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a semimartingale approach
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Abstract.

In this paper we analyse semimartingale properties of a class of Gaussian
periodic processes, called convoluted Brownian motions, obtained by convo-
lution between a deterministic function and a Brownian motion. A classical
example in this class is the periodic Ornstein-Uhlenbeck process.

We compute their characteristics and show that in general, they are never
Markovian nor satisfy a time-Markov field property. Nevertheless, by en-
largement of filtration and/or addition of a one-dimensional component, one
can in some case recover the Markovianity. We treat exhaustively the case of
the bidimensional trigonometric convoluted Brownian motion and the more
dimensional monomial convoluted Brownian motion.

Key words and phrases : periodic Gaussian process, periodic Ornstein-
Uhlenbeck process, Markov-field property, enlargement of filtration.

AMS 2000 subject classifications : 60 G 10, 60 G 15, 60 G 17, 60 H 10,
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1 Introduction

In this note we focus our attention on a class of processes constructed as
convolution between a deterministic - possibly vector-valued - L?-function
and a Brownian motion. More precisely, for a (scalar) function ¢ in L? (0, 1),
we first define

t 1
X7 = / ot —s) st—i-/ o(l4+t—s)dBs, telo0,1], (1.1)
0 t



where (B, t € [0,1]) is a real-valued Brownian motion. We will call the
process X% a (scalar) convoluted Brownian motion.

Some properties of this process are immediate: for a given ¢, the process
X ¥ is a stationary, centered, Gaussian and belongs to the first chaos of B. It
is periodic on the time interval [0, 1] and its law is also time reversal invariant.
Less evident: in general a process of that type is neither Markovian, nor a
time-Markov random field and nor a semimartingale in its natural filtration.

One key point of the paper is to study the linear map ¢ — X¥. We
propose in Proposition 3.5, for ¢ smooth enough, a decomposition of X¥
as a dp-mixture of simple Gaussian processes (Z(r,-))rg[o,1] Which satisfy
interesting properties.

In particular, we prove that, for any r in [0, 1], Z(r, -) is itself a convoluted

Brownian motion associated with the indicator function of a suitable inter-
val. It also corresponds to the random concatenation of Brownian bridges,
see Proposition 3.4.
Then, when ¢ is differentiable, the processes X¥ and X ¢ are linked via
Equation (3.22). This key identity will be useful. It first permits to interpret
the particular case X®P(=*) as solution of the stochastic integral equation
(2.1) and to identify it as the celebrated periodic Ornstein-Uhlenbeck pro-
cess. When ¢ is a trigonometric function, due to the proportionality between
¢" and ¢, one derives that the pair of processes (X, X*") is solution of
an (autonomous) bidimensional system of stochastic integral equations, see
(3.27). We also consider the scalar process X := X when ¢ is the mono-
mial function z — z*. The process X* is not solution of an autonomous
stochastic equation, but since the derivative of z — z* is a monomial of order
k — 1, it makes sense to consider X* as the first coordinate of the (k + 1)-
dimensional process X* whose coordinates are X% ... X X% Indeed,
X is a multidimensional convoluted process and solves the autonomous
linear stochastic integral system (3.25).

Another central and difficult matter we are considering, is the Marko-
vianity of X%¥. In general it fails, but we will present some partial results:
the process X®*P(=*) is not Markovian but a time-Markov random field,
whose bridges coincide with the ones of the Ornstein-Uhlenbeck process.
To recover its Markovianity one has to enlarge the natural filtration of the
driving Brownian motion (B, t € [0, 1]) with the initial value of the process.
In Section 4, we introduce a class of multidimensional convoluted processes
X A% indexed by a matrix A and a vector ¢. We compute in Proposition 4.3
the covariance function of this stationary Gaussian process. Under two addi-
tional assumptions (1) and ($)2), X4? is a mixture of its bridges and solves
a linear SDE, see Theorem 4.9. The bidimensional trigonometric convoluted
Brownian motion is of the type X4 for suitable A and ¢ and Theorem 4.9
can be applied. In the case of the monomial convoluted Brownian motion,
the process X is also of the type X4 but (£31) is not satisfied. Adding a
one-dimensional component to the vector X**, we recover a Markov prop-



erty, see Section 4.5.1 for details.

The originality of our contribution is based on various representations
of convoluted Brownian motions and the use of initial enlargement of fil-
trations. This powerful tool of stochastic calculus permits to analyse them
pathwise, to show their semimartingale decomposition and their (lack of)
Markovianity.

2 A very special case:
the periodic Ornstein-Ulhenbeck process (PerOU)

Let (Bt € [0,1]) be a one-dimensional Brownian motion starting at 0
defined on a given probability space (€2, F,P) endowed with its natural fil-
tration F; := o(B,,r € [0,t]),0 <t < 1.

We are first interested in the process solution of the following stochastic
integral equation with periodic boundary conditions:

t

Y; :Y()JrBt—)\/ Yyds, te]0,1],
0

Y, =Y.

(2.1)

where A € R.

Notice that a solution to equation (2.1), if it exists, could not be a classical
strong one, since (Y;); is clearly not adapted to the filtration (F;): due to
the fact that the initial condition involves the final one.

Indeed this process is known in the literature as the periodic Ornstein-

Uhlenbeck process, here called PerOU. It exhibits various interesting proper-
ties and was therefore studied by several authors with different motivations.
E.g. its Gaussian aspect related to filtering problems is underlined by [8] or
its construction as solution of a linear stochastic differential equation with
time-boundary conditions appears in [13] or [4]. See also [14] for some gen-
eralisations including Lévy processes. The PerOU process is not Markov but
satisfies a time-Markov field property, as proved in [1]. This time symmetric
property, formalized by Jamison in [6] and also called reciprocal property
states that, given the knowledge of the process at any pair of times s and u
(with s < u), the dynamics of the process inside [s,u] and outside (s, u) are
conditionally independent. See [10] for a recent review on the relationship
between the Markov property and the reciprocal one.
Here we propose an alternative approach which is centered on the semi-
martingale decomposition with respect to an enlarged (grossissement de)
filtration, to overcome the adaptibility problem we mentioned above. We
will present this decomposition in Section 2.2, but before developing these
arguments we review the Gaussian point of view in the next section.



2.1 PerOU as Gaussian process

Although the process Y solving (2.1) is not adapted to (F¢)¢, it can be given
explicitly.

Proposition 2.1 1. The unique solution of (2.1) is given by

e~

Y= ——
E7 1 e

1 t
/ efk(tfs)dBS +/ e*)\(tfs)stj t e [0, 1] (22)
0 0

In particular, its boundary conditions satisfy

1 ! —A(1l—s

2. The process (Yi): admits the following representation, as the sum of a
past-depending part and a future-depending one:

1 t 1
Y, — A(t—s) Bs / —A(1+t—s) BS t 1.
= [ N ane = [ aB,, te0,1]
(2.4)
3. The process (Yy); is a stationary Gaussian process whose covariance
function
R(h) := Cov(Ys, Ysip) satisfies
1 —A(1—h) —)\h) 1 cosh ()\(h — 1/2))
_ = — . (2.
Rh) = Sxa—e <e e 91 sinh(\/2) (25)
The formulation (2.4) shows that the PerOU is a special element of the class
of processes defined by (1.1): Y = X% with ¢(s) := 1—«13*A e,

Proposition 2.1 is a particular case of a more general result, in which the
final condition of the process is any given function of the initial condition
Yp, and not precisely equal to it. This will be treated in Proposition 2.5
below, and proved there.

2.2 PerOU as a semimartingale

One notices in the identity (2.3) that the random variable Y is not Fo-
measurable. Consequently the process Y is not a (F;)-semimartingale. Any-
way, by (2.1) and (2.3), the process (¥;); solves:

e—>\

Y, —
P71 e A

1 t
/ e*dBg + By — A/ Yids, te€0,1]. (2.6)
0 0

An initial enlargement of filtration will therefore permit to consider (2.6) as
the integral form of a usual SDE, whose solution is a semimartingale with
respect to this new filtration. This is the subject of the present subsection.



Proposition 2.2 Let (G;)¢ be the filtration obtained by an initial enlarge-
1

ment of (Fi)r with the random variable / eMdB,. Then, there exists a
0

(Gt)i-Brownian motion B independent of Yy such that the PerOU process
(Y:): solves the SDE

B t t
Y, :Yo—l-Bt—)\/ Y;ds—k/ (%—efA(l*S)l/;)ds. (2.7)
0 0

sinh (A(1 — s))

Therefore equation (2.7) gives the (G;)-semimartingale decomposition of
the process Y solution of (2.6).

The proof of Proposition 2.2 is based on results concerning initial enlarge-
ment of the Brownian filtration (F%); by a one-dimensional random variable
¢ which is Fj-measurable and belongs to the first chaos of (B;). This initial
enlargement (G;); is the smallest filtration which satisfies the usual condi-
tions and such that:

e F; is included in G; for any ¢ € [0, 1]
e Gy coincides with the o-algebra generated by &.
Let us recall Théoreme I.1.1 in [2].

Lemma 2.3 Consider a random variable & belonging to the first chaos of

(Bt)o<t<1, i.e. § ::/ h(s)dBs where h € Lz((), 1). Then
0

B, — /Ot :2((83)) (/1 h(u)dBu)ds, 0<t<1, (2.8)

is a standard (Gi)¢-Brownian motion independent of £, where the function o

1
is given by o*(s) == / h?(u)du.

S

Remark that the stochastic integral between time s and time 1 appearing
in the formula (2.8) is indeed Gs-measurable:

/51 h(u)dB, = /01 h(u)dB, — /0 h(u)dB, = § — /0 h(u)dBy. (2.9)

Proof of Proposition 2.2: Choose h(t) := e in Lemma 2.3. One gets

Y
1
T ¢ and o%(s) = 5(62)‘ — €2*). Then the process defined by
—e

Et = B; — /t )\(/1 e_)‘(l_“)dBu> ds (2.10)
o sinh (A(1—s)) \J; ’

5

Yo =




is a (G;)-Brownian motion.
Set Y/ := Yy — e *1-1Y,. Using (2.2) and (2.3), we have:

1 1
v, = 1 /e)\(ls)dBS_e)\(lt)( e /eA(ts)dBS
0 0

1—e A
t
+/ e—A(t—s)dBS>
0

1
= / e =) 4B,
t

Thus, (2.7) is a direct consequence of (2.6), (2.3) and (2.10).

2.3 PerOU and its bridges

In this paragraph, we review the disintegration of the PerOU process along
its initial (and final) time marginal.

Proposition 2.4 Denote by v the initial Gaussian law L(Yy). Then, the

PerOU process is a v-mixture of its bridges, that is L(Y') = / L(Y*)v(dx),
R

where the x — x bridge, denoted by Y;**, solves the SDE

A

dX; = dBy—AXydt + ———
' PO sinh (A(1 - 1))

(:E - eiA(lft)Xt> dt, tel0,1],

Xo = =
(2.11)

Therefore the family of bridges (Y*%), of the PerOU process coincides with
those of an Ornstein-Ulhenbeck process.

Proof. (2.11) is a direct consequence of (2.7).
Now, consider the linear SDE with fixed initial condition x (but with free
final condition),

{dXt = dB, — A\X; dt, te]0,1], (2.12)

Xo =XT.

Its unique Markov solution XU is the celebrated Ornstein-Ulhenbeck pro-
cess with initial deterministic condition x, given by

¢
XtOU’m =ze M4 / e M=) 4B,
0
One has

1 t 1
XOUT_e= A1) x OUT _ oAy / e_’\(l_s)st—e_’\(:H— / e_ASst> = / e M=9)gB,.
0 0 t

6



Using (2.12) and (2.10), we get

t t
xOUs _ .\ &5 _)\/ Y OU g / ( ovz —/\(1—5)XOU,:L‘>d .
h T+D5y s S+ . sinh ()\(l—s)) 1 e s s

This leads to the identification of the process Y** as the x — x bridge of
the Ornstein-Ulhenbeck process XU, [ |

In other words, the PerOU process belongs to the reciprocal class of the
Ornstein-Ulhenbeck process, which is defined as the set of any mixture of
bridges of the Ornstein-Ulhenbeck process. This fact was already mentioned
and proved in [15], via a completely different way. In the latter paper, the
reciprocal class is characterized as the set of solutions of an integration by
part formula on the path space. In particular the PerOU process satisfies
the time-Markov field property.

2.4 Ornstein-Ulhenbeck process with prescripted time-boundaries

Let us now relax the periodic boundary conditions of the PerOU imposed
in (2.1) and replace it by Y7 = f(Yy) where f is a measurable real-valued
map. Consider the process Y; (if it exists) solution of the stochastic integral
equation

t

v, =Y0+Bt—A/ Yids, te0,1]
0

Y1 = f(Yo).

(2.13)

This class of pinned Ornstein-Ulhenbeck process was treated in [12] under
the assumption called (1) by the authors, which corresponds to the fact
that

z+— f(z)—e >z is a bijective map. (2.14)
Let us solve (2.13) under a weaker assumption than (2.14). First, since

t
t— / Yds is differentiable and B admits a finite quadratic variation, one
0

can use the generalised stochastic calculus (see [17]) to get
d(YieM) = eM(\Yzdt + dBy — \Y;dt) = eMdB;.

Therefore .
Y, = Yoe M + / e M=9)gB,.
0

Considering the boundary conditions, one obtains

1
Yi—e Yy = f(Y) —e MY = / e M=94B,. (2.15)
0

7



Suppose now that the map defined in (2.14) is surjective, then there exists
a measurable function g such that ( f—e d) o g = Id. Therefore one
solution to (2.13) is given by

1 t
Yy = e Mg( /0 e M794B,) + /O e M=9)dp,. (2.16)

Notice that, in general, it is no more a Gaussian process. Furthermore, the
above representation of solutions of (2.13) implies their non-uniqueness as
soon as the map (2.14) fails to be injective.

Take:

f(a) = e+ ol q(2) + (2 = )T ) (2) + (2 = 2) Tz, pof(2).
Then, both functions g; and go defined by

ay) = yh_ooy(y) + 2+ y) 1 1o (y)
and  g2(y) = YL oo o((¥) + 2=y, ) + 2+ Y140 (y)

solve the identity ( f—e d) o g = Id, which induces two non identical
solutions for the equation (2.13). Moreover one can randomize the choice of
the map ¢ in the following way to obtain infinitely many solutions: take any
random variable e with values in {1,2} which is measurable with respect to
Fi. Then

1 t
e—/\tge(/ e—)\(l—s) dBS) + / e—)x(t—s)dBS
0 0

is a also a solution to (2.13). Remark that, if € is a.s. not a constant, the
initial condition of this process is not o( fol e M1=9)dB,)-measurable. Let us
summarize these results in the following proposition.

Proposition 2.5 Take any measurable function f. If the map defined by
r — f(z) — ez is surjective, there exists at least one pinned Ornstein-
Ulhenbeck process solution to (2.13). It belongs to the reciprocal class of the
Ornstein-Ulhenbeck process since, for all x and y = f(x), its x — y bridge
satisfies the SDE

~ A

dX; = dB; - X; dt+ ——" _(y—e DX, ) at, telo,1
! ! b sinh (A(1 —t)) <y ¢ t) ’ 0.1,

Xo = I.

(2.17)

as the x — y bridge of the Ornstein-Ulhenbeck process does.



3 Convoluted Brownian motion

We now go back to the study of more general processes denoted by X¥,
admitting the representation (1.1) which is a kind of convolution between
a square integrable determinist function ¢ - not necessarily of exponential
type - and the Brownian motion.

Doing that, we consider processes which are no more in the reciprocal
class of the Ornstein-Ulhenbeck process but still belong to the first Wiener
chaos. Moreover we will see that the constructed processes - among other
interesting properties - are stationary and periodic.

3.1 Definition of the process X¥ and first properties
For any fixed ¢ € L? (0, 1), let us recall the definition of the process X%.

t 1
x¢ ::/ ot — 5)dB, +/ o(1+1—s)dB,, te01] (3.1)
0 ¢
The following proposition extends the properties enounced in Proposition
2.1.

Proposition 3.1 1. The process (X[ )o<t<1 is stationary, centered and

Gaussian with covariance function R?(h) := Cov(Xf,Xf+h) given by

h 1-h
R?(h) = /0 o(1 —u)p(h —u)du + /0 o(u)p(h +u)du. (3.2)

More generally, the covariance between X}f and X[ for s <t, ,p €
L?(0,1), is:

1

/Ogo(t—u)d)(s—u)du—l—/s go(t—u)w(l—l—s—u)du—i—/t e(14+t—u)p(14+s—u)du.

(3.3)
2. (X7 )o<t<1 is pathwise periodic and satisfies
X5 =X7 = /01 (1 — s) dBs. (3.4)
3. (X[ )o<t<1 is invariant under time reversal:
(xf,0<t<1) @ (xr0<t<1). (3.5)
It also satisfies
(xf0<t<1) @ (xr0<t<1), (3.6)

where @(t) := (1 —t) denotes the time reversal of the function p.



4. The linear map p + X[ is an isometry from L? (O, 1) in L*(Q) for

t
any fized t € [0,1]. Moreover, the linear map ¢ — / X?du has a
0
norm bounded by 1.
Remark 3.2 The reversibility (3.5) of the process X% holds not only in

law but also pathwise, in the following sense. X¥ admits the symmetric path
representation

Xf = I°(B)t)+I°(B)(1—1t), telo,1], (3.7)

t
where I¥(B)(t) := / o(t — s)dBs I¥(B) is a stochastic convolution and
0

(Et := B4 — By,t €0, 1]) is the time reversal of the Brownian motion B.
Indeed, for any f € L? (O, 1),

/01 f(s)dBs = /01 F(s)dB, = /01 £(1— s)dB,. (3.8)

Consequently,

1 1 1—t
/ o(l+t—s)dBs = / Lis>npp(1 +t —s)dBs = / @(t + s)dB;
t 0 0

which leads to (3.7).

Proof of Proposition 3.1: Since

t 1 1
/ ot — s)%ds + / o1+t —s)%ds = / o(s)%ds < +o0
0 t

0

then (3.1) defines a centered Gaussian process.

Identity (3.4) is a direct consequence of (3.1).

Let us calculate Cov(Xf, X;p) for 0 <s<t<1andy,ecL? (O, 1). Using
(3.1), we easily get:

Cov(X/, X;p) = /05 ¥(s —u)p(t —u)du + / Y1+ s—u)p(t —u)du

1
+/t (1 +s—u)p(l+t—u)du.

We now take ¢ = ¢ and we use the change of variables r := s — u in the
first integral, » := u — s in the second and r := 1 — v + s in the third one,
and reformulate the covariance as

1—t+s

er)p(t—s+ryir [ o =gt —s=ndr+ [ poplt = s+ e

S

1—t+s t—s
= / o(r)e(t —s+r)dr + / (1 —=7r)p(t —s—r)dr.
0 0

s

10



Setting h :=t — s, we get:

1-h h
R?(h) = /0 o(r)e(h + r)dr + /0 o(1 = r)p(h —r)dr.

The time reversibility of X% is a consequence of its Gaussianity and its
stationarity:

Cov(X{ ., X{ ) = R?(|t — s|) = Cov(X/, X¥$), 0<s,t<1.
The identity (3.6) is a consequence of
R?(1—h)=R®(h), helo,1]. (3.9)

Last, let us prove the assertion 4.:

1

B( [ xea)] <o [ B[0xe)au=e [ s

t
Thus the continuity of ¢ +— / X7 du follows. |
0

Examples 3.3 1. For p(u) = v, monomial of degree k € N, the corre-

sponding convoluted process, denoted by X, satisfies
¢ 1
ka:/ (ts)kst+/ (1+t—s)dB. (3.10)
0 t

In particular, for ¢ = 1 (monomial of degree 0) one has Xfo = B
which is a constant process.

2. When ¢ = Ijq15,a € [0,1], the corresponding convoluted process de-
noted by Z(a,-) is given by

Bt—‘,—l—a — Bt Zf te [0, a]

Z(a,t) = { Bi—g— B+ By if telal]. (3.11)

Qualitative and quantitative analysis of the process Z(a,-).

For a fixed, t — Z(a,t) is a stationary Gaussian process whose covariance
function, which we denote by R®, depends on the value of a.

l—a—h if hel0,d

f0<a<1/2, RYh):={ 1-2 if hela,1—a (3.12)
h—a if hell—a,l].
l—a—h if he[0,1—d

If1/2<a<1, R*h):=4¢ 0 if hel[l—a,a] (3.13)
h—a if hela,l].

11



Let us now study the time-Markov field property of this process, and the
structure of its bridges.

We only analyze the case a < 1/2 (that is a < 1 — a) since the study of the
case a > 1/2 is similar (replace a by 1 — a).

Proposition 3.4 Suppose a < 1/2. The process t — Z(a,t) considered
on the time interval [0,1] is not a time-Markov field, but a concatena-
tion of such ones on each time intervals [0,a], [a,1 — a] and [1 — a,1].

1
Indeed the bridges of the process EZ(a, -) between times 0 and a (resp.

between a and 1 — a, resp. between 1 — a and 1) are Brownian bridges.
1
Therefore the conditional law of (EZ(a,t),t € [0,1]) given the four values

Z(a,0),Z(a,a), Z(a,1 — a),Z(a,1) is equal to the law of a Brownian mo-
tion pinned at the four instants 0,a,1 — a,1. With other words, the process

(EZ(a,t),t € [0,1]) is a mizture of concatenation of Brownian bridges.
Proof. Consider a stationary Gaussian process with unit variance on the
time interval |0, 7| and an affine covariance function R. Following [1] Théoréme
2.2, (iii) (which improves and corrects a result presented by Jamison in [6]),
one knows that this Gaussian process is a Markov field on the time interval
10, T if and only if, on this interval, R is of the form

2
R(h)=1—-ch WithOSCST. (3.14)

e Thus, on the time interval ]0,a[, the stationary Gaussian process
Z(a,-) is a Markov field since the normed Gaussian process

- 1 1

Z(t) = Z(a,t) =

(t) —2(at) = ——
1

l1—a

(Bt41—-a — By),t €0, al,

satisfies the condition (3.14): ¢ = . See also the remark of

<

IS

Slepian in [18].

Let us compute its bridge between x at time 0 and y at time a (the
pinned values are then x = By_, and y = By — B1—,). We decompose
Z(a,-) as follows:

zZ1 (t) = DBiy1-q — Bi_4

Z(a,t) = Z'(t)+ Z*(t) where { (3.15)

Notice that the process (Z'(t),t € [0,a]) is a Brownian motion which
is independent from (Z2(t),¢ € [0,a]).

Let (Bog(t),t € [0,a]) be the # < y Brownian bridge which starts at
x and ends at y at time a. Recall :

(B0t € [0.al) = La+ -y — ) + Bi2(e),t € [0.a]) (3.16)
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and
L(BL(t) + BL(t),t € [0,a)) = L(V2BL(t),t € [0,a])  (3.17)

where B2 is a Brownian loop on the time interval [0, a] and B2 is an
independent copy of BJJ.

By construction,
L£(Z'(t),te[0,a]|Z (a)=2) = L(B,te0,a]|By=0,B,=z)
- E(gz L B(),t € [0,4]). (3.18)
On the other side, £(Z2(t),t € [0,a]) = L(Bi—a—t,t € [0,a]). Thus
£<Z2(t);t € [0,a]|Z%(0) = x, Z%(a) = 3)

= £(Bioa-,t €[0,0] |Bioa = 2, B1-2 = 5)
L

(a+ 2(3 —2)+ B, € [0.0]).
Consequently,
£<Z(t),t € [0,a]|22(0) = x, Z(a) = 2, Z2(a) = 3)
(et 2(2 3 2)+ VABE_o(t):t € 0.a]).
Finally, since Z(0) = Z2(0) and Z(a) = Z'(a) + Z?(a), one obtains:

E(Z(t),t €[0,a)|Z(0) =z, Z(a) = y)

On the time interval |a, 1 — a[, the study of the process Z(a,-) can be
reduced to the study of (Z(a, s+a),s €]0,1 —2a[); therefore it satisfies
the Markov field property if and only if 1 —2a < a < a > 1/3. In

that case, the condition (3.14) is always satisfied: ¢ = is always

smaller than

1—2a
Furthermore, we are able to compute explicitly the bridge of (Z (a,s+
a),s €]0,1 — 2a[) thanks a decomposition as above. Indeed

Z(a,a+ s) = By + By — Bays = By + Wi_q_s (3.19)
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where W is a Brownian motion, independent to B. By a similar ar-
gumentation as above, we conclude that the bridges of Z(a,- + a) on
]0,1 — 2a[ are Brownian bridges.

e On the time interval |1 — a, 1], the study of the process Z(a,-) can be
reduced to the study of (Z(a,s+1—a), s €]0,a[), which disintegrates
as

Z(a7 1—a+ 5) = B1 24+s+B1—B1ats = B12ats+ Wafs (320)

where W is a Brownian motion, independent to B. By a similar argu-
mentation as above, its bridges are Brownian bridges.

|
Recall that ¢ — X% is a linear map. In case the function ¢ enjoys some

mild regularity, one gets the following useful path representation of X¥(t)
as dyp-mixture of the processes Z(a,t).

Proposition 3.5 Suppose that ¢ is a right-continuous map with bounded
variation over [0,1]. Then

X7 = p(0)By + /1 Z(r,t)de(r), VYte]l0,1]. (3.21)
0

Proof.  Suppose first that ¢ is of class C!, then dp(r) = ¢'(r)dr and ¢’
is a continuous function. We have

/ (B_r — B¢ (r)dr = / (¢ — ) Budu — B, (o(t) — (0))

0 0 ;
— —o(0)B, + /0 o(t — w)dBy — By(o(t) — 0(0))
= —p(t)B; —1—/0 o(t — u)dBy,.

We proceed similarly with the second integral:

1 1
| Biori= By = [0+t = wBudu=Bi(e(1) - olt)
= —o(t)B; +<,0(1)Bt—|—/1 o(l1+t—u)dB,

~Bilp(1) - ¢(0)
= @(t)B: — p(t)B1 +/t ©(1 4+t —u)dB,.
By (3.1), we deduce
| Bier =By 01+ [ (Brris = B r)r = —plt) 51+ X7
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Since p(t) = ¢(0) —i—/o o' (r)dr, we get(3.21).

When the function ¢ is no more of class C'!, the representation remains valid
as long as ¢ is of bounded variation over [0, 1], via limiting procedure and
the continuity of ¢ — X7. |

With other words the map ¢ — X% admits the following decomposition:
X% = x¢0 4 x¢=¢0) —< B1§y — (Z(-, 1)), >

where the derivative should be understood in the sense of distributions and
< p, @ > means that the distribution p acts on the function ¢.

3.2 Comparison between the processes X¢ and X%

It is of interest to relate both processes X% and X% when  is differentiable
in L2(0,1).

Proposition 3.6 Suppose that the function ¢ belongs to the Cameron-Martin
space. Then

t
X7 =X+ (0(0) — (1)) B + / X% ds, 0<t<l. (3.22)
0

Proof of Proposition 3.6.
e Suppose first that ¢ is of class C2.

Then we use as tool the following stochastic Fubini theorem (cf Exer-
cise 5.17, Chapter IV in [16]). Let ¢ be in L*([0,1]?), then

/01 (/Olw(u, s)dBS)du: /01 (/Olz/;(u,s)du)st. (3.23)

Using (3.1), we have:

t
/ X du = Ar(£) + As(t)
0

where

Ar(t) == /Ot (/Ou gp'(u—s)st)du, Ag(t) == /Ot (/ul go’(l—i—u—s)st)du.

Using (3.23), we get:
Ai(t) = /0< gp’(u—s)du)st
= /0 (o(t = s) — »(0))dBs
= OB+ [ plt—s)aB.
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We proceed similarly with As(t):

Ax(t) = /01 (/OSM ' (1+u— s)du)st

= /Ot (/Osgol(1+u—s)du>d35+/tl (/Otgp’(l—i—u—s)du)st
¢ 1
= [ e et —9)an+ [ (o415 = o1 = 5)aB,
= p(1)B; — /01 o(1 —s)dBs + /t1 o(1+t—s)dBs.
Consequently,

t 1 t
| X = (o) = o)~ [ o1-saB.+ [ ol s,
0 1 0 0
+/ o(1+t— 5)dB,.

The result follows from (3.1) and (3.4).

e Suppose now that ¢ belongs to the Cameron-Martin space, that is
¢ is differentiable and the two functions ¢ and ¢’ are elements of
L? (0, 1). Let (1n)n>1 be a sequence of functions of class C! de-
fined on [0,1] and converging to ¢’ in L?(0,1). Define ¢, (z) :=
©(0) + [3 ¥n(u)du, ¥ x € [0,1]. Since ¢ is integrable, ¢(x) :=
©(0) + [y ¢'(u)du. Consequently,

1
sup [on(a) = 9(a)| < [ ) = o'l

0<z<1

Since ¢, is of class C?, then
t
X = X8 + (pa(0) — pn(1)) By +/ Xhds, 0<t<1.
0

By assertion 4. of Proposition 3.1, each term converges in L?(£2) as n
grows, which implies (3.22). [ |

1
Examples 3.7 1. Take p(u) = T o e M as in Section 2. Then ¢ =
e

—Ag. According to Proposition 3.6, since ¢(0) — (1) =1, the process
Y = X% satisfies

t
Yth()+Bt—/\/ Y, du
0

and we recover the equation (2.1). Reciprocally, suppose that the pro-
cess X¢ satisfies X¥ = —AX¥ for some reqular function . This
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identity is equivalent to X?' T = 0. Then, the isometry property
proved in Proposition 3.1 implies that the function ¢ itself solves the
differential equation ¢’ + Ao = 0, which means that it is proportional
to u s e,

This case is the unique one where the integral equation (3.22) on X%
is indeed autonomous, due to the proportionality between ¢ and ¢'.

2. With the notation introduced in Examples 3.3, the convoluted pro-
cess X% associated with the monomial of degree k satisfies the non-
autonomous integral equation

t
XE =X - Bk [ X3 Vas (3.24)
0

To obtain an autonomous equation, one has to consider the RFTL-
valued process X% whose coordinates are X ... XH X1 which
then satisfies the linear integral system

1
: t
X — x# _ B, |t / AX ds, (3.25)
0
0
0 k 0 0
0 0 k-1 0
where the (k+1) x (k+1) matriz A is given by ] oo
0 0 1
0 .. 0

This more general vector-valued framework will be studied in Section

4.

3. The random variable (1 — e™)Y; defined in the first example can be

n k

obtained as limit in L*(SY) of the sequence Z o
k=0

to infinity. It is a consequence of Proposition 3.1 and the fact that

- (_)\)k tk _ ytn o - (_)\l’)k
kZOk!X = X" where ¢y, (x) .—kzo T

ka when n tends

3.3 The trigonometric convoluted Brownian motion

Take now for function ¢ a trigonometric one, either x — cos(Ax) or x
sin(Az), where A is a real number.

t 1
X{s = / cos (A(t — s)) dBs + / cos (A(1+t— s)) dBs,
0 ¢

A t 1 (3.26)
X = /0 sin (A(t — s)) dBs + /t sin (A(1+¢ —s)) dBs.
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In a more elegant way, one considers the complex-valued process Xi‘ = X5 i X
which satisfies
1

t
X} = / exp (iA(t —s)) dBs + | exp (iA(1+¢—s)) dBs
0 t

1 1
= /0 exp (iA(t — s)) dBs + (exp(iX) — 1) /t exp (iA(t — s)) dBs.

Let us first analyze one special case.
1- The periodic case, \ € 277Z.

For A = 2km, k € Z*, X* admits a simple representation.
1
X2k — / exp (i2km(t — s)) dBs
0
1
= exp(i2kmt) / exp(—i2kms) dBs = exp(i2knt) X2FT.
0

This process is degenerated - as the product of a determinist time function
by a fixed random variable - and it is 1/k-periodic: ijﬁ = X2k Therefore
k

the stationary centered Gaussian process X%, real part of X2 (resp. X
the imaginary part of X2#™)  disintegrates as a mixture of two Gaussian
random variables:

1 1
X[ = cos(2k7rt)/ cos(2kms) dBs + sin(2k:7rt)/ sin(2kms) dBs.
0 0

Moreover the above two stochastic integrals are independent. Thus follow-
ing [5], p.524 and [6], Theorem p.1627, X (resp. X*") is a Markov field
on the time interval [0, ﬁ[ Nevertheless it is not a Markov field on the full
time interval [0, 1].

2- The general case, A & 2nZ.
When the function ¢ is trigonometric, there is no proportionality be-
tween ¢ and ¢’ but there is proportionality between ¢ and ¢”. Indeed,

following (3.22), the pair of processes (X, X*1) satisfies the autonomous
system of equations:

1 t

X5os = / cos (A(1 — s))dBs + (1 — cos ) B; — )\/ X8 ds,

01 ¢ 70 (3.27)

Xpin = / sin (A(1 — s))dB, — sin A B; + )\/ X% ds,
0 0

or, equivalently, the complex-valued process Xf‘ satisfies the equation:

1 A t
Xg:/ el/\(l—s)st—i-(1—6”)315—1—)\1'/ X ds. (3.28)
0 0
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1
Notice that ﬁxﬁ satisfies a similar equation to (2.1), where the pa-
—e

rameter A is replaced by —i\. We have proved the following.

Proposition 3.8 The processes X° and X*™" are centered, stationary, pe-
riodic Gaussian processes. Their covariance functions satisfy

RS(h) = %(COS (AME = h)) +cos (A(3 + h))) + hsin (%) sin (A(h — 2))
+cos(2)\h)
Rs™(p) = —Sing\/m (COS (A2 = h)) + cos (A(5 + h))) + hsin (3) sin (A(h — 3))
_|_cos(2)\h)'
(3.29)
Proof. By (3.2)
h 1-h
R(h) = /0 cos (A(1 — u)) cos (A(h — u))du + /0 cos(Au) cos (A(h + u))du

cos(a + b) + cos(a — b)
2

Using the identity cosa cosb = one gets

h h
Li(h) = ;/0 cos(/\(1+h—2u))du+;/0 cos (A(1 — h)) du

— %(sin (AL + h)) —sin (A(1 — h))) + gcos (A1 = h)).

In a similar way

1 1k 1 1k
ILi(h) = = / cos (A(2u + h)) du + / cos(Ah) du
2 Jo 2 Jo
1/, . —
= a(sm (A2 =) - sm()\h)) + cos(Ah).
Therefore
COS 1 : . . .
RS(h) = ﬁ(sm (M2 = h)) = sin (A(1 = ) +sin (A(1 + h)) — sm()\h))
h cos(Ah)
+§<COS (A1 =h)) - COS()\]”L)) e
Using the identities
sina — sinb = 2sin a—b cos a—21—b7 cosa — cosb = —2sin - bsin a—2kb’

one obtains the first equality of (3.29). Let us prove the second equality of
(3.29).

h 1—h
RM(h) = /0 sin (A(1 — u)) sin (A(h — u))du + /0 sin(Au) sin (A(h + u))du
=: Jl(h) + Jz(h)
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cos(a — b) — cos(a + b)
2

Using the identity sina sinb = one gets

Ji(h) = gcos (A1 = h)) + ﬁ(sm (M1 = h)) — sin (A(1 + h)))

" Ta(h) = 2 3 " cos(Ah) + %(sin()\h) —sin (A2 — h)))).
Therefore
Rn(R) = %(sin (A1 = ) — sin (A2 — R)) + sin(Mh) — sin (A(1 + h)))
+ g<cos (AL = ) = cos(Ah)) + cos(Ah)
= —Sin(;)\\/2)<cos (A(% — 1)) + cos (A(% +1))
thsin (3)sin (A — 1)) + <2,

As in Section 2, the process X* admits a semimartingale decomposition
in a filtration enlarged by two initial conditions. This is a particular case of
a more general question we address in the next section.

4 Vector-valued convoluted processes

4.1 General properties

We extend here the definition (1.1) of convoluted Brownian motion to the
multidimensional case. Let A be a n X n matrix and ¢ a vector in R". We
introduce the R"-valued process

t 1
X = / et=)44 dB, + / eUH=94¢ dB,, tel0,1], (4.1)
0 t

where (Bt, t €0, 1]) is as before a standard real-valued Brownian motion.
1

Remark that if n =1, A = —X and ¢ = 1T on then X4 is the PerOU
e

process Y defined by (2.4).
As in (2.2), the process X*? admits indeed another representation and
solves a stochastic linear integral system.

Proposition 4.1 1. The process Xf"p,t € [0,1], admits the following
representation:

1 t
X0 = oA / 4G dB, + (Id — &) / 4G dB,. (4.2)
0 0
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In particular it is 1-periodic and
1
X6 = XA / e1-944 4B (4.3)
0

2. Reciprocally, the unique solution of the integral system
1 t
Z :/ e1=9)44 4B, +(Id—eA)<;5Bt+/ AZ,ds, tel0,1]. (4.4)
0 0

is the process Z = X4,

Proof. Identities (4.2) and (4.3) are consequences of (4.1). The proof of
the second assertion is omitted since it is a direct generalization of Section
2.4. [

Remark 4.2 1. Equation (4.4) is not a classical stochastic integral sys-

1
tem since the r.v. / e(Ht*S)Ad) dBy is not Fy-measurable.
0

2. We recover the two-dimensional process (X, X5™)* defined by (3.26)
setting ¢ = (1,0)* and A = X < (1) _01 > Indeed, since

A [ cos(At) —sin(At)
e = ( sin(At)  cos(At) > (4.5)

then equation (4.1) and equation (3.26) are identical.

Clearly the vector-valued process (X;4 ’d))te[o,l} is centered and Gaussian. It
is therefore characterized by its covariance matrix done in the proposition
below, which will permit us to develop several examples in the next Section
4.2.

Recall first that if X; and X5 are two R™-valued centered Gaussian vectors,
their covariance is the n x n-matrix defined by: Cov(Xy,X3) := E[Xng]
In particular, if £1, & are any vectors in R", then

&l Cov(X1,Xs) & = Cov (X1, &Xa). (4.6)

To simplify the notations, we define the function p from [0, 1] into the set of
n X n-matrices by

t
p(t) ::/0 e“Aogre N du, tel0,1]. (4.7)

Proposition 4.3 The process (Xf’¢)te[0,1] is Gaussian and stationary. More-
over, for any 0 < s < s+ h <1, we have:

R (h) := Cov (X249, X20) = e p(1 — h) + p(h)el=M4" (4.8)
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Proof: Let & € R",i € {1,2}. We deduce from (4.1) that

XM = /O el dB, + / Lge0HAg ap, 0<i<1.
t

Therefore

EXA% = X% where  ;(t) :=Eetp, te]0,1]. (4.9)
Relation (4.6) implies, for 0 < s < s+ h <1,

& Cov(X29,X249) & = Cov (X1, X72,).

We now apply (3.3) with ¢ = ¢1 and ¢ = pa:

Cov(X$, X722, = /Os wa(s —u)p1(s +h —u)du

s+h
+/ w2(1+s—u)p1(s+h—u)du

1
+/ wa(1+s—u)p1(1+ s+ h—u)du.
s+h

Proceeding as in the proof of Proposition 3.1, we get:

1-h h
Cov(Xfl,X;pjh) = / wa(r)p1(h +r)dr + / w2 (1 —1)p1(h —r)dr.
0 0

Using (4.9) and (4.6) leads to:

1-h h
Cov(X?’(ﬁ,Xfﬁl) :/ e(h”)Aqbd)*e"A*dr—F/ e(h_T)AngS*e(l_T)A*dr.
0 0

The change of variable u := h — r in the second integral gives:
) N 1—h i
Cov (X ’¢,Xsﬁl) = ehA(/o e pgrer A dr)
h
+ ( / eTA¢¢*€TA* Cl'l“) 6(17h)A* )
0

Remark 4.4 1. Inthe casen =1, A= —X\ and ¢ = 7

T n 1t 18 easy
to check that Identity (4.8) corresponds to (2.5).

2. In the particular case h =0, then (4.8) leads to the covariance matriz
K¢ (which does not depend on t) of the vector Xf’d) :

1
KAS — / A b A s,
0
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3. The covariance function R has the following structure
RA(h) =o(h) + (1 — h)*, (4.10)
where the matriz-valued map o is defined by

o(h) :==eMp(1—n), helo,1]. (4.11)

4.2 Some illustrating examples
4.2.1 The trigonometric convoluted Brownian motion

We begin with the two-dimensional convoluted process (X, X5)* defined
in (3.26) through the trigonometric functions sin and cos. We already ob-
served in Remark 4.2 that

(Xcos, Xsimy* — XAe with e := (1,0)* and A := A ( (1] _01 ) .
We also computed in Proposition 3.8 the covariance terms Cov (X o8, Xtcos)
and Cov (X5™, X5"). Anyway the formula (4.8) permits to go further com-
puting the mixed covariance terms of the form Cov (XgOS,thin). Indeed,
using (4.5), one obtains for the explicit computation of the matrix-valued
map p defined in (4.7):

t N sin(2At) 1 — cos(2At)
2 4\ 4\

p(t) =
1 —cos(2At) t  sin(2X)

4 2 4N
Then, the matrix o(h) defined by (4.11) has the form

[ ou() o)
“””‘(ai(h) a§§<h>>

where
1—-h . 1
o12(h) = — sin(Ah) — o o8 (A2 = h)),
1—-h . 1 1
o91(h) = 5 sin(Ah) — o o8 (AM2—=h)) + oY cos(Ah).

We thus deduce:

0'12(h) —|-O'21(1 - h) for h > 0

cos sin _
COV(XS ’ S+h) o { 012(1 — h) + Uzl(h) for h S 0. (4'12)
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4.2.2 The monomial convoluted Brownian motion

We now analyze in more detail the (k + 1)-dimensional convoluted process
X = (Xt o X X10)* defined in (3.10) as convolution with monomials
of degree lower than k (or, equivalently, defined by the linear system (3.25)).
We set

0 k 0 0
00 k—1 ... 0
ek+1:=(0,---,0,1)" and A := |: P (4.13)
0 1
_O .

Proposition 4.5 The process X% coincides with the vector-valued convo-
luted process X 4¢++1 where A and ey, are defined by (4.13).

1. Let p(t) be the associated (k+1) x (k+1)-matriz defined by (4.7). The
entries of p(t) are monomials in t and satisfy:

B 1
2k +3—(i+7)

pi;(t) gPR3=04) 1< j<k+1,0<t<]1.

(4.14)

2. The covariance matriz of X* | denoted by R* (h) and defined in (4.8),
has as (i, j )-entry the following polynomial in h of degree 2k + 3 — (i 4 j):

h A ' ) |
Rzﬁf(h) :/ sk+1—1(1—h+s)k+1—Jd8+/ (h+1_s)k+1—z(1_s)k+1_]ds
0 h
(4.15)
where 1 <4,j <k+4+1and 0 < h < 1.

Proof. 1) We first prove that X* satisfies (4.4) with A and ey as
above. Then part 2 of Proposition 4.1 will imply X = XA.er+1,
According to (3.25), it remains to prove that

1
X = A / e =94, 1 dB, (4.16)
0

and  (e? — Id)epyr = (1,---,1,0)". (4.17)

a) Let us first compute e*4 for any real number ¢. Noting that A is nilpotent
with index of nilpotency k + 1, then e/ is a polynomial in ¢ of degree k.
For any 1 <14,5 < k+1, it is convenient to introduce the matrix E%J whose
entries vanish excepted the (7, j)-one which is equal to 1 (E} = 1(; ;(k,1)).
We claim that:
oA _ zk: kz_:l (k - Z)  pitLiti+l (4.18)
i . .

i=0 j=0
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k—1
Indeed, A= (k—1)EFHH2, (4.19)
=0

Let I'(t) be equal to the right hand-side of (4.18).
It is clear that I'(0) = Zk'H E% = Id. Relations (4.19) and (4.18) imply:

-3

1=0 j=01

k—i k—1 .
( ) )t]EH-l H-QEH-l H—j—i—l
=0

But B2 pIALTL — plrbititly, o gy and [ > 0= i > 1. Setting

i :=1i—1j :=j+1, after some easy calculations we have:
k—1 k—i’
ZZ( > t]’flElJrlerjJrl
'=04'=1

On the other side, taking the t-derivative of T'(¢) leads to:

dr i
E(t) = >

The second equality follows from : k —¢ > 1 =i < k — 1. Finally, %(t) =
AT'(t) and I'(0) = Id, therefore (4.18) holds.

b) Let e; := (0,---,0,1,0,---,0)* be the i-th basis vector of R¥!. Since
Ei’l€k+1 = ][{l:kJrl}ei, then

k+1
eepir = Zt’”l_iei. (4.20)
i=1
k+1
In particular for ¢t = 1, eAek+1 Z e; = (1, 1,0)* 4+ exr1. That implies

(4.17).
¢) We now prove that the entries of the matrix p(¢) are monomials in ¢ and
satisfy (4.14) for 1 <1i,j5 <k+1and 0 <t <1. By (4.20),

k+1
* k+1—1 er
€k+1€ E u i
which implies
uA * uA* __ 2k+2 i—7 k% %
€ Ck+1€k41€ - E , ]ez €;-
1<, j<k+1
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Since e;ef = E% | then e“AekHe’,;He“A* = Z u2k 2=+ g
1<i,j<k+1

Integrating this identity in u over the interval [0,¢] and using (4.7) gives

(4.14).

2) We now prove (4.15). Let 0;;(h) be the (i, j)-entry of o(h). Using (4.11),

(4.18) and (4.14), we have:

ket .
k—i+1 1 I—i 2+3—(1+4)
(b)) = R (1 —h .
7ij(h) ;( I—i >2/<:+3—(l+j) ="

For i, j, h fixed, we define the polynomial function gy by

k+1 .
k—i+1 1 I—i  2k+3—(I+j
= —h i j)
9n(2) ZZ< - >2k+3—l—j v

Then

k+1 .
k—i+1\ ;. s
g;l(x) _ Z( o )hl 22k+2 (I+7)
l=1i

k+1—1 .
_ [ ZZ (k -1+ 1) hmxk+1—i—m:| L1
m=0 m
(h+x)k+1 % k+1 —J.
Note that g,(0) = 0, since, for any j < k+1,2k+3—-(k+1+j) > 1.

Therefore gp,(z / (h+ s) k+1 igh+1-5 I and
1-h . .
oij(h) =gn(l —h) = / (h+ s)kH1=ight1=dgg.
0

Finally (4.15) follows from (4.10). ]

4.3 The semimartingale representation of X4

According to (4.3), the initial value of the process XA is given by
1
X0 = / h(s)dB(s) where h(s) =174, (4.21)
0

Since this R™-valued random vector is not Fg-measurable, generalizing the
approach developed in Section 2.2, we propose to enlarge the filtration (F;);
with XSW to obtain a semimartingale representation of X ¢, Therefore we
need an n-dimensional version of Lemma 2.3. This is done in [2], Théoréme
II.1, which we now recall.
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Lemma 4.6 Consider a R"-valued random vector & = (&1,--+ ,&n)* whose
coordinates belong to the first chaos of (Bt)o<t<1, each of them represented

1
as & = / hi(s)dBs, where h; € L?(0,1). Denote by h the R™-valued
0

map t = h(t) = (hi(t), -+, ha(t))". Let (Gi)¢ be the initial enlargement
of the filtration (Fy); by §&. Suppose that, for any t € [0,1], the matriz
1

H(t) := / h(u)h(u)*du is invertible. Then, defining the matriz-valued
t
map G by

G(t,u) == h(t)*H(t) 'h(u) Tio<i<u<ty (4.22)

one gets that
t pl
W, = —B, +/ / G(s,u)dBy,ds, 0<t<I, (4.23)
0 Js

is a (Gt)¢-Brownian motion which is independent of €.

Proposition 4.7 Suppose that the matriz A and the vector ¢ satisfy the
following assumptions:

(H1) The matriz e — Id is invertible

(92) Span(A¥¢, k € N) = R".

Let (Gt) be the filtration obtained from the initial enlargement of the Brow-
nian filtration by the random vector XOA’¢.

1. Define a real-valued bounded variation process V' by
t
Vi = /0 ¢ eIV H(s) (e — Id)~? [e(l—”f‘xg‘vd’ — X\ ds.

Then the real-valued process
By == -Bi+V; (4.24)
is a (Gi)¢-Brownian motion independent from XSW.

2. The vector-valued process Xf"ﬁ admits the following semimartingale
decomposition:

t

XM = X (1d-eNo Bt [ AXDO s (1d-eNo Vi, te 0,1
0

(4.25)

We begin with a preliminary result.
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Lemma 4.8 Under assumption (92), the matriz
1 *
H(t) ;_/ U= g e(1=504% st € [0,1] (4.26)
t

is invertible for any t € [0,1].

Proof of Lemma 4.8: We prove in fact that H(t) is invertible if and only
if Span(A*¢, k € N) = R™. Let v € R™. Then,

1
u*H(t)u:/ (u*e(lf‘s)A¢)2ds.
¢

Note that s — e(!=94¢ is a continuous function, therefore u*H(t)u = 0 if
and only if

uwehp =0, Vsel0,1—t. (4.27)
Sk
Since u*e*d¢p = Z u* AF ¢ ik then (4.27) is equivalent to
k>0 )
wAkFp =0, VkeN. (4.28)

It is clear that (4.28) holds true if and only if Span(A¥¢, k > 0) C u*, which
completes the proof. |

Proof of Proposition 4.7: First, according to Lemma 4.8, the matrix
H(t) is invertible.

Then, since the random variable Xé’d’ satisfies (4.3), it has coordinates which
belong to the first chaos of B, and we can apply Lemma 4.6: the process

Wy := —B; + /0 t vs ds is a (G;)-Brownian motion which is independent of
XSW, where v, 1= /1 G(s,u) dBy, 0 < s < 1. According to (4.22),
Gls,u) = 6194 F(g)Lel-mAg
and then
vs = ¢* eI H (5)7! /1 e=w44 dB,. (4.29)

S

We decompose the above stochastic integral as:

1 s
/ =4 4B, = X — / e~ 4B, (4.30)
s 0
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so that identity (4.2) can be re-written as:

XA = X 4 (1d - el DA [T e1-04g . (1.31)
0

Under the assumption (1),

/ 1794 4B, = (¢4 — 1d) ! X - 794X 20
0

which implies:

1
/ 746 4B, = (¢ 1d) ! (07X - X )

s

and completes, with (4.29), the proof of item 1. .
Back to (4.4), replacing the Brownian motion B by B + V leads to (4.25).
|

4.4 The bridges of the process X4

As in the one-dimensional case, we are interested in the disintegration of
X4 along its initial (and final) time marginal, which leads to its time-
Markov field property.

To that aim, we prove that conditionally on X64 ? = X, the process (Xf’d), te
[0, 1]) is Markov. More precisely, let us define, for any ¢t € [0, 1], the n x n

matrices
A = (e = Id)pe eIV H(t) T (e — Id) ! (4.32)
A} = A= AVeUD4 (4.33)

In the next theorem we identify the x < x bridge of X4¢ as a Markov
process solution of an explicit linear stochastic differential system.

Theorem 4.9 Suppose Assumptions (1) and ($2) are satisfied and denote
by v the Gaussian law of the random vector XSW. Then, X4® is a v-mizture
of its bridges, where the x — x bridge solves the affine SDE in R™

{ dZ, = (e —Id)¢ dB; + (A} x+ A} Z,) dt, te0,1], (4.34)

ZO = X.

Proof. It is a consequence of Definitions (4.32) and (4.33) and identity
(4.25). ]

We thus obtained, under some additional assumptions, a multidimensional
generalization of Proposition 2.4.
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Application to the trigonometric convoluted Brownian motion

According to item 2 of Remark 4.2, the trigonometric convoluted case cor-

responds ton =2, ¢ = (1,0)* and A =\ < (1) _01
We now verify that Assumptions (£)1) and ($)2) are satisfied. Indeed
1 1—cosA —sinA
O R R
(Id=e%) 2(1 —cos \) ( sinA 1 —cosA )
B 1 —cot(A\/2)
= 172 ( cot(A/2) 1 )

and Span(¢, A¢) = Span((1,0)*, A(0,1)*) = R2. Consequently Theorem 4.9
applies.
Let us compute forward some matrices. First one obtains that

11—+ sin@;(;—t)) 1—cos(22/)\\(1—t))
HO =51 " esmra®h )
2

1-1¢

2)
and
-1 9 14— sin(2;g\17t)) Cos(2)\(21)\ft))71
(t) _(1_75)2_1—003(22AA2(1—75))< cos(A(1-1))—1 1_t+5m(2;&1t))>.
Thus, to obtain AY, one has to multiply
(e~ Id)pp e =94" = ( (cozii )\clo)s((:i?(l)\ilt)) t)) (co:i?1 A;I)j;n((ﬁlt)) t)) >

with
1 1 1—cosA —sinA
2(1 — cos )\)H(t) < sinA 1 —cosA > '

All the entries of AY are thus calculable but we do not go further because
the explicit formulas are complicated.

4.5 More on the monomial convoluted Brownian motion X

The (k + 1)-dimensional monomial convoluted Brownian motion X*, whose
covariance was calculated in Section 4.2.2, does not satisfy Assumption (91):
Id — e is not invertible, when the matrix A is given by (4.13). Therefore
one can not derive its semimartingale representation (resp. the structure of
its bridges) as a direct application of Section 4.3 (resp. Section 4.4). Never-
theless we recover some Markovianity considering this process jointly with
an additional coordinate X, constructed as a weighted primitive.
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4.5.1 A Markovian enhancement of X%

In all this section, A denotes the (k+ 1) x (k + 1) matrix given by (4.13).

t
Proposition 4.10 Define the real-valued process X by X; = / (1—u)* 1 X5 du
0

th
and consider the R¥*2-yalued process Z; =: < ))% ) ,t €10,1].
t
Conditionally on Zy = ( )5 >, Z is a Markov process which solves the affine
SDE:
dXF = (A — Id)epy1 dB; + (AXE + A x + AlZy) dt,
dX; =(1-t)F1xH dt, (4.35)
Zy = (Xv 0)

where A and A} are deterministic matrices defined by (4.42).

Before proving Proposition 4.10, we begin with three preliminary results,
Lemmas 4.11- 4.13. In the first one, we prove that Id — exp A can be, in
some sense, ’weakly” inverted.

Lemma 4.11 1. The k x k matriz C with entries

k—(i—1) -

is invertible.
2. Lety = (y1, - ,ypr1)* € RFFL. The equation
(e —Id)x=y

admits a solution in R¥1 if and only if yy11 = 0. In that case the set
of solutions is the 1-dimensional vector subspace Rx C~1(y1,--- ,yp)*.

Proof of Lemma 4.11: (' is a triangular matrix whose diagonal entries
are k—i+ 1,1 <i¢ < k. They do not vanish, therefore C' is invertible.

We keep the notations introduced in the proof of Proposition 4.5. Using
(4.18) we have:

k k .
k—1 TR p— -/
S (j, - )t FHIH (437)

i=0 j/'=i
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Then we deduce:

e
—

A Id _ EH‘lj +1
: > (; _Z>

=0 j'=i+

ol (e
@m e

3=

= (e~ Id)x =

IMWHM?T

where x = (z1,--- ,zp41)*. Item 2 follows immediately.

t
Lemma 4.12 The first component of the wvector / e(l_“)AekH dB, is
0

t
given by the scalar stochastic integral / (1 —u)*dB,.
0

Proof of Lemma 4.12: Identity (4.37) implies:

k+1
P Ztk i=1)g,
Consequently, the first component of e!=%"4¢; | is equal to (1 — u)* and
t t
the first component of/ e(lfu)AekH dB, is / (1-— u)kdBu. [ |
0 0

t
Lemma 4.13 For any t fizved, the stochastic integral / (1 —u)*dB, is a
0

linear combination of the r.v. Xfl,)_(t,Xgl and Xgo. More precisely, we
have:

t

— 1

/ (1—w)kdB, = —(1 — )" X" — kX, + XI' + m@ — (1 =)k X2
0

Proof of Lemma 4.13: First we integrate by part the stochastic integral:
¢ t

/ (1—u)*dB, = (1 —t)*B; + k/ (1 —u)* " 'B,du. (4.38)
0 0

Then, using item 1 of Example 3.3, and (3.24) with k£ = 1, we write B; as a
linear combination of Xfl, Xgl and Xgo:

B = XM +1xP - x[', telo1]. (4.39)
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Equality (4.38) becomes

t t
/(1—u)kdBu = —(l—t)kal—k/ (1—uw)* ' X du+ay () X +ao(t) X2
0 0
where
t
1
ap(t) == (1 —t)*t + k:/ (1 —w)f "y du= ——(1-(1- t)k+1),
0 kE+1
ar(t) == (1 —t)* + k/ (1—u)*t du=1.
0

[ |
Proof of Proposition 4.10:  We revisit the proof of Proposition 4.7,
using now Lemma 4.11 instead of Assumption (£);1). Relation (4.31) reads
in our framework:

(et — Id)/ el=WAg 1 dB, = e ng — elm9A Xk, (4.40)
0

S
Applying Lemma 4.11, the i-th component of / e(lfu)AekH dB, is given
0
by
S
(/ e(l—u)Aek_H dBu). _ (0—1(6,4 X%k_e(l—s)A ng» g i=2,  k+1.
0 (2 11—
S
Note that (4.40) does not determine the first component of / e(l_“)AekH dB,.
0
But, by Lemmas 4.12 and 4.13,

( / e=wae, | dBu)l = —(1—s)F X — kX, + X[
0

L k1) xt0
+k+1(1 (1—9)"1) X5

Both identities imply:
S
/ e~ 1 dB, =TIXE 4+ T Z,
0

where I'Y (resp. T'}) is a deterministic suitable (k+1) x (k+ 1) matrix (resp.

(k+1) x (k+ 2) matrix).

Now, remark that Assumption (£)2) is satisfied since
Span(Aleyy1,i=0,--- , k) = Span(enr1, e, - ,e1) = RFFL

Therefore Lemma 4.8 implies that the matrix H(s) is invertible, and the
strategy used in the proof of Proposition 4.7 can be developed in our context.
Using (4.29) and (4.30), we deduce that

t
B, = —B, —/ ezﬂe(l—S)A*H(s)—l[(—Id+rg)xg’“+r§zs ds (4.41)
0
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where the process B is a (G)-Brownian motion independent from ng and
(Gt): is the filtration obtained with the initial enlargement of the Brownian

filtration with the random vector X%k.
Back to (4.25), replacing B by the right hand side of (4.41), one obtains for
all t € [0,1],

t
X* = X 4 (e — Id)ep By + / AXEE g
0

*

t
+ / (A — Id)eps1eh e H(s)™ (—Id + T%) X5 ds
0

¢
+/ (e? — Id)ek+1e,§+1e(1_5)’4*H(s)_lfi Zg ds.
0

Therefore, defining three matrices by

L, = (eA— Id)ek+le,’;+1e(1_s)‘4*H(s)_l,
A) = Ty(—Id+TY), (4.42)
A} = T T},

one gets the affine stochastic differential system (4.35) satisfied by the pro-
cess Z = (X' X) pinned at time 0 in (x,0).
|

4.5.2 The special case of X!

In this section, we treat the case k = 1 explicitly. The R2-valued process

X = (X X0 is associated with the 2 x 2-matrix A := [8 [1)} . Since its

second component is not time-dependent but is equal to the constant r.v.
Bj (see Examples 3.3), we are principally interested in the dynamics of X i
Indeed, the process X*' admits the following representation:

1
X~ / Byds+ By — B, te01]. (4.43)
0

Thus it is the (non independent) sum of its initial condition Xgl = / Bsds

0
and a 0 < 0-Brownian bridge. Indeed, identity (3.21) applies with p(z) =
and (3.11) gives:

1
Xfl = /Z(r,t) dr
9 1

t
= / (Bt r = Bt +B1)d?“ + (Bl —r+t — Bt)dT
t

= /BdT‘"‘ Bl Btt-f-/Bd’l“—].—t)Bt
t

= / Bd?"+tBl Bt
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Therefore X*!' is not Markovian. Enlarging the filtration with its initial
condition fol B,dr - as we did in Section 2.2 for the PerOU process - is
nevertheless not enough to recover the Markovianity. However, as seen in the
latter section 4.5.1, the right enlargement is obtained with the 2-dimensional

1
initial random vector Xgl = (Xgl,Bl) = (/ B,dr, By). Proposition 4.10
0

shows that once we add the primitive process X of X to X we recover
the Markov property. We determine explicitly the SDE satisfied by the
enhancement of X', that is by the (pinned) R?-valued process (X*!, X).
Remark that (4.43) implies that XSO =2X; = By.

Proposition 4.14 The process (X', X0, X)), pinned at time 0 in (z,v,0),
solves the following affine stochastic differential system:

dX{' = dB;+ B(t, X[') dt +~(t, Xy) dt, (4.44)
dX, =Xx"dt, telo1], |
2x 3y 4 0
where B(t’z) = —1 —t+ (1 —t)2 - 1—752 and’Y(t,Z) = —Wz

Here is B a (G;)-Brownian motion independent of Xﬂo1 where (Gi)¢ is the
filtration obtained by the initial enlargement of (F;); with the random vector
XA

Proof of Proposition 4.14: We apply Lemma 4.6 to (£1,£2)* = (Xgo, Xgl)*
that is with hy(¢) = 1 and ha(t) := 1 —t. Computing the different terms of
the matrix H:

(1-t)? (1t

Hi(t) =1—t, Hia(t) = Ha(t) = 5 Hy(t) = 3

which leads to

det H(t) = - and H™'(t) =

12 (1—t)* (1—1)?

We are now able to calculate the matrix G:
(1-1t) (1-1t)?
12 - 1
— _ 3 2
G(t,u) (1_t)4(1 1—t) _(1—75)2 <1_u>
2
= (6(1—u)—2(1—1)).

Therefore

/: GlsudBy = =5 [6 /81(1 —w)dBy —2(1 — 5)(By — BS)]
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We reformulate it using first the integration by parts:

1 1 s
/ (1 —u)dBy, = —(1 — s)Bg —l—/ B,du —/ B, du,
s 0 0
and then the boundary conditions:
1
;ﬁlz/mBﬁs:x,;ﬁozBlzy
0

We obtain

! —2(y + 2Bs) 6z 6 s
/SG(s,u)dBu = 1 s +(1S)2_(18)2/0 B,du.

Using (4.43), we get B = yt + = — Xfl. Integrating this identity over [0, s]
S
leads to / Bidt = s*y/2 + sz — X,. Therefore

2 %_<1_ 3 ) 4_4X§1+ 6 o
1—s (1—s)2 YT (1—5)2""

0
1
/ G(s,u)dB, =
S
We can now conclude, using (4.23):
Xfl = z—Bi+yt
t 1
= a:-l—Bt-i-/ (y— | G(s,u)dBy)ds
0 s
t 2z

N 3y ax? 6 o
- B [— - - X,|ds.
v t+/0 1—34—(1—3)2 1—s (1—s)2 s
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