
Technische Berichte Nr. 106

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

On the Operationalization
of Graph Queries
with Generalized
Discrimination Networks
Thomas Beyhl, Dominique Blouin, Holger Giese,
Leen Lambers

ISBN 978-3-86956-372-5
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 106

Thomas Beyhl |Dominique Blouin | Holger Giese | Leen Lambers

On the Operationalization of Graph Queries with
Generalized Discrimination Networks

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2016
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-372-5

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URN urn:nbn:de:kobv:517-opus4-96279
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96279

mailto:verlag@uni-potsdam.de

Graph queries have lately gained increased interest due to application areas
such as social networks, biological networks, or model queries. For the relational
database case the relational algebra and generalized discrimination networks have
been studied to find appropriate decompositions into subqueries and ordering of
these subqueries for query evaluation or incremental updates of query results. For
graph database queries however there is no formal underpinning yet that allows
us to find such suitable operationalizations. Consequently, we suggest a simple op-
erational concept for the decomposition of arbitrary complex queries into simpler
subqueries and the ordering of these subqueries in form of generalized discrimination
networks for graph queries inspired by the relational case. The approach employs
graph transformation rules for the nodes of the network and thus we can employ
the underlying theory. We further show that the proposed generalized discrimina-
tion networks have the same expressive power as nested graph conditions.

5

Contents

1. Introduction 8

2. Prerequisites 10

3. Generalized Discrimination Networks 15

4. Equivalence to Nested Graph Conditions 19

5. Discussion 23

6. Conclusion and Future Work 24

A. Omitted Results and Proofs 28

B. Complete Example 33

1. Introduction

The model of typed graphs and related graph queries to explore existing graphs
and their properties has lately gained increased importance due to application
areas of increasing relevance such as social networks, biological networks, and
model queries [15] and technologies like graph databases [2] or model-driven
development [4] where graphs rather than relations are the main characteristics of
the employed models and queries.

While the definition of typed graphs by means of schemas, metamodels, or
grammars is a formally well studied topic, there is yet no clear formal underpinning
for graph queries concerning their specification as well as their operationalization
(cf. [2, 18]). For the operationalization of the query evaluation and incremental query
updates of relational queries the relational calculus [1] and generalized discrimination
networks (GDN) have been suggested (cf. [14]) as a formal framework to study
which decomposition into subqueries and ordering of these subqueries is most
appropriate. As depicted in Figure 1 (a), in such a network each network node
(numbered block) is responsible for evaluating a subquery and for this purpose it
may compose subquery evaluations of nodes it depends on. The overall result is
then the query evaluation of the terminal node. However, such a formal framework
does not exist for graph queries so far.

Figure 1: GDNs in form of a SGDN (a) and SGDTs (b)(c) for a social network
query

Consequently, inspired by the relational case we suggest motivated by our practi-
cal work on view maintenance for graph databases [6] a simple operational concept
for the decomposition of arbitrary complex graph queries into a suitable ordering of
simpler subqueries in form of GDNs. Rather than considering one particular kind
of GDN with particular network nodes, we suggest employing graph transformation

8

1. Introduction

(GT) rules for these network nodes such that we are also able to employ the well
understood GT theory [9] as a basis. The basic idea to define our notion of GDN
related to GT systems is to employ extra marking nodes and edges to encode
the results of subqueries and specific graph transformation rules to describe the
propagation behavior of the network nodes via creating and reading markings.

We study in this paper what are the core ingredients required to approach graph
query evaluation based on an operational specification using the above-described
GDNs while having the same expressiveness as declarative graph queries based on
nested graph conditions (NGC) [13]. The latter have the expressive power of first order
logic on graphs and constitute as such a natural formal foundation for pattern-
based graph queries.

We assume in the following that a graph query is characterized by a request graph
L delivering its answers in form of a set of matches for L into the queried graph G
fulfilling some additional properties as described in the graph query.1 Based on the
answer set semantics we were able to establish equivalence of NGCs with GDNs
including different specific subsets such as so-called simple GDNs (SGDNs), simple
tree-like GDNs (SGDT), and minimal SGDTs (MSGDT). In particular as depicted
in Fig. 1 (d), as a main result we established the equivalence between NGCs and
SGDNs and in addition showed that all GDN variants are equally expressive.

The paper is structured as follows: We first introduce our running example as
well as the foundations concerning typed graphs, graph queries in their generic
form, NGCs, and GT in Section 2. Then, in Section 3 operational graph queries
in form of GDNs are defined and it is shown how to transform SGDNs into trees
(SGDTs). That SGDNs and declarative queries based on NGCs have the same
expressive power follows in Section 4 and we discuss the different variants of
GDNs concerning their expressiveness and applicability w. r. t. optimization and
incremental updates for graph queries in Section 5. Finally, we conclude the paper
and provide an outlook on planned future work.

This report is an extended version of [5]. In addition, it includes an appendix
with a complete description of our running example as well as omitted results and
proofs.

1It is to be noted that a simple record as provided by an SQL-statement is also a special
form of graph where no links are included. Moreover, while in practice the requested
number of answers is often limited to a fixed upper bound of answers, for our more
theoretical considerations in this paper, we can assume w. l. o. g. that all matches of L
for G that fulfill the additional properties that must hold are building the correct set of
answers.

9

On the Operationalization of Graph Queries with Generalized Discrimination Networks

2. Prerequisites

After outlining our running example, we will introduce typed graphs, based on
that a generic notion of graph query (language) together with the concept of
equivalence, the notion of graph conditions with arbitrary nesting level (NGCs),
and GT systems. Moreover, we introduce in particular the answer set of graph
queries based on NGCs.

Figure 2: Excerpt of social network type graph and an example graph G

Example 1 (social network query). As running example we use a social network model
and a slightly adjusted graph query employed by the LDBC benchmark [16]. A class diagram
outlining the possible graph models as well as an example graph to apply the query are
depicted in Figure 2 (a) resp. (b). The considered complex graph query looks for pairs of Tags
and Persons (1) such that the Tag is new in the Posts by a friend of this Person. To be a Post
of a friend, the Post must be from a second Person the Person knows (1.2). In order to be new,
the Tag must be linked in the latest Post of the second Person (and thus in a Post that has
no successor Post) (1.2.2) and there has to be no former Post by any other or the same friend
that is not her last one and where the same Tag has been already used (1.1). In both cases
only Tags that are not simply inherited from a linked Post should be considered (1.1.1 and
1.2.1). Note that the employed numbering of the conditions relates to the tree-like network
depicted in Figure 1 (c). Occurrences for the positive sentences (1) and (1.2) in the example
graph are depicted accordingly as markers in form of blue circles with the respective number
in Figure 2 (b). The circular blue markers (1) on the graph denote the occurrence of the
request graph consisting of the person s and tag t. Marker (1.2) denotes the extra condition
that the searched tag t must be attached (hasTag) to a post created by person p that is known

10

2. Prerequisites

by person s. Note that the markers (1) denote the only correct answer for the query. Thereby
the required match for the positive subquery (1.2) depicted by the markers (1.2) is such that
indeed no match exists for the negative subsubqueries (1.2.1) and (1.2.2). Furthermore, as
required no match for the negative subquery (1.1) consistent with (1) exists such that no
match for the negative subsubquery (1.1.1) of (1.1) can be found. Consequently, no match
for (1.1) is visualized.

We briefly reintroduce the notion of typed graphs and graph morphisms [9]. A
graph G = (GV , GE, sG, tG) consists of a set GV of nodes, a set GE of edges, a source
function sG : GE → GV , and a target function tG : GE → GV . Given the graphs
G = (GV , GE, sG, tG) and H = (HV , HE, sH, tH), a graph morphism f : G → H is a
pair of mappings, f V : GV → HV , f E : GE → HE such that f V ◦ sG = sH ◦ f E and
f V ◦ tG = tH ◦ f E. A graph morphism f : G → H is a monomorphism if f V and f E

are injective mappings. Finally, two graph morphisms m : H → G and m′ : H′ → G
are jointly epimorphic if mV(HV) ∪m′V(H′V) = GV and mE(HE) ∪m′E(H′E) = GE.
A type graph is a distinguished graph TG = (TGV , TGE, sTG, tTG). TGV and TGE are
called the vertex and the edge type alphabets, respectively. A tuple (G, type) of a
graph G together with a graph morphism type : G → TG is then called a typed graph.
Given typed graphs GT

1 = (G1, type1) and GT
2 = (G2, type2), a typed graph morphism

f : GT
1 → GT

2 is a graph morphism f : G1 → G2 such that type2 ◦ f = type1. We
further denote the set of all graphs typed over some type graph TG by L(TG).

An example for a typed graph G and the type graph TG related to the social
network query Example 1 are depicted in Figure 2.

In the rest of the paper we will compare the answer sets of graph queries to ana-
lyze them for equivalence. Since we will compare queries stemming from different
query languages, we introduce here a generic notion of query (language) equiva-
lence that we will refine in the rest of the paper to particular queries and query
languages. As the most generic form of a graph query language we just assume
that it consists of a set of graph queries, where each graph query is characterized
by a request graph L typed over some type graph TG. The query then expresses
some extra properties that need to hold for the request graph L that is searched for
in the queried graph G. The answer set for this query then describes all matches of
L in the queried graph that fulfill these extra properties.

Definition 1 (graph query (language)). Given a type graph TG, then a graph query
is characterized by a so-called request graph L, which is a finite graph typed over TG. A
graph query language is a set of graph queries.

Definition 2 (answer set mapping, equivalence). Given some graph query language
L, an answer set mapping ans for L maps each pair (qL, G) with qL a graph query
in L with request graph L typed over TG and G a graph from L(TG) to a set of graph

11

On the Operationalization of Graph Queries with Generalized Discrimination Networks

morphisms typed over TG with domain L and co-domain G.
Given queries qL and q′L for some request graph L typed over TG belonging to the graph
query languages L and L′ with answer set mappings ans and ans′, resp., then qL and q′L
are equivalent if for every graph G in L(TG) it holds that ans(qL, G) = ans′(q′L, G).
Two graph query languages L and L′ are equivalent if for any query qL ∈ L for some
request graph L there exists some query q′L ∈ L′ for L such that qL ∼ q′L and vice versa.
We denote equivalence also with ∼.

We reintroduce the notion of nested graph conditions (NGC) from [13], since they
represent the declarative kind of graph queries that we will consider in this paper.
Given a finite graph L, a nested graph condition (NGC) over L is defined inductively
as follows: (1) true is a NGC over L. We say that true has nesting level 0. (2) For
every morphism a : L→ L′ and NGC cL′ over a finite graph L′ with nesting level n
such that n ≥ 0, ∃(a, cL′) is a NGC over L with nesting level n + 1. (3) Given NGCs
over L, cL and c′L, with nesting level n and n′, respectively, ¬cL and cL ∧ c′L are
NGCs over L with nesting level n and max(n, n′), respectively. We restrict ourselves
to finite NGCs, i.e. each conjunction of NGCs is finite. We define when a morphism
q : L → G satisfies a NGC cL over L inductively: (1) Every morphism q satisfies
true. (2) A morphism q satisfies ∃(a, cL′), denoted q |= ∃(a, cL′), if there exists a
monomorphism q′ : L′ → G such that q′ ◦ a = q and q′ |= cL′ . (3) A morphism
q satisfies ¬cL if it does not satisfy cL and satisfies ∧i∈IcL,i if it satisfies each cL,i
(i ∈ I). Note that f alse, ∨, and⇒ can be mapped as usual to the introduced logical
connectives. Moreover we abbreviate ∃(∅→ L′, cL′) with ∃(L′, cL′), ∃(a, true) with
∃a and ∀(a, cL′) with ¬∃(a,¬cL′). NGCs can be equipped with typing over a given
type graph TG as usual [9] by adding typing morphisms from each graph to TG
and by requiring type-compatibility with respect to TG for each graph morphism.2

Definition 3 (LNGC, ansNGC). The graph query language LNGC is the set of all NGCs.
Given some NGC cL over L, L represents the so-called request graph. The answer set
mapping ansNGC for LNGC is given by

ansNGC(cL, G) = {q : L→ G|q is a monomorphism and q |= cL}

with cL ∈ LNGC a NGC with L typed over some type graph TG and G in L(TG).

An example NGC for the social network query of Example 1, where the sub-
conditions refer to the introduced numbering, is the following: c1 = c1.1 ∧ c1.2

2W. l. o.g. we restrict our notion of condition satisfaction to the existence of monomor-
phisms. In particular, in [13] it is shown how to translate conditions relying on general
morphism matching/satisfaction into equivalent conditions relying on monomorphism
matching/satisfaction and the other way round.

12

2. Prerequisites

Figure 3: Graphs for the NGC c1 and its subconditions (a) and the application
condition acL1 = ∃(L1 → P1

1) ∧ @(L1 → N1
1) ∧ @(L1 → N1

2) (b) and simple
marking rule r1 = (L1 → R1, acL1) (c)

13

On the Operationalization of Graph Queries with Generalized Discrimination Networks

with c1.1 = ¬∃(n1.1 : L1 → L1.1, c1.1.1), c1.2 = ∃(p1.2 : L1 → L1.2, c1.2.1 ∧ c1.2.2),
c1.1.1 = ¬∃(n1.1.1 : L1.1 → L1.1.1, true), c1.2.1 = ¬∃(n1.2.1 : L1.2 → L1.2.1, true), and
c1.2.2 = ¬∃(n1.2.2 : L1.2 → L1.2.2, true). The graphs L1, L1.1, L1.1.1, and L1.2 are
depicted exemplarily (see Section B for the complete example) in Figure 3 (a).
Morphisms are implied by equally named objects.

As foundation for an operational graph query evaluation we will employ typed
GT systems with priorities. We start with reintroducing GT and thereby assume
the double-pushout approach (DPO) with injective matching and non-deleting
rules [9] with application conditions of arbitrary nesting level (AC) [13]. A plain
GT rule p : L → R is a graph monomorphism. We say that the graphs L and R
are the left-hand side (LHS) and right-hand side (RHS) of the rule, respectively. A
GT rule r = 〈p, acL〉 consists of a plain rule p : L → R and a so-called application
condition acL being a graph condition over L. If the application condition acL =

∧i∈I∃pi ∧ ∧j∈J@nj, then we say that ∃pi or ¬∃nj is a positive application condition
(PACs) or negative application condition (NAC) over L, respectively. A rule r is
applicable to a graph G via a graph monomorphism m : L→ G if m |= acL. A direct
GT via rule r = 〈p, acL〉 consists of a pushout over p and m such that m |= acL.
If there exists a direct transformation from G to G′ via rule r and match m, we
write G ⇒m,r G′. If we are only interested in the rule r, we write G ⇒r G′. If a rule
r in a set of rules R exists such that there exists a direct transformation via rule
r from G to G′, we write G ⇒R G′. A GT, denoted as G0 ⇒∗ Gn, is a sequence
G0 ⇒ G1 ⇒ · · · ⇒ Gn of n ≥ 0 direct GT. GT rules and GTs can be equipped with
typing over a given type graph TG as usual [9] by adding typing morphisms from
each graph to TG and by requiring type-compatibility with respect to TG for each
graph morphism.

An example for a GT rule with AC in the context of the social network query
of Example 1 is r1 = (L1 → R1, acL1) as depicted in Figure 3 (c) following the
compact notation where all graphs are embedded into a single one. In particular,
acL1 = ∃(L1 → P1

1) ∧ @(L1 → N1
1) ∧ @(L1 → N1

2) is depicted more precisely in
Figure 3 (b). ++ denotes elements that are created by the rule, the additional
(dashed) elements forbidden by a NAC are crossed out and the extra elements
required by a PAC are dashed as well. These crosses for NAC N1

1 are omitted
from the rule visualization in Figure 3 (c) as it equals R1. Note that we use in
this example in addition to the node types defined in the type graph depicted
in Figure 2 (a) (solid rectangles) already some additional marking node (dashed
circles) and edge types (dashed lines) that will be introduced later.

A graph transformation system (GTS) gts = (R, TG) consists of a set of rules
R typed over a type graph TG. If a rule r in R of gts exists such that a direct
transformation G ⇒r G′ via r exists, we also write G ⇒gts G′. If for some graph
G it holds that r is not applicable to G, then we write G 6⇒r. Moreover, if no rule

14

3. Generalized Discrimination Networks

in gts exists that is applicable to G, then we write G 6⇒gts. A GTS with priorities
gtsp = ((R, TG), p) consists of a GTS (R, TG) and a transitive and asymmetric
relation p ⊂ R×R. We write G ⇒gtsp

G′ if a rule r in R of gtsp exists with a direct
transformation G ⇒r G′ such that @r′ ∈ R : (r, r′) ∈ p ∧ G ⇒r′ G′′. For a GTS with
priorities gtsp and an initial graph G0 the set of reachable graphs REACH(gtsp, G0) is
defined as {G | G0 ⇒∗gtsp

G} and the set of terminal reachable graphs TERM(gtsp, G0)

is defined as {G|G ∈ REACH(gtsp, G0) : G 6⇒gtsp}.

3. Generalized Discrimination Networks

In the following we introduce our suggestion for the operationalization of graph
queries employing generalized discrimination networks with network nodes based
on GT rules.

Example 2 (GDN (informal)). A possible GDN for the social network query Example 1 is
depicted in Figure 1 (a). Node 1.1.1s and 1.2.2s produce their output independently. Then,
node 1.1s and 1.2s can compute the output depending on the output of these two other
nodes. Finally, the terminal node 1s can compute its output based on the output of the nodes
1.1s and 1.2s. We further distinguish in Figure 1 (a) positive and negated dependencies
accordingly visualized by arrows with a single solid line when representing a PAC (∃) and
by arrows with a single dashed line when representing a NAC (@).

Our queried graph G typed over TG will be marked with so-called marking
nodes and edges to keep track of (sub-)query answer sets. In particular, so-called
marking rules in a GDN will take care of that. A (simple) marking rule ri is a
restricted form of GT rule typed over a marking type graph TG′. The latter is
equal to TG but for each marking rule ri it is extended with a so-called marking
node type ti as well as an marking edge type tv per node v present in ri’s LHS Li.
This allows ri to mark each node v from Li by adding a marking node i uniquely
corresponding to ri via its marking node type ti, called the defined type, and by
adding a marking edge ev from this special marking node i to each node v in Li.
These marking edges encode again via their type tv which node v in Li they mark.
Finally the application conditions in each marking rule allow for referring to the
marking elements (and therefore indirectly to already matched elements) created
by other rules.

The required extension for the type graph TG for the social network query
Example 2 for rule r1, which captures that a s:Person and t:Tag exist for which
additional conditions must hold, are depicted in Figure 3 (c). Additional nodes
visualized as circles with number 1, 1.1, and 1.2, where 1 denotes the created

15

On the Operationalization of Graph Queries with Generalized Discrimination Networks

marking node of the rule r1 and 1.1 and 1.2 are marking nodes of the other rules
r1.1 and r1.2 all use types in TG′ but not TG. The edges between the circles and the
rectangles also belong to TG′ but not TG. We do not visualize their direction, since
they always point to nodes of a type from TG.

Definition 4 (marking type graph). Given a set of graphs (Li)i∈I typed over TG via
typei : Li → TG, the marking type graph TG′ for (Li)i∈I has node set TG′V =

TGV] {ti|i ∈ I} and edge set TG′E = TGE] {tv|v ∈ LV
i , i ∈ I} s.t. sTG′(e) = sTG(e)

and tTG′(e) = tTG(e) for e ∈ TGE and sTG′(tv) = ti and tTG′(tv) = typeV
i (v) for each

v ∈ LV
i and i ∈ I otherwise. We say that the nodes in {ti|i ∈ I} are marking node types

and edges in {tv|v ∈ LV
i , i ∈ I} are marking edge types, respectively. Given a graph G

typed over TG′, then we say that a node or edge in G such that its type equals a marking
node or edge type in TG′ is a marking node or edge in G, resp..

Definition 5 ((simple) marking rule, defined type). Given a set of graphs (Li)i∈I
typed over TG via typei : Li → TG, a marking rule (MR) is a GT rule ri = 〈pi : Li →
Ri,@pi ∧ cLi〉 typed over the marking type graph TG′ for (Li)i∈I such that (1) Li inherits
its typing from typeLi , (2) RV

i = LV
i] {i} with i of type ti the so-called marking node

and ti the so-called defined type of rule ri, and (3) RE
i = LE

i] {ev|v ∈ LV
i } such that

each ev has type tv and sRi(ev) = i and tRi(ev) = v.
A simple marking rule (SMR) is a marking rule where the application condition

cLi =
∧

j∈J(∃pj : Li → Pj) ∧
∧

k∈K(@nk : Li → Nk) such that for each j ∈ J and k ∈ K it
holds that PV

j \ (pj(Li))
V and NV

k \ (nk(Li))
V , resp., consist of exactly one marking node.

In addition to the defined type of its created marking node each marking rule
induces so-called referred types in the marking type graph. Based on these referred
and defined types of MRs we define a dependency relation between MRs.

Definition 6 (referred types, dependency relation). Given a set of graphs (Li)i∈I typed
over TG and a (simple) marking rule ri = 〈pi : Li → Ri,@pi ∧ cLi〉 typed over the marking
type graph TG′ for (Li)i∈I the set of referred types rt(ri) is the set of all node types in
TG′V for nodes occurring in some (co-)domain graph of a morphism employed in cLi .

Given a GTS (R = (ri)i∈I , TG′) with each rule ri a (simple) marking rule, a depen-
dency relation d⊆ R×R consists of all rule pairs (ri, rj) such that the defined type tj
of rule rj belongs to the set of referred types rt(ri).

Note that by definition a MR ri can only depend on itself if its defined type ti is
employed for typing elements in the application condition cLi .

The SMRs for the SGDN for the social network query of Example 2 are depicted
in Figure 4. We use here and in the following the more compact notation for SMRs
where all graphs including the PACs and NACs are embedded into a single one

16

3. Generalized Discrimination Networks

Figure 4: SMRs for the SGDN of the social network example

as presented in Figure 3 (c), moreover the RHS as well as the NAC equal to pi are
omitted since they can be reconstructed from the rule’s LHS uniquely.

Based on the previously introduced MRs or SMRs to encode the behavior of the
network nodes of a GDN, we can now introduce our form of GDN or SGDN.

Definition 7 (GDN, SGDN, LGDN , LSGDN). Given a finite graph L typed over TG and
a GTS (R = (ri)i∈I , TG′) of (simple) marking rules typed over the marking type graph
TG′ for (Li)i∈I , then gdnL = ((R, TG′), +

d) is a (simple) generalized discrimination
network over L if the following conditions hold: (1) the transitive closure +

d is acyclic,
(2) there is a unique so-called terminal rule rt with LHS Lt = L for some t ∈ I, and
(3) ∀i ∈ I s.t. i 6= t it holds that (rt, ri) is in +

d . The graph query language LGDN
(LSGDN) is the set of all GDNs (SGDNs). Given some GDN gdnL (SGDN sgdnL) over L,
L represents the so-called request graph.

Note that it follows directly from this definition that no rule of the GDN transi-
tively depends on the terminal rule otherwise the transitive closure of the depen-
dency relation would contain a cycle.

An example for a SGDN is depicted in Figure 1 (a) and 4, where Figure 1 (a)
shows the dependencies between the nodes and Figure 4 shows the rules for the
nodes r1s, r1.1s, r1.2s, r1.1.1s, and r1.2.2s.

In the following definitions we assume an operational query in the form of a
GDN. In particular, each GDN represents a GTS with priorities. We consider each
graph reachable via the GDN to encode an intermediate query result and the
terminal graph then encodes the final query result. As shown in the subsequent
lemma this terminal graph is indeed unique.

Lemma 1 (unique terminal graph). Given a GDN gdnL = ((R, TG′), +
d) for L typed

over TG, then TERM(gdnL, G) consists of exactly one graph.

Proof. (sketch; more details see Section A.1) As there is an upper bound on matches
that can be marked and rule applications always add exactly one such marking,

17

On the Operationalization of Graph Queries with Generalized Discrimination Networks

gdnL terminates. As the priorities expressed by +
d exclude conflicting applications

of different rules and acyclicity of +
d excludes conflicting applications of a rule

with itself, gdnL is also confluent.

Definition 8 (ansGDN). Given the graph query language LGDN , the answer set mapping
ansGDN for LGDN is given by

ansGDN(gdnL, G) := {o : L→G|Gi ⇒o′,rt G′i is a direct GT in t∧ o(L) = o′(L)}

with gdnL = ((R, TG′), +
d) some GDN such that L is typed over TG, G a graph in

L(TG), rt the terminal rule of gdnL and t : G ⇒∗gdnL
G′ some transformation with

{G′} = TERM(gdnL, G).

The above definition is well-defined, since matches are never destroyed because
of dealing only with non-deleting rules and no conflicting direct transformations
arise because of the priorities encoded with +

d and acyclicity of +
d (as mentioned

also w. r. t. terminal graph uniqueness). Moreover, for o′ : L → Gi it holds that
o′(L) is a subgraph of G.

In practice, it is important for efficiency reasons that we can reconstruct the
answer set ansGDN(gdnL, G) from the markings in the terminal graph G′ without
having to consider the transformation t leading to G′. Under the condition that
we only query graphs without parallel edges of the same type this can be done
uniquely (see Section A.4).

The following result shows that for each SGDN an equivalent tree-like SGDN
exists in which no two rules exist that directly depend on the same rule and each
dependency is caused by exactly one PAC/NAC. As the considerations in the
following section are considerably simpler when operating on tree-like SGDNs, we
will w. l. o. g. (cf. Lemma 2) in the following restrict to tree-like networks.

Definition 9 (SGDT, LSGDT). A simple generalized discrimination tree (SDGT) is a
SGDN sgdnL = ((R = (ri)i∈I , TG′), +

d) such that (1) for each (ri, rj) ∈ d no k ∈ I
with k 6= i exists s.t. (rk, rj) ∈ d and (2) for each i ∈ I it holds that for each PAC or NAC
of ri no other PAC or NAC in ri exists referring to the same marking node type. The graph
query language LSGDT is the set of all SGDTs.

Lemma 2 (LSGDN ∼ LSGDT). Given a SGDN sgdnL for a graph L typed over TG, then
it holds that a SGDT sgdtL exists such that sgdnL ∼ sgdtL. Moreover, LSGDN ∼ LSGDT.

Proof. (sketch, details see Section A.2) We can show by induction over the depth
of +

d that we can construct an equivalent tree by employing copied rules with
disjoint markings. Since each SGDT is in particular also a SGDN, it directly follows
that LSGDN ∼ LSGDT.

18

4. Equivalence to Nested Graph Conditions

Figure 5: SMRs for the SGDT for the social network example (a) and with maximal
context (b) as denoted by the orange dashed lines

The SMRs of the SGDT related to the SGDN of Figure 1 (a) depicted in Figure 1

(b) where multiple referenced SMRs are simply replicated are presented in Figure 5

(a). The rules r1.1s, r1.1.1s, and r1.2.2s of Figure 4 are not shown in Figure 5 since they
remain the same. Rules r1s′ and r1.2s′ , which differ from the rules r1s and r1.2s of
Figure 4 only concerning the referenced other rules are shown, along with rule
r1.1.1s′ , which is a replication of rule r1.1.1s that differs only w. r. t. created elements
(omitted from the visualization).

4. Equivalence to Nested Graph Conditions

In order to prove that each NGC can be represented by some equivalent SGDT,
we first show in the following Lemmas that the standard operators in NGCs (true,
existential quantification, negation and binary conjunction) (Def. see Sect. 2) can be
simulated by equivalent constructions in a SGDT.

Lemma 3 (true). Given the NGC true over L, there exists some SGDT sgdtL such that
sgdtL ∼ true.

Proof. Let sgdtL = ({rL,true}, TG′), +
d) for L typed over TG with marking rule

rL,true = 〈p : L → R,@p〉, then for each graph G typed over TG, ansGDN(sgdtL, G)

consists of all morphisms p : L→ G. This means that sgdtL ∼ true.

Lemma 4 (∃(a : L → L′, cL′)). Given some NGC ∃(a : L → L′, cL′) and SGDT sgdt′L′
such that sgdt′L′ ∼ cL′ , there exists some SGDT sgdtL such that sgdtL ∼ ∃(a : L →
L′, cL′).

19

On the Operationalization of Graph Queries with Generalized Discrimination Networks

Proof. Suppose that sgdt′L′ has the terminal rule r′t = 〈p′t : L′ → R′,@p′t ∧ c′L′〉.
We construct the SGDT sgdtL from sgdt′L′ by adding as terminal rule the rule
rL,∃a = 〈p : L → R,@p ∧ ∃(p′t|a(L)

◦ a′, true)〉 with a′ : L → a(L) such that a′ is
identical with a. Consider ansGDN(sgdtL, G) consisting of all morphisms o : L→ G
s.t. rL,∃a created a marking to o(L). Because of the PAC ∃(p′t|a(L)

◦ a′, true)3 in the
terminal rule rL,∃a this can only be the case if r′t created a marking for some
o′(L′) with o′ : L′ → G a morphism in ansGDN(sgdt′L′ , G). Since sgdt′L′ ∼ cL′ we
know that r′t created a marking to o′(L′) iff o′ |= cL′ . Therefore we conclude that
o |= ∃(a : L→ L′, cL′) and thus sgdtL ∼ ∃(a : L→ L′, cL′).

Lemma 5 (¬cL). Given some NGC ¬cL and SGDT sgdt′L such that sgdt′L ∼ cL, there
exists some SGDT sgdtL such that sgdtL ∼ ¬cL.

Proof. Suppose that sgdt′L has the terminal rule r = 〈p′ : L → R′,@p′ ∧ c′L〉. Then
consider the SGDT sgdtL having an additional rule rL,¬ = 〈p : L → R,@p ∧
@p′〉 w. r. t. sgdt′L as terminal rule. Consider ansGDN(sgdtL, G) consisting of all
morphisms o : L→ G s.t. rL,¬ created a marking to o(L). Because of the NAC @p′

in the terminal rule rL,¬ this can only be the case if r did not create a marking
to o(L). Since sgdt′L ∼ cL we know that r created a marking to o(L) iff o |= cL.
Therefore we conclude that o |= ¬cL and thus sgdtL ∼ ¬cL.

Lemma 6 (c1,L ∧ c2,L). Given some NGC c1,L ∧ c2,L and SGDTs sgdt1
L and sgdt2

L such
that sgdt1

L ∼ c1,L and sgdt2
L ∼ c2,L, there exists some SGDT sgdtL such that sgdtL ∼

c1,L ∧ c2,L.

Proof. Let r1 = 〈p1 : L → R1,@p1 ∧ cL〉 and r2 = 〈p2 : L → R2,@p2 ∧ c′L〉 be
the terminal rules for sgdt1

L and sgdt2
L, respectively. Consider the SGDT sgdtL

consisting of the subtrees sgdt1
L and sgdt2

L with the additional rule rL,∧ = 〈p : L→
R,@p ∧ ∃p1 ∧ ∃p2〉 as terminal rule. Consider ansGDN(sgdtL, G) consisting of all
morphisms o : L→ G s.t. rL,∧ created a marking to o(L). Because of the PACs ∃p1

and ∃p2 in the terminal rule rL,∧ this can only be the case if r1 as well as r2 created
a marking to o(L). Since sgdt1

L ∼ c1,L resp. sgdt2
L ∼ c2,L we know that r1 resp. r2

created a marking to o(L) iff o |= c1,L resp. o |= c2,L. Therefore we conclude that
o |= c1,L ∧ c2,L and thus sgdtL ∼ c1,L ∧ c2,L.

Now we can prove that each NGC can be emulated by an equivalent SGDT.

3In [5] we had the PAC ∃(p′t ◦ a′, true) violating the restricted form of PACs allowed in a
simple marking rule. This slightly corrected but in this case equivalent version of the
PAC restricts the codomain of a and the domain of p′t such that exactly one marking
node together with marking edges referring to a′(L) = a(L) are required.

20

4. Equivalence to Nested Graph Conditions

Proposition 1 (emulate NGC by SGDT). Given a NGC cL, there exists a SGDT sgdtL

s.t. sgdtL ∼ cL.

Proof. We prove this by induction over the nesting level of NGCs and the way they
are constructed.
Base case: By Lemma 3 it follows that for cL = true with nesting level 0 an equivalent
SGDT with a single marking rule exists. From Lemma 5 and 6 it follows that for
any combination of conditions of nesting level 0 we can still construct an equivalent
SGDT.
Induction step: By Lemma 4 and the induction hypothesis it follows that for any
condition ∃(a : L→ L′, cL′) of nesting level n+ 1 it follows that an equivalent SGDT
exists. From Lemma 5 and 6 it follows that for any combination of conditions of
nesting level n+1 we can still construct an equivalent SGDT.

We still need to show that also each SGDT can be emulated by an equivalent NGC.
An important first step thereby is the construction of a transformation of some
SGDT into a SGDT with so-called maximal context. Marking rules in GDNs are
able to pass merely the context necessary for the next subquery, which is a practical
property for efficiency reasons, but not for showing equivalence with NGCs based
on maximal context passing. With context propagation we therefore introduce a
mechanism transforming marking rules passing only partial context into rules
passing maximal context. We moreover show that this context propagation does
not alter the answer set semantics of the corresponding SGDT.

Definition 10 (maximal context). Given a SGDT sgdtL for a graph L typed over TG then
sgdtL has maximal context if for each two SMRs ri = 〈pi : Li → Ri,@pi ∧

∧
j∈Ji

(∃pi
j :

Li → Pi
j) ∧

∧
k∈Ki

(@ni
k : Li → Ni

k)〉 and rl = 〈pl : Ll → Rl ,@pl ∧
∧

j∈Jl
(∃pl

j : Ll →
Pl

j) ∧
∧

k∈Kl
(@nl

k : Ll → Nl
k)〉 with marking node l s.t. (ri, rl) ∈ d because for some

j ∈ Ji (or k ∈ Ki) pi
j (or ni

k, resp.) uses a type equal to the type tl of l, the sets Vi
j (or Vi

k ,
resp.) constructed as follows are empty:

Vi
j = {n|n ∈ LV

i s.t. @e ∈ (Pi
j)

E with type of sPi
j (e) = tl ∧ tPi

j (e) = pi
j(n)}

Vi
k = {n|n ∈ LV

i s.t. @e ∈ (Ni
k)

E with type of sNi
k(e) = tl ∧ tNi

k(e) = ni
k(n)}

Lemma 7 (context propagation). Given a SGDT sgdtL for a graph L typed over TG
with two rules ri and rl such that (ri, rl) ∈ d with non-empty Vi

j (or Vi
k) (as given in

Def. 10), then there exists some sgdtc
L in which (ri, rl) has been replaced by a SGDT with

maximal context such that sgdtc
L ∼ sgdtL.

Proof. (sketch; details see Lemma 7) We construct a sgdtc
L in which marking rules

with propagated context check in contrast to rl the presence of additional nodes

21

On the Operationalization of Graph Queries with Generalized Discrimination Networks

and edges in the queried graph G that would otherwise have been searched for
anyway by rule ri after all matches for rl had been found. Marking these elements
earlier does not change the overall answer set.

Lemma 8 (maximal context). For a SGDT sgdtL for a graph L typed over TG their
exists a SGDT sgdt′L with maximal context such that sgdt′L ∼ sgdtL.

Proof. We proof this lemma by induction on the height of the tree.
Base case: Suppose that we have sgdtL with height 0, then it trivially holds that
sgdtL has maximal context already.
Induction step: Suppose that we have sgdtL with height n + 1. Then apply subse-
quently for each (rt, ri) ∈ d context propagation to sgdtL obtaining according to
Lemma 7 an equivalent sgdtc

L of height n + 1. Now consider for each ri the subtree
sgdtri

Lc
i

in sgdtc
L of height n. Then for each sgdtri

Lc
i

by induction hypothesis an equiva-
lent SGDT sgdt′Lc

i
with maximal context exists. Replacing in sgdtc

L each sgdtri
Lc

i
with

sgdt′Lc
i

we obtain a SGDT sgdt′L with maximal context s.t. sgdt′L ∼ sgdtL .

Two of the modified SMRs of the SGDT depicted in Figure 1 (c) with maximal
context related to the SGDN of Figure 1 (a) are presented in Figure 5 (b). While the
rules r1.1 and r1.2 already have maximal context and therefore differ from the r1.1s

and r1.2s′ only concerning the referenced other rules and additional links to bind
the propagated context as depicted in Figure 5 (b) by the orange edges, the rules
r1.1.1, r1.2.1, and r1.2.2 are extended with propagated context concerning the rules
r1.1.1s, r1.1.1s′ , and r1.2.2s and in addition have to reference the new rules.

Now we are ready to prove that for each SGDT there exists an equivalent NGC
and consequently also that the languages LSGDT and LNGC are equivalent.

Proposition 2 (emulate SGDT by NGC). Given, a SGDT sgdtL for a graph L typed
over TG, then there exists a NGC cL s.t. sgdtL ∼ cL.

Proof. Because of Lemma 8 we can assume w. l. o. g. that sgdtL has maximal context.
We perform the proof by induction on the height of the tree.
Base case: If sgdtL has height 0, then it consists merely of some terminal rule without
any PACs or NACs. Then ansgdn(sgdtL, G) consists of all matches of the terminal
rule into G. If we choose cL equal to true over L then it returns exactly the same set
of morphisms s.t. sgdtL ∼ cL.
Induction step: Suppose that sgdtL has height n + 1 and that it has terminal rule
r = 〈p : L → R,@p ∧ ∧

j∈J(∃pj : L → Pj) ∧
∧

k∈K(@nk : L → Nk)〉. Then we
have a subtree sgdtLj and sgdtLk for each pj and each nk, respectively. Because
of induction hypothesis it holds that for each sgdtLj and sgdtLk there exists an
equivalent NGC cLj and cLk , respectively. Since sgdtL has maximal context, we

22

5. Discussion

moreover know that there exist morphisms lj : L → Lj and lk : L → Lk. Consider

the NGCs cj
L = ∃(lj, cLj) and ck

L = @(lk, cLk) such that cL = ∧j∈Jc
j
L ∧ ∧k∈Kck

L. Now
ansGDN(sgdtL, G) for some G consists of all morphisms o : L → G such that the
terminal rule of each sgdtLj and sgdtLk has been applied and not been applied,
respectively. The latter is equivalent with the fact that for each j ∈ J a morphism
oj : Lj → G exists s.t. oj ◦ lj = o with oj ∈ ansGDN(sgdtLj , G) = ansNGC(cLj , G).
Analogously for each k ∈ K there does not exist a morphism ok : Lk → G s.t.
ok ◦ lk = o and ok ∈ ansGDN(sgdtLk , G) = ansNGC(cLk , G). This is exactly what also
each morphism o : L → G in ansNGC(cL, G) needs to fulfill s.t. we can conclude
that sgdtL ∼ cL.

Theorem 1 (language equivalence). LSGDN ∼ LSGDT ∼ LNGC

Proof. From Proposition 1 and 2 we can follow directly that LSGDT ∼ LNGC. From
Lemma 2 we can conclude that LSGDN ∼ LSGDT.

5. Discussion

In this section, we will discuss a more expressive variant, a minimal variant, as
well as some observations and implications for optimization of graph queries and
incremental updates concerning GDNs and the proposed SGDNs.

In particular, we can show that for minimal SGDT (MSGDT) – SGDT with at most
two direct dependencies per SMR, where all rules adhere to one of the four rule
schemes introduced in Lemmata 3, 4, 5, and 6, and where in addition all rules
for existential quantification are limited to at most one additional element in form
of a node or edge – holds that LMSGDT ∼ LNGC (see Section A.6) and thus the
additional restrictions do not result in any loss of expressive power. As often the
tree-like simplification is not wanted, we further name SGDN that are not MSGDT
but fulfill all conditions besides the tree nature as MSGDN.

There are several approaches for optimization of graph queries or incremental
updates of graph queries based on RETE networks (cf. [11]) such as [7] and VI-
ATRA [4] that can be conceptually mapped to MSGDN. In these cases the RETE
network structure supports only at most two direct dependencies like MSGDN and
the computations of the nodes of the RETE network can be matched to the four
permitted cases of MSGDN. Our results also indicate that these approaches have
the same expressiveness as NGC.

In our own practical work on graph queries [6], we conceptually employ SGDN
with marking rules in form of graph transformation rules for optimization of
queries and incremental updates of graph queries. We were able to show that the

23

On the Operationalization of Graph Queries with Generalized Discrimination Networks

more powerful capabilities of a single node (marking rule) and advanced dynamic
pattern matching strategies [12] can lead to considerable improvements concerning
the computation speed and memory consumption for SGDN compared to the
restricted case of MSGDN (resp. RETE network). Similar results have been obtained
also in the relational case where it has been shown that the more general GATOR
networks can outperform RETE networks [14]. Consequently, it seems reasonable
to study the broader class of SGDN for optimization of queries and incremental
updates of graph queries and not more restricted forms such as MSGDN or MSGDT.
In particular the context propagation (see Definition 10) and its inverse context
elimination seem useful tools here to minimize the effort for subqueries and the
propagation of their results in the network.

We can also have more expressive generalized discrimination networks as given
in Def. 7 for which we can show (see Section A.5) that they will not lead to an
increase of expressive power such that the language equivalence LGDN ∼ LNGC
holds. In particular, the use of NGCs as application conditions in the marking rules
results in much more complex direct dependencies. Thus the discussed increase
in expressive power of the marking rules will not increase the expressive power of
the discrimination network.

The study of more powerful marking rules may still be useful when efficient
matching algorithms for the supported fragment of NGCs can be employed. It is
to be noted, that in case of incremental updates for graph queries the limitation
to simple graph rules seems necessary to be able to propagate update effects
without the need to maintain expensive additional data structures to detect the
need for updates (cf., for example, instance-based scopes in [8]), while in case of
optimizations of graph queries this restriction may be not always helpful.

Furthermore the language equivalence LGDN ∼ LNGC only applies unless we
leave the realm of pattern-based property specification concepts such as NGC and
consider also path-related properties [17] or we permit cycles in the network in a
controlled manner as in our own practical work on graph queries [6] to be able to
support path-related properties (analogously to the controlled and repeated rule
applications to support path-related properties used in [3]).

6. Conclusion and Future Work

Analog to the relational database case where the relational calculus and generalized
discrimination networks have been studied to find appropriate decompositions into
subqueries and ordering of these subqueries for query evaluation or incremental
updates of queries, we presented in this paper GDNs for graph queries with simple

24

6. Conclusion and Future Work

operational concepts where graph transformations describe the node behavior.
We further showed that the proposed GDNs in different forms all have the same
expressive power as NGC.

We plan to study in our future work the complexity of evaluating and updating
SGDNs, their optimization, and possible extensions of SGDNs towards path-related
properties to also formally cover our own practical work on graph queries [6]
supporting cycles in the network.

Acknowledgments
This work was partially developed in the course of the project Correct Model
Transformations II (GI 765/1-2), which is funded by the Deutsche Forschungsge-
meinschaft.

We are grateful to Johannes Dyck for his contribution to our discussions and
feedback to draft versions of the paper.

25

On the Operationalization of Graph Queries with Generalized Discrimination Networks

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of
Databases: The Logical Level. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1st edition, 1995.

[2] Renzo Angles. A Comparison of Current Graph Database Models. In Proc. of
the 28th Int. Conf. on Data Engineering, pages 171–177. IEEE, April 2012.

[3] Basil Becker, Leen Lambers, Johannes Dyck, Stefanie Birth, and Holger Giese.
Iterative Development of Consistency-Preserving Rule-Based Refactorings. In
Jordi Cabot and Eelco Visser, editors, Theory and Practice of Model Transfor-
mations, Fourth International Conference, ICMT 2011, Zurich, Switzerland, June
27-28, 2011. Proceedings, volume 6707 of Lecture Notes in Computer Science, pages
123–137. Springer / Heidelberg, 2011.

[4] Gábor Bergmann, András Ökrös, István Ráth, Dániel Varró, and Gergely Varró.
Incremental Pattern Matching in the VIATRA Model Transformation System.
In Proceedings of the 3rd International Workshop on Graph and Model Transforma-
tions, GRaMoT ’08, pages 25–32. ACM, 2008.

[5] Thomas Beyhl, Dominique Blouin, Holger Giese, and Leen Lambers. On
the Operationalization of Graph Queries with Generalized Discrimination
Networks. In Rachid Echahed and Mark Minas, editors, Proceedings of the 9th

International Conference on Graph Transformations, pages 170–186. Springer, 2016.

[6] Thomas Beyhl and Holger Giese. Incremental View Maintenance for Deductive
Graph Databases using Generalized Discrimination Networks. In Graphs as
Models 2016. Electronic Proceedings in Theoretical Computer Science, 2016. to
appear.

[7] H. Bunke, T. Glauser, and T.-H. Tran. An efficient implementation of graph
grammars based on the RETE matching algorithm. In Hartmut Ehrig, Hans-
Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph Grammars and Their
Application to Computer Science, volume 532 of LNCS, pages 174–189. Springer,
1991.

[8] Alexander Egyed. Instant Consistency Checking for the UML. In ICSE ’06:
Proceedings of the 28th International Conference on Software Engineering, pages
381–390, Shanghai, China, 20–28 May 2006.

[9] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation. Springer, 2006.

26

References

[10] Hartmut Ehrig, Ulrike Golas, Annegret Habel, Leen Lambers, and Fernando
Orejas. M-Adhesive Transformation Systems with Nested Application Con-
ditions, Part 2: Embedding, Critical Pairs and Local Confluence. Fundamenta
Informaticae, 118(1-2):35–63, 2012.

[11] Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many object
Pattern Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

[12] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. Improved Flexibility
and Scalability by Interpreting Story Diagrams. In Tiziana Magaria, Julia
Padberg, and Gabriele Taentzer, editors, Proc. of the 8th International Workshop
on Graph Transformation and Visual Modeling Techniques, volume 18. Electronic
Communications of the EASST, 2009.

[13] Annegret Habel and Karl-Heinz Pennemann. Correctness of high-level trans-
formation systems relative to nested conditions. Mathematical Structures in
Computer Science, 19:1–52, 2009.

[14] Eric N. Hanson, Sreenath Bodagala, and Ullas Chadaga. Trigger Condition
Testing and View Maintenance Using Optimized Discrimination Networks.
Transactions on Knowledge and Data Engineering, 14(2):261–280, Mar 2002.

[15] Huahai He and Ambuj K. Singh. Graphs-at-a-time: Query Language and
Access Methods for Graph Databases. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pages 405–418. ACM, 2008.

[16] Linked Data Benchmark Council, Coordinator: Arnau Prat (UPC). LDBC
Social Network Benchmark (SNB) – First Public Draft Release v0.2.2, 2015.
https://github.com/ldbc/ldbc_snb_docs/blob/master/LDBC_SNB_v0.2.2.pdf,
accessed October 2016.

[17] Christopher M. Poskitt and Detlef Plump. Verifying monadic second-order
properties of graph programs. In Proc. International Conference on Graph Trans-
formation (ICGT 2014), volume 8571 of LNCS, pages 33–48. Springer, 2014.

[18] Peter T. Wood. Query Languages for Graph Databases. SIGMOD Rec., 41(1):50–
60, April 2012.

27

On the Operationalization of Graph Queries with Generalized Discrimination Networks

Appendix

The following appendix presents omitted proofs and results as well as more details
for the presented examples.

A. Omitted Results and Proofs

A.1. Proof of Lemma 1

Proof of Lemma 1: Given a GDN gdnL = ((R, TG′), +
d) for L typed over TG, then

TERM(gdnL, G) consists of exactly one graph.

Proof. Since each marking rule creates a node and is non-deleting it holds that the
number of nodes is strictly monotonically increasing. Moreover, there is an upper
bound on the nodes that can be created since for each marking rule ri = 〈pi : Li →
Ri,@pi ∧ cL,i〉 the NAC @pi excludes that the rule can be applied multiple times for
the same match. Since we have non-deleting rules matches cannot be destroyed and
having a finite number of potential matches we can follow that gdnL terminates.

Furthermore, two non-deleting GT rules ri and rj are in conflict if rule rj would be
able to create elements that violate the application condition of ri (or vice versa) [10].
Considering ri, rj to be marking rules this could only happen if rj creates marking
elements referred to by ri, which is only the case if (ri, rj) ∈ d (or vice versa).
For i 6= j this would mean that by the priority mechanism ri and rj would not
be applicable to the same graph in the first place. For i = j we would have that
(ri, ri) ∈ d, which is in contradiction with acyclicity of +

d . Thus gdnL is confluent
and also terminates with a unique result.

A.2. Proof of Lemma 2

Proof of Lemma 2: Given a SGDN sgdnL for a graph L typed over TG, then it holds
that a SGDT sgdtL exists such that sgdnL ∼ sgdtL. Moreover, LSGDN ∼ LSGDT.

Proof. We show the above lemma by induction over the depth of +
d for some

given sgdnL = ((R, TG′), +
d).

Base case: If the depth of +
d equals 0 sgdnL is trivially already a SGDT. Induction

step: Suppose that +
d has depth n + 1 and that r = 〈p : L → R,@p ∧ ∧

j∈J(∃pj :
L → Pj) ∧

∧
k∈K(@nk : L → Nk)〉 is the terminal rule of sgdnL. Then for each rj

such that (r, rj) ∈ d consider the SGDN of depth n sgdn
rj
Lj

= ((Rrj , TG′), +
d,rj

)

28

A. Omitted Results and Proofs

with Rrj = {rj} ∪ {ri|(rj, ri) ∈ +
d } and +

d,rj
= {(ri, r′i)|(ri, r′i) ∈

+
d ∧ ri, r′i ∈ Rrj}.

We can now replace in sgdnL by induction hypothesis each SGDN sgdn
rj
Lj

by an

equivalent SGDT sgdt
rj
Lj

obtaining the SGDN sgdn′L, which fulfills property (1), but
not yet property (2) of SGDTs as given in Def. 9. We still need to ensure that no
two PACs/NACs of the terminal rule r refer to identical marking node types. Thus
consider for each rj such that (r, rj) ∈ d all PACs/NACs in r referring to the
marking node type tj of rule rj. If there are at least two, then we build for each
such PAC/NAC an equivalent copy of sgdt

rj
Lj

with new disjoint marking types.

We replace in sgdn′L each subtree sgdt
rj
Lj

by these copies and retype the PACs and
NACs in the terminal rule r accordingly. In this way we obtain an equivalent SGDT
sgdtL from the SGDN sgdnL.

Since each SGDT is in particular also a SGDN, it directly follows that LSGDN ∼
LSGDT.

A.3. Proof of Lemma 7

Proof of Lemma 7: Given a SGDT sgdtL for a graph L typed over TG with two rules
ri and rl such that (ri, rl) ∈ d with non-empty Vi

j (or Vi
k) (as given in Def. 10),

then there exists some sgdtc
L in which (ri, rl) has been replaced by a SGDT with

maximal context such that sgdtc
L ∼ sgdtL.

Proof. Given a SGDT sgdtL with marking rule set R = (ri)i∈I for a graph L typed
over TG with two SMRs ri = 〈pi : Li → Ri,@pi ∧

∧
j∈Ji

(∃pi
j : Li → Pi

j) ∧
∧

k∈Ki
(@ni

k :
Li → Ni

k)〉 and rl = 〈pl : Ll → Rl ,@pl ∧
∧

j∈Jl
(∃pl

j : Ll → Pl
j) ∧

∧
k∈Kl

(@nl
k : Ll →

Nl
k)〉 with marking node l s.t. (ri, rl) ∈ d because for some j ∈ Ji (or k ∈ Ki) pi

j (or
ni

k, resp.) uses a type equal to tl , we first introduce the construction of the SGDT
sgdtc

L. Now rc
i,j (rc

i,k) equals a rule ri, where ∃pi
j : Li → Pi

j (or @ni
k : Li → Ni

k) has been

replaced by the disjunction of ∃pi,c
j : Li → Pi,c

j (or conjunction of @ni,c
k : Li → Ni,c

k)

for all possible pi,c
j (or ni,c

k) with Pi,c
j (or Ni,c

k) equal to Pi
j (or Ni

j) s.t. the unique
node with node type tl holds in addition one outgoing edge for each node in
pi,c

j (Vi
j) (ni,c

k (Vi
k)), respectively. Moreover, consider each rc

l,j constructed from rl , pi
j

and M(Pi
j) being the graph of Pi

j consisting of the marking node l and all outgoing
edges with incident nodes in Li according to the following diagram s.t. all diagrams
commute, e and e′ are jointly epimorphic, (1) is a pushout constructed as a pushout

29

On the Operationalization of Graph Queries with Generalized Discrimination Networks

complement from e and pl and (2) is a pushout constructed from p and i′′:

M(Pi
j) i

//

i′||

Pi
j

e′

��

P

��
(2)

Ll
poo

(1)i′′

��

pl // Rl

e
""

Li

pi
j

OO

e′◦pi
j||

Pc Lc
l,j

pc
oo

pc
l,j // Rc

l,j

In this diagram the plain rule morphism of rc
l,j equals pc

l,j and each PAC (or NAC)
from rl depicted by p is translated into a corresponding equivalent PAC (or NAC)
pc for rc

l,j by building PO (2). Analogously, each rc
l,k is constructed from rl , ni

k and
M(Ni

k). Note that this diagram defines a unique monomorphism (pc
l,j)
−1 ◦ e′ ◦ pi

j
from Li into Lc

l,j.
Let gdtc

L now be the GDT obtained from sgdtL by replacing (ri, rl) by all pairs
(rc

i,j, rc
l,j) (or (rc

i,k, rc
l,j), resp.). Now SGDT sgdtc

L is the SGDT that can be obtained
from the GDT gdtc

L by transforming according to Proposition 1 the application
condition with the disjunction (not adhering to the SMR scheme) in rc

i,j into a SGDT
and replacing it by a simple PAC referring to the terminal rule of the corresponding
tree.

By construction in sgdtc
L the marking rules rc

l,j (or rc
l,k) check in contrast to rl

the presence of additional nodes and edges in the queried graph G that would
otherwise have been searched for later by rule ri after all matches for rl had been
found. Marking these elements earlier does not change the overall answer set.

A.4. From Marking Nodes to Graph Morphisms

In practice, it is important for efficiency reasons that we can reconstruct the answer
set ansGDN(gdnL, G) from the markings in the terminal graph G′ without having
to consider the transformation t leading to G′. In particular, we want to reconstruct
where in G′ the terminal rule has been matched without having to know in which
direct transformation in t this happened. In the following lemma we argue that
this is possible if in the queried graph G no parallel edges with the same type
occur. Having parallel edges with the same type in G can be emulated by replacing
these edges by a node with two outgoing edges describing the source and target
mapping of the edge.

Lemma 9 (extracting query result from markings). Given a graph G typed over
TG without parallel edges of the same type and a GDN gdnL = ((R, TG′), +

d) for a

30

A. Omitted Results and Proofs

graph L typed over TG such that {G′} = TERM(gdnL, G), then ansGDN(gdnL, G) can be
reconstructed uniquely from G′.

Proof. We know that for a transformation t : G ⇒∗gdnL
G′ and the terminal rule rt

for gdnL with marking node t it holds that

ansGDN(gdnL, G) = {o : L→ G|Gi ⇒o′,rt G′i is a direct GT in t∧ o(L) = o′(L)}.

In particular, each marking edge e from a marking node n of type t in G′ points
uniquely to a node in o′V(LV) because of the unique typing of e w. r. t. nodes in LV .
The corresponding edge mapping o′E : LE → G′Ei can be reconstructed by looking
up in G′ the edges in L between the already found and uniquely marked source
and target nodes in G′ by comparing edge types. Altogether, this leads to a unique
reconstruction of each o : L→ G, since no parallel edges in G exist with the same
type.

A.5. LGDN ∼ LNGC

More expressive generalized discrimination networks can be defined by allowing
the marking rules to be more expressive. A natural candidate for application
conditions here are NGCs as employed for non-simple GDNs in Definition 7,
which result in much more complex direct dependencies. However, as we can show
in the following, the discussed increase in expressive power of the marking rules
will not increase the expressive power of the discrimination network.4

Theorem 2 (no increase of expressive power). LGDN ∼ LNGC

Proof. (sketch) Each GDN can be transformed into an equivalent SGDN employing
Proposition 1 for the application condition of each MR. Each SGDN is obviously
a GDN such that LGDN ∼ LSGDN . Since we know also that LSGDN ∼ LNGC the
above statement follows.

A.6. LMSGDT ∼ LNGC

We can investigate which additional restrictions to SGDTs can be applied without
loosing any expressive power.

4It has, however, to be noted that in case more expressive application conditions than
nested graph conditions (e. g., path-related conditions) are considered, the resulting
expressive power of the generalized discrimination network is increased as well.

31

On the Operationalization of Graph Queries with Generalized Discrimination Networks

Definition 11 (MSGDT, LMSGDT). A minimal simple generalized discrimination
tree (MSGDT) is a SGDT where each simple marking rule adheres to one of the four rule
schemes rL,true, rL,∃a, rL,¬, or rL,∧ introduced in Lemmata 3, 4, 5, and 6, respectively. In
addition, the rule for existential quantification rL,∃a is such that the codomain of a holds at
most one additional node or edge w. r. t. a(L). The graph query language LMSGDT is the
set of all MSGDTs.

Lemma 10 (emulate GDN by MSGDT). For each GDN there exists an equivalent
MSGDT.

Proof. From Theorem 2 we know that for each GDN there exists some equivalent
NGC. Each NGC can be transformed into an equivalent NGC using merely binary
conjunction, negation, and existential quantification limited to at most one addi-
tional node or edge. In Proposition 1 and the according Lemmas it is shown that
for this NGC an equivalent SGDT exists with equivalent restrictions such that in
particular it is an MSGDT.

Lemma 11 (no further simplification). Any simplification w. r. t. the form of MSGDTs
leads to a class of GDNs that is too weak to be equivalent with LNGC.

Proof. (sketch) We systematically look for all possible simplifications and show that
they are not possible without loosing expressive power: a) The basic rule rL,true must
be supported, as no simpler form of marking rule is possible. b) The existential
quantification rule rL,∃a must be permitted otherwise if additional nodes/edges are
not permitted, the case of a NAC is not covered. c) The negation rule rL,¬ must
be allowed, otherwise expressiveness would equal the match finding for one large
graph as merely all PACs could be combined. This case would clearly not cover e. g.
NACs and it is thus too weak to cover NGCs. d) The conjunction rule rL,∧ must be
permitted, otherwise if only a sequence of dependencies rather than binary trees
are permitted, the case of an or (resp. ¬((¬a) ∧ (¬b))) cannot be covered and thus
NGCs would not be covered either.

Theorem 3 (expressiveness of MSGDTs). LMSGDT ∼ LNGC

Proof. According to Lemma 10 each GDN can be transformed into some equivalent
MSGDT. Since each MSGDT is also a GDN it follows that LGDN ∼ LMSGDT. We
know that LGDN ∼ LNGC such that the above statement follows.

32

B. Complete Example

B. Complete Example

This section presents in detail the complete complex query example of this paper
including its various representations as a Nested Graph Condition (NGC), a Simple
Graph Discrimination Network (SGDN) and a Simple Graph Discrimination Tree
(SGDT), for which this paper showed equivalence in terms of their answer sets.

B.1. Complex Query

The type graph for the complex query is shown in Figure 6 (a) along with an
example graph in (b). The query searches for pairs of Tags t and Persons s such that
the Tag is new in the Posts by a friend p of s.

Figure 6: Excerpt of social network type graph and an example graph G

This query can be decomposed into the set of subconditions Li illustrated by the
morphisms of Figure 7, which extends Figure 3 (a). Morphisms are identified by
equally named nodes.

1. In order to be a Post of a friend, the considered Post m must have been created
(hasCreator) by a second Person that Person s knows, and the Tag must be linked
(hasTag) to the Post (L1.2).

a) However, the found Tag must not be inherited from a linked Post (m5)
(¬∃L1.2.1).

b) Furthermore, in order to be the latest Post, Post m must have no successor
Post (m3) (¬∃L1.2.2).

33

On the Operationalization of Graph Queries with Generalized Discrimination Networks

Figure 7: Complete set of graphs employed in the morphisms for the complex
query and its subconditions

2. In order to be new, the Tag must not have been used by any former Post of
any friend (¬∃L1.1).

a) However, similarly to 1a only Tags that are not simply inherited from a
linked Post should be considered in this context (¬∃L1.1.1).

Figure 6 (b) shows an example graph where occurrences for the positive sentences
L1 and L1.2 are depicted as markers in form of blue circles with the respective
number. The blue markers (1) denote the only correct answer for the query. Thereby
the required match for the positive subquery L1.2 depicted by the markers (1.2) is
such that indeed no match exists for the negative subconditions L1.2.1 and L1.2.2.
Furthermore, as required no match for the negative subcondition L1.1 consistent
with L1 exists such that no match for the negative subcondition L1.1.1 of L1.1 can be
found. Consequently, no match for L1.1 is visualized.

B.2. NGC c1

The complex query as informally stated in the previous section translates into:
NGC c1 = c1.1 ∧ c1.2

with
c1.1 = ¬∃(n1.1 : L1 → L1.1, c1.1.1),
c1.2 = ∃(p1.2 : L1 → L1.2, c1.2.1 ∧ c1.2.2),
c1.1.1 = ¬∃(n1.1.1 : L1.1 → L1.1.1, true),
c1.2.1 = ¬∃(n1.2.1 : L1.2 → L1.2.1, true), and
c1.2.2 = ¬∃(n1.2.2 : L1.2 → L1.2.2, true)

34

B. Complete Example

This is illustrated graphically in Figure 8 (a) where the above NGC c1 takes an
AST-like (Abstract Syntax Tree) form.

According to Proposition 1 of this paper, an equivalent Simple Graph Discrimi-
nation Tree (SGDT) can be constructed from c1 as depicted in Figure 8 (b).

B.3. Example SGDN

The example query can also be expressed as a SGDN (Simple Graph Discrimination
Network) as illustrated in Figure 9 (a), where the node r1.1.1s is reused as input by
both r1.1s and r1.2s nodes.

For this GDN, simple Marking Rules (SMR) are defined to create markings for
the found matches on the host graph when the query is executed. These marking
rules are depicted in their compact notation in Figure 10.

The simple marking rule
r1s = (L1s → R1s, (∃L1s → P1

1) ∧ (@L1s → N1
1) ∧ (@L1s → N1

2))

and its application condition
acL1s = (∃L1s → P1

1) ∧ (@L1s → N1
1) ∧ (@L1s → N1

2)

is shown graphically in Figure 11 expressed in a less compact notation.
The application condition requires with the PAC P1

1 that rule r1.2s has created a
marking for L1.2s w. r. t. L1s and by the NAC N1

2 that conversely, rule r1.1s did not
create a marking for L1.1s w. r. t. L1s. This is shown in the figure by dashed round
circles with a crossed circle indicating a negative application as shown in the upper
left corner of the figure. In addition, a marking N1

1 must not already exist on the
matched subgraph as also indicated by a cross in the upper left corner of Figure 11.

Given that the application condition holds, marking rule r1s can be applied to
the host graph as illustrated by the LHS and RHS of the rule in the bottom part of
Figure 11.

B.4. Example SGDT

The SGDN of the previous section can be transformed into the equivalent SGDT of
Figure 9 (b) according to Lemma 2. This is shown in Figure 9 (b) where the node
L1.1.1s of (a) has been duplicated in (b) as indicated by the grayed box in order to
constitute a tree.

The complete set of SMRs for this SGDT partially shown in Figure 5 (a) is
presented in Figure 12.

35

On the Operationalization of Graph Queries with Generalized Discrimination Networks

Figure 8: The NGC c1 decomposed into its subconditions and the related SGDT
constructed according to Proposition 1

36

B. Complete Example

Figure 9: The SGDN decomposed into its subnodes and the related SGDT con-
structed according to Lemma 2

Figure 10: SMRs for the SGDN of the social network example

Figure 11: A diagram for the application condition acL1s and simple marking rule
r1s of the example SGDN

37

On the Operationalization of Graph Queries with Generalized Discrimination Networks

Figure 12: Complete set of SMRs for the example SGDT

B.5. SGDT with Maximal Contexts

In order to be as equally expressive as NGCs, SGDTs must be able to carry the
same context provided for nested NGCs during their evaluation. For this, the SGDT
needs to be extended such that SMRS also mark the elements from their parent
rules (see Lemma 8 and Proposition 2). This is shown in Figure 13 where the
complete set of SMRs, partially shown in Figure 5 (b) for the SGDT of Figure 9 (c)
is shown. Maximal context marking links that have been added w. r. t. this maximal
context generation process are displayed as orange dashed lines and corresponding
available maximal context elements are identified as orange nodes and links.

Figure 13: Complete set of SMRs for the example SGDT with maximal rule contexts

Note that for the two modified SMRs of the SGDT with maximal context, it
holds that the presented rules r1.1 and r1.2 already have maximal context and
reference directly related rules r1.1.1, r1.2.1, and r1.2.2. The maximal context of these
latter rules is generated according to the construction of Lemma 7, which includes

38

B. Complete Example

an additional disjunction resp. conjunction for all alternative cases for context
propagation. In particular for rule r1.1.1 two alternative contexts were generated,
but one of them can be omitted again because of the cardinality constraint that
there is no succesor edge as well as a link edge between a Post and another Post at
the same time. This constraint expresses that it is not possible to link to a successor
post that can not be created yet. For rule r1.2.1 and rule r1.2.2 no extra alternatives
arise in the first place.

B.6. Equivalence of the Example SGDT and c1 According to
Proposition 1

As depicted in Figure 8 (a) we can represent the NGC c1 in a form consistent with
the one employed in Proposition 1 where only the operators ¬, ∧, and ∃ and the
constant true for given L... are employed (see Figure 7 for the definition of the
monomorphisms n... resp p...). For this form of NGC, we can then also construct
the equivalent SGDT according to Proposition 1 as depicted in Figure 8 (b).

39

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

105 978-3-86956-360-2 Proceedings of the Third HPI
Cloud Symposium
"Operating the Cloud" 2015

Estee van der Walt, Jan
Lindemann, Max Plauth,
David Bartok (Hrsg.)

104 978-3-86956-355-8 Tracing Algorithmic Primitives in
RSqueak/VM

Lars Wassermann, Tim
Felgentreff, Tobias Pape, Carl
Friedrich Bolz, Robert
Hirschfeld

103 978-3-86956-348-0 Babelsberg/RML : executable
semantics and language testing
with RML

Tim Felgentreff, Robert
Hirschfeld, Todd Millstein,
Alan Borning

102 978-3-86956-347-3 Proceedings of the Master
Seminar on Event Processing
Systems for Business Process
Management Systems

Anne Baumgraß, Andreas
Meyer, Mathias Weske (Hrsg.)

101 978-3-86956-346-6 Exploratory Authoring of
Interactive Content in a Live
Environment

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wolff,
Bastian Steinert, Lauritz
Thamsen, Macel Taeumel, Jens
Lincke, Robert Krahn, Daniel
H. H. Ingalls, Robert
Hirschfeld

100 978-3-86956-345-9

Proceedings of the 9th Ph.D.
retreat of the HPI Research School
on service-oriented systems
engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich (Hrsg.)

99 978-3-86956-339-8 Efficient and scalable graph view
maintenance for deductive graph
databases based on generalized
discrimination networks

Thomas Beyhl, Holger Giese

98 978-3-86956-333-6 Inductive invariant checking with
partial negative application
conditions

Johannes Dyck, Holger Giese

97 978-3-86956-334-3 Parts without a whole? : The
current state of Design Thinking
practice in organizations

Jan Schmiedgen, Holger
Rhinow, Eva Köppen,
Christoph Meinel

96 978-3-86956-324-4 Modeling collaborations in self-
adaptive systems of systems :
terms, characteristics,
requirements and scenarios

Sebastian Wätzoldt, Holger
Giese

95 978-3-86956-320-6

Proceedings of the 8th Ph.D.
retreat of the HPI research school
on service-oriented systems
engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch

Technische Berichte Nr. 106

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

On the Operationalization
of Graph Queries
with Generalized
Discrimination Networks
Thomas Beyhl, Dominique Blouin, Holger Giese,
Leen Lambers

ISBN 978-3-86956-372-5
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	1 Introduction
	2 Prerequisites
	3 Generalized Discrimination Networks
	4 Equivalence to Nested Graph Conditions
	5 Discussion
	6 Conclusion and Future Work
	References
	Appendix
	A Omitted Results and Proofs
	A.1. Proof of Lemma 1
	A.2. Proof of Lemma 2
	A.3. Proof of Lemma 7
	A.4. From Marking Nodes to Graph Morphisms
	A.5. LGDN ~ LNGC
	A.6. LMSGDT ~ LNGC

	B Complete Example
	B.1. Complex Query
	B.2. NGC c1
	B.3. Example SGDN
	B.4. Example SGDT
	B.5. SGDT with Maximal Contexts
	B.6. Equivalence of the Example SGDT and c1 According to Proposition 1

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

