zero along the �M direction [20]. In addition, the out of plane component
is binding energy dependent in the sense that the shape of the constant energy surface alters
as a function of the energetical distance to the Dirac point energy (ED). In the present
case ED is estimated to be between 200 and 220meV binding energy which corresponds
to a shape of the Fermi surface comparable to the cuts at 50meV or 75meV in Fig. 4.6
and to a maximum out of plane spin polarization of approximately 20% calculated for this
shape [20]. However, this is not enough since in order to obtain 100% polarization an out
of plane polarization similar to 70% has to be added to the 70% along the y direction,
assuming a vanishing polarization along the x direction, as is indeed measured.

As a third point the limited resolution of the experimental setup has to be taken into
account. Especially the angle acceptance of the analyzer may lead to a reduced spin
polarization the more closer to normal emission we measure. As soon as the opposite spin
of the other half of the surface Brillouin zone contributes to the signal this will show up
in the spin polarization. For the present case, i.e., a photon energy of 50 eV and an angle
acceptance similar to ±0.5� we average over a momentum range of ⇠ ±0.03Å�1 along the
kx axis. Keeping in mind that the topological surface state at the Fermi level of the present
intrinsic doping is completely within a range of ⇠ ±0.1Å�1, it becomes clear that the angle
acceptance is crucial for the measured spin polarization.
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Figure 4.11: Twinning of the band structure. Slightly di↵erently oriented surface regions may lead
to a doubling of the band structure in photoemission if probed simultaneously. This can be seen in
the constant energy cut (left) as well as in the dispersion (right). The black and white dashed lines
are guides to the eye and mark the two warped Fermi surfaces (left), i.e., the topological surface
state above the Dirac point (right). The arrows qualitatively mark the spin orientation of the two
superimposed states.

This becomes even more important if we take into account the abovementioned issues
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of the sample quality. In Fig. 4.11 we present high resolution angle resolved photoemission
data from the same sample but with a fresh cleaved surface. The data is obtained from a
surface region where two domains with slightly di↵erent local surface normal border one
another. Besides the expected warped surface Fermi surface (black dashed line) we find
faint traces of a second domain (white dashed line) which appears shifted in kx and ky and
also slightly rotated against the main signal (right panel). The left panel shows a cut along
the ky direction and we find two shifted surface states originating from the two di↵erent
sample regions. The arrows mark in both panels the qualitative orientation of the spin.
For such a configuration the spins are almost opposite to each other and thus, depending
on the relative intensities from the two adjacent sample regions the spin-polarization can
be significantly reduced or even vanish in a spin resolved measurement. If the two regions
are rotated even stronger against each other as in the given example of Fig. 4.11 it is also
possible to see a strong polarization in all channels of the Mott detector if for example two
Fermi surfaces intersect each other such that the intersecting branches are perpendicular
to each other. Then one branch would give high polarization in Sx, while the other would
give high polarization in Sy. Taken together the measured polarization could thus appear
higher than it is in reality.

It is also possible that the two energetically shifted Dirac-points, i.e., the two minima of
the parabolas mapped in Fig. 4.11 do not originate merely from two di↵erent o↵ normal cuts
through the Dirac cone but from di↵erent intrinsic dopings. This makes the interpretation
even more complicated; a di↵erent intrinsic doping would lead to di↵erent warping and
di↵erent spin rotation and disentangling the obtained data may become impossible.

Even though the data of Fig. 4.11 stems from the same sample as that shown in Fig. 4.10,
the fact that it was cleaved again and measured in a di↵erent photoemission setup means
that the data has to be viewed as obtained from two di↵erent samples. It is thus clear
that we cannot directly compare the data sets. Nevertheless, it is not unlikely that the
spin-resolved data is obtained from a sample region su↵ering from similar quality defects
as we typically integrate over macroscopic sample areas of ⇠0.25mm2. But it is also
worthwhile mentioning in this context again that the obtained polarization of ⇠70% for
the topological surface state in a macroscopic area is a great progress. It also shows that
the so far unsatisfying results from transport measurements are not explained from an
intrinsic limitation of the spin polarization over a macroscopic area. One may draw such
a conclusion when comparing macroscopic with microscopic probes under the assumption
that the spin polarization guarantees high mobilities due to the forbidden backscattering.
On the macroscopic scale the investigation of Shubnikov-de Haas oscillations in Bi

2

Se
3

revealed a high bulk mobility whereas a surface contribution was found to be absent [95],
indicating high scattering rates for the surface electrons. On the microscopic scale, however,
the observation of Landau quantization of the topological surface state in Bi

2

Se
3

by means
of STM indicates a high mobility of the surface electrons [96, 97]. A more conceiving
explanation to this discrepancy seems to be the fact, that STM is highly surface sensitive
and that it is more challenging to reveal the surface state characteristics in a bulk sensitive
probe such as the Shubnikov-de Haas efefct [98]. The scattering properties of the surface
state electrons in topological insulators are the topic of Chapter 6 and we postpone this
discussion.

From the same sample and cleavage as in Fig. 4.10 we have measured spin-resolved
energy distribution curves at positive and negative emission angles with respect to the
surface normal. The results are condensed in Fig. 4.12. In panel a) and b) we show
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Figure 4.12: Spin-resolved photoemission from Bi2Te3 at various emission angles. a) Spin-resolved
energy distribution curves perpendicular and b) parallel to the momentum. At high negative k

x

-
values the intensity stemming from the pure topological surface state (TSS) shows a rather high
polarization in c) perpendicular to k

x

(blue diamonds) as expected for a simple Dirac cone. The
components parallel to k

x

(green diamonds) show almost no polarization. While approaching normal
emission (k

x

⇠0) the total polarization gets reduced due to an enhanced admixture of the state that
has opposite polarization at -k

x

. The S
x

component is comparable to the S
y

component closest to
normal emission. For positive k

x

the TSS shows no polarization perpendicular to the momentum
but a polarization of ⇠20% parallel to k

x

. The state at higher binding energies shows a lower but
opposite polarization compared to the TSS. The sign of the polarization gets reversed by reversing
the sign of k

x

.

the spin-resolved intensity of the two pairs of spin channeltrons 1 and 2, and 3 and 4,
respectively, as obtained from the standard analysis routine explained above (Eq. 4.3). In
c) we present the spin polarizations of channel 1 and 2 (blue diamonds), and 3 and 4 (green
diamonds) after background removal. Between panel b) and c) we specify the kx values
of the appurtenant rows. The blue and red (green and magenta in b)) arrows mark the
dominant spin component in the energy region of the topological surface state (TSS) and
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in the valence band, i.e., lower half of the surface state (TSS/BS1).

For negative kx-values up to approximately normal emission the obtained picture in a)
is rather conclusive. The spin up component is always dominant for the topological surface
state but with varying polarization. The latter can be explained within the framework
of an increasing admixture from the state of the adjacent half of the surface Brillouin
zone as described above. The closer to normal emission we measure the higher is the
admixture and the polarization will be reduced as seen in panel c). That the polarization
with ⇠50% is reduced for kx =-0.16Å�1 compared to the 70% maximum at kx=-0.1Å�1

can be understood in terms of the very low intensity as the state is already about to cross
the Fermi level. For this kx value we find an almost vanishing but still finite polarization for
the TSS/BS1 energy range which has the opposite sign as the TSS energy range. Almost
up to normal emission the sign of the polarization is preserved. The amount of polarization
again reflects an increasing admixture from the opposite side. In channeltrons 3 and 4 the
measured polarization is low for all emission angles. On the negative kx side, the only
kx value where we have observed a polarization which is worth mentioning is -0.01Å�1.
Here, the polarization is with ⇠15% comparable to the one measured in channels 1 and 2.
Since the kx cut we probe is set o↵ from zero in ky it is reasonable to expect a significant
polarization in all channeltrons close to kx=0 even for the circular constant energy surface
that should be present at the binding energy corresponding to the state close to zero
momentum.

In contrast, for positive emission angles the quality of the data is pretty much reduced
and not straightforward to interpret. For kx=0.06Å�1 the scattering of the data in channels
1 and 2 is so strong that we cannot draw any conclusions. For the Sx component the
statistics is a bit better and we find a very low polarization with opposite sign for the
two energy ranges TSS and TSS/BS1. At 0.09Å�1 we find the most remarkable result
for positive emission, namely that the polarization has the opposite sign in the TSS/BS1
range as compared to the opposite half of the surface Brillouin zone. This confirms the
presence of the expected spin fingerprint even outside the bulk energy gap and is a strong
indication that the electrons are spin polarized in the initial state and do not acquire a
polarization in the final state as it was suggested recently for Bi

2

Se
3

[99]. In that work
no change of the sign was found outside the bulk gap for opposing kx-values but a strong
modulation of the polarization with the photon energy. We however can not exclude an
additional polarization in the final state due to spin dependent matrix elements as we have
measured with 50 eV photons only, since the intensity is reduced significantly for other
photon energies.

In general, bulk states do not show any spin polarization due to inversion symmetry
which is present in the case of Bi

2

X
3

. But there are two possible explanations besides the
spin dependent matrix element e↵ects which naturally explain the measured polarization.
First, as band structure calculations reveal, the topological surface state is present also
outside of the gap (see e.g. Ref. [64]). We can therefore expect that it will show up spin
polarized in our measurements. If we simultaneously probe an unpolarized bulk state so
that their photoemission intensities add up than the polarization obtained will be reduced.
One would have to subtract the intensity originating from bulk states in order to obtain
the true spin polarization. Second, in Section 4.1.2 we have revealed by the polarization
dependence of the photoemission intensity that the topological surface state shares its
orbital symmetries with the highest occupied valence states. This means that the states can
and must hybridize if they become degenerated at �. Through this hybridization the bulk
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states may acquire an intrinsic spin polarization from the surface state without violating
the bulk inversion symmetry. In fact, a strong hybridization of topological surface states
with bulk states under transfer of the locking of spin and momentum has been postulated
in connection with the observation of an unusual magnetofingerprint in Bi

2

Se
3

[100]. With
respect to our observations this appears a realistic scenario.

The Sx component at positive emission angles is at kx = 0.06Å�1 again of inferior
quality and does not show any conclusive tendency. At 0.09Å�1 we find on the other hand
a polarization of approximately 20% for the TSS range which appears reversed but with
a very low magnitude in the TSS/BS1 range. Considering Fig. 4.11 again we can give two
possible explanations why the positive emission angles do not reflect the clear behavior of
the negative side. Apparently, a twinning of the surface state as we discussed above may
only a↵ect one side. Besides the fact that the spin loses its strict perpendicular locking to
kx due to the warping, the second surface domain might not only be tilted against the main
part but also rotated and would give another possibility for finite polarization in the Sx
component. The second explanation becomes evident when we consider a cut along the ky
direction of Fig. 4.11, like it is shown on the right side. On the positive emission angle side,
the signal is so weak that it cannot be distinguished anymore from the background. Such
a loss of intensity may for example happen at the edge of the sample or if a crystal flake is
only partially lifted during the cleavage and produces a shadow in the signal. While we can
still derive the dispersion of the surface state in spin-averaged angle resolved photoemission,
the intensity of the signal is reduced by orders of magnitude in the Mott detector and may
thus deliver no significant signal above the noise level. This argument is a�rmed by the
relative flatness of the spectra at positive emission angles and much lower count rates in the
raw data. That this loss of intensity is not pronounced in Fig. 4.10 a) can be understood by
the much larger exit slit of the beamline for the spin-resolved measurements. The slit has
to be opened to gain intensity but this comes along with a much larger light spot and we
thus probe a much larger sample area. Therefore, it may be that surface distortion plays
a role for spin-resolved measurements only.

4.2.2 Bi
2

Se
3

While single crystals of Bi
2

Se
3

do su↵er from the same quality problems after cleavage
as Bi

2

Te
3

samples, i.e., di↵erently oriented domains which cannot easily be distinguished
without the use of a two-dimensional detector, the warping is expected to be much weaker
and can be neglected in the discussion of the spin-resolved measurements. In Fig. 4.13 we
present spin- and angle-resolved data of Bi

2

Se
3

measured with 50 eV excitation energy and
at room temperature. Panel a) shows a dispersion measured with the spin channeltrons
without a high voltage applied. Again, a gap in the surface state is seen which is due to a tilt
of the surface normal with respect to the plane of electron detection. As described above,
such a tilt leads to an o↵set in the ky direction with respect to zero and the mapped cut
through the Dirac cone exhibits a gap and the dispersion appears parabolic, as is sketched
in panel b). Due to the high group velocity of the surface state electrons (⇠ 6 · 105ms in
agreement with Ref. [3]) a small tilt will appear as a relatively large gap but, assuming a
circular Fermi surface, we expect only a small rotation of the spin towards the Sx direction.
As the reduced warping makes the out of plane component also negligible, the polarization
should be visible in channels one and two only. This expectation is indeed confirmed for
the part of the topological surface state that is fully within the bulk energy gap (TSS) as
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Figure 4.13: Spin- and angle-resolved photoemission from Bi2Se3 at various emission angles. a)
Dispersion of the low energy states measured at 50 eV at room temperature. The gap in the surface
state is due to a small tilt of the sample and normal emission cannot be reached as sketched in b).
c) shows the spin component S

y

perpendicular to and d) the component S
x

parallel to k
x

while e)
shows the respective polarizations P

y

(blue diamonds) and P
x

(green diamonds). The topological
surface state shows opposite polarization within and outside of the gap where it is degenerated with
bulk states. Both signs are reversed by reversing the sign of k

x

as expected for the ideal Dirac cone.

can be seen by comparing the spectra in Fig. 4.13, whereas the Sy component is shown in
panel c) and the Sx component is shown in panel d). Also, for this part it is seen that the
spin is reversed when moving from negative to positive kx, i.e., from -0.09Å�1 to 0.08Å�1.
The polarization after removal of the background intensity above the Fermi level is shown
in panel e) with the polarization components Px and Py being represented by green and
blue diamonds, respectively.

In contrast to Bi
2

Te
3

the magnitude of Py is comparable for both, positive and negative
kx on the one hand, but on the other hand, it does not exceed ±50%. The Px component is
negligible with an upper limit of 5%. Yazyev et al. have argued that the spin polarization
is reduced due to the strong spin-orbit interaction [80]. In brief, the Bloch states are not
spin eigenstates but have a strong entanglement between their spin and orbital parts. The
surface states should thus consist of a mixture of bulk states from a broad energy range [80].
Our finding of only 50% polarization for Bi

2

Se
3

is in nice agreement with their suggested
upper limit for the polarization.

Another source of intrinsically limited spin-polarization was found theoretically by a
layer-resolved [101] or sublattice-resolved [102] investigation of the spin polarization. It
was found that the spin is oriented di↵erently in the adjacent layers of a quintuple layer
in Bi

2

Te
3

and Bi
2

Se
3

. Hence, the expectation value of the spin polarization is expected
to be a function of the escape depth of the electrons which can be tuned by the photon
energy. However, other groups report a polarization value of 75% [103] and 80% [99] in
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the topological surface state of Bi
2

Se
3

, significantly more than the given entanglement
limitation. Even though both groups [103, 99] conclude on a similar polarization there is
a big disagreement between the two studies. While the latter study [99] reports a spin
polarization in the range of the bulk valence band that is not reversed for the two opposed
halves of the first surface Brillouin zone, the former study [103] claims that the bulk states
do not show a spin polarization at all. As a loophole through this disagreement might
appear the photon energy dependence [99] suggesting a spin dependent matrix element
e↵ect. In our case the bulk states also show a polarization which is not reversed when
going from +kx to -kx and as we have used with 50 eV the same photon energy as Ref. [103],
spin dependent matrix elements cannot explain the disagreement but makes the findings
in Ref. [99] more reasonable.

One issue from which all the spin resolved measurements on topological insulators are
su↵ering is the lack of an adequate method to compensate for the instrumental asymmetries
of the detector. Having separate channeltrons for each spin direction the countrates di↵er
among them sensitively as a function of the e�ciency of the channeltrons and the alignment
of the sample with respect to the detector focus and the alignment of the chamber to the
photon beam. For the investigation of ferromagnets the adequate method is to simply
reverse the magnetization and remeasure the sample [22]. In this way, the instrumental
asymmetry is naturally removed. Another prominent subject which has been investigated
intensely by spin-resolved photoemission are Rashba split surface states, like for example
on Au(111) [62], on Bi(001) [104] or quantum well states of Au and Ag on W(110) [105]. In
these systems one finds two energetically separated spin polarized states at each emission
angle4, i.e., momentum kk, which should carry the same amount of spin polarization. Thus,
the instrumental asymmetry is determined in the middle between the two extrema in the
polarization as a function of binding energy. The characteristics of the topological insulator,
in the case of Bi

2

X
3

a single Dirac cone, rules out the second possibilty as well. Using the
upper and lower half of the Dirac cone to find the asymmetry level of the instrument would
be possible only if no other states contributed to the signal which is clearly not the case
for the lower half of the Dirac cone, where bulk states are present. Speaking of bulk states
it shall be noted that a normalization to zero polarization of bulk states is a high source
of error because we can not expect the photoelectrons to be unpolarized in the final state
even for an unpolarized initial state [99]. Moreover, a Rashba polarization in the initial
state is also possible for bulk continuum states close to the surface [106] and may thus be
observed in photoemission, due to the high surface sensitivity [107].

In our case we have used the intensity above the Fermi level to correct the asymme-
try. This however contains uncertainties as well, at least for synchrotron radiation, where
higher order peaks may occur above the Fermi level, i.e. above the maximum kinetic energy
according to the used photon energy. Even though we have measured a wide range above
the Fermi level, where no significant signal beyond the noise is seen, the secondary electron
background from states above the measured range may lead to a finite polarization in the
background above EF . Thus a small probability remains that the instrumental asymmetry
is not determined correctly which would lead to wrong values of the polarization. Never-
theless, we believe that this is the most adequate method in these systems despite the use
of a ferromagnetic reference system.

4Except at normal emission.
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Figure 4.14: E↵ects of photon exposure at room temperature. The exposure time increases from
10s in a) in subsequent steps of 5s to 45s in h). The photon energy is set to 21 eV. The picture is
getting more and more blurred out, indicating a sensitivity of the surface to photons.

A number of interesting studies report a time dependence [86, 108, 109, 92], i.e., a
sensitivity of the topological surface state as well as the bulk conduction and valence
band to residual gases in the vacuum system. This leads to a strong electron doping of
the samples and a quantization in the conduction and valence band to two dimensional
electron gases [108]. The quantized conduction band state becomes even Rashba split [109].
We, however, have not observed such strong doping and quantization e↵ects in the samples
investigated by us. Either our vacuum system ”lacks” the residual gases responsible for
the e↵ects, which is unlikely since the CO is the most promising candidate to cause these
e↵ects [92] and is a typical residual gas in any vacuum system, or there is a connection to
the growth of the samples, i.e., the intrinsic doping. There is plenty of room for speculation
since we cannot directly compare to samples from the literature. Nevertheless, it shall be
mentioned that such e↵ects can strongly distort a spin resolved measurement because it
lasts typically a couple of hours to gain a spectrum of substantial statistics.

Another interesting e↵ect, which we have observed in our Bi
2

Se
3

samples is a strong
sensitivity of the photoemission signal when exposing the samples to the photon beam
with the sample kept at room temperature. To verify this, we present in Fig. 4.14 a series
of valence band spectra which have been measured subsequently under the continuous
exposure to photons of h⌫=21 eV. We have used the snapshot mode of the Scienta R8000
analyzer which collects the photoelectrons of a fixed energy window the size of which
is determined by the pass energy which was set to 5 eV. The time step between each
measurements is 5s. In Fig. 4.14 a) we show the photoemission signal approximately 10s
after the exposure to the beam. The band structure appears well defined and the surface
state is sharp and well pronounced. All features become more and more blured as the
exposure time increases which is nicely seen in panels b) through h). The dashed lines
mark the initial position of the bottom of the conduction band and of the Dirac point.
While especially the Dirac point appears shifted when comparing, e.g., panel a) and h) we
attribute this e↵ect to the blurring of the picture and not to doping. When moving the
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sample relative to the beam the initial sharp picture can be reproduced and the blurring
e↵ect can be observed from the beginning. This demonstrates that the e↵ect is caused
by the photon beam and not simply by residual gases, since the latter would a↵ect the
whole sample right after cleavage. The photons are concentrated on a relatively small spot
and it is likely that the high intensity locally distorts the surface. Interestingly, at low
temperatures the photoemission signal is very stable and similar e↵ects are not observed.
As will be seen in the next chapter, impurities stabilize the photoemission signal also at
room temperature. It is thus likely that surface defects play a role and destabilize the
surface structure. As soon as the defects get occupied by impurities a stabilization occurs.

The sensitivity has an influence on the spin resolved photoemission as well. The decrease
in quality and intensity reduces the count rates and aggravates the distinction of bulk and
surface states. While the arguments given up to now on the reduced spin polarization have
been mainly extrinsic, on an ill-defined surface the intrinsic spin polarization may also be
reduced. The strong defect potentials will increase the scattering rates and thus reduce
the spin polarization.

Summary of Conclusions

By conducting spin and angle resolved photoemission we have shown that the Bi
2

Se
3

and
Bi

2

Te
3

samples grown by our collaborators L. Yashina and A. Volykhov from Moscow State
University show the predicted characteristics of topological insulators in agreement with
previous results [2, 3, 81]. We found a spin polarization of the topological surface state of
Bi

2

Te
3

of ⇠70%, which is substantially more than reported recently [81] and more than
the maximum value expected from DFT calculations [80]. The spin polarization in Bi

2

Se
3

was found to be lower for the topological surface state, reaching values of ⇠50%. However,
several arguments have been presented that may explain the limited spin polarization as
caused by extrinsic e↵ects, mostly by the limited resolution. In this context a sensitivity
of the measured band structure of Bi

2

Se
3

to photons has been presented as well, which
has not yet been reported. Nevertheless, it may still be doubted that the surface states of
Bi

2

Se
3

and Bi
2

Te
3

are really 100% spin polarized.
Additionally, a high spin polarization was observed in both systems in an energy range

where bulk and surface state cannot be distinguished anymore, which suggests a hybridiza-
tion of bulk and surface states, which is supported by results from polarization dependent
angle resolved photoemission.

A temperature dependent shift of the band structure of Bi
2

Te
3

has been observed and
discussed within the framework of electron doping caused by residual gas adsorption.

Now, that the basic properties of the topological insulator phase in Bi
2

Se
3

and Bi
2

Te
3

are discussed with respect to our photoemission results, in the following chapter we will
present our systematic study of the influence of diverse adsorbates on the surface elec-
tronic structure. Our focus is set to magnetic impurities, i.e., Fe, since interfaces between
topological insulators and ferromagnets are of special interest for electronic and spintronic
devices due to the possibility of opening a band gap at the Dirac point by breaking time
reversal symmetry.



Chapter 5

Robustness of Topological Surface
States

The surface states of topological insulators are predicted to show a unique robustness [39].
From the viewpoint of topology the existence of the surface state is guaranteed simply
by the fact, that across the interface between a topological and a trivial insulator the
Z

2

number, defined in Chapter 3 changes from non-trivial to trivial. From an electronic
structure point of view, a topological insulator is characterized by a band inversion that
occurs when spin-orbit interaction is switched on [64]. Further, if one would be able to
smoothly increase the spin-orbit interaction and follow the evolution of the band structure
then the change of the Z

2

value would occur when the trivial band gap is closed and
reopens as an inverted band gap [110]. Heuristically, one can conclude that if the Z

2

value
changes across the interface, then somewhere along the way the band gap must be closed.
This is provided by the existence of a surface state. In turn, the only way to get rid of
the surface state is to have both materials in the same topological class or to make the Z

2

number ill-defined. The former naturally explains the expected robustness of the surface
state, since the only way to change the Z

2

value is to close the inverted bulk band gap
of the topological insulator or to introduce a band inversion in the trivial insulator. The
robustness will be demonstrated in the first part of this chapter taking oxygen and silver
as an example.

How can we make the Z
2

number ill-defined? The Z
2

number is defined for time
reversal symmetric systems, only [42]. Thus, if we break time reversal symmetry, the
Z

2

number loses its meaning and the surface state its protection against gaps. This ill-
definition of the Z

2

number has been used to demonstrate the two-dimensional topological
insulator phase in HgTe/CdTe quantum wells [48]. Time reversal symmetry was broken by
an external magnetic field applied perpendicular to the quantum well plane and this caused
a breakdown of the topological insulator phase [48]. For three-dimensional topological
insulators much more e�cient than an external magnetic field would be the exchange field
of a magnetic film deposited directly on the surface. We will follow this approach in the
second part of this chapter, where we investigate the influence of Fe impurities on the
surface state. We will, however, show that we can deposit a massive amount of Fe without
opening a gap at the Dirac point which can be interpreted as a first step to functional
devices made of topological insulators and ferromagnets.



66 Robustness of Topological Surface States

5.1 Non-Magnetic Impurities

In the following sections we investigate the e↵ect of non-magnetic impurities. We show a
controlled oxidation of the surface of Bi

2

Te
3

and the surface deposition of Ag on Bi
2

Se
3

.

5.1.1 In Situ Oxidation of Bi
2

Te
3

The robustness of the topological surface state is one of its most interesting characteristics.
A trivial surface state always contains of a pair of states with opposite spin at each point
in k-space. Assume that a trivial insulator has surface states containing of two Dirac
cones lying on top of each other or being shifted in momentum but not in energy against
each other. Then any distortion is able to introduce a gap without violating time reversal
symmetry as long as both states get gapped. The topological insulator with its single Dirac
cone on the surface on the other hand can not get gapped without breaking time reversal
symmetry. The existence of a gap necessitates that the state has the same spin in both
halves of the surface Brillouin zone, otherwise there would be a discontinuity in the spin
eigenfunction at zero momentum. Consequently, a perturbation that does not violate time
reversal symmetry cannot introduce a gap.
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Figure 5.1: Monitoring the e↵ect of exposing Bi2Te3 to oxygen with 50 eV photons. The temper-
ature was set to 50K during measurement and exposure. The dose is increased from 0 Langmuir
(L) in a) to ⇠0.8 L in f). A strong hole doping is observed but the band structure shifts non-rigidly.
The yellow dashed line marks the shift of the Dirac point. The white dashed line marks the valence
band maximum (VBM) in a). An over night warm up to 280K releases most of the oxygen and the
Dirac point appears at a similar position as for 0.1 L (g).
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In Fig. 5.1 the surface state of Bi
2

Te
3

is after cleavage exposed to an increasing dose of
oxygen. The photon energy was set to 50 eV and the measurement as well as the deposition
temperature was set to 50K. Dispersions are taken along the �K direction. The dose is
given in Langmuir (L), where 1 L⇠1.33⇥10�6mbar·s. In the clean sample (a) the Dirac
point is observed at ⇠365meV binding energy. The bottom of the bulk conduction band
is clearly visible at this photon energy, stage of intrinsic doping and temperature. After
10 s at a partial O

2

pressure of 5⇥10�9mbar corresponding to ⇠0.05 L the Dirac point
has shifted to a slightly lower binding energy of ⇠310meV. Also, a small shift of the bulk
conduction band is obvious. But if quantified, its shift is with less than 30meV only about
half the value of the Dirac point. Doubling the dose further shifts the Dirac point but less
clearly. But at 0.2 L (e) there is again a very pronounced shift in the low binding energy
direction of ⇠120meV. At this dose, the di↵erence in the shift between surface and bulk
bands is undeniable. Now the Dirac point lies above the top of the bulk valence band
while in a clean sample, the Dirac point is fringed by the top of the valence band in all
k||-directions as indicated by the white dashed line in panel a) that marks the valence band

maximum (VBM) along the �K direction. The binding energy of the Dirac point is now
⇠175meV and the total shift amounts to 190meV. Directly at the Fermi level, between the
two branches of the topological surface state a very faint trace of the bulk conduction band
is still visible. Considering that the binding energy of the conduction band in the clean
sample is about 60meV (a) we can quantify the shift to be about 50meV. In f) the dose is
increased to 0.8 L and causes a further shift of the Dirac point of ⇠100meV and the binding
energy is 75meV. Assuming that the conduction band shifts by a similar amount than it
did between 0 and 0.2 L it should now lie above the Fermi level and the band structure
of Bi

2

Te
3

would resemble that of a bulk insulator. But for the following reasons one is
not allowed to draw such a conclusion from the presented photoemission results. First the
absolute value of the Fermi vector kF of the surface state is now ⇠0.02 Å�1 and the half
width at half maximum of the momentum distribution curve peaks is of similar size. Thus,
there is an overlap of the peaks in the photoemission signal and it is impossible to decide
whether there is spectral weight of the conduction band left or not. Second, assuming
that the conduction band does not contribute to the photoemission signal anymore at
50 eV photon energy it is necessary to scan the full kz range by varying the photon energy
(compare Chapter 2) in order to decide if the conduction band is really above the Fermi
level and does not disperse back in at a di↵erent kz. And third, one should not forget
that we probe only a few atomic layers in photoemission and we can thus not conclude on
the bulk properties at all. To clarify the conductance of the bulk, transport measurements
would be necessary for oxidized samples. An e↵ect on the properties deep in the bulk can,
however, only be expected if the adsorbate moves into the bulk.

We have remeasured the sample after one night keeping it on the manipulator in ultra
high vacuum with the cooling switched o↵. The sample temperature reached about 280K
over night and the result after cooling back to 50K is presented in panel g). The Dirac
point has shifted back to the position where it was found for ⇠0.1L. The bulk conduction
band is visible at the Fermi level but at a binding energy comparable to a dose of 0.2L.
It can be concluded that the oxygen is mainly physisorbed on the sample, in contrast to
the case of Ag or Fe discussed below. The observed reversibility indicates that O

2

does
not dissociate and that the binding energy shifts are more likely caused by a change in the
surface potential instead of a transfer from charge carriers between substrate and added
molecules.
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A similar shift of the band structure on O
2

dosage has been observed for Bi
2

Se
3

but
the question of reversibility of the e↵ect has not been addressed [111].

5.1.2 Ag on Bi
2

Se
3
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Figure 5.2: Room temperature deposition of Ag on Bi2Se3 leads to a strong electron doping as
obvious from the two subsequent deposition steps of 0.2ML and 1ML. As indicated by the yellow
dashed lines all features get shifted to higher binding energies. The surface state shifts stronger
than bulk conduction and valence band. Additional states appear in the valence and conduction
band. The measurement temperature is 10K and the photon energy was set to 18 eV.

Beyond the proof of concept, namely the robustness of the surface state, it is inter-
esting for future applications to investigate the e↵ect of metals deposited on the surface
of a topological insulator. A successful integration in electronic circuits will necessitate a
contact between a metal and the topological insulator surface. As an example we study
Ag deposited on the surface of Bi

2

Se
3

.

The sample has been cleaved at ⇠10K. The dispersion of the clean surface is measured
with 18 eV photons along the �K direction as shown in Fig. 5.2 a). We observe a very sharp
topological surface state and the Dirac point, marked by a yellow dashed line with medium
distances, is observed at a binding energy of ⇠350meV. As before, the sample shows a
high intrinsic n-doping and the bottom of the conduction band at � is found at a binding
energy of ⇠150meV for the given excitation energy and is marked by the dashed line with
the largest distance between the dashes. As a third fix point we mark the bottom of the
valence band, where the photoemission intensity vanishes at � with the smallest distance
dashed line at ⇠720meV.

For the Ag deposition, the sample has been removed from the cooled manipulator and
has been allowed to warm up for 10 minutes on a wobble stick before exposing it to the Ag
atom beam. We estimate the temperature to be above 150K during the deposition. Ag
has been evaporated from a Ag rod heated by an electron beam. A high voltage of 2.5 kV
has been applied between the Ag rod and a tungsten filament and for an emission current
of 3.0mA we found a rate of ⇠ 0.1 monolayer (ML) per minute on a quartz microbalance
placed at the same position as the sample during deposition.
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After 2 minutes of deposition, corresponding to 0.2ML, the surface state has shifted to
higher binding energy and the Dirac point appears at ⇠430meV corresponding to a shift
of ⇠80meV (Fig. 5.2 b)). The bulk valence and conduction bands appear to be shifted
less than the surface state. On the one hand, one may expect such a result, as a surface
deposition should e↵ect the surface located states much more than the bulk states. On the
other hand, the bulk bands have changed in a peculiar way. While the parabolic outline
of the conduction band in a) is filled with intensity up to the Fermi level, we observe
two sharper states in b). A similar e↵ect is seen for the valence band, where a single
broad feature is divided into two sharper features which mimic the shape of an M as they
merge with the surface state away from �. As we increase the amount of Ag to the mass
equivalent of a full monolayer, the chemical potential further shifts in the same direction
and the Dirac point is seen at ⇠460meV. Since a much higher amount of Ag added in
the second deposition step shifts the band structure much less than the first deposition
step, we assume that the shift of the chemical potential is saturated at some point. This
assumption will turn out to be justified during the discussion of Fe impurities on Bi

2

X
3

in
the following sections.

Interestingly, the newly formed bands in the conduction and valence band have shifted
by a similar amount in the second deposition step as compared to the first step and even
more than the surface state. As the quality of the overall signal is reduced for the full
monolayer, with all states appearing much broader than for 0.2ML the M -shaped bands
are not anymore clearly observed. Another remarkable result is the change of the relative
intensities of the two nested parabolas in the conduction band. While for 0.2ML the band
at higher binding energy is more pronounced, for the full monolayer the lower binding
energy one is more intense. In both cases we do not observe a splitting of the bands in
k-space, i.e., a Rashba splitting as has been reported for many electron doping surface
impurities, like e.g. CO [92], H

2

O [112], Rb, Cs, and Gd [113], and K [114].

These findings have been confirmed in a related study [115]. In addition to photoe-
mission results the authors show in STM that the Ag intercalates into the van der Waals
gap1 of the crystal structure. From this the authors conclude that the elevated topmost
quintuple layer with the Ag underneath leads to the formation of the two dimensional
extra states at the Fermi level which we have discussed above as being derived from the
bulk conduction band. This is in contrast to the explanation given by Bianchi et al. who
have explained the two dimensional states as quantum well states due to band bending
e↵ects [92]. In addition, the authors of Ref. [115] report that the topological surface state
becomes trivial at least in the topmost quintuple layer as they find it becoming parabolic
in the second derivative plot of the intensity map. An intercalation appears reasonable
also in our case. The main supporting argument is that there is no obvious increase in
the background intensity. However, we do not observe a change in the dispersion of the
surface state. As can be seen in Fig. 5.2 a) the surface state of the pristine sample does
not disperse linearly through the Kramers degeneracy but has a finite e↵ective mass. This
could be misinterpreted as a parabolic band without a Dirac point. In addition it is very
important to align the sample exactly to normal emission as a small misalignment can even
appear as a gap in the dispersion as discussed in Chapter 4.

Still, the described scenario with the Ag intercalating into the van der Waals gap is
not unlikely to cause the observed changes in the band structure. Assuming that the

1The region between two quintuple layers is only weakly bond by van der Waals forces, therefore the
name van der Waals gap.
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intercalated Ag further decouples the top most quintuple layer from the rest of the sample
we expect the decoupled layer to develop the dispersion of an isolated quintuple layer.
The crossover from two to three dimensions has been nicely demonstrated for samples
grown in situ by molecular beam epitaxy [116]. Indeed, for 1 quintuple layer, instead
of the well known band structure of a bulk sample, only one parabolic band has been
observed in photoemission close to the Fermi level at �. In principle it is possible that
the photoemission signal shows a superposition of the three and the two dimensional band
structure, i.e., of a bulk and a one or few quintuple layer sample. In DFT calculations
Eremeev et al. where able to show, that an expansion of the size of the van der Waals gap
leads to the emergence of parabolic bands below the conduction band [117]. Moreover, these
bands get energetically more separated from the conduction band states as the quintuple
layer distance increases. Also the Rashba splitting was considered. The Rashba parameter
↵R which gives the size of the splitting was found to be a function of the quintuple layer
distance but it was found to increase up to an expansion of the van der Waals gap of 30%
and beyond this value decrease again. The expansion is mainly determined by the type
of intercalated species, i.e., their size. It could thus be an explanation why no splitting
is observed with Ag, while larger atoms such as Rb, Cs, Gd [113] and K [114] produce a
splitting.

5.2 Magnetic Impurities

In the previous section we have shown that the topological surface state, in contrast to its
counterpart in trivial insulators is really robust against impurities. We have seen that the
electronic structure can be tailored and that we can remove the bulk density of states of
the conduction band in our photoemission spectra.

Qualitatively, this confirms the expectation for an ideal topological insulator. Next, we
will show the e↵ect of magnetic Fe deposited on the surface of Bi

2

Te
3

and Bi
2

Se
3

after
discussing why such systems are important.

The interest in interfaces between topological insulators and ferromagnets is mainly
motivated by the idea that a magnetic field will break time reversal symmetry and the
lifting of the Kramers degeneracy E(k, ") = E(�k, #) causes a gap in the topological surface
state at zero momentum (wave vector k = 0). A very convincing probe of this characteristic
point was already given in the first experimental study on the two dimensional topological
insulator phase of HgTe/CdTe quantum wells in 2007 [48]. For a magnetic field oriented
perpendicular to the quantum well plane a breakdown of the four-terminal conductance has
been reported. The observed cusplike signature of the magnetoconductance has a full width
at half maximum (FWHM) of 28mT, thus already a small magnetic field (⇠14mT) opens
a band gap in the edge channels. Tilting the angle of the magnetic field with respect to the
quantum well plane continuously increases the FWHM of the magnetoconductance peak
and for the magnetic field within the quantum well plane a value of ⇠0.7T was reported
for the FWHM. Furthermore, the authors pointed out that the gaps for the in-plane and
out-of-plane magnetic fields di↵er from one another and the relative size was estimated
with Egap?/Egapk ⇠ 102.

Despite the fact that an external magnetic field would distort the photoelectrons in our
experiment, it is much more e�cient to deposit a ferromagnetic overlayer or ferromagnetic
impurities. If the impurities really stay on the surface of the three dimensional topological
insulator one may assume – appropriate magnetization provided – that the time reversal
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symmetry is broken only at the surface and not in the bulk which is a precondition for
observing the topological magnetoelectric e↵ect. A magnetoelectric e↵ect is defined as a
magnetization induced by an electric field, or alternatively, a charge polarization induced
by a magnetic field [118]. As the topological surface state resembles a two dimensional
electron system, the breaking of time reversal symmetry by a magnetic field will lead to
a quantum Hall state which is anomalous because of the fact that there is a single, i.e.,
an odd number of fermionic states on the surface. Consequently, this leads to a quantized
Hall conductance of �H = (2n + 1) e

2

2h , whereas e is the electron charge, h is Planck’s
constant and n is an integer. Thus, the conductance is fractional and not integral as in
the conventional quantum Hall e↵ect described in Chapter 3. Such a half-quantum Hall
e↵ect has been proposed in other systems, but in trivial systems there are always at least
four degrees of freedom, left and right movers with a spin up and a spin down channel.
The doubling of the channels will always lead to a total Hall conductance which takes an
integral value. This doubling does of course not take place in a topological insulator with
its odd number of fermions. In a dc transport experiment the half-quantum Hall e↵ect
cannot be observed since the whole surface is gapped as it is a closed manifold without
any edges and thus no edge states can exist. However, the observation of unconventional
Landau quantization in an external magnetic field, observed by means of scanning tunneling
microscopy in Bi

2

Se
3

is a strong indication for the realization of a quantum Hall e↵ect in
topological insulators [96, 97].

If magnetic impurities on the surface form a domain wall in a ferromagnetic phase
then the Hall conductance has a jump across the wall and a chiral gapless edge state
propagates along the domain wall [118]. The jump of the Hall conductance across the
domain wall is, however, ��H = e2/h and this will be the conductance measured in a dc
transport experiment with the leads attached to the domain wall in the same manner as for
a common Hall bar. Considering a cylindrical topological insulator with the side surfaces
covered by a magnetic film magnetized radially, Qi, Hughes, and Zhang where able to show
theoretically that an electric field E applied perpendicular to the top and bottom surface
induces a Hall current j circling around the side surface, thus perpendicular to the electric
field. This current, given by j = m

|m|
e2

2hn⇥E induces a magnetic field parallel or antiparallel
to E. The unit vector n is normal to the side surface of the cylinder and the sign of the
mass m

|m| is determined by the direction of the magnetization on the side surface. The
induced magnetization is then proportional to the electric field

MH = � m

|m|
e2

2hc
E.(5.1)

There is no dependence on any material parameter and the magnetization can thus be
viewed as a topological response of the system to the electric field. In addition, it contains
the half-quantum Hall conductance and the topological magnetoelectric e↵ect can thus be
viewed as a measure of the half-quantum Hall or quantum anomalous Hall e↵ect.

Another proposal, closely connected to the magnetoelectric e↵ect is that a point charge
placed closely above the ferromagnet-topological insulator interface will not solely induce an
electric field inside the bulk which can be described by a mirror charge but also a magnetic
field that would resemble an image magnetic monopole inside the topological insulator
bulk [119]. More e↵ects with a close connection to the magnetoelectric e↵ect have been
given in the literature and they have been reviewed by Qi and Zhang in Ref. [118].

While these e↵ects appear more or less academic many other proposals already aim at
applications by considering the magnetotransport. For example the inverse spin-galvanic
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e↵ect at the ferromagnet-topological insulator interface uses the coupling between the mag-
netic moment and the surface electric current to flip the magnetization of the ferromagnetic
overlayer with the surface current by 180� dissipationless, i.e., without the generation of
Joule heating [120].

Also the magnetoresistance has been considered and theoretically high values are ex-
pected for periodic magnetic modulations [121], for a ferromagnet/ferromagnet junction [122],
and even for a single ferromagnetic barrier [123]. The magnetoresistance for ferromagnets
on topological insulators is special as it is observable also for a magnetization which is
parallel to the surface but canted with respect to the direction of current flow with the
maximum e↵ect for a perpendicular configuration. If we consider a coordinate system
with the x direction along the current density and together with the y direction within
the surface plane and the z direction perpendicular to both, then a magnetization oriented
along the y direction shifts the two dimensional Fermi surface of the topological surface
state along the ky direction in momentum space. Hence, the overlap of Fermi surfaces
between the regions inside and outside of the ferromagnet is suppressed and leads to a
large magnetoresistance which is not observed in common systems [122].

Several experimental studies have investigated the e↵ect of magnetic moments on the
topological surface state. When Bi

2

Se
3

is p-doped (hole doped) in the bulk by Mn, it
is possible to move the Fermi level into the bulk band gap [111]. Bulk Mn doping of
Bi

2

Te
3

has led to ferromagnetic order below temperatures of 12K [124]. Unfortunately,
photoemission of the Dirac point region remained inconclusive for these systems, due to
the strong p-doping and unclear position of the Dirac point [124]. For Bi

2

Se
3

, doped with
Fe in the bulk, a band gap in the surface state dispersion at Fe concentrations in the melt
composition and relative to Bi reaching from 5% to 25% [111] have been reported. This
gap appears to be tunable with the amount of Fe which confirms the assumption that
the gap is caused by the magnetic field as a higher amount of Fe means more magnetic
moments and thus a higher field-strength. But the magnetic characterization showed that
for Fe concentrations below 16%, like e.g. 12% where the observed size of the energy gap
amounts to 45meV, the system remains paramagnetic down to T=2K which is below the
temperature of the ARPES measurements of 10K [111]. As the characterization technique
used lacks surface sensitivity the authors speculate in the supporting online material2

of Ref. [111] that impurities on the surface may have been ferromagnetically aligned via
a Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction with the surface state as it was
suggested by Liu et al. [125]. Only recently mean-field calculations showed that a finite
temperature window may exist in magnetically doped topological insulators in which the
surface is ferromagnetic while the bulk stays paramagnetic [126].

According to Liu et al., the RKKY interaction will lead to a magnetization which is
always ferromagnetic when the Dirac point energy (ED) lies at or very close to the Fermi
level. The RKKY interaction oscillates between ferromagnetic and antiferromagnetic ac-
tion and the period is given by the Fermi wavelength (�F = 2⇡/kF ) of the carriers that
support the mediation. Consequently, the mediated action is always ferromagnetic when
ED = EF as kF equals zero then and �F points towards the infinite. If ED 6= EF than the
average impurity distance must be smaller than the according Fermi wavelength. Gao et
al. pointed out that for the two dimensional topological insulator the RKKY interaction
mediated by the helical edge states leads to a noncollinear exchange coupling between two
spins on the system which is in plane [127]. Furthermore, the angle between the spins can

2URL:www.sciencemag.org/cgi/content/full/329/5992/659/DC1
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be controlled by adjusting the Fermi level. Randomly distributed ferromagnetic impuri-
ties on the surface of a three dimensional topological insulator have been investigated by
Abanin and Pesin [128]. They found, that the in plane component of the spin will get frus-
trated due to a coexistence of ferromagnetic and antiferromagnetic exchange in orthogonal
directions, independent of the microscopic details. Thus, the out-of-plane ferromagnetic
configuration is always favored below a critical, but finite, temperature Tc which was es-
timated to be 30K for Bi

2

Se
3

3. Furthermore, it has been argued that potential scattering
will suppress the magnetic ordering process [128]. In contrast, Biswas and Balatsky ar-
gued that the magnetic impurities induce nontrivial spin textures and that the RKKY
interaction, therefore, becomes anisotropic and the sign of the interaction, i.e., ferro or
antiferromagnetic coupling depends on the induced spin texture. Only a high impurity
density favors the out-of-plane ordering when the Dirac point is at the Fermi level [129].

Experimentally, Wray et al. report a band gap opening at the Dirac point – thus, lifting
it – observed in angle resolved photoemission for Fe impurities deposited directly and in
situ on the surface of Bi

2

Se
3

[130]. The size of the gap amounts to ⇠100meV for a mass
equivalent of 0.2ML (monolayer) of Fe. No external field was applied for the magnetization
and the authors speculate that the appearance of a band gap indicates a magnetization
mediated by the surface electrons as predicted by Liu et al. and that the magnetization
points out-of plane since an in-plane magnetization would simply shift the Dirac cone in
k-space but not open a band gap [130]. Please note that such a shift in k also breaks
time reversal symmetry. On the other hand, Fu found that an in-plane magnetic field may
introduce a gap if hexagonal warping is present [19]. The latter leads to an out-of-plane
rotation of the spin away from �M as discussed in detail in Chapter 4, and Zeeman splitting
induced by an external field introduces a mass term which lifts the Kramers degeneracy of
the topological surface state shifted in k-space.

Despite the fact that the conclusion of an out-of-plane magnetization is speculative for
both, Fe in the bulk of Bi

2

Se
3

[111] and on the surface [130] the shape of the gaps reported
is very di↵erent. While the former resembles the simple expectation and the Dirac-cone is
deformed into two parabolic bands with opposite signs of the e↵ective mass, in the latter
the lower half of the previous Dirac bands appears with the shape of the letter M and
has a local minimum at �. Thus, the band masses have the same sign at � for the upper
and lower half. If the gaps in the two studies were caused for the same physical reason,
i.e., a surface Fe layer magnetization, one would expect the gaps to have a similar shape.
Naturally, one may ask the question whether both gaps are really due to a magnatization
of the Fe impurities? We will address and answer this question to some extent with the
help of our own results.

5.2.1 Fe on Bi
2

Te
3

That the Dirac point in Bi
2

Te
3

is somewhat hidden under the spectral weight of the bulk
valence band makes it more challenging to investigate gap opening phenomena in this
system as compared to Bi

2

Se
3

. This could be a reason why a larger amount of work has
been done on Bi

2

Se
3

. When we started to investigate the e↵ects of Fe on Bi
2

Te
3

no related
studies where published neither for Bi

2

Te
3

, nor for Bi
2

Se
3

. For the first batch of samples
available to us, we found that the quality of the Bi

2

Te
3

samples was better than that of
Bi

2

Se
3

and we decided to start out with the former. Therefore, we have studied Fe on

3Above a critical value of the relative ratio between in- plane and out-of-plane exchange coupling (� =
J||/J?) the system stays paramagnetic for finite temperatures and turns into a spin glass at T=0K [128].
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Bi
2

Te
3

up to much higher coverages than Bi
2

Se
3

and the doping e↵ects of the adatoms can
be discussed more precisely with respect to Bi

2

Te
3

than for Bi
2

Se
3

.
The burried Dirac cone makes it necessary to select a suitable photon energy, where

the interplay of matrix element e↵ects, atomic photoionization cross sections, and, for the
bulk states, the kz dispersion, are giving the best contrast for the Dirac point. We found
that 55 eV pretty much enhances the intensity of the surface state over the bulk states and
we thus favored this energy over lower photon energies despite a small loss of resolution
which has to be paid at higher photon energies.
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Figure 5.3: E↵ect of Fe impurities on the topological surface state of Bi2Te3.
a) Dispersion of the topological surface state of pristine Bi2Te3 measured at room temperature
along the �M direction with 55 eV excitation energy. The inset shows the surface Brillouin zone
and the red dashed line marks the energy position of the Dirac point E

D

. b-h) Incremental increase
of the deposited Fe mass from 0-1 monolayer (ML). A strong rigid-like shift of the dispersion is
observed (b-f) together with the emergence of extra states at the Fermi level. The shift saturates
at mass equivalents of 0.3-0.5ML Fe (d-g). Even for thicknesses as high as 1ML the topological
surface state appears intact (h).

Doping e↵ect of Fe on Bi
2

Te
3

Fe impurities were evaporated directly from an Fe rod heated by an electron beam. Typ-
ical values of operation are 3.0 kV voltage between rod and filament and 4-5mA emission
current. Calibration of the evaporator was done by use of a quartz microbalance and rates
were set to ⇠0.05-0.1 monolayers (ML) per minute. The calibration was repeatedly con-
firmed during a set of subsequent deposition steps. To reduce the amount of evaporated
contaminants, the evaporator was carefully degassed until total pressures during evapora-
tion below 2⇥10�9mbar were reached. This appears su�cient as we did not observe any
additional contaminations besides the designated Fe in core level spectroscopy.
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We have evaporated Fe in subsequent steps of 0.1ML with the sample kept at room
temperature from the moment of cleavage on. The e↵ect on the topological surface state
is shown in Fig. 5.3. For the pristine sample the Dirac point (ED) is found at ⇠210meV
binding energy (a). Here we show angle resolved photoemission data collected along the �M
direction. The warping related decrease of the group velocity, discussed in Chapter 4.1.2, is
not yet pronounced for the given intrinsic doping. The bulk conduction band is not visible
due to the kz dispersion of the three dimensional states. The deposition of Fe shifts the
electronic structure of the surface state rigidly towards higher binding energy reflecting
an electron doping e↵ect of the Fe (n-type). The e↵ect can be traced best by following
the Dirac point in panels a) through f) which is marked by the red dashed line and by
comparing the energy distribution curves at zero momentum, i.e. �, plotted in Fig. 5.4 a).
The shift saturates between 0.4 and 0.5ML which could be confirmed in di↵erent samples
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Figure 5.4: Binding energy shift of the Dirac point with increasing Fe deposition on Bi2Te3 at
room temperature. a) Energy distribution curves at zero momentum (�) for di↵erent Fe amounts.
Black vertical ticks mark the position of the Dirac point. b) Relative energy shifts as a function
of the Fe deposited mass in units of monolayer equivalents from three di↵erent Bi2Te3 samples.
The shift undergoes a saturation and can be fitted by an exponential function (black dashed line).
Within the error the n-type shift was reproduced in all samples.

as shown in panel b) of Fig. 5.4. Here, the relative shift of the Dirac point with respect
to its initial position in the pristine sample is plotted against the deposited Fe mass in
monolayer equivalents. All three data sets follow the exponential curve which has been
fitted to the set of Sample A.

We have further increased the amount of Fe to mass equivalents in the full monolayer
range as shown in panel h) of Fig. 5.3. Apart from the n-type shift of the band structure
the most remarkable result is that the topological surface state is still visible in all stages
of Fe deposition, even for the full monolayer. Neglecting the magnetic moment of Fe,
this can be simply viewed as another example of the unique robustness of the surface
state. Furthermore, the opening of a gap is not resolved for these room temperature
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measurements. One may ask the question whether a gap is expected to open just by
depositing magnetic adatoms. On a local scale, time reversal symmetry is broken whenever
a magnetic impurity is present and a gap would open. However, the electronic band
structure is not defined on a local scale but globally. The periodic lattice of a solid leads to
the formation of energy bands but experience shows that this is the case even in an imperfect
crystal with distortions, impurities and defects. Globally, we find a periodic system, but
locally there are aberrations from the highly symmetric system. Thus, in the vicinity of
a defect symmetries are broken. Nevertheless, band theory is based on the symmetries of
the lattice. From this argument, one shall conclude that time reversal symmetry has to be
broken globally and not just locally. At room temperature, Fe films in the submonolayer
regime are not expected to be magnetized as the typical Curie temperatures are much
lower. Even for a full uncoated4 Fe(110) monolayer on W(110), neglecting the fact that it
is not granted that Fe grows layerwise on Bi

2

Te
3

, the Curie temperature is with Tc=210K
still below room temperature [131] and Tc is found to decrease significantly as the coverage
enters the submonolayer regime [132]. We can therefore expect that the magnetic moments
of the Fe impurities are oriented arbitrarily and that time reversal symmetry is not broken
on a global scale. Conversely, the fact that we do not see a gap in the surface state may be
interpreted as a confirmation of our statement that a magnetic film has to be magnetized
in order to open a gap. In a more general context of the expected enhanced scattering
rates from ferromagnetic impurities due to spin flip processes, which will be the topic of
Chapter 6, it means that such enhancement does not not lead to a localization of surface
electrons.

Core Level Spectroscopy

As betoken above, an important aspect, is the growth of the Fe on Bi
2

Te
3

and how it
alters the chemical environment of adjacent crystal atoms. Some insight can be gained
from photoemission of core levels. As most of our photoemission measurements where
done at the UE112 beamline of BESSY II, which is a low energy beamline designed for
ultimate resolution, we only investigate the low energy core levels of Bi

2

Te
3

, i.e., the Bi5d
and Te4d states, as well as the Fe3p peak. Additionally, we need to relate the valence
band dispersions at low photon energies directly to the core levels from the same sample.
Reasonable light intensities can only be reached in the energy range up to h⌫ ⇠200 eV and
thus oxygen and carbon peaks are out of reach. This means also that about the purity of
our sample and sample preparation can only be concluded from valence band spectra and
from the lineshape of available core levels of Bi, Te and later Se.

The Bi5d state of a pristine sample gives spin-orbit split peaks with the 5d
3/2 peak

split-o↵ by 3.05 eV to larger binding energy. The Te4d state produces a similar spectrum
but with a two times smaller splitting of ⇠1.5 eV. All peaks appear rather symmetric
as can be seen in the upper inset of Fig. 5.5 a) for Bi5d and in the lower inset for Te4d
(black line) or in Fig. 4.9 of Chapter 4.1.3. From all spectra a Shirley background has been
removed and they have been normalized to the same area under each curve for clarity. This
normalization will be justified later.

When Fe is evaporated on the sample three obvious changes occur in the spectra. First,
we observe an overall shift of the peaks towards higher binding energy in agreement with

4If the samples are additionally coated by an Ag overlayer the Curie temperature is close to room
temperature with Tc = 296K [131]
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Figure 5.5: E↵ect of Fe deposition on the core level spectrum of Bi2Te3. a) The Bi5d5/2 peak
undergoes a shift to higher binding energies with increasing Fe coverage. In addition a pronounced
and growing shoulder appears on the lower binding energy side. The 5d3/2 peak shows an analogous
behavior as seen in the upper inset for three di↵erent Fe coverages. Te4d peaks also shift to higher
binding energies while no shoulders seem to grow (lower inset). b) The increasing Fe3p peak at
52.5 eV binding energy confirms the increasing Fe coverage and that the described changes in the
other core levels are really due to Fe. c) The relative energy shifts of the Te4d and Bi5d peaks
(averaged over the multiplet peaks) as a function of Fe thickness shows that the core levels of Bi
and Te exhibit di↵erent shifts. While the Bi5d peak seems to saturate at a similar Fe amount as
the Dirac point (compare Fig. 5.4b)) the maximum shift is lower. The Te4d peaks experience a
much stronger shift than Bi5d and the Dirac point and have not saturated for the available data.
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the n-type shift seen for the surface state. This behavior is also seen for the Te4d states in
the lower inset of panel a). However, as quantified in panel c) the Te4d peaks appear to
shift more than twice as much as the Bi5d states. Even though the trend of the Te4d states
(blue downwards triangles and dashed line) also follows an exponential curve, approaching
an asymptotic value, it seems that the shift is not in a fully saturated regime for the highest
thickness investigated by us. The shift of the Bi5d states saturates at around 1ML which
is also a higher value than observed for the Dirac cone (Fig. 5.4 b). In principle such a shift
is expected as it reflects the change of the chemical potential due to electron doping. But
the di↵erence in the shifting is somewhat unexpected as one would expect a rigid shift of
the complete band structure.

Second, with increasing Fe mass, we find the evolution of pronounced shoulders at the
lower binding energy sides of the two Bi5d peaks as can be seen in the upper inset for
both, and exemplified in the main panel of Fig. 5.5 a) for the 5d

5/2 peak. The shoulders
can unambiguously be assigned to a chemical shift due to a reduced oxidation state. This
means that more electrons can be attributed to the Bi sites after Fe deposition. In the
photoemission process the positively charged core is screened better with a higher electron
density in the atom and thus the 5d electrons appear at lower binding energy.

Third, while no shoulder grows on the lower binding energy side of the Te4d peak
we observe an asymmetry on the higher binding energy side of each multiplet peak. As
this asymmetry deforms the peak to a lineshape which looks similar to a Doniach-Sunjic
profile two explanations might be possible. On the one hand, the increased metallicity of
the sample which is evident from the near Fermi edge photoemission may open a way for
intrinsic plasmon excitations in connection with the photoemission process. On the other
hand, a chemical shift stemming from an increased oxidation state is also reasonable. Which
of these possibilities is more likely can be determined from a standard fitting procedure,
which will be discussed further below.

That these changes are really caused by Fe is manifested by the growth of the Fe 3p
peak which we have controlled with 150 eV excitation energy after each deposition step and
put together in panel b). The broad bump visible already in the pristine sample (black line)
cannot be specified in detail. One possibility would be a contamination of the sample with
foreign species. The high purity materials which where used for the crystal growth may
typically contain for example a very small amount of Ag and the Ag4p peak is expected
at a similar binding energy. However, it is unlikely that for such a small amount of Ag
(<2 ppm) a photoemission peak would be visible. Excited with di↵erent photon energies
the structure appears always ⇠5 eV away from the Te4d

3/2 peak. Thus an Auger peak, as it
would always appear at the same kinetic energies, can be excluded as well as an excitation
of core levels with photons from a higher di↵raction order of the beamline monochromator.
Most likely, the peak must be ascribed to a satellite structure of unknown origin.

Next we want to analyze the Bi5d and Te4d core levels more quantitatively. As men-
tioned already, the Bi5d peak develops pronounced shoulders which reflect a transfer of
spectral weight from the peak ascribed to the Bi5d peak with oxidation state 3+ to a low-
ered oxidation state. However, already in the pristine sample the lineshape necessitates the
presence of a second peak to achieve an accurate result in the fit. This is exemplified for
the 5d

5/2 state in the lowest panel of Fig. 5.6 a). To the experimental data, represented by
black dots, two Voigt profiles have been adapted. A fit with a single Doniach-Sunjic-type
asymmetric Lorentzian gave less accurate results. A similar asymmetry has been reported
for the Bi4f states in Bi

2

(Sr,Ca)
3

Cu
2

Oy [133]. By comparing with electron energy loss



5.2 Magnetic Impurities 79

P
ho

to
em

is
si

on
 In

te
ns

ity
 (a

rb
. u

ni
ts

)

26 25 24 23

Binding Energy (eV)

25 24

25 24

26 25 24 23

Bi5d5/2

0ML

0.2ML

0.4ML

1.2ML

a

R
el

. A
re

a 
(%

)c
30
20
10

0
1.21.00.80.60.40.20.0

Arel(Bi5d<3+)
Arel(Te4d>2-)

Bi5d<3+

P
ho

to
em

is
si

on
 In

te
ns

ity
 (a

rb
. u

ni
ts

)

Te4d
1.2ML Fe

Te4d
1.2ML Fe

b

44 43 42 41 40 39 38

Binding Energy (eV)

40.5 40.2

40.5 40.2

Te4d>2-

Fe Coverage (ML)

Figure 5.6: Core level analysis of Fe on Bi2Te3 deposited at room temperature. a) The Bi5d5/2
of pristine (0ML) Bi2Te3 requires fitting with two Voigt profiles (bottom). With increasing Fe
coverage a third Voigt peak develops split o↵ by -0.75 eV from the main peak. Simultaneously, the
original peaks lose spectral weight. The insets show an enlargement of the range of the new peak
for 0.2 and 0.4ML Fe. b) Te4d develops an increasing asymmetry on the higher binding energy
side. Compared is a fit with Doniach-Sunjic lineshape (bottom) to one with two pairs of spin-orbit
split Voigt profiles (top). The Voigt fit is more accurate in the range of the asymmetry as shown in
the insets. c) The relative area of the newly developed peaks increases linearly with the deposited
mass. The area of the extra peak in Te4d increases by a factor of 1.8 faster than that of the shoulder
in Bi5d.



80 Robustness of Topological Surface States

spectroscopy data the authors attributed the asymmetry to energy loss satellites. This
appears reasonable also in our case.

As the Fe coverage increases a third Voigt profile is added to the model to account
for the growing shoulder on the low binding energy side. For the fit, we have started
with the highest Fe coverage, i.e., 1.2ML which is shown in the upper panel of Fig. 5.6 a).
The parameters for the best fit as the Gaussian linewidth and the splitting from the main
peak have been kept constant over all other Fe coverages, while the Lorentzian width has
been restricted not to alter too much from the result for the highest Fe coverage. Even
though this procedure does not result in the best fit possible it is the most reasonable from
a physical point of view. The Gaussian broadening of the photoemission peak is caused
by the finite temperature (room temperature throughout all core levels shown) and the
experimental resolution, i.e., the monochromator and analyzer resolution, and is therefore
assumed to be constant in all measurements. That the splitting from the main peak has
to stay constant is implied in the model as the chemical shift between two oxidation states
is a constant. The Lorentzian width on the other side is a measure of the lifetime of the
created photohole. Impurities and disorder of course influence the decay of a photohole
and the Lorentzian width may thus change with increasing Fe coverage. The fit results for
0.2 and 0.4ML are shown in the lower and upper center panels, respectively. The insets
show an enlargement of the third Voigt profile for clarity since the amplitude of the peaks
is quite small for these coverages. Obviously, the fit confirms the increasing spectral weight
with increasing Fe coverage. The transfer of spectral weight from the initial oxidation state
(A3+) to the reduced one (A<3+) is a linear function of the Fe coverage. This is seen in panel
c) where the blue double triangles represent the relative area (Arel = A<3+/(A<3++A3+))
of the reduced oxidation state peak. The rate by which the spectral weight increases
can be quantified to ⇠15%/ML. It should be emphasized that even though the best fit
was achieved by reducing the area of the high binding energy component, the transfered
spectral weight should be assigned to the main peak as one would not expect a reduced
energy loss satellite with increasing disorder. We have accounted for this fact by combining
the spectral weight of the main peak and the satellite to A3+ in the denominator of Arel.

It was already mentioned that the Te4d state also develops an asymmetric shape on
the high binding energy side upon Fe deposition. This is very well seen for a coverage of
1.2ML Fe as highlighted in panel b), where black dots represent the experimental data.
An accurate fit to the data can be achieved with two di↵erent models. In the lower part a
spin-orbit split pair of Doniach-Sunjic profiles has been used while in the upper part two
pairs of Voigt profiles have been fitted to the same data. The Doniach-Sunjic lineshape
would reflect an increased metallicity and the excitation of intrinsic plasmons at the Fermi
level causes the asymmetric shape. But as seen in the two insets, which enlarge the marked
region of the high binding energy side of the Te4d

5/2 peak, there is a significantly larger
deviation from the experimental data for the case of the Doniach-Sunjic lineshape. The
Voigt profiles give a better result and two explanations for the growth of extra peaks can
be given. As in the case of Bi5d, the asymmetry could be due to an energy loss satellite
and with increasing disorder this satellite grows. But considering the crystal structure
discussed in Chapter 4.1.1 one may ask the question why the Fe should have an e↵ect on
the oxidation state of the Bi atoms and not on the Te atoms. Let us assume that the Fe
stays on the surface, then it will find only Te atoms as reaction partners, since Te forms
the topmost layer after cleavage (see Fig. 4.1 c)). We expect that Fe forms a certain kind
of chemical bond as opposed to a simple transfer of its electrons to the substrate. The
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latter is often assumed for doping with alkalines (e.g. Ref. [134]) but note that these show
a strong trend for ionic bonds which justifies such assumption. For the 3d transition metal
Fe such an assumption would oversimplify the problem. The Te atoms are already in their
minimum oxidation state of 2�. This means, that any newly formed bond to Fe has to
be paid for by weakening an inter layer bond with the first Bi layer. Since the third layer
is again made up of Te atoms, which are also in their minimum oxidation state, no new
inter layer bonds can be formed. The only possibility is thus the formation of intralayer
bonds between di↵erent Bi atoms. This means that more electrons can be attributed to Bi
sites and the oxidation state of those atoms appears reduced.

If the appearance of an asymmetry on the high binding energy side in Te4d is also
due to such a chemical shift than their oxidation state is enhanced, meaning less electrons
reside on Te atoms. When a similar fitting procedure as for Bi5d is applied to the Te4d
peak, i.e., a decreasing main peak and an increasing side peak then the area of the side
peak also increases linearly. However, the overall increase is by a factor of 1.8 faster than
that of the Bi5d side peak and one should expect that the sample experiences an e↵ective
net p-doping which is not the case as seen in the overall shift of the electronic structure. It
can thus be concluded that the increasing asymmetry in Te4d is at least not entirely due
to a chemical shift.

On the other side, the growth of shoulders or asymmetries in both peaks appears to
be decoupled from the doping trends. While we clearly observe a saturation of the doping
for the Dirac point position as well as in the shifts of the Te4d and Bi5d core levels, we
observe an ongoing transfer of spectral weight between the di↵erent peaks in our model. It
should thus be noted, that we cannot directly conclude from the transfer of spectral weight
to neither amount nor sign of the doping.

The behavior of di↵erent growth rates of the Te4d and Bi5d adjacent peak areas could
be confirmed in di↵erent samples as shown in panel a) of Fig. 5.7. When the sample is kept
at room temperature during deposition then the Te4d peak transfers its spectral weight
always faster to its adjacent peak, which we specify as Te4d>2�, as compared to the transfer
between Bi5d3+ to Bi5d<3+. The given errors have been estimated from the accuracy of
the evaporator calibration (±0.1ML) and from the accuracy of the area determination in
our fitting routine (±0.05%).

The situation is altered drastically if we cool the Bi
2

Te
3

samples down to temperatures
between 10 and 50K prior to the Fe deposition, as seen in panel b). Now the transfer of
spectral weight in Te (left) and Bi (right) is rather similar with ⇠0.65%/ML. This gives
a first hint that the deposition temperature has a strong influence in this experiment. A
second hint is found by analyzing the energetic position of the shoulders of the Bi5d peaks.
Averaging over all samples we determine the chemical shift for deposition at room tem-
perature to (0.77±0.04) eV and for the deposition at low temperature to (0.63±0.03) eV.
Thus the shoulder is placed by more than 100meV closer to the main peak for low temper-
ature deposition. This unambiguously indicates di↵erent chemical environments of the Fe
on Bi

2

Te
3

for the di↵erent deposition conditions. Moreover, comparing again the growth
rates of the extra peaks shown in Fig. 5.7 we see that for both core levels the influence
of Fe appears much stronger when deposited at low temperature. While we assume the
sticking coe�cient of Fe to be always close to unity, a possible explanation can be found
in the di↵erent mobility of the adatoms for the di↵erent temperatures. On a cold sample
we expect much lower mobility and the adatoms stay where they land on the sample. At
room temperature the adatoms have a higher mobility and perform a random walk on the
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Figure 5.7: Core levels of Bi2Te3 upon Fe deposition. Dependence on Fe thickness and transfered
spectral weight for di↵erent deposition temperatures. Di↵erent symbols represent di↵erent samples.
The deposition has taken place at room temperature in (a). Over all samples we find a stronger
increase of the extra states for the Te4d (left) than for the Bi5d (right). If the samples are cooled
down to temperatures between 10 and 50K prior to Fe deposition (b), then the slopes of the linear
regressions to the data points are similar for Te4d (left) and Bi5d (right).

sample or even intercalate deeper into the bulk. The former may favor the formation of
islands and only the Te atoms close to the islands would be influenced by the adatoms as
well as those Bi atoms bond to the influenced Te atoms. Naturally this explains why the
transfer of spectral weight is slowed down.

For the second case (intercalation) the slower transfer of spectral weight is owed to
the escape depth of photoelectrons. The influence of deeply intercalated Fe atoms (e.g.
in the first van der Waals gap from the surface; compare Chapter 4.1.1) is not visible in
the data because only electrons excited within the first few atomic layers escape from the
crystal (compare also Chapter 2.1.2). Unfortunately, the photoemission data obtained from
the valence band of the samples cooled prior to Fe deposition remained inconclusive for
Bi

2

Te
3

because strong noise was introduced upon Fe deposition and the band structure was
not resolved anymore. Therefore, the results are not presented in this thesis. The strong
disruption of the photoemission signal may, however, be interpreted as an indication that
Fe indeed stays on top if deposited at low temperature. In the next subsection we will
see for Bi

2

Se
3

that the deposition temperature plays a major role also for the behavior of
the topological surface state and the interpretation of core level spectra will be continued
therein.

Robustness at Low Temperatures

For now we again concentrate on data where Fe has been deposited on Bi
2

Te
3

at room
temperature. We have cooled the samples after deposition of Fe down to T=50K and
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Figure 5.8: Low temperature measurements of Fe on Bi2Te3 at T=50K and with 55 eV excitation
energy along �K. The topological surface state of a pristine sample (a) is compared to the one of
a sample covered with 0.4ML Fe deposited at room temperature (b). Upon cooling the dispersion
shifts to slightly higher binding energies as described in Chapter 4.1.3. In both cases the Dirac point
is very pronounced suggesting that no gap has opened in the topological surface state. c) Even at
a sample temperature of 10K no magnetization is obvious as the Dirac point still remains intact.

remeasured the dispersion of the topological surface state. For comparison we have plotted
the dispersion of a clean sample5 at the same temperature in Fig. 5.8 a) and with 0.4ML
Fe on top in b). Similarly to the behavior of a clean sample the Dirac point has shifted by
35meV to higher binding energy upon cooling, as indicated on the energy axis of Fig. 5.3 b).
However, the crossing of the two branches of the surface state at � is still very bright in
intensity. This already indicates that no gap has opened as one would not expect such
an intense spot at � for a single band without Kramers degeneracy. This observation is
confirmed at a sample temperature of 10K shown in panel c). In Fig. 5.9 a) the second
derivative along the energy axis of the intensity plot of Fig. 5.8 b) is shown. For higher
binding energy than 0.5 eV a band having the shape of an M, which was hardly visible in
the intensity plot, is now clearly seen. This band is not an artifact of the data processing as
becomes obvious by comparing with the plot of stacked energy distribution curves in panel
b). The M -shaped band, marked with a black dashed line, is also seen in here and gives
rise to a small bump on the high binding energy side of the intense Dirac point peak at �,
highlighted with blue color in the waterfall plot. Fitting this central energy distribution
curve with three Voigt profiles after removal of a reasonable background, as shown in panel
c), gives a very accurate result. Please note, that the data in panel c) is from a di↵erent
sample with a similar amount of Fe to demonstrate the reproducibility of our results.

It is important to distinguish the described features very well, as one may tend to the
conclusion that a gap has opened in the topological surface state by looking at the features
best visible in the second derivative plot. The M -shaped band is not derived from the
surface state but most likely from the bulk valence band6. It matches in energetic position
and shape, as the valence band was predicted to have exactly this shape after taking into

5Please note that, since the deposition of Fe has been performed at room temperature, no low tempera-
ture data for the same sample has been acquired. We, therefore, show the data of a di↵erent sample which
showed a similar intrinsic doping at room temperature as the one on which Fe was deposited

6This is very similar to the situation in Bi2Se3 [108]
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Figure 5.9: Detailed analysis of the sample covered with 0.4ML Fe shown in Fig. 5.8 b). The
second derivative (a) as well as the waterfall plot of energy distribution curves (EDC) (b) reveal an
M -shaped band dispersing around 0.5 to 0.6 eV binding energy which is hardly seen in the intensity
plot. The Dirac point is present and the topological surface state retains a similar dispersion as in
the pristine sample. (c) EDC through the the �-point (di↵erent sample) fitted with three Lorentzian
peaks (bulk conduction band (BCB) topological surface state (TSS) and bulk valence including the
lower half of the surface state (BVB)) added to a Shirley background (dashed line).

account the band inversion through spin orbit coupling (Fig. 4.4 a) [79]). Moreover, as
indicated with a black dotted line in the second derivative plot, the topological surface
state still follows more or less its initial dispersion. The pretty linear bands between EF

and ED bend upright after crossing at the Dirac point and down again at ⇠0.09 Å�1. We
can thus exclude the opening of a band gap at least within our energy resolution. This
gives ⇠20meV as an upper limit of the gap size, if present.

It shall be mentioned once more that no magnetic field was applied and that we do not
expect the Fe film to have ferromagnetic order. As explained in the preface of this section,
this would mean that on a global scale, time reversal symmetry is preserved. From our
point of view we do not expect a gap in this case, even of a size below our detection limit.

As a closing remark of this discussion we want to address the theoretical expectation
about a magnetization of the Fe impurities via the topological surface state[125, 129,
128]. For such a mediation of the exchange coupling and the resulting out of plane spin
orientation a transition temperature (TRKKY

c ) was estimated for the case of Bi
2

Se
3

by the
formula [128]:

TRKKY
c / J2

z

vF
nm · r,(5.2)

where vF is the Fermi velocity, nm the impurity concentration and r is the inter-impurity
distance. The size of the out-of-plane exchange coupling Jz was estimated to be propor-
tional to the bulk band gap �Egap:

Jz / �Egap,(5.3)

For Bi
2

Se
3

the gap is about 300meV and Tc was estimated as ⇠30K [128]. This value is

based on the assumption that the product nm
v2F

�E2
gap

⇠ 1. If we do the same assumption
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for Bi
2

Te
3

and estimate the bulk band gap to be ⇠150meV the transition temperature
should be ⇠15K, thus within the range of the measurement shown in Fig. 5.8 c). It should
be noted that the estimate of the transition temperature is based on the assumption, that
the Fermi level intersects the Dirac point.

Recently, ferromagnetic transition temperatures for magnetic impurities on the surface
of topological insulators have been estimated by Rosenberg and Franz [126]. For the surface

of Bi
2

Se
3

they found a value of T surf
c ⇠100K for ED = EF

7. This value was found to
get strongly reduced for ED 6= EF (⇠ 0.15K/meV) [126]. One should expect a similar
dependence of the transition temperature for the surface state mediated magnetization,
since strength and sign of the RKKY interaction also depends on the position of ED, i.e.,
the size of the Fermi wave vector kF . Thus it is likely, that the transition temperature is
even below our estimate of 15K.

In addition, disorder which is present for sure and the resulting potential scattering
counteract the ordering process [128].

All this taken together justifies our assumption, that the Fe spins are not ferromagnet-
ically aligned, that time reversal symmetry is preserved and that no gap has opened in the
topological surface state.
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Figure 5.10: Fermi surface and low lying energy bands of Bi2Te3 with 0.4ML Fe on top measured
with 21 eV excitation energy at T=50K. a) The conduction band states, showing a complex structure
at the Fermi level, are surrounded by the topological surface state which is strongly hexagonally
warped. b) A cut along the �K direction shows a highly linear dispersion of the topological surface
state towards the Fermi level. At this photon energy the bands in the center of the Brillouin zone
are resolved as two parabolas shifted in energy against each other.

7Note that this transition temperature is distinct from the one considered by Abanin and Pesin [128].
The latter describes the temperature below which the surface state mediates an out-of-plane magnetization,
while Rosenberg and Franz [126] consider the temperature below which a remanent magnetization might
be observed at all.
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Quantization at the Fermi Level

Before moving over to Bi
2

Se
3

we have a closer look at the states in the vicinity of the
Fermi level. As described already above, due to the intrinsic doping the bottom of the
bulk conduction band at the �-point lies below the Fermi level, i.e., it is occupied with
electrons, even in an as cleaved sample. The doping e↵ect of the Fe adatoms not only
moves the Fermi level even more into the conduction band but also leads to an e↵ect
which is currently understood as a quantization of the bands due to band bending and has
been observed for a variety of impurities on Bi

2

Se
3

[108, 109, 92]. If a crystal gets doped
by the deposition of surface impurities the Fermi level in the near-surface region of the
sample di↵ers from that in the bulk. In order to level the potential di↵erence the bands
get bended around the junction between the doped and the undoped regions, i.e., between
the surface and the bulk. A potential well is thus present and, depending on the strength
of the potential di↵erence, one or more quantized states may develop. At 55 eV photon
energy, such states are not clearly resolved for Fe on Bi

2

Te
3

. However, if we lower the
photon energy to 21 eV, as shown in Fig. 5.10 b) we observe two nested parabolas in the
region of the bulk conduction band along the �K-direction and another faint trace which
could be the bottom of a third parabola is visible at the Fermi level. But as can be seen in
panel a), where we show a constant energy cut close to EF , these states do not mimic the
circular shape expected for a simple free electron-like parabola but are altered in a peculiar
way when moving around the Fermi arc of the topological surface state (compare Fig. 4.6).
The outermost of the three described states seems to follow the threefold symmetry as it
should, since these states are derived from the bulk conduction band. A Rashba-type spin
orbit splitting, as reported for Bi

2

Se
3

(see, e.g., [109, 92, 113, 112] is not observed for Fe
on Bi

2

Te
3

.

5.2.2 Fe on Bi
2

Se
3

The complications described for the Dirac point in Bi
2

Te
3

are not present in Bi
2

Se
3

which
makes studying the e↵ects of the magnetic impurities a bit easier. The Dirac point is well
separated from all bulk bands and lies within the energy gap. We can thus choose a lower
photon energy of 18 eV where the topological surface state is intense and we benefit from
a higher energy and momentum resolution.

Room temperature deposition

We first describe the e↵ects of Fe when deposited at room temperature. Fe has been
evaporated as described before for Bi

2

Te
3

and we show the changes in the near Fermi
edge dispersion along the �K direction in Fig. 5.11 a-d). Panel a) shows the topological
surface state of Bi

2

Se
3

approximately 15minutes after cleavage with the sample kept at
room temperature throughout. The Dirac-point energy is marked by a red dashed line
and is situated at ⇠290meV binding. The bulk conduction band, in between the two time
reversal symmetric branches of the topological surface state appears as a filled electron
pocket with its bottom at ⇠160meV. Between ⇠440 and ⇠600meV we identify the bulk
valence band which appears to merge, i.e., hybridize with the surface state as indicated by
an enhanced intensity in the energy and momentum range where the two states match. As
described in Chapter 4, pristine Bi

2

Se
3

shows a sensitivity to photons at room temperature.
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Figure 5.11: E↵ect of Fe impurities on the surface state of Bi2Se3 deposited at room temperature.
a) Pristine sample measured with 18 eV excitation energy at room temperature along the �K
direction. The surface Brillouin zone is shown as an inset. The Dirac point resides at ⇠300meV
binding energy (E

D

). b-d) Upon Fe deposition the surface state shifts to higher binding energies
and in the bulk conduction band two clearly distinguishable bands appear. The red dashed line
marks the shift for E

D

. For 0.3ML Fe on top (d) the n-type shift is close to saturation which is
nicely seen in the stacked energy distribution curves through the � point (k||=0) plotted in panel
e).

We, therefore, kept the measurement time as short as possible, to achieve a sharp picture
of the surface state, which explains the poor statistics of the measurement in panel a).

When Fe is deposited in subsequent steps of 0.1ML (b-d), the general observations
made for Bi

2

Te
3

are reproduced. The band structure shifts to higher binding energies. At
a deposited mass equivalent of 0.3ML (d) this shift is close to saturation and amounts
to less than 150meV, i.e., the Dirac point is found at ⇠430meV binding energy. In a
previous study, the authors reported an ongoing shift of the Dirac point up to twice the
value that we observe [130]. The loss of intensity of the surface state makes it hard to follow
the changes accurately in the intensity plots and we therefore show the respective energy
distribution curves in panel d). The amount of Fe is indicated below each curve. One can
easily follow the shift of the Dirac point as marked by the black lines. That the Dirac point
of the clean sample shows a shoulder on its high binding energy side is attributed to a small
misalignment. To exactly hit the angles which correspond to the � point is challenging
and time consuming especially due to the clean sample’s sensitivity to photons. But that
the surface state in clean Bi

2

Se
3

is gapless is beyond controversy.

In contrast to Bi
2

Te
3

already at room temperature the quantization of the states as-
signed to the bulk conduction band is obvious. The bottom of the conduction band be-
comes, after the first deposition step shown in panel (b), surrounded by a sharp rim,
parabolic in shape and constituting the most intense feature. Also a second band, shifted
to lower binding energy is already visible. While these features follow the overall shift of
the band structure to higher binding energies, no additional states are introduced with
increasing Fe coverage. For 0.3ML the energy distribution curve seems to show a shift of
the quantized states to lower binding energy. But this is again possibly the artifact of a
small misalignment mentioned above. Despite the energy shift no changes are identified in
the valence band at room temperature.



88 Robustness of Topological Surface States

KГK

Binding Energy (eV)

K
Г

K

In
te

ns
ity

 (a
rb

. u
ni

ts
)

0.60.8 0.4 0.2 0.0

B
in

di
ng

 E
ne

rg
y 

(e
V

)

0.6

0.8

0.4

0.2

0.0

Wave Vector kx (1/Å)
-0.1 0.0 0.1

0.3ML

ED

a b

Figure 5.12: Low temperature measurements of Fe on Bi2Se3 at T=8K and 18 eV excitation
energy. The Fe was deposited at room temperature. a) Upon cooling the Dirac point shifts to
a slightly higher binding energy as compared to the room temperature measurement shown in
Fig. 5.11 d). No gap is seen in the surface state dispersion. The single features can be very well
traced in the stacked energy distribution curves at di↵erent k

x

shown in b). Despite the two nested
parabolas dispersing between ⇠0.2 eV and the chemical potential (0 eV) two M -shaped bands are
seen at 650meV and higher binding energy. The dispersion of the topological surface state is similar
as for the pristine sample.

Low temperature measurements

In Fig. 5.12 the dispersion along the �K direction is shown after cooling the sample with
0.3ML Fe on top to ⇠10K. The Dirac point is now found at ⇠460meV and has shifted by
⇠30meV upon cooling. Interestingly, the two parabolas, which appear more pronounced,
sharper and very well distinguishable from each other, do not experience an obvious energy
shift like the surface state does. As a consequence the Dirac point and the bottom of
the larger parabola are separated by ⇠30meV more as compared to room temperature.
Changes in the energetic position of the valence band are somewhat harder to figure out,
as the data shown in panel a) and more clearly in the waterfall plot of panel b) suggest
that a quantization has taken place in connection with the cooling process. Two M -shaped
bands are now present, situated above ⇠650meV binding energy, as indicated by the black
dashed lines in panel b). These bands are very similar to those reported for CO [92], Cs,
Rb [113] and Ag (Chapter 5.1.2). A reasonable explanation for the formation of these
bands was given by Bianchi et al. who claim that they are also due to the formation of
quantum wells [92]. The lowest lying valence band states are followed by a gapped region
and a mismatch of Fermi levels has to be leveled.

In the first study of Fe deposited on the surface of Bi
2

Se
3

by Wray et al. such features
have also been reported [130]. But instead of attributing them as valence band derived
they have assigned the upper M -shaped band to be the lower half of the topological surface
state after the opening of a band gap [130]. Consequently the size of the band gap at �
was defined between the local minimum of the upper M -shaped band and the bottom of
the upper half of the topological surface state, which appears parabolic in shape in their
data. However, as unambiguously seen in our data both M -shaped bands coexist with
the topological surface state. Furthermore, the topological surface state is ungapped and
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shows in principle the same dispersion relation as it does in a pristine sample. This means
that both branches of the surface state still connect the positive momentum space of the
conduction band with the negative momentum space of the valence band, and vice versa.

The coexistence of topological surface state and M -shaped bands practically rules out
the possibility that the reported gaplike feature for Fe on Bi

2

Se
3

is a gap in the surface
state due to an Fe film magnetized out of plane. Wray and co workers speculated that they
had observed the mediation of the out of plane magnetization by the topological surface
state for Fe on Bi

2

Se
3

[125, 128, 130]. As an evidence they gave the gap itself; since an
unmagnetized Fe film would not open a gap and an in-plane magnetization would simply
shift the surface state in k-space they interpreted the formation of a gap as an out-of-
plane magnetization [130]. As a second indication Wray et al. describe a regime in which
the band structure gets sharper upon iron deposition. This regime approximately falls
together with the formation of the gap and they thus interpret the sharpening being due
to the magnetic ordering. According to their result, the ordering takes place at a mass
equivalent of 0.2ML, therefore a bit less than what we show in Fig. 5.12. One may of course
argue that the calibration of evaporators is a source of error and that it is therefore possible
that the amount of Fe di↵ers much more than the calibration tells us. But, as we have
shown, we are already in a saturated regime concerning the energy shifts in our deposition
experiment, which means that even by putting more Fe we would not be able to reproduce
the results in Ref. [130] where much stronger n-doping has been reported. This fact makes
us confident, that the results reported by Wray et al. are most likely not caused by pure Fe
but possibly by unwanted cross-contaminations. This assumption is supported by reports,
where very similar results, with comparably strong n-doping have been obtained under
bad vacuum conditions [109] and exposure of CO [92], a typical residual gas in ultra high
vacuum systems.

An additional argument for this assumption can be derived from the extra states at
the Fermi level. As is clearly seen in Fig. 5.12 the two parabolas are shifted against each
other in energy but not in momentum space. Wray et al. report a pronounced Rashba-
type splitting for the extra states in their system [130]. Again, similar features have been
observed with non-magnetic contaminations [109, 92, 113].

The existence of the Rashba-split states in Ref. [130] can on the other hand be taken
as evidence, that no magnetization is present. The Rashba e↵ect gives a time reversal
symmetric band structure, very similar to a topological surface state with a Kramers
degeneracy at time reversal symmetric momenta. However, they are topologically trivial
and thus cross the Fermi level an even number of times (compare Chapter 3). Nonetheless,
for broken time reversal symmetry the Kramers degeneracy is lifted for Rashba-states as
well as for topological surface states if the magnetic field is perpendicular to the surface
plane. This lifted Kramers degeneracy is clearly not the case in Ref. [130]. Also an in-
plane magnetization is ruled out, because for such a configuration one would expect the
coexistence of Rashba and exchange splitting and the parabolic states would be shifted in
momentum and energy simultaneously as was shown a few years ago for Gd [135].

Last but not least we want to reconsider the theoretical basis for an exchange interaction
mediated by the surface state. This e↵ect is unanimously based on the assumption, that
the Dirac point is close to the Fermi level. The Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction, responsible for a possible magnetization, is oscillating between ferromagnetic
and antiferromagnetic interaction. The period of oscillation is determined by the Fermi
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wavelength

�F =
2⇡

kF
.(5.4)

Thus the oscillation period goes to infinity when the Dirac point is at the Fermi level in
Bi

2

Se
3

, as the Fermi momentum kF !0 [125]. In that case the interaction is always out
of plane. In our case and even more so in the data of Ref. [130] the Dirac point is far
o↵ the Fermi level and an oscillation is present. However, for an estimated kF of 0.1 Å�1

�F is with ⇠60 Å still very large. The average impurity distance has only to be much
smaller than �F for a ferromagnetic sign of the interaction, and from this point of view the
theoretical prediction seems to be realizable. Nevertheless, the theoretical model cannot
be applied since it is based on a single Dirac cone on the surface. The two dimensional
states at the Fermi level are, however, confined to the near surface area as well and can
thus be expected to contribute to the RKKY interaction as well and this makes a coherent
interaction between surface electrons and surface impurities unlikely.

5.2.3 Doping Control in Bi
2

Se
3

For Bi
2

Te
3

it has been shown above that the shoulders developing next to the Bi5d peaks
have a di↵erent binding energy when Fe is deposited at low temperature instead of room
temperature. This shall now be investigated also for Bi

2

Se
3

for core levels and the valence
band.

Core Level Spectroscopy

Fig. 5.13 compares the Se3d (a,c) and Bi5d (b,d) core level spectra when Fe is deposited
at room temperature (a,b) and at 10K (c,d). First we want to prove that Fe has been
deposited on the samples. In the case of Bi

2

Se
3

this is not simply made evident from the
growth of the Fe3p peak because it matches in binding energy with the Se3d peak and
is thus hidden under the spectral weight of the latter. In a) the sample was cleaved and
measured at room temperature and we observe around 54 eV binding energy two relatively
broad peaks separated by ⇠0.8 eV according to the 3d

3/2 and 3d
5/2 multiplet as shown

in the lower inset. The upper inset repeats the Fe3p peak as measured (black circles) on
Bi

2

Te
3

, and it has been fitted by two Voigt profiles after removing a background signal
(green shaded area). The main image shows the Se3d multiplet after the deposition of
0.2ML Fe where a Shirley background has been removed from the measurement signal
(black open circles). No additional peak or deformations are obvious for the naked eye.
However, by analyzing the intensity ratio Irel = I(3d

5/2)/I(3d3/2) we find that it changes
from Irel = 0.63 to Irel = 0.74 after deposition. In Bi

2

Te
3

we have not observed a change in
the relative intensities of the Te4d peaks and we conclude that it is not due to the growth
of a chemically shifted Se3d multiplet. In that case one would not expect a change in the
relative intensities, at least not without the development of a pronounced shoulder. Assume
a small chemical shift, then the shoulders would reside close to their main peaks such that
one could not distinguish them in the raw data. In this scenario the relative intensity would
not change as the chemically shifted multiplet is expected to have the same intensity ratio.
If, on the other hand the chemical shift would be of the size of the multiplet splitting, i.e.,
⇠0.8 eV then the intensity ratio would indeed change, but simultaneously a pronounced
shoulder would appear next to the 3d

3/2 peak, which is not the case. The only reasonable
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Figure 5.13: Fe on Bi2Se3. Core level spectroscopy distinguishes the di↵erent deposition methods.
(a,c) The Se3d core levels cover the Fe3p emission. Se3d shifts to higher binding energy only for
low-temperature (8 K) deposition of the Fe. (b,d) Bi5d develops shoulders with the core-level shifts
having di↵erent values for room-temperature and low-temperature preparation. The photon energy
is 125 eV and the sample temperature during measurement is according to the one at preparation,
300K and 8K, respectively.
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explanation for the change in the intensity ratio is thus the growth of an additional peak
underneath, i.e., Fe3p.

This is confirmed by a fit, where we have used the lineshape of Fe3p from the deposition
on Bi

2

Te
3

and where we have fixed the intensity ratio of the Se3d peak to that of the clean
sample. The result is shown as blue shaded (Se3d) and as green shaded (Fe3p) areas in
the plot. The sum of the two features is shown as a blue straight line and it reproduces
the experimental data quite accurately.

Similar results are obtained for the low temperature deposition of Fe as shown in
panel c). The major di↵erence is that the Se3d peaks appear sharper if measured at low
temperature. For an Fe mass equivalent of 0.4ML the Fe3p peak revealed by the same
fitting procedure as for room temperature appears more pronounced. While the overall
fit is again accurate, there is an obvious deviation at the high binding energy side of the
3d

3/2 peak. It is likely, that the Se3d peak develops a similar chemical shift as the Te4d
peak. However, for simplicity it has not been included in the fit as the major aim of the
procedure is to qualitatively show the growth of the Fe3p peak and not to describe the
experimental data in detail.

Second, we analyze the chemically shifted shoulders of the Bi5d peaks for 0.5ML Fe
deposited at room temperature and for 0.4ML Fe deposited at 10K. In both cases pro-
nounced shoulders are observed. But as obvious already in the raw data the shoulders
reside much closer to the main peak for the low temperature measurements. A fit quan-
tifies this di↵erence to as much as ⇠200meV. At low temperature the shoulders are split
o↵ by ⇠0.8 eV while the splitting amounts to ⇠1 eV for the deposition at room tempera-
ture. Thus, the result obtained in Bi

2

Te
3

is confirmed also in Bi
2

Se
3

and should be due to
di↵erences in the growth mechanism as described above.

E↵ects on the Band Structure
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Figure 5.14: E↵ect of Fe on Bi2Se3 deposited at low temperature (T=8K). a) Pristine sample
at T=8K measured with 18 eV photon energy. The Dirac point (E

D

) appears at 310meV and the
bulk conduction band states appear less pronounced compared to Fig. 5.11 a). b-c) The deposition
of 0.2 and 0.4 monolayer (ML) Fe at cryogenic temperatures leads to an shift of the surface state to
lower binding energies. The topological surface state appears more linear now. The bulk conduction
band appears as a completely filled electron pocket with a parabolic boundary. The shift of E

D

can
be quantified as 55meV in the energy distribution curves at zero momentum (k||=0) shown in d).
For clarity a Shirley-background has been removed from the 0.4ML spectra (green line) and it was
multiplied by a factor 6. The photon energy in b) and c) and for the green curve in d) is 21.5 eV
(see text).
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We now analyze the evolution of the band structure, i.e., bulk conduction band, valence
band and topological surface state when Fe is deposited with the sample cooled to 10K.
In Fig. 5.14 a) the angle resolved photoemission picture of a clean sample at the deposition
temperature is shown. For excitation of photoelectrons, 18 eV photons have been used. The
Dirac point is seen at ⇠315meV binding energy. In b) and c) two subsequent deposition
steps of Fe are shown with mass equivalents of 0.2 and 0.4ML, respectively. It should
be noted, that after deposition we found a change in the photoemission cross sections,
such that the surface state was hardly visible at 18 eV. Thus the photon energy has been
changed to 21.5 eV in b) and c). The red dashed line marks the position of the Dirac
point. In contrast to the deposition at room temperature, we find the Dirac point moving
to lower binding energies as the Fe coverage is growing. This trend is observed for both
deposition steps. A photon energy induced gating e↵ect, as one may expect because of
the change of photon energy between a) and b) [136], is therefore not responsible for this
observation. This means that Fe acts as a donor or acceptor on Bi

2

Se
3

depending on the
deposition temperature. The hole-like doping has been confirmed also at T=50K, but at
70K already n-doping is found [137]. The achieved hole-doping can be quantified to 55meV
for the sample with 0.4ML Fe on the surface, which is clearly seen by comparing the energy
distribution curve with that of a clean sample in d).

We can expect that at cryogenic temperatures the Fe has a much lower mobility on the
surface. The adatoms get freezed on the surface and stay more or less where they land.
This freeze-out also avoids an intercalation and the adatoms tend to stay on the surface.
This naturally explains why we see a stronger influence on the core levels compared to room
temperature deposition, as explained above. The penetration of Fe into the crystal matrix
at room temperature would also explain the di↵erent doping. For Cu doped Bi

2

Se
3

it is
known that it may act as donor or acceptor depending on whether it resides on interstitial
places, where it is singly ionized, or as substitutes for Bi atoms with a double negative
charge, respectively [138, 136]. Similar e↵ects may be expected for Fe. However, to carry
these statements beyond speculation, a more profound experimental investigation of the
structural changes by, e.g., photoelectron di↵raction is necessary. So far, there is only
microscopic data at low temperatures available. Honolka et al. showed by means of STM,
that at least low Fe concentrations (⇠0.01ML) tend to stay on the surface if deposited on
Bi

2

Se
3

at low temperature [139]. Their analysis of the tunneling spectra revealed a tendency
for strong electron doping which contrasts our findings. However, while it is questionable
whether the much lower Fe concentrations deposited in Ref. [139] can be compared directly
to the massive Fe amount in our case it should be noted, that angle resolved photoemission
is much more reliable probe of the electronic structure. The tunneling spectra in STM
only reflect the angle averaged local density of states which makes the impurity induced
changes much harder to follow. In addition, a tip induced band bending is possibly capable
to mask the real sign of the doping [140].

We repeat in Fig. 5.15 the dispersion observed for 0.2ML Fe deposited at 10K but with
di↵erent color scale in a) and as stacked energy distribution curves in b). Two pronounced
M -shaped bands above 0.6 eV are visible also in this case which has been emphasized in
b) by black dashed lines. For the conduction band a quantization is hard to figure out.
Only faintly, it appears that the filled parabola gets surrounded by a rim. This e↵ect looks
similar to what has been found for Bi

2

Se
3

after some time in bad vacuum conditions [108].
The quantization observed in the valence band can be explained by band bending e↵ects
like in the case of n-doping. However, in the conduction band, for p-doping it is not
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Figure 5.15: Enlarged view of the dispersion of Fig. 5.14 b) with 0.2 monolayer Fe on top measured
with 21.5 eV photon energy (a) and corresponding stacked energy distribution curves for di↵erent
momenta (b). Dashed lines mark the di↵erent observed features. The bulk conduction band is
enclosed by a parabolic rim. The topological surface state is intact and no gap appears. Besides, it
appears more linear compared to the pristine sample. One M -shaped band is resolved again above
650meV binding energy. A second one is only allusively visible at a slightly lower binding energy.

expected to observe quantized bands since the bands get bended in the range above the
Fermi-level and are not accessed by photoemission. This observation thus puts at least a
question-mark behind the current believe about the origin of the two dimensional electron
gas on the surface of Bi

2

Se
3

.
But the most striking result, that is seen in Fig. 5.15 is the intact topological surface

state. No gap has opened by the deposition of Fe and this excludes the possibility that
the sample has to be below the predicted transition temperature of 30K [128] during the
deposition in order to get a ferromagnetic out of plane alignment. However, an in plane
ferromagnetic alignment can not be excluded since no gap is expected for such a con-
figuration [130]. Indeed, x-ray magnetic dichroism has revealed that the easy axis for Fe
impurities on Bi

2

Se
3

is within the surface plane [139]. Though, it is not yet clear if the
easy axis stays inside the plane for the much higher Fe concentrations deposited by us.

By comparing the clean and and the sample with 0.2ML of Fig. 5.14 once again, we find
that the dispersion of the topological surface state looks more linear after the deposition.
This will be quantified in the next chapter where we analyze the quasiparticle scattering
in Bi

2

Te
3

and Bi
2

Se
3

.

Summary of Conclusions

To summarize the present chapter, we have seen that the topological surface state in Bi
2

Te
3

and Bi
2

Se
3

is indeed pretty much robust against perturbations. The expected robustness
against non-magnetic impurities was confirmed with O

2

and Ag. Moreover, we have proven
an unexpected robustness against magnetic impurities, i.e., Fe. For the Bi

2

X
3

family of
materials, the robustness has a very interesting side-e↵ect: One can, in principle, overcome
the intrinsic doping and drive the materials into an insulating state without destroying the
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surface states by surface doping.
Furthermore, it has been shown that the sign of the impurity induced doping can be

controlled via the sample temperature during the deposition. In core level spectroscopy
it has been revealed that the chemical surrounding of Bi and Te/Se atoms gets modified
di↵erently if Fe is deposited at low temperature as compared to room temperature depo-
sition. For Bi

2

Se
3

it has been shown, that for both deposition conditions the topological
surface state remains robust and ungapped. The presented results may be interpreted
as a first step towards functional devices of interfaces between topological insulators and
ferromagnets.
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Chapter 6

Quasiparticle Scattering in
Topological Insulators

The transport properties of topological insulators are a topic of very high interest. The spin
filtered surface states promise dissipationless currents with large spin relaxation lengths,
at least theoretically. In a three dimensional topological insulator, however, only 180�

backscattering is strictly forbidden for the surface electrons, while small angle scattering
is allowed and may reduce the mobilities of surface carriers drastically.

Experimentally, revealing the properties of the surface state of Bi
2

X
3

in transport
turns out to be challenging. In single crystalline Bi

2

Se
3

samples Butch and co workers
found in four-probe measurements in an external magnetic field only bulk contributions to
the Shubnikov-de Haas oscillations and, therefore, concluded on rather strong surface state
scattering [95]. However, in much higher and furthermore pulsed magnetic fields Analytis
et al. where able to observe Shubnikov-de Haas oscillations of the surface state which in
addition showed features at fractionalized values of the integer Landau indices [98]. Only
recently, in Bi

2

Se
3

thin films doped with Ca, to overcome the intrinsic doping, Checkelsky
and colleagues could successfully identify a high mobility metallic channel as the topological
surface state by gating the sample in a field e↵ect transistor setup [141]. However, this
channel turns out to be relevant only at low temperatures (T<100K) [141], while the large
band gap of Bi

2

Se
3

is promising room temperature applications.
A similar situation holds for Bi

2

Te
3

where the only indication for a two dimensional
conduction channel is so far found from Shubnikov-de Hass oscillations by Qu et al. [142].

Other systems appear to be more promising from a transport point of view. Recently,
bulk HgTe grown under strain on CdTe develops a band gap and turns out to be a three
dimensional topological insulator. A quantum Hall e↵ect was observed, and the analysis of
the Hall current showed that it is caused by two parallel two dimensional states. However,
temperatures below 1K are needed to overcome the residual bulk contributions to the
conductivity [143].

6.1 Decay of Photoholes and its Connection to Scattering
Rates

In this chapter we will investigate the scattering properties of the topological surface state
by angle resolved photoemission. Photoemission is not at all a direct probe for the investi-
gation of transport phenomena. But since electronic transport is intimately connected to
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the scattering of electron or hole states we can in turn draw conclusions on the transport
properties by investigating the scattering properties.

The emission of electrons leaves the system in an excited state and the peak that we
measure in a spectrum contains information about the time scale the system needs to
relax back into the ground state. The excited state is typically described in a one-particle
approximation, where the photohole is obscured by a cloud of manybody-interactions which
together behave like a single particle and this particle is thus named a quasiparticle. The
Heisenberg uncertainty principle connects the width of a photoemission peak on the energy
scale with the time the system needs to relax by �E�t& ~. An ideal system, isolated from
any other perturbation would last in the excited state forever and the peak would thus
be infinitely narrow. In a real system there exist a couple of scattering mechanisms which
lead to the relaxation of the system and thus to a broadening of the peak in photoelectron
spectroscopy. As a basis for the interpretation of the following data we will at first review
the most important mechanisms for the decay of photoholes before we turn to a deeper
investigation of the connection between a photoemission spectrum and the quasiparticle
lifetimes.

6.1.1 Photohole Decay in Topological Surface States
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Figure 6.1: Decay of surface state photoholes into bulk states. Left: Sketch of the near-Fermi-edge
electronic structure of Bi2Se3 with an ideal Dirac cone. A photohole created in the surface state
may decay into bulk states by creation or annihilation of a phonon (~!), creation of an electron-hole
pair, or by scattering at an impurity. The probability for the decay is intimately connected to the
density of states (D.O.S., center) and the imaginary part of the electron self energy ⌃00 is a measure
for the scattering probability which can be accessed by photoemission (right). In the presence of
bulk states the probability for scattering is high and increases with the number of states available
for scattering. Inside the gap the D.O.S. decreases from the bottom of the bulk conduction band to
the Dirac point and increases again towards the valence band. The region of interest is marked by
a question-mark, since the exact behavior of ⌃00 is unknown and will be analyzed experimentally
in this chapter.
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Taking a sketch of the band structure of Bi
2

Se
3

as an example, as shown on the left
hand side of Fig. 6.1, we can at first distinguish two main groups of decay channels for the
photoholes. The first group is characterized by a filling of the photoholes with electrons
which stem from the surface state and we thus label these events with the term intra-band.
This group is restricted by spin selection rules and will be discussed later on. The second
group is built by processes in which bulk electrons are involved in the relaxation process
and are thus called inter-band scattering processes.

Inter-band Scattering

In the sketch (Fig. 6.1), we find a parabolic band close to EF which represents the bulk
conduction band and the M -shaped band at higher binding energy is the valence band.
Both are well separated by an energy gap in which the two straight lines, which represent
the surface state, cross in the middle and form the Dirac point. An electron excited by
a photon leaves back a photohole which is represented by white circles in the sketch. All
mechanisms have to respect the principles of momentum and energy conservation and thus
at least one more particle is always involved in the decay process.

At finite temperatures there are phonon modes present and a decay of a photohole
can happen by annihilation of a phonon which gives, or by creation of a phonon which
takes, energy (~!) and momentum (�k) necessary to scatter the photohole into a bulk
state. Both processes allow scattering from valence band and conduction band electrons
into the surface state holes. Due to the temperature dependence of the phonon occupancy,
it is possible to discuss the influence of phonons on the scattering rates by analyzing the
temperature dependence of the imaginary part of the electron self energy. This will be the
topic of Section 6.3.

Of special importance is the scattering at impurities. This process is typically assumed
not to transfer any energy but the scattering may be inelastic and thus the absolute value
of the electron momentum may change. This allows a scattering of the photohole into a
bulk state. Impurity scattering is expected to be the dominant contribution close to the
Fermi level and, furthermore, to be constant in energy.

A last scattering mechanism is given by the possibility of a spontaneous decay of pho-
toholes into the conduction band, whereas energy and momentum are conserved by the
excitation of an additional electron-hole (e�–h+) pair. This process depends solely on the
bulk density of states.

For impurity scattering no transfer of energy between the impurity and the electron
is expected and thus the probability for such an event is proportional to the impurity
density and to the density of bulk states at the electron (or hole) energy. As sketched
in the center of Fig. 6.1 the density of states for the conduction band is decreasing with
increasing binding energy and thus the contribution of this process to the imaginary part
of the electron self energy (⌃00) should also decrease with increasing binding energy. In
contrast, the phase space for e�–h+ pair processes for a hole created at a binding energy ✏
is assembled from all states with energy in the interval reaching from EF to ✏. Therefore, it
gives an increasing contribution to ⌃00 with increasing binding energy, which in the Fermi
liquid theory is proportional to E2.

Within the bulk energy gap, the density of states decreases linearly down to the Dirac
point energy and afterwards increases again as the only states present are formed by the
Dirac cone with its linear dispersion relation. Impurities may only contribute to surface
state-surface state scattering in this range and these processes will be discussed below.
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However, a scattering of holes within the bulk gap into bulk states is in principle possible
by exciting e�–h+ pairs over the Fermi level and the available phase space is given by the
density of states of the occupied conduction band, integrated over all energies. Assuming
for simplicity, that the probability for an e�–h+ pair creation does not depend on the
binding energy of the created hole, we expect that the scattering into bulk states has a
more or less constant contribution to ⌃00 within the gap. In a finite energy range, defined
by the energy of available phonon modes and the top of the valence band, i.e., bottom of
the conduction band, in-gap surface state holes may also be scattered into valence, i.e.,
conduction band states by electron-phonon interaction. This would lead to an increasing
contribution to ⌃00 with increasing binding energy close to the top of the valence band and
to an decreasing contribution close to the bottom of the conduction band.

Ideally, one would like to have the Fermi level within the bulk band gap, where a surface
state hole may only be filled by a surface state electron. According to the argumentation in
the previous paragraph, any strong changes of ⌃00 in the range marked by a question mark
in Fig. 6.1 are likely to be connected to intra-surface state scattering. These processes,
especially the restrictions connected to them, will be discussed next.

Intra-band Scattering

M←Γ→M

K
←
Γ→

K

electron doping hole doping

Figure 6.2: Spin dependent scattering and warping of the Fermi surface. 180� backscattering is
prohibited (red arrows) independently of warping and spin rotation (blue arrows; � and ⌦ mark
the direction of the out of plane spin components). Scattering under di↵erent angles has a finite
probability, exemplified by green arrows. Warping is controllable by the doping of the sample. For
strong warping (left), like in Bi2Te3, the shown green arrow fulfills a (near) nesting condition.

The most interesting question concerning the (three dimensional) topological insulator
is, whether the scattering is really suppressed due to the helical spin structure, or not.
In a two dimensional system, like the HgTe/CdTe quantum wells [48, 44] with its one
dimensional edge states, backscattering is strictly forbidden as the scattering angle is always
180� and the spins of forward and backward movers are opposite. But in a three dimensional
system, the surface state is two dimensional and electrons are allowed to move in any surface
direction. In an ideal Dirac cone, as depicted in Fig. 6.1 the shape of the Fermi surface
is circular as shown to the right of Fig. 6.2. The spin is helical in the sense that it is
always perpendicular to the in plane momentum vector and is represented by blue arrows
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in Fig. 6.2. Thus, 180� backscattering is also forbidden for a two dimensional surface state.
However, scattering under any other angle is only suppressed and the probability that an
electron with spin S(k) is scattered into a final state with spin S(k+ q) is given by [84]

�(q) =

Z
D(k)T (k,q)D(k+ q)d2k,(6.1)

with the density of states D(k) and the matrix element T (k,q) which calculates the overlap
of the spin eigenstates:

T (k,q) = |hS(k)| S(k+ q)i|2 .(6.2)

This means that, the higher the overlap of spin eigenstates in initial and final states, the
higher the scattering probability is. Small angle scattering has a high probability, while
scattering angles close to 180� are unlikely but possible [144].

As already pointed out in Chapter 4.1.2 the warping of the Fermi surface [19] is influ-
encing its spin texture quite strongly. As a consequence, the spin is predicted not to be
perpendicular to the momentum in every point of the surface Fermi surface [20] and even
to have a finite canting out of the surface plane [19, 20]. The latter was experimentally
observed for Bi

2

Te
3

by Souma et al. [94].
The spin rotation is exemplified in Fig. 6.2 for two more shapes which have been ob-

served in Bi
2

Te
3

[2] and in Bi
2

Se
3

[85, 145, 113]. Along the �M direction, the spin is fully
inside the surface plane, independent of the detailed warping, since the mirror plane of
the crystal is along this axis [20]. The out of plane rotation follows a sixfold symmetry
and points alternately inside and outside the crystal and takes a maximum along the �K
direction. Instead of being perpendicular to the momentum, the in plane component is
predicted to be tangential to the Fermi surface. Still, and thus independent of the warping
and spin rotation, 180� backscattering is forbidden as the spin is always opposite (in three
dimensions) on opposite sides of the Fermi surface.

Another important aspect concerning the shape of the surface Fermi surface is nesting.
Especially the hexagonally shaped contour (center) leads to strong nesting, as opposite
parts of the Fermi surface are nearly straight lines and can be translated upon each other
by wave vectors Q = 2k�K

F where k�K
F is the Fermi momentum along the �K direction.

The nesting may lead to the formation of a spin density wave, as a charge density wave is
forbidden by time reversal symmetry [19].

Another consequence of the warping is that Friedel oscillations of the local density of
states, which should be absent for non-concave and non-degenerate Fermi surfaces (e.g.
right and center picture of Fig. 6.2) are present for the concavely warped case (left in
Fig. 6.2). Such oscillations are caused by scattering between states at ”stationary” points
on the Fermi surface, where the Fermi velocity is parallel to the direction in which the
oscillations occur [19, 146]. Indeed, Friedel oscillations have been observed in Bi

2

Te
3

by
STM in the range where the surface Fermi surface mimics a hexagram [147] but not for the
convex cases. Two examples of stationary points are given by the end points of the green
arrow in the left picture of Fig. 6.2.

Doping E↵ects

For the following analysis and discussion, the doping which is caused by impurities will
play a major role. As can be seen in Fig. 6.1, electron doping will move the Fermi level
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into the unoccupied states, which then get occupied, and therefore the density of occupied
states increases. The o↵set in the imaginary part of the self energy is caused mainly by
impurity scattering, since for the electron hole pair creation, occupied density of states
with lower binding energy must be available which is not the case for electrons scattered
at the Fermi level. For a parabolic three dimensional band, the density of states increases
proportionally to

p
E which leads to a higher o↵set for a more n-doped sample. As a second

contribution the impurity density should play a role which also increases as the electron
doping in our case is caused by surface impurities. Overall a strong increase in the o↵set
at EF is expected.

The increase in the bulk density of states also expands the available phase space for
electron-electron interactions and the creation of electron-hole pairs, which should be visible
in ⌃00 such that the slope in the energy range of the conduction band increases more up to
the bottom of the conduction band, but with a similar slope as for the undoped case.

The doping also a↵ects the warping of the Fermi surface such that hole doping decreases
the warping and electron doping increases the warping as indicated by the arrows above
the three shapes in Fig. 6.2. This makes the influence of the warping on the scattering rates
accessible to ARPES and it has been argued by Valla et al. that the warping is the main
reason for increased scattering rates by comparing di↵erent donor impurities [113]. Espe-
cially for the comparison of magnetic and non-magnetic impurities no general di↵erence
was found and thus the authors concluded that magnetic impurities do not open any other
scattering channels by breaking of time reversal symmetry which appears to agree with
the results presented in the previous chapter. In a similar study, comparing freshly cleaved
and aged surfaces of Bi

2

Se
3

, Park and co-workers concluded that a decay of photoholes is
only possible by bulk electrons and that intra-surface-state scattering is indeed strongly
suppressed [148]. This contradicts the findings in Ref. [113], as the increase of scattering
due to warping implies a surface state surface state scattering. The conclusion by Park et
al. was drawn from the observation that ⌃00 only increases with energy in the presences
of the bulk states, and strongly decreases within the bulk gap [148]. In contrast Valla and
colleagues report a monotonic increase of ⌃00 in agreement with the E2 dependence in
Fermi liquid theory [113]. We will return to this discussion with respect to our own results
in Section 6.4.

6.1.2 Determination of Quasiparticle Lifetimes in Photoemission

An important aspect in order to provide reliable information on the scattering rates is
the proper analysis of the ARPES data. Thus it shall first be reviewed –in short– how
electron correlations, i.e., electron interaction with other particles which is nothing else
than scattering, enters the ARPES data. This part will follow the very nice introduction
given by Damascelli et al. [16].

The probability that an electron added to (or removed from) a Bloch state in a solid at
momentum k is still there (or is still missing) after a time interval (t� t0) is given by the
time ordered one-electron Greens function G(t� t0). A Fourier transform allows to express
G(t� t0) in terms of energy (!) and momentum (k):

G(k,!) = G+(k,!) +G�(k,!).(6.3)

Here G+ and G� are the one-electron addition and removal Greens functions, respectively1.
The retarded Greens function G(k,!) = G+(k,!) + [G�(k,!)]⇤ and its imaginary part is

1see Ref. [16] for the explicit expressions.
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proportional to the spectral function A(k,!) = A+(k,!) + A�(k,!). A+ and A� are the
spectral functions which are probed by inverse and direct photoemission, respectively. A�

is proportional to the ARPES measured intensity I(k,!). Since ARPES does not probe
the ground state, but an excited state of a many body system, many body interactions are
encoded in the spectral function. The corrections to the latter can be expressed in terms
of the electron self energy

⌃(k,!) = ⌃0(k,!) + i⌃00(k,!),(6.4)

where ⌃0 and ⌃00 are the real and imaginary parts of the electron self energy. For the
spectral function one obtains:

A(k,!) = � 1

⇡

⌃00(k,!)

[! � ✏k � ⌃0(k,!)]2 + [⌃00(k,!)]2
.(6.5)

The excitation of the electron in the photoemission process from an initial into a final
state is broadened with contributions from the finite lifetime of the photohole and the
momentum broadening of the photoelectron [149, 150], and the total line broadening �exp
is in general given by [9, 151]

�exp =

�h
|vh?| +

�e
|ve?|��� 1

vh?

h
1� mvh||

~k|| sin2✓
i
� 1

ve?

h
1� mve||

~k|| sin
2✓
i���
,(6.6)

with the hole (�h) and electron (�e) contributions, the group velocities of electrons (e)
and holes (h) parallel (||) and perpendicular (?) to the surface (vi,j), and the angle between
surface normal and electron detection direction ✓. For a normal emission experiment the
expression gets simplified to

�exp(✓ = 0) =
�h +

vh?
ve?
�e

|1� vh?
ve?

| .(6.7)

In the case of a two dimensional state, like the topological surface state, the dispersion of
the hole state is perfectly flat in the perpendicular direction and thus the group velocity
equals zero. One can thus write

�exp = �h,(6.8)

which is the imaginary part of the electron self energy according to Eq. 6.5.
The real part of the electron self energy is given by the deviation of the peak positions

measured in photoemission from an uncorrelated band structure. For the latter, calcu-
lations or at least assumptions are necessary, but such methods have been successfully
used to determine the full electron self energy as far as it is accessible by angle resolved
photoemission (see Ref. [16] and references within).

According to the above argumentation, the most direct way to extract the imaginary
part of the self energy is, and on this part we are going to focus from now on, to determine
the full width at half maximum (FWHM) of the peaks of energy distribution curves (�E)
which relates to ⌃00 as:

�E =
~
⌧
= 2|⌃00|,(6.9)
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with the lifetime of the created photohole ⌧ . The relation is only at normal emission
exactly valid, but we can assume that deviations are not too strong in the small angle
range examined here (⇠ ±7�) and that the proportionality is still given. Much greater
problems arise from the fact, that the peaks from energy distribution curves typically have
complex line form, as the spectral function is varying with energy and also the electron
background from inelastically scattered photoelectrons is not straightforward to be taken
into account. Also the energy cuto↵ at the Fermi level, as photoemission probes only the
occupied states, makes data analysis more complicated and assumptions like particle-hole
symmetry [152] have to be made if one is interested in the states close to EF , which typically
is the case.

Much more easy to analyze are momentum distribution curve (MDC) peaks. Usually
momentum distribution curves show only a simple constant background and the peaks
are Lorentzians which show only slight asymmetries at higher binding energies due to the
binding energy dependence of the self energy. Similar to the energy distribution curve
(EDC) peak width, the width of peaks from MDCs (�k) are related to the inelastic mean
free path l such that [153]

l =
1

�k
.(6.10)

The excitation’s velocity (vk) gives a connection to the lifetime and one can relate the
momentum broadening in good approximation to the imaginary part of the self energy:

~vk�k =
~vk
l

⇡ |2⌃00(k,!)|.(6.11)

The obvious question is now which group velocity to use. What one determines in angle
resolved photoemission from the peak positions is in general a retarded band dispersion.
Thus, if one calculates the group velocity vexpg via

vexpg =
@!

@k
(6.12)

one gets only a retarded group velocity which is related to the bare or non-interacting
group velocity (v0g) by the real part of the self energy [150]:

vexpg = v0g

✓
1� @⌃0

@!

◆�1

.(6.13)

For an ideal Dirac cone with a linear band dispersion the multiplication with vexpg or v0g will
only change the absolute value but not the qualitative behavior of ⌃00 over the energy range.
But if kinks are introduced in the band structure by correlations or for strong hexagonal
warping like in Bi

2

X
3

, there are strong deviations from linearity along the energy range
and the multiplication will also change the qualitative behavior of ⌃00 which complicates
the drawing of conclusions. Strictly speaking, the real part of the self energy ⌃0 has to
approach zero in order to allow to use the renormalized, i.e., experimental, group velocity
instead of the bare group velocity [87]. For this case, ⌃00 is nearly energy independent.
The importance of a proper data analysis of the momentum distribution curves will be
exemplified in the following section.
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6.2 Anisotropic Broadening in Bi2Te3

The observation of strong hexagonal warping e↵ects in the band dispersion of Bi
2

Te
3

[2]
and Bi

2

Se
3

[85, 145] and its theoretical description [19, 154, 20] has led to a manifold of
interesting predictions and observations. The influence on the spin texture with a finite out
of plane rotation has been theoretically predicted [19] and in spin resolved photoemission
experimentally observed [94]. That the spin is not anymore locked perpendicularly to
the momentum has also been predicted [20]. However, so far there is no direct proof for
the lifting of the perpendicular locking since the only experimental report, making use
of circular dichroism in the angle distribution (CDAD) of photoelectrons [155] appears
questionable as will be discussed in detail in Chapter 7. Also by CDAD the observation
of an influence of the warping on the orbital angular momentum has been reported [156]
which will also be discussed in Chapter 7.

The influence of the warping on the spin orientation also alters the possible channels
for quasiparticle scattering, as described above, and this has been the topic of two theo-
retical investigations considering spin-orbit scattering [82] and the scattering at magnetic
point defects [83]. The quasiparticle interference has been extensively studied by means
of scanning tunneling microscopy (STM) and spectroscopy (STS) and anisotropies in the
interference patterns have been ascribed to the hexagonal warping [157, 158, 159, 160, 161].
In addition the possibility of a spin density wave and Friedel-like oscillations of the local
density of states have been predicted [19] and the latter has been experimentally observed
in STM [147].

A current induced spin polarization has been predicted theoretically and it has been
shown that a current may enhance the out of plane spin component when hexagonal warp-
ing is present [162, 163].

Also by angle resolved photoemission a strong influence of the warping on the scattering
rates has been reported [113, 160].

A detailed discussion of all of these findings is beyond the scope of this thesis, but
as the warping influences the spin orientation of the surface state [19, 20, 94] and the spin
orientation influences the scattering properties of surface electrons [82, 83] we investigate in
the following part whether the surface state of Bi

2

Te
3

shows an anisotropy in its scattering
properties due to the hexagonal warping.

The di↵erences in the electron dispersions for the two high symmetry directions �M
and �K of the surface Brillouin zone of Bi

2

Te
3

have been discussed in Chapter 4.1.2 and
the measured angle resolved photoemission band structure is shown in Fig. 4.5.

By varying the polar angle ' of the manipulator and measuring the photoelectron
angle distribution along the vertical direction for each ' we obtain a volumetric dataset
containing the dispersion along all in plane momenta k||. The sample temperature is set to

50K and the photon energy is 21 eV. This gives a k-resolution of about 0.003 Å�1. From
this set we extract the dispersions along the two high symmetry directions and we analyze
MDCs by fitting a Lorentzian line to the surface state peak (see also Fig. 6.6 c) and d) for
fit examples of MDCs). Due to the binding energy dependence of ⌃00 [153] the peaks show
a slight asymmetry at higher binding energies but by fitting with a simple Lorentzian we
have nevertheless obtained very accurate results. From the peak positions one obtains the
surface state dispersions kx(E) for the �M and the �K direction, represented in Fig. 6.3 a)
by red and blue hexagons, respectively. Along the �K direction the dispersion di↵ers only
slightly from the linear behavior. For this specific sample the Dirac point is found at a
binding energy of ⇠330meV and accurate fits were obtained from the Fermi level up to
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binding energies of ⇠220meV for the �M direction and ⇠270meV for the �K direction.
At higher binding energies the intensity of the bulk valence band prevents accurate fitting.
The anisotropic dispersion along the two di↵erent directions is obvious and consistent
with the hexagonal warping. However, the experimental results clearly deviate from the
expectations from k · p theory which predicts a deviation from the linear dispersion with
increased group velocity along the �K direction [19]. In reality we observe a deviation to
reduced group velocities along the �M direction as already pointed out in Chapter 4.5.

The anisotropy is also reflected in the half width at half maximum (HWHM) of the
Lorentzian fits as shown in Fig. 6.3 b). In the energy range where the dispersion of the
�M direction deviates from the linear behavior, i.e., between ⇠180meV and ⇠50meV
binding energy in the present case, the HWHM increases from ⇠0.011 Å�1 to a maximum
value of ⇠0.014 Å�1 at a binding energy of ⇠80meV and decreases towards the Fermi
energy to approach the value of ⇠0.007 Å�1 which matches the one of the �K direction.
Assuming a constant and isotropic bare group velocity for both directions, this would mean
enhanced scattering for electrons moving along the �M direction when compared with the
�K direction. The experimental group velocities are, however, anisotropic and not constant
as shown Fig. 6.3 c). It should be noted, that the definition of the group velocity as 1

~
@E
@k

implies that it has to be determined from the E(k) dispersion and not by di↵erentiating
the k(E) dispersion and taking the reciprocal value of the result. Such is only valid for a
linear dispersion where the group velocity is independent of E. In the case of Bi

2

Te
3

one
has either to approximate the group velocities linearly over small energy intervals, taking
into account artificial steps in the imaginary part of the self energy, or determine the E(k)
dispersion. For the results shown in panel c) we have chosen the latter method and have
mapped the function vg(k) to vg(E) using the E(k) dispersion. To avoid the introduction of
strong noise we have fitted the E(k) dispersions with polynomials before di↵erentiating the
functions. Along the �K direction the group velocities vary only slowly with energy and the
increase towards lower binding energies shows a linear dependence, consistent with a slight
parabolic shape of the dispersion between ED and EF . Towards the M point, however, we
find a strong binding energy dependence of the group velocity between ⇠3.5 eVÅ and the
minimum value of ⇠1.4 eVÅ around ⇠80meV binding energy. The Fermi velocity vF is
⇠2.5 eVÅ for the �M direction and ⇠3.5 eVÅ for the �K direction.

If we multiply the HWHM from the MDC fits with the experimental group velocities
to determine the imaginary part of the self energy ⌃00, we qualitatively get the reversed
result of panel b) as it is shown in panel d) of Fig. 6.3. Now we find scattering rates
which are almost constant in energy for the �K direction with a slight decrease while
approaching the Fermi level. In contrast, the scattering rates for electrons moving along
the �M direction get reduced as the dispersion experiences the hexagonal deformation.
Below 100meV binding energy the decrease saturates and we find an almost constant ⌃00

down to EF . This analysis shows the importance of a proper group velocity determination
as pointed out above. Therefore, before discussing the results, we want to justify the
usage of the experimental group velocities by a second method, the results of which are
shown in Fig. 6.4. In principle we perform an analysis of EDCs but we want to avoid an
artificial broadening caused by the angle between the band dispersion and the cut direction.
Assume a parabolic band with a constant energy width over the whole energy range. If
the band is now cut into EDCs along the energy axis the peaks will appear broader away
from the band minimum. We refer to this extra broadening as geometrical broadening.
Only the cut through the minimum will show the real width as one is able to cut through
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Figure 6.3: Analysis of momentum distribution curves of the surface state of Bi2Te3. a) The
k(E) dispersion of the surface state shows an anisotropic behavior which is also reflected in the half
widths at half maximum (HWHM) of the peaks shown in b). c) The group velocity, obtained from
the derivative of a polynomial fit to the dispersion (E(k)) to avoid extra noise, is strongly altered
over the analyzed binding energy range along the �M direction (eVÅ⌘ ~m/s). d) Multiplication of
the HWHM with the group velocity at each binding energy gives the imaginary part of the electron
self energy ⌃00 and reflects scattering rates that are anisotropic in k-space.
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it perpendicularly without mixing energy and momentum space. But making use of the
volumetric data set, it is possible to measure the energy width of a certain band and always
cut perpendicularly through it. The method we have used is illustrated in Fig. 6.4 a). At
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Figure 6.4: Extraction of undistorted bands from the constant energy surface mapping. a) From
cuts perpendicular to the high symmetry directions (dashed lines in the lower plot) a sequence of
E(k

x

) (E(k
y

)) dispersions at di↵erent constant k
y

(k
x

) values is obtained. Parts of a sequence are
shown in the upper plot. b) Energy distribution curves extracted from the sequence at k

x

= 0 for
the �M direction cut through a flat band and show rather symmetric peaks for the surface state
represented by colored squares. Solid lines show the result of a Lorentzian fitted to the data points.
c) The half widths at half maxima (HWHM) represent ⌃00 and show the same qualitative behavior
as ⌃00 gained from momentum distribution curves in Fig. 6.3 d). Please note the di↵erence between
panel c) and Fig. 6.3 b) and d).

the bottom we show a constant energy surface at ⇠80meV. If we want to analyze the widths
of the energy band along the �M direction we have to extract a sequence of E(k) plots
from the volumetric data set which cut perpendicularly to the �M direction, as indicated
by the red dashed lines along the kx direction. Above the constant energy surface, we
show the results of these cuts. In each of these plots the minimum of the band is a point
on the dispersion along �M and by extracting energy distribution curves at each of these
points we get the full dispersion and the peaks do not su↵er from the described geometrical
broadening. Some of the extracted EDCs are shown as colored squares in panel b), where
each color represents a di↵erent cut. Now the peaks are described by simple Lorentzian
profiles as we have minimized asymmetries caused by the binding energy dependence of ⌃00

with the described procedure, as well. Of course, other problems connected to the EDC
analysis may still exist like the secondary electron background and the cuto↵ at the Fermi
level. However, in our case no background correction is necessary and we simply assume
that the peaks are symmetric across the Fermi level (see e.g. Ref. [164]).

The half widths at half maximum gained by the fitting of the EDCs are shown in
panel c) and directly represent ⌃00 for the two di↵erent directions �K (blue circles) and
�M (red circles). By comparing with panel d) of Fig. 6.3 we find qualitative agreement.
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While the absolute values are a bit smaller in the second analysis, the reduced scattering
rates for the �M direction as compared to the �K direction in the range of the warping
are confirmed. Furthermore, we also find an increase of the widths from approximately
100meV on for the �M direction. Around 200meV binding energy, the scattering rates
match for both directions as one would expect for an isotropic dispersion like it is found in
this energy range (compare for example the constant energy cuts of Fig. 4.6). Finally, we
can conclude that the multiplication of the width of momentum distribution curves with
the experimental group velocity to get the scattering rates, i.e., ⌃00, is well justified for
the topological surface state in Bi

2

Te
3

at least to examine the qualitative behavior over a
certain binding energy range.

The anisotropy of ⌃00 in Bi
2

Te
3

for the two high symmetry directions is thus in agree-
ment with a related analysis of Cu intercalated Bi

2

Te
3

by van Heumen and co-workers [160]
who performed a standard analysis of the width of momentum distribution curves. How-
ever, Ref. [160] lacks a detailed description of their analysis and it does not address the
question whether the use of the experimental group velocities influences the qualitative
behavior of ⌃00.

There are three possibilities which can explain the anisotropy in the scattering rates
which are all related to the warping and to some degree connected to each other, which we
will discuss in the following. A first explanation of the anisotropic behavior of the scat-
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Figure 6.5: Schematics of di↵erent scattering channels. a) For a snowflake shaped constant
energy surface the in plane spin direction (components s

x

and s
y

, indicated by blue arrows) varies
stronger in the vicinity of the �M direction as compared to the �K direction, leading to a reduced
probability of small angle scattering events, e.g. q1 as compared to events exemplified by q2. The
out of plane rotation for k vectors away from the �M direction is sixfold symmetric, as indicated
by the symbols � (s

z

points out of the paper plane) and ⌦ (s
z

points into the paper plane). The
scattering probability is, hence, increased for scattering under q3, whereas backscattering (e.g. q4)
is still forbidden. The almost flat pieces of the constant energy surfaces, connected by red scattering
vectors (q

nest

) fulfill a near nesting condition. b) Even stronger nesting is expected for a hexagonal
shape, however, for this case time reversal symmetry strongly suppresses scattering. Thus a spin
density wave would be favored over a charge density wave [19].

tering rates lies in the spin dependent scattering, i.e., spin dependent decay of photoholes
in our case. As pointed out above, for a two dimensional non-degenerated time reversal
symmetric surface state, backscattering is forbidden and the strong warping does not a↵ect
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this prohibition. However, the prohibition is valid only for 180� backscattering and scat-
tering under di↵erent angles is not completely suppressed. The probability for a scattering
event is given by Eq. 6.1. In a theoretical work it has been shown that the warping a↵ects
the spin such that it is not anymore perpendicular to the momentum but tangential to
the constant energy surface [20], as indicated by blue arrows in Fig. 6.5. This spin rotation
was claimed to be found experimentally in Bi

2

Se
3

as well [155], but the method used, i.e.,
circular dichroism, appears questionable as it is discussed in Chapter 7 of this thesis. Nev-
ertheless, the spin rotation nicely explains the observed anisotropy of the scattering rates
in Bi

2

Te
3

. Assume that an electron has been removed from the tip of a snowflake-shaped
constant energy surface (Fig. 6.5 a), i.e., along the �M direction. Its spin is fully in plane
(sx 6= 0 and/or sy 6= 0, sz = 0) consistent with the mirror symmetry of the crystal [20]. As
mentioned above, scattering under small angles is allowed, but it is less likely for the �M
direction (e.g. q

1

of Fig. 6.5 a)), since the spin varies strongly while following the constant
energy surface (blue arrows in Fig. 6.5). In contrast, a hole caused by removing an electron
from the same binding energy but with the momentum pointing along the �K direction
can be filled with electrons from adjacent sites in k-space since the in plane components
are nearly parallel (e.g. q

2

of Fig. 6.5 a)).

Furthermore, for the �K direction the electron spin exhibits a finite out of plane com-
ponent (sz, indicated by �- and ⌦-symbols), which can reach as much as 60% [19], reverses
its sign with an angular periodicity of ⇡

6

and vanishes along the �M direction due to mirror
symmetry [20]. This does not alter the first explanation, since the out of plane component
varies only smoothly along a constant energy surface. Hence, adjacent places on a constant
energy surface may have a di↵erent absolute values of the out of plane component but the
same sign. In addition, a second explanation for the increased scattering rates along �K
can be derived from the finite out of plane spin along this direction. Consider a scattering
vector as exemplified by q

3

in Fig. 6.5 a). The initial state (marked by the black dot at the
beginning of q

3

) has finite components sx and sy, but there is no overlap between these
components in the final state, which has sy=0 and sx pointing antiparallel as compared
to sx of the initial state. However, sz is pointing out of the paper plane for initial and
final state leading to a relatively strong contribution in the overlap integral (Eq. 6.2). A
comparable scattering event for electrons moving along the �M direction, e.g., q

5

has only
a small overlap of the in plane component (sy in the example) between initial and final
state.

A third aspect, that may play a role in the anisotropy of the scattering rates, was pointed
out by Fu [19]. In contrast to an ideal Dirac cone, or for example a two dimensional free
electron gas, the warped constant energy surfaces in the vicinity of the �K direction fulfill
a nesting condition especially for those constant energy surfaces which imitate a hexagonal
shape, as shown in Fig. 6.5 b), but also for a snowflake-like shape [165] at least a near-
nesting condition is fulfilled as indicated by the red arrows in a) and b). Nesting means that
parts of the constant energy surface can be mapped onto each other by a single scattering
vector qnest. Such nesting conditions may enhance scattering and lead to instabilities, like,
for example, a charge density wave [166]. However, time reversal symmetry disfavors the
formation of a charge density wave, since, independently of the warping, states at opposite
k have opposite spin (Fig. 6.5 b), but Fu suggested that a spin density wave could be a
possible instability in Bi

2

Te
3

introduced by the warping [19]. While no signs of a spin
density wave are seen in the band dispersion, i.e., a band gap at the Fermi level, it is still
possible that such nesting vectors contribute to an enhanced scattering. But since the
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nesting vector qnest given in Fig. 6.5 b) is strongly suppressed by time reversal symmetry
and the one in Fig. 6.5 a) does not favor a scattering of electrons along the �K direction,
it is likely that the nesting plays a minor role for the observed anisotropy.

It is often stated that the ideal Dirac cone prevents the electrons from backscattering
[165]. However, we observe an increase of the scattering rates along the �M direction as
with increasing binding energy the constant energy surfaces get more and more circular.
One may think of two possible explanations for this increase. First, one may expect a
higher possibility for small angle scattering events since the variation of the spin direction
is smaller along a circle than in the tips of the snowflake shaped constant energy surfaces.
Second and more important may be the influence of the bulk valence band. Considering
again the electronic structure of Bi

2

Te
3

discussed in Chapter 4.1.2, parts of the topological
surface state are surrounded by the valence band and photoholes can be scattered o↵ easily
into the bulk continuum. This has also been given as an explanation for the superposition
of standing waves with di↵erent wavelength observed in STM for the energy range close
to the Dirac point [157]. It should be noted, that a similar increase of ⌃00 with increasing
binding energy is observed for the �K direction as will be shown in Section 6.4. The reason
why the increase is not seen in the data shown in Fig. 6.3 d) is simply that we have not
analyzed the line width broadening in the full energy range up to ED and the increase
starts at higher binding energy than for the �M direction.

In contrast, we find that ⌃00 increases away from the Fermi level for the �K direction,
while it is almost constant along �M. But the reliability of the data close to EF for the
�M direction su↵ers from an intermixture of surface state and bulk conduction band which
is also seen in the dispersion shown in Fig. 4.5.

In an analysis of the scattering rates of the surface electrons of Bi
2

Se
3

, for which
the warping is much less pronounced than in Bi

2

Te
3

[85], conducted by Park and col-
leagues [148], an increase of ⌃00 was found from the Fermi level to the bottom of the bulk
conduction band along the �K direction. This is in agreement with our data for Bi

2

Te
3

along �K. The lifetime of the states is given by ⌧ = ~
2|⌃00| and close to EF we find ⌧=10 fs

and ⌧=18 fs for the �K and the �M direction, respectively. This seems to be substantially
less than the 40 fs reported for Bi

2

Se
3

by Park et al. but it appears that the authors have
overestimated the lifetime by a factor of 2⇡ and thus the lifetime for photoholes in Bi

2

Se
3

is with 6 fs in a similar range as in Bi
2

Te
3

. For our own Bi
2

Se
3

samples we find lifetimes
of 16 fs along the �K direction (see Section 6.4). Interestingly, this value is more close to
the one of Bi

2

Te
3

along the �M direction. The fact that the warping in Bi
2

Se
3

is less
pronounced and in the present case almost absent at EF (circular Fermi surface) supports
our argumentation that scattering is enhanced in the concave parts of the Fermi surface
like for the �K direction in Bi

2

Te
3

.

To place the observed quasiparticle lifetimes in a wider context we compare to those of
photoholes created in the prominent Dirac cone of graphene on SiC. From the MDC peak
widths given by Bostwick et al. [167] we estimate ⌧ to be similar to 5 fs at EF which is
a similar order of magnitude. This appears remarkable since the Dirac cone of graphene
is spin degenerate and shows no resolvable spin orbit splitting on SiC [168] and thus the
spin is not expected to extend the lifetime like in a topological surface state. However, in
graphene a 180� backscattering is prohibited by the pseudospin in a similar way as for the
topological surface state [49].
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6.3 Electron-Phonon Coupling in Bi2Te3

As mentioned in the beginning of this chapter the coupling to phonons is an important
decay mechanism of photoholes created in a topological surface state. For any future
application the phononic contribution to the surface electron scattering will be a dominant
process since its influence on pure samples can only be reduced by lowering the temperature
which is not desirable for, e.g., electronic applications. In the literature there is some
controversy on the influence of phononic modes on the electron self energy and statements
vary from superlatives like exceptionally weak [87] to surprisingly high [144] for the strength
of the electron-phonon coupling in Bi

2

Se
3

. We have analyzed the coupling strength �
in Bi

2

Te
3

and find a value for � in between the ones reported for Bi
2

Se
3

which agrees
reasonably well with a theoretical investigation by Giraud and Egger [169].

To obtain the coupling strength from an angular resolved photoemission experiment
one has to analyze the temperature dependence of the imaginary part of the electron self
energy. This method has also been used in the studies concerning Bi

2

Se
3

, but the di↵erent
groups have analyzed di↵erent parts of the surface state. While Pan et al. [87] analyze
an energy range of 30meV below the Fermi level, Hatch and co workers [144] average ⌃00

between 50meV and 100meV above the Dirac point. We follow the first approach as
summarized in Fig. 6.6. We fit momentum distribution curves, like the examples for 0 eV
binding energy given in panels c) and d), in the same way as described in the previous
section and gain width and dispersion in that way for temperatures around 50K and at
room temperature for four di↵erent samples. The photon energy is 55 eV for Sample 1
and 50 eV for Sample 2, 3, and 4. The corresponding k-resolution is about 0.005 Å�1. The
group velocity in a binding energy range of 35meV is approximated linearly as shown in
panel a), where the dispersion of Sample 4 at room temperature, shown in red color scale,
is compared directly to the one at 35K in blue color scale. Clearly seen is an increase of
the Fermi wave vector kF from ⇠0.07 Å�1 to ⇠0.11 Å�1 when cooling from room to low
temperature, in agreement with the temperature induced shift of the chemical potential
reported in Chapter 4.1.3. Since the group velocity varies with binding energy, as seen
in the previous section, the Fermi velocity also varies with temperature and between the
samples due to the di↵erent intrinsic doping (Tab. 6.1).

Sample 1 2 3 4

vF (RT) / eVÅ 3.19 2.88 3.06 2.76
vF (LT) / eVÅ 3.26 3.48 3.35 3.48

�ED(Tind.)/ meV 100 30 140 90
�kF (Tind.)/Å�1 0.03 <0.01 0.04 0.03

� 0.17 0.21 0.21 0.14
�avg 0.18±0.03

Table 6.1: Fermi velocities (v
F

) for the di↵erent Bi2Te3 samples at room temperature and low
temperature (between 40K and 50K) as well as the temperature induced energy shifts of E

D

and
the increase of k

F

along the analyzed �K direction. Also given are the individual electron-phonon
coupling constants � extracted from the temperature dependence of ⌃00 and the averaged coupling
constant �

avg



6.3 Electron-Phonon Coupling in Bi
2

Te
3

113

0.02

0.01

0.00

H
W

H
M

 (
1
/Å

)

-30 -20 -10 0

 Binding Energy (meV)

T=300K

T=40K

60

50

40

30

20

10

0

  
 Σ

˝ (
m

e
V

)

350300250200150100500

Temperature (K)

 Sample 1

 Sample 2

 Sample 3

 Sample 4

BG 20K

In
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

-0.20 -0.10 0.00 0.10 0.20

Wave Vector kx (1/Å)

k ~ 40

In
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

-0.20 -0.10 0.00 0.10 0.20

Wave Vector kx (1/Å)

k ~ 300

-0.10 -0.08 -0.06 -0.04

Wave Vector kx (1/Å)

50

40

30

20

10

0

B
in

d
in

g
 E

n
e
rg

y
 (

m
e
V

)

k

E ~vF

a b

c d

e

Figure 6.6: Electron-phonon coupling in Bi2Te3. a) Superimposed are the near Fermi edge
dispersions of the surface state of Sample 4 along the �K direction at 300K (red color scale) and at
40K (blue color scale). The large di↵erence in k

F

is a result of the temperature induced shift of the
Fermi level. The Fermi velocity v

F

is determined by the slope of a linear approximation in an energy
range between 0 and 35meV binding energy. b) Half widths at half maximum (HWHM) obtained
from momentum distribution curves (MDC) fitted by Lorentzian profiles (red solid line in c) and
d)) at 40K (blue double-triangles; MDC at 0meV binding energy in c) and at 300K (red double-
triangles; MDC in d)). The full width at half maximum �k is proportional to the scattering rate
�. Red and blue solid lines mark the average HWHM. e) The electron-phonon coupling constant �
is determined from the slope of the temperature dependence of ⌃00 =HWHM⇥v

F

for four di↵erent
samples. The hatched area marks the temperature range below the Bloch-Grüneisen-temperature
✓
BG

.
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The HWHM of the momentum distribution curves is averaged over the same energy
range as indicated by the straight horizontal lines in panel b). The increase of the HWHM
with the temperature is nicely seen in the MDC examples shown in panel c) and d) and
fitting a Lorentzian profile gives accurate results. Panel e) summarizes the temperature
dependence of ⌃00 and the di↵erently colored symbols represent the investigated individual
samples. The given error bars for the temperature are estimated and are larger for low
temperature since it was not possible in our setup to determine the temperature on the
sample but only on the sample holder of the manipulator. The error of ⌃00 is obtained
through error propagation from the standard deviations of vF and HWHM obtained by
the linear regression and averaging, respectively.

For high enough temperatures the electron-phonon contribution to the imaginary part
of the self energy can be approximated linearly and is given by

|⌃00(E, T )| ⇡ �⇡kBT,(6.14)

with the electron phonon coupling constant � and the Boltzmann constant kB. Thus, from
the slope �|⌃00|/�T of a linear fit to the data in panel e) one obtains � for the di↵erent
samples which are given in Tab. 6.1. Except for Sample 4 we have measured only at two
temperatures and thus the uncertainty of the linear regression is quite large. To minimize
the error we average over all obtained values and get a mean value �avg = 0.18±0.03. The
variation in the absolute values of ⌃00 over the 4 samples can be ascribed to imperfections of
the sample surface due to sample cleavage. Such defects contribute similarly to impurities
with a constant o↵set to the scattering rate. It goes without saying that di↵erent densities
of impurities may also contribute to the variation.

kF

q≤2kF q≤2k(E)

k(E)

MM

q

ω

ωc(E)ωc
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Figure 6.7: Sketch to visualize the contributing phonon modes to electron-phonon scattering for
an ideal Dirac cone. All related phonon momenta (q) are described by their dispersion relation
!(q) within the first Brillouin zone (±⇡/a). Electrons at E

F

can only be scattered elastically by
phonons with momentum q  2k

F

. The contributing phonon modes are reduced further at higher
binding energies E

B

of the electrons, as the radius k(E) of the constant energy surface gets reduced
(q  2k(E)).
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Concerning the temperature one has to keep in mind that not at all temperatures ⌃00

depends linearly on T. For bulk metals the Debye temperature ✓D is the critical temper-
ature, and only for T� ✓D the linearity is a good approach. The Debye temperature
is a measure for the energy of the highest phonons involved. Below this temperature the
phonon spectrum is not fully occupied since the high energy modes cannot be excited. This
results in a stronger temperature dependence of the resistivity or scattering rates of the
electrons. Since electron-phonon scattering events are quasielastic, the maximum phonon
momentum involved is limited to 2~kF [170] which corresponds to a 180� backscattering
event. In many metals kF is of the same order as the size of the Brillouin zone and thus
all populated phonons can scatter o↵ electrons [170]. However, in low dimensional metallic
systems this is not the case since, like for Bi

2

Se
3

and Bi
2

Te
3

the Fermi surface is much
smaller than the Brillouin zone and thus only a small part of the acoustic phonons with
energies ~csq  2~cskF may contribute to the electron-phonon coupling, where q is the
phonon wavevector and cs is the sound velocity. This is illustrated in Fig. 6.7 for an ideal
Dirac cone situated in a hexagonal surface Brioullin zone. For simplicity it is assumed that
only acoustic phonons described in the surface Brillouin zone contribute to the scattering.
The limited number of phonon modes that contribute to the scattering are the modes that
have the lowest energies ! which can be understood from the qualitative dispersion relation
!(q) in Fig. 6.7. Thus, the phonon modes involved start to freeze out at temperatures far
below ✓D and, therefore, a linear behavior is observed down to much lower temperatures.
Hence, for low dimensional systems one defines the Bloch-Grüneisen temperature ✓BG as
a function of the Fermi momentum kF [169]

✓BG ⌘ 2~kF cs
kB

.(6.15)

This dependence has been successfully probed experimentally in graphene, where the size
of the Fermi wave vector can be tuned by a gate voltage and by this the onset of the linear
temperature dependence of the resistivity has been shifted [170].
For our Bi

2

Te
3

samples we can estimate ✓BG to be in the range of 20K, which is almost
an order of magnitude less than the bulk Debye temperature of Bi

2

Te
3

, ✓D ⇡ 160K [171]
and well below our measurement temperature of ⇠50K. Thus, the assumption of a linear
behavior appears justified. Moreover, in Bi

2

Se
3

a linear temperature dependence of ⌃00 was
observed down to 18K [87] and the size of the Fermi surface is comparable in both systems.

However, as obvious from Fig. 6.6 a) and from Chapter 4.1.3 the size of kF increases
upon cooling. As a consequence the maximum energy of phonons that may contribute
to the scattering of electrons is reduced at room temperature. In addition, the available
electron density of states in which photoholes could scatter is reduced at room temper-
ature since the bulk conduction band is depopulated according to the rigid band shift
reported in Chapter 4.1.3. Both e↵ects could lead to an underestimation of the phonon
coupling constant, since ⌃00 would appear reduced at room temperature and thus the slope
of the temperature dependence is smaller. But by comparing the coupling constants of the
individual samples with the temperature induced changes of ED and the changes in kF
no obvious correlation is found. Moreover, for Sample 2, where the temperature induced
changes are negligible as compared to the others, � is as high as for Sample 3 where the
largest changes are observed. Another aspect which may increase ⌃00 at low temperature
is the impurity scattering. While there is no significant temperature dependence for the
scattering itself, the impurity density is likely to increase upon cooling due to condensation
of residual gases in the vacuum system. This assumption is supported by the observation
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that the pressure in the vacuum system is typically decreased by almost an order of mag-
nitude when cooling the manipulator. An increase of ⌃00 caused by impurities on the cold
sample will decrease the slope and thus �. Di↵erent impurity densities on the sample
should lead to di↵erent o↵sets of ⌃00 at EF and indeed Fig. 6.6 e) shows such di↵erences as
samples 1 and 3 show a ⇠1.3 times higher ⌃00 value at low temperature. But this di↵erence
seems to be constant over the whole temperature range and should thus not influence the
results. Moreover, following the argumentation in Chapter 4.1.3 more impurities should be
present in samples with a higher energy shift of the band structure. But since no corre-
lation between the strength of temperature induced shifts and the absolute value of � is
found from Tab. 6.1 we can conclude that the influence of condensated impurities on the
analysis is negligible. Indeed we find a relatively small e↵ect on the scattering rates with
non magnetic impurities in the following section and we can expect any residual gases in
the vacuum system to have negligible magnetic moments.

The reliability of our analysis is further supported by the excellent agreement with a
recent theoretical investigation where the electron-phonon coupling in Bi

2

Te
3

was found
to be �th ⇡ 0.13 [169]. Also, the extracted � is of the order of magnitude reported by
Hatch and coworkers for Bi

2

Se
3

(�Bi2Se3 ⇡ 0.25) [144]. As mentioned above they analyzed
the width of momentum distribution curves in an energy window relative to ED and their
analysis does therefore not su↵er from a change in kF . As pointed out in Ref. [144] the
strength of the phonon coupling is thus higher than expected for a topological surface state
with the expectation based on the fact that the available phase space is reduced due to the
spin texture and the electron spin is conserved during electron-phonon scattering [172].

On the other side there is the very low value of �Bi2Se3 ⇡ 0.08 reported by Pan et
al. [87] and the absence of a characteristic kink in the surface state dispersion like it is
known from metals [164] or high-Tc superconductors [173]. But the latter is visible at a
characteristic energy given by the Debye temperature or, as in our case by the Bloch-
Grüneisen temperature. This energy scale is as low as ✓BG/kB ⇡2meV, and thus below
the detection limit of our experiment given by the energy resolution of ⇠20meV. Even if
the full phonon spectrum up to the maximum energy (⇡ 20meV [174]) would contribute,
a kink would hardly be observed in our experiment. This was also pointed out by Pan
and colleagues [87]. From inelastic helium-atom scattering, thus looking at the coupling
of surface state electrons to phonons, an even higher coupling strength was reported only
recently [175]. But while we cannot distinguish the coupling to a specific phonon mode
in angle resolved photoemission, the experiment by Zhu et al. [175] may mix up bulk and
surface electronic contributions which might explain the high value of �=0.43. However,
it may still be interpreted as a confirmation of the higher coupling measured by us and
Hatch et al. as compared to Pan et al.

Nevertheless, the fact that the low coupling constant observed by Pan et al. was
confirmed in three di↵erent samples and, moreover, that ⌃00 has been measured at many
more temperatures than in our case and in that of Hatch et al. leaves also doubts about
the validity of the high coupling constants and calls for a more profound investigation
including other methods to finally conclude about the strength of the phonon coupling to
the Dirac fermions in Bi

2

X
3

.
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6.4 Impurity Induced Scattering

In the last section of this chapter the influence of magnetic and non-magnetic impurities
on the quasiparticle lifetimes will be analyzed. The influences on the band structure have
been addressed already in Chapter 5 and are assumed to be known by the reader. However,
the most important result of that chapter shall be repeated once more, namely that the
topological surface state shows its predicted and unique robustness against surface impu-
rities for both investigated types of impurities, magnetic and non-magnetic ones. This
statement concerns the existence of the surface state and the absence of an energy gap in
its dispersion at the Dirac point.

However, in this section it will be shown that there is interaction between impurities
and the surface state electrons, which is not surprising keeping in mind the results from the
two previous sections, and that there is a di↵erence between magnetic and non-magnetic
impurities. The latter was indeed doubted in a recent photoemission experiment by Valla
and colleagues [113] in contrast to theoretical investigations of the quasiparticle interference
patterns where new scattering channels arise which are explained by a spin flip caused by
a magnetic point defect [83].

6.4.1 Non-Magnetic Impurities

First, we analyze the quasiparticle scattering rates for Bi
2

Se
3

prior to and after deposition
of 0.2 monolayer (ML) and 1ML of non-magnetic silver impurities. We apply the same
procedure described in the previous sections, namely extraction of the half widths at half
maximum (HWHM) of the peaks and its dispersion from momentum distribution curves
(MDCs) and calculate the imaginary part of the self energy ⌃00 by multiplication of the
HWHM with the experimental group velocities vg. The results are shown in Fig. 6.8. For
the clean sample we show the positive kx values of the surface state above and slightly below
the Dirac point (ED) in the top part of the figure as a function of binding energy. Overlaid
is the result of the position of the peak maxima as obtained by the fitting procedure as
black dots. The characteristic energy points of the band structure, ED and the bottom of
the bulk conduction band are marked by white dashed lines. The photon energy is 18 eV
and the measurement temperature ⇠8K. The data is taken along the �K direction. The
lower half of the top figure shows the dispersion after 0.2ML of Ag have been deposited at
room temperature (detailed discussion in Chapter 5.2). Photon energy and measurement
temperature are the same as for the clean sample.

For the clean sample we find a rather flat behavior of ⌃00 as a function of binding energy
represented by red dots in the lower panel of Fig. 6.8. We observe only a slight increase
from EF to approximately the bottom of the bulk conduction band at ⇠140meV binding
energy. For higher binding energies a slight decrease is seen in the energy dependence
up to ED. At even higher binding energies the fit gets more and more inconclusive as an
intermixture of the surface state with the bulk valence band takes place. While being much
less pronounced in our case, the observed increase and decrease are in agreement with the
results reported by Park et al. [148]. In a perfect sample one would expect ⌃00 to increase
with increasing binding energy from 0meV at EF , thus the relatively high o↵set can be
interpreted as impurity scattering due to the defects and vacancies that cause the intrinsic
doping (see Chapter 4 for details) as well as step edges and imperfections caused by the
sample cleavage. Also adsorbed residual gases may already play a role.
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Figure 6.8: Ag deposition on Bi2Se3. Top: Direct comparison of the dispersions of clean Bi2Se3
(red color scale) and after deposition of 0.2ML Ag (blue color scale). Dots represent the peak
maxima of the MDC fits. Dashed lines mark the energy of the Dirac point (E

D

) and the bulk
conduction band bottom, i.e., after Ag deposition the bottom of the additional bands. The photon
energy is 18 eV and the measurement temperature is 8K. Bottom: The imaginary part of the
electron self energy gets increased upon Ag depostion (blue dots) as compared to the clean sample
(red dots). For 1ML of Ag on top (grey dots) ⌃00 is even higher, indicating some proportionality of
the scattering rates to the impurity density as shown in the inset. The dashed line shows a linear
regression to the data points while the solid line assumes an exponential behavior.
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The scattering by impurities is typically assumed to be constant over the whole bind-
ing energy range, since one assumes that the impurities stay una↵ected and experience
no excitations by the scattered electrons, which means that the electrons are scattered
elastically. For the topological surface state, however, the degenerate bulk bands increase
the available phase space and thus scattering should show a proportionality to the bulk
density of states [148]. This is a reasonable explanation for the decrease of ⌃00 observed
within the bulk energy gap. Naively, one may expect a sharp drop of ⌃00 rather then a
slender decrease but the two other processes that scatter o↵ electrons, electron-phonon
and electron-electron interaction are connected to energy transfers which can excite in-gap
surface electrons into the bulk continuum. For the impurity scattering the available phase
space gets reduced but stays finite since small angle scattering is allowed and only the exact
180� backscattering event is forbidden. Considering the arguments concerning the Bloch-
Grüneisen temperature given in the previous section, another explanation for the decrease
at binding energies above the conduction band bottom is that with decreasing diameter
of the constant energy cuts less and less modes may contribute to the electron-phonon
scattering (compare Fig. 6.7). Assuming that only the surface located phonons scatter o↵
surface located electrons, a simple linear decrease is straightforward to derive. The wave
vectors of the phonons (q) which contribute to the scattering are given by 2k(E), where
k(E) is the surface electron wave vector at a given binding energy E. Assuming further a
perfect Dirac cone with a linear dispersion it is easy to see that k(E) reduces linearly with
increasing binding energy E. Linearity is also a good approximation for the phonon dis-
persion !(q) if q is small enough. Thus the phonon density of states D(!), where ! is the
phonon energy, is constant and the number of contributing phonons is proportional to the
cuto↵ energy !C given through the diameter of the Dirac cone at energy E. It follows that
the number of contributing phonons decreases proportional as the binding energy increases
up to ED and this proportionality naturally explains the decrease of ⌃00.

While the described trends appear quite obvious and explainable, it should be noted
that ⌃00 varies only between 18meV and 23meV over the whole analyzed binding energy
range and the variation is thus within the error of the analysis. On the other hand, a
simple increase over the whole binding energy range, from EF to ⇠250meV, as reported
by Valla et al. [113] cannot be confirmed by our data.

The obvious e↵ect of Ag deposition, despite the n-doping and the formation of parabolic
bands in the bulk conduction band range as described in Chapter 5.2, is an increased o↵set
of ⌃00 from the Fermi level on (blue dots). This increase can be easily explained by an
increase of the impurity density. The energy region of increase observed in the clean sample
extends now to a slightly higher binding energy of ⇠160meV which is followed by a small
dip. This dip is seen in the energy range of the gap between the two parabolic features that
form upon Ag deposition. A small bump can be observed and falls energetically together
with the bottom of the second parabolic feature. However, the described variation is again
very small and the correlations with the parabolic features could be by chance or an artifact
of the fit. In total one could identify the range of the parabolic features as increasing and
the range below as decreasing if one takes into account the error of the analysis. This
means that the only change of ⌃00 is an increased o↵set and a shift of the characteristic
variations of ⌃00 already observed in the clean sample consistent with the n-doping.

When Ag is deposited on Bi
2

Te
3

, than quasiparticle interference fringes are observed
in STM along the �M direction in an energy range where bulk conduction band and
surface state coincide, thus outside the gap [157]. Inside of the gap the fringes and the
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related standing wave patterns are smeared out. A similar behavior was observed for
Bi

2

Se
3

in the vicinity of the Dirac node and at higher binding energies [159]. This has also
been attributed to a scattering between surface state and bulk valence band states as the
observed scattering vectors were too large and too broad to be explained by surface state
scattering. Both results agree well with the observed behavior of decreasing scattering rates
between conduction band bottom and Dirac point for pristine and Ag impured Bi

2

Se
3

. We
also observe increasing HWHM at binding energies above ED but due to the intermixture
with bulk bands the surface state can not be well distinguished and we do not present the
results here.

In a second deposition step we have increased the Ag mass equivalent to 1ML (grey
dots) which results only in a slight additional doping (see Fig. 5.2 for the resulting dis-
persion). Since the fitting gets rather inconclusive due to a strong overlap of the peaks
derived from the topological surface state and from the Ag induced parabolic features we
show only the results for the energy range where the features could well be distinguished.
We observe again a strong increase in ⌃00 and the behavior observed for 0.2ML makes the
assumption reasonable that this is caused by a higher o↵set from the Fermi level on. The
sharp decrease is likely to be an artifact of the analysis caused by a slight missalignment
of the photoemission experiment such that we do not cut the Dirac point exactly which
gives a parabolic instead of a gapless surface state. This gives a strong virtual reduction
of vg which in turn produces the drop o↵ of ⌃00.

The important result is the increase of ⌃00 with increasing impurity density rather than
with increased warping as suggested by Valla and co-workers [113]. This can be understood
by the fact that the 1ML Ag has hardly shifted the band structure to higher binding energy
and thus does not increase the warping much more than the first deposition step already
did. We therefore show in the inset of Fig. 6.8 ⌃00 averaged over the whole binding energy
range as a function of the Ag amount. Since we can not analyze the whole dispersion for
1ML Ag there is some uncertainty about the accurate dependence. However, assuming that
the surface electrons interact only with impurities residing directly on the sample surface,
a saturating behavior (solid line) appears more likely than a linear increase (dashed line).

6.4.2 Magnetic Impurities

Next we turn to magnetic impurities. In Fig. 6.9 b) we present the linewidth analysis for Fe
deposited on Bi

2

Se
3

. Since the changes are more drastic than in the case of Ag impurities
we also present the raw fitting parameters in panel a) where all data has been shifted
relative to the energy of the Dirac point ED. Throughout Fig. 6.9, red color represents
the sample prior to Fe deposition, green color has been chosen for the low temperature
deposition of Fe (T⇠8K) and blue color for the room temperature deposition (T⇠300K).
The measurement temperature is ⇠8K for all three samples and the photon energy is
18 eV for the clean and room temperature deposition and 21.5 eV for the low temperature
deposition. The Bi

2

Se
3

sample is the same for both deposition conditions, but the surface
has been recleaved prior to the low temperature deposition. Since the cleavage goes along
with the formation of new step edges and other defects, the data for the clean sample
are strictly only to be taken as the basis of the low temperature deposition; for the room
temperature deposition no data of the clean sample exists at T⇠8K since the sample has
been cooled only after deposition of Fe. In detail, ⌃00 varies between di↵erent cleavages
depending on the quality of the surface, as obvious from comparing the result of the clean
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Figure 6.9: Fe deposition on Bi2Se3. a) Dispersion k(E) (bottom), group velocities v
g

(E) (center)
and half width at half maximum (HWHM) (top) as a function of the energy relative to the Dirac
point before deposition (red) and after deposition of 0.2ML Fe at T=8K (green) and 0.3ML Fe
at T=300K. The photon energy is 18 eV for the clean sample and room temperature deposition
and 21.5 eV for low temperature deposition. The measurement temperature is 8K throughout.
Fe reduces v

g

slightly when deposited at low temperature and increases the HWHM while the
dispersion appears more linear. For room temperature deposition we observe an enhanced v

g

while
the HWHM is increased even more and the dispersion is more parabolic. b) Direct comparison
(top) of room (blue color scale) and low temperature (green) deposition of Fe. White dots mark the
peak maxima obtained from the fits. The imaginary part of the electron self energy ⌃00 (bottom)
is increased independent of the sign of the doping and deposition condition indicating enhanced
scattering rates. The enhancement is stronger than for non-magnetic impurities (Ag) in Fig. 6.8.
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sample in Fig. 6.9 b) with that of Fig. 6.8.

The direct comparison of the dispersion obtained from the peak maxima of the MDCs
is shown in the bottom panel of Fig. 6.9 a) (and overlaid on the intensity plot in the upper
panel of b). Following the red line of the clean sample we already find a rather strong de-
viation from the linear dispersion expected for a Dirac fermion. This has been emphasized
by plotting a straight red dashed line that matches the measured dispersion well above
ED. This behavior is even more pronounced when Fe is deposited at T⇠300K. Please note
that a fit is possible only in a limited energy range for this case since the strong intensity
of the extra states introduced by the Fe in the range of the bulk conduction band hides the
intensity of the surface state completely. In contrast, the green dashed curve follows the
experimental dispersion of Bi

2

Se
3

when Fe is deposited at low temperature over a longer
energy range indicating an enhanced linearity. This is also reflected in the behavior of the
group velocities vg as a function of energy plotted in the center of panel a). Accordingly,
the enhanced linearity is achieved by a reduction of vg at binding energies below ED. This
is again in contrast to the case of room temperature deposition where vg gets increased
well below ED and strongly decreases towards the Dirac point. The HWHM as a function
of energy are shown in the upper panel and after multiplication with vg we obtain ⌃00 as
shown in the bottom panel of Fig. 6.9 b).

Despite the steeper increase in the energy range of the bulk conduction band we observe
a very similar behavior for the clean sample as described for the clean sample before the
Ag deposition above. The o↵set at EF is within the error of the analysis the same for both
and amounts to ⌃00(EF ) ⇠20meV indicating a comparable amount of impurities. But
the increase amounts to ⇠35meV at a binding energy of 80meV, whereas only ⇠23meV
are observed at ⇠140meV in Fig. 6.8. The sample temperature is similar, thus a similar
amount of phonon modes may contribute to the scattering. According to Ref. [148] the only
explanation would be an enhancement of electron-hole pair creation, which would mean a
stronger increase of the bulk density of states for the case presented in Fig. 6.9. However,
the obviously stronger n-doping in the previous case would mean a higher integrated value
of the bulk density of states. One possible explanation could be that the strong n-doping
has led already to the formation of a two-dimensional electron gas in the region of the
bulk conduction band [108] which would have a constant density of states. However, while
we do observe a di↵erence in the intensity distribution in this energy range for samples
prior to Fe and Ag deposition (compare Fig. 5.2 a) and Fig. 5.14) clear fingerprints of a two-
dimensional electron gas are missing. A second explanation could be an anisotropy similar
to the case of Bi

2

Te
3

. On the one hand the warping is much less pronounced in Bi
2

Se
3

and a
one to one matching of the sample positions examined with low energy electron di↵raction
and photoemission is almost impossible and thus the �K and �M directions could get
confused by viewing the dispersions only. But on the other hand the anisotropy should be
much weaker with reduced warping. Thus, the observed di↵erences remain puzzling at the
moment.

After deposition of 0.3ML Fe at room temperature ⌃00 gets increased by more than
a factor of 2 to 3, depending on the considered energy. In the figure we have shifted the
result by a constant energy o↵set given by the amount of extra n-doping of ⇠180meV (blue
open circles). Even though we are not able to analyze the topological surface state in the
vicinity of the Fermi level because of the strong intensity of the extra parabolic states, we
ascribe the strong increase of ⌃00 as mainly being due to an increased o↵set at EF caused
by the Fe impurities. Moreover, the Dirac point is now at a similar binding energy as in
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the case of 0.2ML Ag, due to the higher intrinsic n-doping observed for the Ag/Bi
2

Se
3

sample prior to the Ag deposition. This also means a similar amount of warping of the
constant energy cuts. This already gives a hint that the warping, while being undoubtedly
important for the scattering rates, plays only a minor role for increased scattering rates
upon impurity deposition. It has been suggested instead as the main reason by Valla et
al. [113].

Our argument is reinforced even more by looking at the result for 0.2ML Fe deposited
at T⇠8K. ⌃00 is increased less than for the case of room temperature deposition, but still
obviously increased showing a by a factor of ⇠3 higher o↵set at the Fermi level than the
clean sample. It goes without saying, that the slight p-doping observed for that case is
equivalent to a reduction of warping. Nevertheless, the scattering rate at EF is still a factor
two higher than for the case of 0.2ML Ag. This is already a strong indication, that there
is a di↵erence between ferromagnetic and non-magnetic impurities, another contradiction
to the results of Ref. [113]. It appears therefore likely, that spin flip processes occur by
scattering at magnetic impurities, in agreement with theoretical predictions [83], and STM
results for Bi

2�xFexTe
3+d [158], where new, by time reversal symmetry strictly forbidden,

scattering vectors show up in the quasiparticle interference patterns. For Co impurities
deposited on the surface of Bi

2

Se
3

, where X-ray magnetic dichroism revealed the absence of
magnetic order [176], the observed quasiparticle interference patterns in STM appear more
isotropic in all k-directions [176] as compared to the case of Bi

2�xFexTe
3+d [158]. This is in

contrast to the absence of quasiparticle interference along the �K direction observed with
STM in Ref. [159] for clean Bi

2

Se
3

and in Ref. [157] for Ag on Bi
2

Te
3

.
Also the binding energy dependence of ⌃00 indicates strong di↵erences between magnetic

and non-magnetic impurities. In stark contrast to all other cases, the low temperature
deposition of Fe leads to an almost constant ⌃00 between 0meV and ⇠100meV. At 100meV
binding energy we observe a kink followed by an increase up to ⇠140meV where a second
kink is observed. Up to ⇠200meV binding energy ⌃00 is again constant before it decreases
strongly towards ED initialized by a third kink. Such kind of kinks are not seen for Fe
deposited at room temperature, but comparable regions have not been analyzed due to
the described problems of lacking distinguishability from the other states at lower binding
energy. Similar features can thus at least not be excluded.

Kinks in the imaginary part of the self energy are manifestations of quasiparticle in-
teractions but are typically escorted by kinks in the electron dispersion which are hardly
seen by the naked eye, if not absent at all in the case shown here. More insight can in
principle be obtained from the real part of the electron self energy which can be gained by
subtracting the bare band dispersion from the renormalized one. Unfortunately, the bare
band dispersion for Fe on Bi

2

Se
3

is unknown at the present state, and the assumption of a
straight line [164] does not seem to be valid in our case keeping in mind that the dispersion
of the pristine sample is not linear at all. Therefore the presented results give only a slight
hint that new quasiparticle interactions might be introduced by the deposition of Fe and
call for a deeper theoretical investigation which is beyond the scope of this thesis.

Similar results are gained for Bi
2

Te
3

as shown in Fig. 6.10 where we compare dispersions
and ⌃00 prior and after deposition of 0.4ML Fe at room temperature. The measurement
shown is along the �K direction at a temperature of ⇠50K and the photon energy is 55 eV.
In the clean sample we now observe a similar behavior as in Bi

2

Se
3

, i.e., an increase of
⌃00 from the Fermi level to approximately 50meV binding energy. This is followed by a
slight decrease to 240meV. In contrast to Bi

2

Se
3

we observe a strong increase from here
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Figure 6.10: Fe deposition on Bi2Te3. Top: Direct comparison of the dispersions prior to (red
color scale) and after Fe deposition (blue color scale). Red and blue dots mark the peak maxima
of the Lorentzian fits. White dashed lines indicate the energetic of Dirac point E

D

, bottom of
the bulk conduction band (BCB), and top of the bulk valence band (BVB) which is emphasized
for the clean sample by the grey shaded area. The photon energy is 55 eV and the measurement
temperature is 50K. Bottom: Prior to Fe deposition the imaginary part of the electron self energy
⌃00 is almost constant between BCB and BVB (red dots). ⌃00 gets enhanced after Fe deposition
(blue dots). Strong increases are observed in the regions where bulk bands are present at the same
binding energy.
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up to the limit of our analysis. This increase is well below the Dirac point binding energy
(ED ⇡340meV) marked by a white dashed line in the dispersion shown in the upper panel
of Fig. 6.10. Again, the red color scale represents the clean sample whereas the blue color
scale has been chosen for the sample after Fe deposition. The reason for the sudden increase
of ⌃00 is simply the presence of the bulk valence band at higher k values as sketched by
a grey shaded area in Fig. 6.10. The valence band maximum (BVB) is again marked by
a white dashed line. Please note, that electrons might be scattered o↵ under any angle
which means, that one has to take into account the absolute band maximum rather than
the maximum of the projection along �K.

After the deposition of Fe, with the outcome discussed in Chapter 5, ⌃00 has changed
drastically as can be seen by following the blue dots in the lower panel of Fig. 6.10. First
of all the o↵set at the Fermi level was measured from ⇠30meV to ⇠50meV. The following
increase is much more pronounced and goes to higher binding energies. The latter is in
agreement with the shift of the Fermi level due to the filling of unoccupied states with
electrons donated by Fe adatoms. Since the bulk conduction band is hardly resolved at
this photon energy due to a low cross section and furthermore we are away from the
minimum energy of the kz dispersion, we have estimated the shift to be similar to the one
of the Dirac point and it fits quite well with the energy where the increase is terminated.
Inside of the bulk energy gap we observe, in contrast to the clean sample, a plateau,
similar to the case of 0.2ML Fe on Bi

2

Se
3

deposited at low temperature. Afterwards, now
again in agreement with the clean sample, a strong increase is observed. The increase
appears even stronger than for the clean sample but the onset is seen at a similar binding
energy. This is an interesting observation. One would expect the onset at a higher binding
energy, if one assumes that the valence band shifts by the same amount as conduction
band and surface state. All these observations taking together give a strong indication,
that new scattering mechanisms are introduced or that restrictions due to the time reversal
symmetry get obsolete after Fe has been deposited. Moreover, since the warping is already
very pronounced in the clean sample it can not be given as a possible explanation for
the strong changes. Strong changes are only expected as soon as new scattering vectors,
especially such that fulfill a nesting or near nesting condition get introduced. This is the
case when the shape of the constant energy cuts changes from a circle to a convex hexagon
or from the convex hexagon to a concave shape [158].

Summary of Conclusions

To conclude this chapter, it has been shown, that the strong hexagonal warping in Bi
2

X
3

leads to a strong anisotropy of the scattering rates for quasiparticles traveling along the
two distinct high symmetry directions of the surface Brillouin zone. The electron-phonon
coupling is found to be relatively strong in Bi

2

Te
3

in agreement with theory [169] and
ARPES results for Bi

2

Se
3

[144]. However, it has been argued that the number of phonon
modes contributing to the scattering process is limited by the diameter of the surface Bril-
louin zone in agreement with results for the Dirac fermions in graphene [170]. We find that
the e↵ect of surface impurities on the scattering rates di↵ers between magnetic and non-
magnetic impurities thus contrasting the results of Ref. [113] where an increase of warping
was given as the main reason for increased scattering rates and no di↵erence was found
between magnets and non-magnets. Our results suggest that new scattering mechanisms
get introduced with magnetic impurities in agreement with theoretical considerations[83]
as well as STM results [158, 176].
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Chapter 7

Circular Dichroism in the Angle
Distribution: A New Spin
Sensitive Method?

From the discussion in the previous chapters, especially regarding the spin-resolved results
given in Chapter 4.2, two important aspects should have become evident. First, there
is great interest in the detailed spin texture of the topological surface states in Bi

2

X
3

.
For example the question, if the hexagonal warping is lifting the in-plane locking of the
spin and tilts it out-of-plane [19], or if the spin is then still locked perpendicular to the
momentum [20], how the spin behaves in the subsurface region [177] or during hybridization
with bulk states[101]. Some of these questions are of course not limited to the topological
surface states but extend to trivial systems, like for example the Au induced (

p
3 ⇥

p
3)-

reconstruction of Ge(111) where a complex spin texture has been observed recently [178],
in surface alloys of Bi or Pb on Ag(111) [179], or in Tl/Si(111)-(1 ⇥ 1) [180]. Even such
basic questions like how high the absolute value of the spin polarization in Bi

2

X
3

is are
still under heavy debate [81, 80, 103, 99] as discussed in detail in Chapter 4.2.

The second aspect that should have become clear is the di�culties that arise due to
the rather demanding experimental technique of spin-resolved photoemission. The figure of
merit for state of the art Mott type spin detectors is typically in the range of 10�4, making it
thus several orders of magnitude less e�cient than spin-integrated photoemission. While in
some cases it is possible to overcome the low e�ciency by just measuring for a longer time,
this approach is not feasible if the surface or the states under investigation are sensitive
and exhibit modifications over time like it has been observed for Bi

2

Se
3

(see for example
Chapter 4.2.2 and Ref. [109]).

A second approach to overcome the low e�ciency is to increase the intensity of the sig-
nal. This can be done by either increasing the intensity of the light source or by increasing
the number of electrons that enter the detector. At a synchrotron, the former can be easily
achieved by increasing the width of the beamline exit slit. This, however, is attended by
a loss of energy resolution of the incoming photons and as a consequence of the excited
electrons. If for example the spin texture of a system is expected to vary strongly as a
function of binding energy the loss of energy resolution translates to the spin polarization:
an admixture of di↵erently oriented spins reduces the measured spin polarization. The
same holds if one tries to increase the number of electrons entering the detector. Increas-
ing the analyzer pass energy increases the number of electrons but decreases the energy
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resolution. Increasing the entrance slit also increases the intensity, but decreases the angle,
i.e., momentum resolution with similar consequences.

The importance of new techniques to gain the desired informations is thus evident.
The development of new spin sensitive detectors has made great progress in recent years.
For example, by reflecting the photoelectrons at a W(100) spinfilter crystal and detecting
the (0,0) reflex with a state of the art two dimensional electron detector it is possible to
increase the figure of merit by orders of magnitude since it is possible to measure a wide
angle range simultaneously, just like in spin integrated photoemission [181].

7.1 Circular Dichroism in Photoemission

As pointed out above, there is great demand for new spin sensitive techniques which al-
low for a more e�cient detection with higher resolution. In photoemission of core-levels,
the spin resolution is largely complementary to circular dichroism. The so called X-ray
magnetic circular dichroism (XMCD) is able to detect a splitting of core levels caused by
a magnetization of the sample and has first been observed for the Fe2p states [182]. In a
paramagnetic sample the excitation of core electrons with circularly polarized light leads
to photocurrents which are highly spin polarized. Electrons which stem from, e.g., a 2p

1/2

state have +100% polarization if excited with photons of positive helicity while electrons
occupying the 2p

3/2 have -50% polarization [182]. If the light helicity is reversed, the sign
of the polarization is reversed as well, but the intensities are the same and the asymmetry
as a function of binding energy, defined as

A(E) =
I+(E)� I�(E)

I+(E) + I�(E)
(7.1)

equals zero for all energies E. Here I+ and I� are the photoemission intensities with pos-
itive and negative light helicity, respectively. If the sample is a ferromagnet with a defined
magnetization then the core level multiplets exhibit an additional splitting into majority
and minority electrons. If the same experiment is repeated then the asymmetry A(E) will
be nonzero as the photons select preferably minority or majority electrons depending on
the sign of their helicity, the magnetization direction and the multiplet from which the
electrons originate. Thus, photoemission from core levels is sensitive to the sample mag-
netization if one makes use of circularly polarized light. Two things should, however, be
noted: First, the experimental geometry has to be such that the helicity of the incom-
ing light is oriented along the magnetization direction. And second, the photon energy
has to be much higher than the binding energy of the electrons to ensure the excitation
into a free electron like final state [182]. In this case the atomic model is a very good
approximation and subsequently the results have been explained theoretically within the
framework of local-spin-density-functional theory as an initial state e↵ect [183] simply by
analyzing the polarization dependence of x-ray absorption based on a formalism developed
by Ebert et al. [184]. Consequently, the method has been used to investigate for example
the magnetic properties of rare-earth elements [185] and the results have been confirmed
by Mott-polarimetry as well [186].

It is not straightforward to apply the described method to band electrons. The obvious
reason is that the atomic model is not a good approximation since the electron orbitals
are not unperturbed, like it is the case for core levels. Another aspect is the fact that in
valence band photoemission, especially with angle resolution, typically much lower photon
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energies in the uv-regime are used and a free-electron-like final state is not guaranteed ad
hoc. However, it is the final state that may be viewed as an intrinsic spin detector in terms
of spin dependent matrix elements. In general, the electric field of the dipole operator that
excites the electron from its initial into a final state does not couple to the spin but only
to the spatial part of the electron wavefunction. This is still true for the case of spin-orbit
coupling, but the two distinct spin settings |"i and |#i couple to wavefunctions of di↵erent
spatial symmetry, |�ai and |�bi, respectively [12]. This leads to the so called relativistic
selection rules which allow the excitation of electrons that are spin polarized in their final
state [187] by making use of circularly polarized light1 in a suitable experimental geometry
as will be described below. This implies also a dependence on the excitation energy, since it
determines the final state into which electrons get excited. It is important to realize, that a
di↵erent spatial symmetry of the wavefunctions does in general not lead to a lifting of the
degeneracy of states with opposite spin. Thus, if one conducts a photoemission experiment
with opposite photon helicity (also: photon spin) with the intensity of the incoming beam
kept constant then the energy distribution curves will be the same for both photon spins.
But, if in addition the spin polarization is determined the state can appear polarized but
with opposite polarization for the two helicities.

Before e↵ects of the initial state come into play, it should be mentioned, that also the
third step in the three-step model of photoemission, the transmission through the surface,
may cause a circular dichroism in the angle distribution (CDAD) of the photoelectrons.
If the crystal is terminated by elements of a high atomic number Z, which is tantamount
to a strong spin-orbit coupling, then the transmission through the surface might be spin
dependent in terms of Mott scattering. Electrons with a specific spin are more likely to
be scattered in one direction while electrons with opposite spins get scattered into the
opposite direction. Thus, it is the same principle that works in a Mott detector in spin
resolved photoemission where in fact heavy elements (e.g. Au (Z=79), W (Z=74), Th
(Z=90)) are used as scattering targets. This e↵ect has first been observed and explained in
photoemission from Pt(111) [189, 190, 191] (Z=78) and was given as a possible explanation
for a strong dichroic e↵ect in the high-Tc superconductor Bi2212, a layered compound
terminated by Bi-O layers (Bi Z=83) after cleavage [192].

Another e↵ect worth mentioning, which is based on the broken inversion symmetry at
a crystal surface was reported by Zabolotnyy et al. [193]. In the theoretical description of
photoemission in Chapter 2 it has been argued that the vector potential A of the photon
field is assumed to be constant inside the crystal because of the translational symmetry
of the solid [9]. However, at the surface A has to smoothly evolve between its crystal
and vacuum value. Thus, rA is nonzero in the component perpendicular to the surface
and enters the matrix elements. It follows that surface localized states show a strong
dichroic e↵ect when excited with circularly polarized light, while bulk states do not and it
is therefore possible to distinguish the contributions [193].

The up to date most prominent and applicable e↵ect of circular dichroism of valence
and conduction band states is, however, observed in ferromagnetic systems. In addition to
the spin-orbit coupling which – once again – is essential for any spin dependent dichroism,
the states get split by the exchange coupling into majority |"i and minority |#i spin states,
where the former gain binding energy and the latter loose binding energy as compared to
the unsplit states. This in turn leads to the eponymous imbalance of |"i and |#i states

1Please note that also linearly polarized light may, in principle, cause a spin polarization in the final
state. See for example Ref. [188].
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since the latter get (for itinerant ferromagnets partially) lifted above the Fermi level, i.e.,
depopulated, while the former are shifted (partially) below the Fermi level and previously
unoccupied states become populated. The lifting of the degeneracy provides ground states
that are spin polarized and since the spin is conserved in the optical excitation process the
dichroic signal generated by the photoelectrons can be traced back to the polarization of
the initial states. This e↵ect was first observed in the 3d states of ferromagnetic fcc Co
thin films on Cu(001) [194] and independently in the 3d states of Fe(100) [195]. For a more
detailed introduction the reader is referred to the review article by Kuch and Schneider [12].

But this method entails a significant drawback. As mentioned above, the final states
cannot assumed to be free electron like. While the selection rules between initial and final
states are essential for the observation of the e↵ect, a detailed knowledge of the initial and
final states is essential for the interpretation of the e↵ect. For a definite answer, only a
comparison to fully relativistic band structure calculations and or fully relativistic one-step
photoemission calculations is necessary, which will in general not be available. The variety
of e↵ects that may cause a circular dichroism as described above, may superimpose each
other and further complicate the interpretation of the obtained data.

Nevertheless, the obvious advantage, namely the high e�ciency and resolving power
of conventional (spin-integrated) electron analyzers over the Mott detection, has and will
overcome these disadvantages in specific cases, especially when a detailed knowledge of the
spin-dependence of a band structure is needed and thus the e↵ort of fully relativistic band
structure calculations seems worthwhile.

To summarize, with the combination of spin-orbit coupling and initial state spin polar-
ization it is possible to conduct spin-resolved measurements without explicit spin detection.
For topological insulators, spin-orbit coupling is essential and the surface states are spin
polarized and naturally the question arises whether or not one can make use of circular
dichroism to determine the spin texture of the surface states.

7.2 Circular Dichroism in Bi2Te3

As has been discussed in detail in Ref. [12] the experimental geometry is crucial for the
observation of a dichroic e↵ect. The examples given there cover the reversal of the sample
magnetization, light polarization (linear and circular) and light incidence angle. In our
case only the reversal of the circular light polarization is of importance, since the samples
are nonmagnetic and the light incidence is not variable.

When can we expect a dichroism to occur in a specific sample? Let us assume that
a spectrum is measured with right circularly polarized light in a setup as sketched in
Fig. 7.1 a). The incoming light hits the sample under an angle � = 45� with respect to the
surface normal2 n which is along the z-axis. Electrons with wave vector k = (kx, ky, kz) are
emitted under angles ✓ and ⌘ according to the rules of in-plane momentum conservation
described in Chapter 2. Let us further assume that the crystal is oriented such, that the
x� z plane, rimmed with a green line, is a mirror plane of the crystal. Now we change to
left circularly polarized light. Since the polarization vector for circularly polarized light is
axial, we can reverse the polarization by reflection at the x � z plane. A dichroism may
now occur, if and only if, the experimental geometry is non-equivalent to the one before the
reflection. For example, an electron with momentum inside the mirror plane, i.e., ky = 0,

2Please note that the light incidence in our setup is additionally tilted above the x� z plane by 6�.
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Figure 7.1: Geometric origin for the observation of circular dichroism in the angle distribution.
The green plane is the mirror plane which transforms the incoming light from right circular (a) into
left circular (b) polarization. The k-vector of the photoelectron lies within the mirror plane, stays
una↵ected by the mirror operation and no dichroism can occur. In contrast, the k-vector in (c) has
a finite component pointing out of the mirror plane which gets reversed by the mirror operation.
Dichroism is expected for electrons inside the red plane which is the detection plane of our analyzer
as indicated in (d).
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⌘ = 0 is una↵ected by the mirror operation as shown in panel b) and thus the geometry
is equivalent to the one before the reflection. No dichroism occurs, and the plane is a
nodal plane [196]. In contrast, an electron with ky 6= 0 emitted under an angle ⌘ 6= 0 is
mirrored at the plane (ky ! �ky, ⌘ ! �⌘) and thus a dichroism may occur. This kind of
dichroism has a purely geometrical origin and may thus be viewed as trivial. As indicated
by the narrow rectangle in Fig.7.1, which represents the entrance slit of the analyzer, this
is the geometry used in our experiment, and thus the occurrence of a trivial dichroism is
expected, whereas the sign of the dichroism should be opposite for positive and negative
emission angles ⌘ as shown in panel d).
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Figure 7.2: Bi2Te3 raw data along the �K direction excited by a) linearly and b) right and c)
left circularly polarized light of h⌫ = 55 eV and at T ⇠50K. The e↵ect of the light polarization is
visible without need for di↵erence spectra and is strongest for the topological surface state within
the bulk band gap (see Chapter 4.1.2 for details on the electronic structure).

In Fig. 7.2 we show data obtained for the topological surface state of Bi
2

Te
3

obtained
with linearly (a), right circularly (b), and left circularly (c) polarized light. While the
intensity is highly symmetric for linearly (p or, in the present case, horizontally) polarized
light with respect to ky=0, in the case of right circularly polarized light the intensity
distribution is strongly asymmetric. Below3 the Dirac point energy (ED), i.e., at binding
energies smaller than ED, the branch at negative ky shows a much higher intensity than the
branch at opposite ky. Moreover, this branch has relatively gained intensity as compared
to linear polarization. For the latter the intensity is highest at ED just as if the intensities
of the two branches add up4. In contrast, in panel b) the negative branch has a similar

3Please note that below and above are referred to the binding energy scale and thus below is closer to
the upper edge of the figure as compared to ED and vice versa.

4In fact, the high intensity at ED is quite anomalous. Similar e↵ects have been observed in Bi2Se3 and
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intensity as the Dirac point. In panel c) the same picture is obtained but mirrored with
respect to ky=0, thus the positive branch is a lot more intense than the negative one.
Up to this point, our observation fits well with a trivial e↵ect based on the experimental
geometry.

Above the Dirac point energy the situation is more complicated. Despite the intermix-
ture of surface and bulk states the e↵ect is less well visible in the raw data. Di↵erences in
the intensity distribution are hard to recognize even more so, as another small asymmetry
constitutes as well. That one is already visible with linearly polarized light and can defi-
nitely be ascribed to the not highly symmetric experimental setup5 and is thus observed
also with circularly polarized light.

A better understanding can be gained if the normalized di↵erence spectrum between
right and left circularly polarized light is produced, according to Eq. 7.1. This is shown in
panel c) of Fig. 7.3. As expected, the dichroism is very strong for the topological surface
state below the Dirac point reaching asymmetry values of more than 80% and changes
sign when going from positive to negative emission angles. At the Dirac point we find zero
dichroism, in agreement with our geometrical consideration from above, since electrons with
zero momentum lie inside the mirror plane and stay una↵ected by the mirror operation.
At higher binding energies and away from normal emission the di↵erence plot shows again
dichroism which is still very pronounced even though much weaker than within the bulk
energy gap. The most important observation is, however, that the sign is reversed for
positive and negative emission but opposite as compared to the situation before the crossing
at ED. Please note, that before and after the crossing of the states at ED is referred to
the case that one follows the dispersion from the Fermi level to higher binding energies.
After the crossing at ED the topological surface state disperses first back to lower binding
energy and, hence, takes on binding energy values smaller than ED. The colors encoding
the sign of the dichroism are consistent with this peculiarity of the dispersion, i.e., red-
blue before the crossing and blue-red after the crossing of the topological surface state.
These observations already disqualify two possible explanations of the observed dichroism:
First, a dichroism which is caused by geometrical reasons only, would have the same sign
independently of the electrons binding energy as indicated in Fig. 7.1 d). In principal, a
final state e↵ect could reverse the sign of the dichroism even in such a trivial geometric
case. But that the reversal of the sign even holds at binding energies below ED after the
crossing rules out a final state e↵ect in this case.

Recently, Ishida et al. have reported a circular dichroism for Bi
2

Se
3

in a similar ge-
ometry as ours [198]. Their analysis is focussed on the nodal planes, i.e. planes of zero
dichroism, that show up in their results for the x�z plane in Fig. 7.1 a)-c) and additionally
for the y � z plane where we observe the strong dichroism. The Bi

2

Se
3

sample in their
case was aligned with the mirror plane of the crystal, i.e., the �M-z plane perpendicular
to the light incidence, in contrast to our setup where the mirror plane is perpendicular
to the detection plane. Ishida et al. argued that the additional nodal plane, which they
observe only for the surface state at binding energies close to ED occurs due to the two
dimensional confinement of the surface state. At binding energies close to EF dichroism
was observed, and has been explained as a geometrical e↵ect which does not vanish due to

were discussed as a final state interference e↵ect [197].
5A highly symmetric setup, for which such e↵ects are not expected is for example given when the light

incidence is normal to the crystal surface as well as the analyzer axis. In our case, the light enters under
45� with respect to the surface normal in the x� z plane of Fig. 7.1 a)-c) and is tilted by 6� above the x� z

plane.
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a surface-state-surface-resonance transition at higher k-values which is accomplished by a
higher penetration depth of the electron wave function into the bulk, so that the surface
state loses its surface confinement [198, 199, 79]. It should be stressed that the disap-
pearance of the dichroism in Bi

2

Se
3

is not compellingly in contradiction to our findings of
strong circular dichroism in Bi

2

Te
3

since two preconditions given by Ishida and co workers
for the observation of the null e↵ect do not exactly match with our setup. First, the mirror
plane should be perpendicular to the light incidence. In our case, the light incidence is
approximately within the mirror plane. The second precondition is that the de Broglie
wavelength �dB of the electron in the final state has to be larger than the width of the
confinement layer [198]. Theoretically, for the case of Bi

2

Se
3

it has been shown that the
surface state penetrates up to 2 quintuple layers deep into the bulk where it is isolated
from bulk states [79]. Assuming that a similar penetration can be expected for Bi

2

Te
3

,
it is straightforward to show, that the de Broglie wavelength for the final state energy of
photoelectrons in our case (⇠1 to 3 Å) is smaller than the penetration depth of the surface
state. Interestingly, Zabolotnyy et al. report a circular dichroism in YBa

2

Cu
3

O
7�� due

to the two dimensional confinement of electronic states and the non-vanishing term rA
in the matrix element for the same geometry as we use and at h⌫=55 eV [193]. But the
pattern of the sign change at the Dirac point observed for Bi

2

Te
3

is again not consistent
with the explanation given in Ref. [193] and it is thus the second explanation that can be
ruled out for our system.

In Chapter 4.2 it has been shown in terms of spin and angle resolved photoemission
that the topological surface state of Bi

2

Te
3

is highly spin polarized and that it shows the
reversal of the spin polarization in an energy distribution curve cutting through the state
before and after the crossing. Furthermore, in Ref. [81] it has been shown, that the sign of
the polarization gets reversed for a momentum distribution curve close to EF when going
from positive to negative emission angles. Together, while neglecting the warping e↵ects to
the spin orientation [19, 20] for a moment as well as possible finite polarization e↵ects [80],
we can conclude that the surface state shows exactly the polarization pattern expected for a
topological surface state and that the pattern observed in the circular dichroism resembles
the polarization pattern as well. In addition, Bi

2

Te
3

entails similar preconditions as in the
case of ferromagnets, namely spin-orbit coupling, which is rather strong as compared to
the 3d-transition metals, and spin polarization. The latter is, however, quite di↵erent as it
exists only in k-space, while the spin polarization in ferromagnets leads to the observation
of magnetism in real space. As a consequence, the symmetry properties of the system
get reduced which in some sense simplifies the interpretation of dichroism [12]. Hence,
the comparison of dichroic behavior with spin resolved photoemission lets the conclusion
that it is due to the spin polarization appear reasonable. However, it should be stressed
again that the dipole operator couples to the spatial part of the electron wavefunction
only and that therefore the interpretation of the results is not straightforward. In an ideal
Dirac cone, where the spin is locked perpendicularly to the momentum the interpretation
might be straightforward. But as soon as the influences of spin-orbit coupling [80] and
warping [19, 20], which we neglected above come into play, which by the way were named
as a motivation for the development of new, highly e�cient spin sensitive techniques,
an interpretation might get complicated; even more so when final state e↵ects become
important an aspect which will be discussed in the following section.
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7.3 Photon Energy Dependence of the Circular Dichroism

Recently, Wang et al. conducted circular dichroism measurements at a photon energy of
h⌫ = 6 eV using a pulsed laser source and a time-of-flight detector [155]. The dichroism
e↵ect is interpreted tacitly assuming transitions into a spin-degenerate continuum of final
states and, therefore, is sensitive only to the spin in the initial state of the photoemission
process. By measuring one spin component in the surface plane before and after rotating
the sample by 60� and applying symmetry arguments, the two in-plane spin components
hSxi, hSyi and the perpendicular component hSzi are determined [155]. Another measure-
ment on Bi

2

Se
3

at photon energies of 10 and 13 eV, using a conventional hemispherical
electron analyzer, led to similar results and a circular dichroism e↵ect of 30% [200]. Park
et al. concluded that for these photon energies a free-electron final state can be assumed
and for left- and right-circularly polarized light final states of di↵erent orbital angular mo-
mentum character are reached. The orbital angular momentum was found to be locked to
the momentum in a similar way as the spin, and the orbital and spin angular momenta
were determined to be antiparallel to each other [200]. Jung et al. reached a similar con-
clusion for Bi

2

Te
3

[156] with an excitation anergy of 8 eV. But in addition they found a
strong binding energy modulation of the dichroism with a reversal of its sign for the surface
state within the bulk energy gap and before the crossing at ED which they assigned to a
modulation of the orbital angular momentum due to the strong warping in Bi

2

Te
3

.
All of these studies (Refs. [155, 200, 156] aim at a determination of the spin texture

of the topological surface state to a greater or lesser indirect degree6. It should be noted,
that the two interpretations are not in contradiction to each other if the spin and orbital
momentum are locked perpendicular to each other.

In Fig. 7.3 we show selected di↵erence spectra of the dispersion of the topological surface
state of Bi

2

Te
3

obtained with right and left circularly polarized light at photon energies
of h⌫=21 eV (a), 25 eV (b), 55 eV (c) and 100 eV (d). All data have been obtained from
the same crystal and cleavage and it has been oriented with the �K direction along the
analyzer entrance slit thus the crystal’s mirror axis is perpendicular to the detection plane,
as described above. The temperature is set to ⇠ 40K. Small deviations in the binding
energy of the Dirac point are likely due to a small surface doping by residual gases in
the vacuum system and not due to a photon energy induced gating as observed for Cu
intercalated Bi

2

Se
3

which would have opposite sign [136].
At every photon energy a strong dichroism is observed for the topological surface state

within the bulk gap, whereas modulations are restricted to the strength, i.e., no sign
reversal is observed at energies below the Dirac point ED along each branch, in contrast to
the observations made in Ref. [156]. Except for 21 eV, the sign of the dichroism is reversed
after the crossing of the two branches at ED, i.e., ky=0 Å�1, and in all cases the sign reverses
when going from ky to �ky. Generally, the strength of the e↵ect is stronger at low binding
energies, where the surface state is isolated from bulk contributions. The higher binding
energy range has to some extent bulk-like contributions as well, which however seem to
show a similar dichroism. The deviations observed in panel a), i.e., the lack of a clear sign
reversal between positive and negative emission after the Dirac point crossings are likely
due to reduced data quality as the light spot might have entered a sample region where
di↵erently oriented facets are present resulting in a distortion of the obtained pattern.

6Since the dipole operator that provides the optical excitation does not couple to the electron spin itself,
a direct probe by circular dichroism is a priori excluded.
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Figure 7.3: Di↵erence spectra for excitation energies of h⌫ =21 eV (a), 25 eV (b), 55 eV (c) and
100 eV (d) along the �K direction. Obviously, sign and strength of the e↵ect are functions of the
excitation energy.

Yet, the whole color pattern gets inverted at 25 eV and 100 eV as compared to 55 eV
and for 21 eV at least for the in-gap region. Fig. 7.4 shows for hv <70meV the detailed
behavior of the dichroism strength for the positive (blue line and symbols) and the negative
(red line and symbols) branch with smaller photon energy steps extracted at three di↵erent
binding energies inside the bulk band gap, i.e., 70meV in a), 120meV in b) and 170meV
in c). The values have been averaged over the full width at half maximum of the respective
momentum distribution curves. Obviously, the strength of the e↵ect is strongly varying
with the excitation energy while the binding energy dependence is less pronounced. The
strongest e↵ect is observed at 55 eV where the dichroism amounts to ⇠80% which is more
than an order of magnitude higher than the e↵ects reported for ferromagnets (typically
3-5% [195, 194, 12]). A similarly strong e↵ect is observed at 27 and 30 eV, hence close to
the sign reversal at 25 eV and we can conclude that the sign change appears rather abrupt.
However, at 26 eV the overall dichroism strength is comparably small with values of less
than 20%. At 70meV binding energy, shown in panel a), it is even close to zero and both
branches appear to have the same sign. Thus the sign reversal takes place in a relatively
small energy window and appears as a smooth rather than a discontinuous transition. At
45 eV we again observe a change in the sign along the branches indicating that even more
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Figure 7.4: Strength of the dichroism of the topological surface state extracted at binding energies
of 70meV (a), 120meV (b), and 170meV (c) for excitation energies between h⌫=21 eV and 100 eV.
The e↵ect is strongest at h⌫ =55 eV. At 45 eV the e↵ect is rather weak at 120meV but the sign
changes between 70meV and 170meV. A similar but less pronounced behavior is observed at 26 eV.
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sign changes could be present that have not been recognized during the measurements.
From the described observations three statements are already obvious:

First, the conclusion by Jung et al. that the warping influences the orbital angular
momentum from the reversal of the dichroism sign along one branch [156] is highly mis-
leading as this sign change vanishes as a function of excitation energy. Even though they
have measured at a photon energy of 8 eV, hence below our minimum of 21 eV, our data
strongly suggests that by chance they were measuring close to a full sign reversal. It should
however be noted that e↵ects of the orbital angular momentum are not excluded by our
results, only the derivation from a sign change in dichroism is wrong.

Second, the inversion of the color pattern is in clear contradiction to the initial-state
model for the spin given in Ref. [155] because it would be tantamount to a reversal of
the initial spin during the photon energy scan. This is not possible, not even under the
assumption of a layered spin texture, which has been predicted to reverse in the first
atomic layers [177], because the photocurrent from the topmost atomic layer dominates in
the photoemission signal from the topological surface state. Thus it may cause a variation
of the strength, as the attenuation length varies with the excitation energy, but a complete
sign reversal is out of question.

And third, a similar problem arises with the initial-state orbital angular momentum
model given by Park et al.. Again, it is unclear how the probed initial state can depend
on the photon energy of the probing radiation.

7.4 Comparison to One-Step Photoemission Calculations

In order to further underpin these statements, we compare our experimental results with
fully relativistic one-step photoemission calculations coupled to ab initio theory which have
been carried out by our collaborators J. Braun, J. Minár and H. Ebert from the Ludwig-
Maximilians-Universität München.

The bulk electronic structure of Bi
2

Te
3

has been obtained by performing first-principles
calculations within the framework of the density functional theory using the generalized
gradient approximation to model exchange-correlation e↵ects. The spin-orbit coupling is
included in the self-consistent cycles of the electronic structure calculations. The results
of these calculations serve as a basic input for the one-step photoemission calculations, ac-
cording to the model described by Hopkinson, Pendry and Titterington [201], from which
the angle resolved photoemission intensity is obtained. A fully relativistic formalism, al-
lowing to consider in a natural way e↵ects in the photocurrent calculation induced by
spin-orbit coupling has been used because the practical calculation is based on the Dirac
formalism [202, 203]. The photoemission calculation itself is based on multiple-scattering
theory, using explicitly the low-energy electron di↵raction (LEED) method to calculate the
initial and final states for a semi-infinite atomic half-space. In this way the final state is
calculated by the best available single-particle approach as a so-called time-reversed LEED
state [204]. In line with this, the initial state is represented by the retarded one-electron
Green function for the same semi-infinite half-space. The photoemission calculations in-
clude matrix-element e↵ects, multiple scattering e↵ects in the initial and final states, the
e↵ect of the photon momentum vector, and the escape depth of the photoelectrons via
an imaginary part in the inner potential. These lifetime e↵ects in the final states have
been included in the analysis in a phenomenological way using a parameterized complex
inner potential V

o

(E) = V
or

(E)+ iV
f

(E). Herein, the real part serves as a reference energy
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inside the crystal with respect to the vacuum level. To account for impurity scattering, a
small constant imaginary value of V

i

= 0.004 eV was used for the initial state. A realistic
description of the surface potential is given through a Rundgren-Malmström barrier [205]
which connects the asymptotic regime z < zA to the bulk mu�n-tin zero V

or

by a third
order polynomial in z, spanning the range zA < z < zE . In other words zA defines the
point where the polynomial region starts whereas zE defines the point where the surface
region ends and the bulk region starts with the first atomic layer. The e↵ective z-dependent
surface barrier V is scaled with respect to the vacuum level Evac = 0.0 eV utilizing the
value of the work function � = 5.0 eV. The zero of the z scale lies in the uppermost layer
of atoms.
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Figure 7.5: Calculations for a reduced spin-orbit interaction for the example of h⌫ = 27 eV. The
spin-orbit coupling (SOC) is reduced from (a) 100% to (b) 90% and (c) 80%. This modifies the
inverted bulk band gap and moves the topological surface state in energy. The circular dichro-
ism remains very similar indicating a minor role of the electron spin polarization for the circular
dichroism.

The experimental geometry resembles the one from our experimental setup. The re-
sulting dichroism in angle resolved photoemission for h⌫=27 eV for the �K direction is
depicted in Fig. 7.5 a) using the same representation and, hence, compares very well to
the experimental results in Fig. 7.3: angle and binding energy dependences are very simi-
lar7. We first investigate the influence of the spin-orbit-coupling strength on the resulting
dichroism. This can be done in calculations by simply increasing the speed of light in the
Hamiltonian of the one-step-photoemission calculations, which in turn decouples the spin
and orbital momenta of the electrons in their final state. The idea behind this is that
the decoupling will reduce the e↵ect that the spin polarization can have on the circular
dichroism. To understand this one has to keep in mind that the dipole operator only cou-

7Please note that di↵erent binding energy ranges are shown in the experimental as compared to the
theoretical results.
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ples to the spin in an indirect manner through spin-orbit coupling. The results for 90%
and 80% of the full spin-orbit coupling that was used in Fig. 7.4 a) are shown in panels b)
and c). The first impact that one notes is a change in the binding energy of the Dirac
point, and to allow for a better comparison, we have chosen the binding energy range such
that ED is at the same height in all three panels of Fig. 7.4. The shift can be understood
simply by the fact that the spin-orbit coupling is the driving force for the band inversion
in the bulk electronic structure as has been discussed in detail in Chapter 4. As the band
gets narrower, the surface state shifts in energy. It should be stressed at this point that if
the spin-orbit coupling would be reduced further the band inversion and with it also the
topological surface state would disappear [64]. Interestingly, the strength of the dichroism
appears rather una↵ected by the reduced spin-orbit coupling as can be seen clearly by
comparing panels a)-c) to each other. This gives an additional hint that the contribution
of the spin to the circular dichroism is a minor one.
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Figure 7.6: Results from the one-step photoemission calculation. The calculated circular dichroism
changes sign between photon energies of a) 25 eV and b) 50 eV in qualitative agreement with the
experiment.

Next, we focus on the photon energy dependence. For this purpose one-step-photoemission
calculations for excitation energies between 21 eV and 50 eV have been carried out. At the
photon energies where the experiment shows the reversal of the sign, i.e., between 25 eV
and 27 eV the calculations do not reproduce the experimental results as can be seen by
comparing Fig. 7.5 a) with Fig. 7.6 a). However, since the photoemission calculations are
based on band structure calculations, in general, the final states obtained for higher pho-
ton energies often deviate from the experimental situation depending on the excitation
energy. In this sense, the results have to be viewed in a qualitative way. And, as depicted
in Fig. 7.6, there is a clear sign reversal observed at an excitation energy of 50 eV (b) as
compared to 25 eV in panel a). While being qualitative, this is, nevertheless, an important
confirmation of the experimental results shown in Fig. 7.3 and allows for the conclusion
that the sign change can be ascribed to the final states.

Similar results have been obtained recently for the L-gap surface state of Cu(111) [206].
In that case, the dichroism also depends strongly on the excitation energy. By analyzing
the final states a interrelation between strong circular dichroism and d-type final states
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was found [206]. We can conclude that the same mechanism underlies the results presented
here, i.e., a transition from a p-type initial state to d-type final states. However, a detailed
analysis of the final states is far more complicated in the case of Bi

2

Te
3

as compared to
fcc Cu, due to frequent backfolding; a result of the relatively small Brillouin zone along
the kz-direction, i.e., perpendicular to the (111) surface. An analysis of the initial state
obtained from the ab initio calculations shows that all three p-orbitals, i.e. px, py, and
pz contribute and this explains the stronger dependence on the final states concerning the
sign changes as compared to the pz-orbital that contributes to the sp-type surface state of
Cu(111). It should be noted, that the spin-orbit coupling is much weaker in Cu than in
Bi

2

Te
3

but nevertheless the observed dichroism is comparably strong [206]. In fact, strong
spin-orbit coupling is not in every case a precondition for the observation of a strong
circular dichroism in the angle distribution. This has been demonstrated also early on: In
graphite, transitions from the ⇡-band into d final states lead to dichroism asymmetries of
up to 60%, while the spin-orbit coupling is negligibly weak [207].
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Figure 7.7: The calculated spin polarization P of the photoemission from the topological surface
state is una↵ected by the photon energy. It reaches P ⇠ 80% at 25 eV in a) and 75% at 50 eV in
b).

Remembering the results from spin-resolved photoemission of Chapter 4, where it has
been shown that the spin polarization appears reduced compared to the theoretical expec-
tation of 100%, the question may arise whether final state e↵ects may also influence the
measured spin polarization in Mott polarimetry. This question can be negated by one-step
photoemission calculations as well if one plots the spin polarization instead of the circular
dichroism as it is shown in Fig. 7.7 for the same photon energies of 25 eV (a) and 50 eV
(b). Clearly, the sign of the spin polarization is not reversed and it is overall much less
influenced by the photon energy. At a binding energy of 100meV below the Dirac point
the polarization amounts to P=80% at 25 eV and P=75% at 50 eV. Hence, spin-resolved
photoemission is much less a↵ected by final-state e↵ects than the circular dichroism, and
is, therefore, a much more reliable method to deduce the electron spin in the initial state.
Furthermore, this result demonstrates that the experimentally measured spin polarization
of Pexp. =70% presented in Chapter 4 for Bi

2

Te
3

with 50 eV is pretty close to the maximum
value expected from photoemission theory.
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Summary of Conclusions

In summary, our analysis of the circular dichroism in Bi
2

Te
3

shows a strong dependence
of the sign and strength of the e↵ect on the excitation energy. In photoemission it is
typically assumed that for final state energies larger than ⇠10 eV the final states are free
electron like, and this assumption has been shown to describe photoemission intensities
from metal surfaces like Cu(001) [208] or semiconductors like GaAs(001) [209] reasonably
well. However, our analysis shows that e↵ects from non-free electron like final states
may arise even for excitation energies that are 10 times higher than those considered to
reach free-electron like final states, at least for excitation with circularly polarized light.
Further, it has been shown that the various initial-state models favoring the spin [155] or
the orbital angular momentum [200, 156] cannot be applied and the same holds for pure
geometric e↵ects. The circular dichroism has clearly been identified as a final-state e↵ect
experimentally and our observations withstand a comparison to one-step photoemission
calculations. While we are not able to rule out the suggestion by Ishida et al. [198] that
an additional nodal plane in the observed dichroism occurs due to the two dimensionality
of the surface state, our results show that this nodal plane does not persist at all photon
energies and that, therefore, the nodal plane could be a final state e↵ect as well.

Finally, we can answer the question raised in the title of this chapter: The circular
dichroism in the angle distribution of photoemission from topological surface state is not
capable of measuring the initial state spin polarization.



Chapter 8

Summary

This thesis is focussed on the electronic properties of the new material class named topo-
logical insulators. Spin and angle resolved photoelectron spectroscopy have been applied
to reveal several unique properties of the surface state of these materials. The first part of
this thesis introduces the methodical background of these quite established experimental
techniques.

In the following chapter, the theoretical concept of topological insulators is introduced.
Starting from the prominent example of the quantum Hall e↵ect, the application of topolog-
ical invariants to classify material systems is illuminated. It is explained how, in presence
of time reversal symmetry, which is broken in the quantum Hall phase, strong spin orbit
coupling can drive a system into a topologically non trivial phase. The prediction of the
spin quantum Hall e↵ect in two dimensional insulators an the generalization to the three
dimensional case of topological insulators is reviewed together with the first experimental
realization of a three dimensional topological insulator in the Bi

1�xSbx alloys given in the
literature.

The experimental part starts with the introduction of the Bi
2

X
3

(X=Se, Te) family
of materials. Recent theoretical predictions and experimental findings on the bulk and
surface electronic structure of these materials are introduced in close discussion to our
own experimental results. Furthermore, it is revealed, that the topological surface state of
Bi

2

Te
3

shares its orbital symmetry with the bulk valence band and the observation of a
temperature induced shift of the chemical potential is to a high probability unmasked as a
doping e↵ect due to residual gas adsorption.

The surface state of Bi
2

Te
3

is found to be highly spin polarized with a polarization value
of about 70% in a macroscopic area, while in Bi

2

Se
3

the polarization appears reduced, not
exceeding 50%. We, however, argue that the polarization is most likely only extrinsically
limited in terms of the finite angular resolution and the lacking detectability of the out of
plane component of the electron spin. A further argument is based on the reduced surface
quality of the single crystals after cleavage and, for Bi

2

Se
3

a sensitivity of the electronic
structure to photon exposure.

We probe the robustness of the topological surface state in Bi
2

X
3

against surface impu-
rities in Chapter 5. This robustness is provided through the protection by the time reversal
symmetry. Silver, deposited on the (111) surface of Bi

2

Se
3

leads to a strong electron dop-
ing but the surface state is observed up to a deposited Ag mass equivalent to one atomic
monolayer. The opposite sign of doping, i.e., hole-like, is observed by exposing oxygen to
Bi

2

Te
3

. But while the n-type shift of Ag on Bi
2

Se
3

appears to be more or less rigid, O
2
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is lifting the Dirac point of the topological surface state in Bi
2

Te
3

out of the valence band
minimum at �. After increasing the oxygen dose further, it is possible to shift the Dirac
point to the Fermi level, while the valence band stays well beyond. The e↵ect is found
reversible, by warming up the samples which is interpreted in terms of physisorption of O

2

.
For magnetic impurities, i.e., Fe, we find a similar behavior as for the case of Ag in both

Bi
2

Se
3

and Bi
2

Te
3

. However, in that case the robustness is unexpected, since magnetic
impurities are capable to break time reversal symmetry which should introduce a gap in
the surface state at the Dirac point which in turn removes the protection. We argue, that
the fact that the surface state shows no gap must be attributed to a missing magnetization
of the Fe overlayer. In Bi

2

Te
3

we are able to observe the surface state for deposited iron
mass equivalents in the monolayer regime. Furthermore, we gain control over the sign of
doping through the sample temperature during deposition.

Chapter 6 is devoted to the lifetime broadening of the photoemission signal from the
topological surface states of Bi

2

Se
3

and Bi
2

Te
3

. It is revealed that the hexagonal warping
of the surface state in Bi

2

Te
3

introduces an anisotropy for electrons traveling along the
two distinct high symmetry directions of the surface Brillouin zone, i.e., �K and �M.
We show that the phonon coupling strength to the surface electrons in Bi

2

Te
3

is in nice
agreement with the theoretical prediction but, nevertheless, higher than one may expect.
We argue that the electron-phonon coupling is one of the main contributions to the decay
of photoholes but the relatively small size of the Fermi surface limits the number of phonon
modes that may scatter o↵ electrons. This e↵ect is manifested in the energy dependence
of the imaginary part of the electron self energy of the surface state which shows a decay
to higher binding energies in contrast to the monotonic increase proportional to E2 in the
Fermi liquid theory due to electron-electron interaction.

Furthermore, the e↵ect of the surface impurities of Chapter 5 on the quasiparticle life-
times is investigated. We find that Fe impurities have a much stronger influence on the
lifetimes as compared to Ag. Moreover, we find that the influence is stronger independently
of the sign of the doping. We argue that this observation suggests a minor contribution of
the warping on increased scattering rates in contrast to current belief. This is additionally
confirmed by the observation that the scattering rates increase further with increasing sil-
ver amount while the doping stays constant and by the fact that clean Bi

2

Se
3

and Bi
2

Te
3

show very similar scattering rates regardless of the much stronger warping in Bi
2

Te
3

.
In the last chapter we report on a strong circular dichroism in the angle distribution

of the photoemission signal of the surface state of Bi
2

Te
3

. We show that the color pattern
obtained by calculating the di↵erence between photoemission intensities measured with
opposite photon helicity reflects the pattern expected for the spin polarization. However,
we find a strong influence on strength and even sign of the e↵ect when varying the photon
energy. The sign change is qualitatively confirmed by means of one-step photoemission
calculations conducted by our collaborators from the LMU München, while the calculated
spin polarization is found to be independent of the excitation energy. Experiment and
theory together unambiguously uncover the dichroism in these systems as a final state
e↵ect and the question in the title of the chapter has to be negated: Circular dichroism in
the angle distribution is not a new spin sensitive technique.
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[187] M. Wöhlecke and G. Borstel, Physical Review B 23, 980 (1981).

[188] B. Schmiedeskamp, B. Vogt, and U. Heinzmann, Physical Review Letters 60, 651
(1988).

[189] H. Oepen, K. Hünlich, J. Kirschner, A. Eyers, and F. Schäfers, Solid State Commu-
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