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Abstract:

Massive, dark objects, very likely supermassive black holes (SMBH), are found in
the majority of galaxies. The observed tight correlations between their masses and the
surrounding stellar system indicate an enigmatic coevolution. Why does the mass of
an object, whose typical size is ∼ 10−7 parsec (pc, for a mass of 106 M⊙) correlates with
the stellar properties of the entire galaxy, which can be some 103 pc in size? Are these
objects black holes, as predicted by Einstein’s theory of general relativity or do we need
alternatives? The answer lies in the event horizon, the single and unique characteristic
that defines SMBHs. To probe it, we have at our disposal stars. Nuclear star clusters
harboring a massive, dark object with a mass of up to ∼ 107 M⊙ are good testbeds
to probe the event horizon of the potential SMBH with stars. The advantage is clear:
Stellar dynamics around a massive object is a relatively simple multi-particle problem,
and we have data: In our own galaxy we have observations of stars and clouds that
are on very close orbits to our SMBH. In other galaxies we have detected about 50

stellar tidal disruption candidates, and this number should rapidly increase with the
upcoming transient surveys. One of the most important sources of gravitational waves
(GWs) for a space-based detector are extreme-mass-ratio binaries (EMRIs) in the stage
where the dynamics are driven by GW emission. These systems are composed of a
stellar-mass compact object (a white dwarf, a neutron star, or a stellar-mass black hole)
that inspirals into a massive black hole located at a galactic centre. The masses of
interest for the small compact object are in the range m = 1 − 102 M⊙, and for the
massive black hole in the range M = 105 − 107 M⊙. Then, the mass-ratio for these
systems is in the interval µ = m/M ∼ 10−7 − 10−3. The GW signals emitted by
EMRIs are long lasting (months to years) and contain many GW cycles, of the order
of 105 during the last year before the small compact object plunges into the massive
black hole. Many of these cycles are spent in the neighbourhood of the massive black
hole horizon, meaning GWs encode a map of the strong-field region of the massive
black hole, the fabric of space and time. These extraordinary features of EMRIs allow
for a revolutionary research program, which could lead to understanding different
aspects of stellar dynamics in galactic centres, tests of the geometry of BHs, and tests
of General Relativity and alternative theories of gravity. In this habilitation I present
my main results in this line of research.





Part I

I N T R O D U C T I O N





1
M O T I VAT I O N

The centre-most part of a galaxy, its nucleus consists of a cluster of a few 107 to a
few 108 stars surrounding the DCO, assumed from now onward to be a MBH, with
a size of a few pc. The nucleus is naturally expected to play a major role in the
interaction between the DCO and the host galaxy, as we mentioned before. In the
nucleus, stellar densities in excess of 106 pc−3 and relative velocities of order a few 100

to a few 1000 km s−1 are reached. In these exceptional conditions, unlike anywhere
else in the bulk of the galaxy, collisional effects come into play. These include 2-
body relaxation, i.e., mutual gravitational deflections, and genuine contact collisions
between stars.

This means that, if a star happens to pass very close to the MBH, some part of it or
all of it may be torn apart because of the so-called tidal gravity of the central object.
The difference in gravitational forces on points diametrically separated on the star
alter its shape, from its initial approximately spherical architecture to an ellipsoidal
one and, in the end, the star is disrupted.

These processes may contribute significantly to the mass of the MBH. Tidal disrup-
tions trigger phases of bright accretion that may reveal the presence of a MBH in an
otherwise quiescent, possibly very distant, galaxy.

In Figure 1 we give an intuitive image of a tidal disruption of an extended star,
where distortions due to gravitational-lens have not been taken into consideration.
In Figure 2, on the left we show a Chandra X-ray image of J1242-11 with a scale of
40 arcsec on a side. This figure pinpoints one of the most extreme variability events
ever detected in a galaxy. One plausible explanation for the extreme brightness of the
ROSAT source could be accretion of stars on to a super-massive black hole. On the
right we have its optical companion piece, obtained with the 1.5 m Danish telescope
at ESO/La Silla. The right circle indicates the position of the Chandra source in the
centre of the brighter galaxy.

These processes may contribute significantly to the mass of the MBH [30, 53]. Tidal
disruptions trigger phases of bright accretion that may reveal the presence of a MBH
in an otherwise quiescent, possibly very distant, galaxy [29, 34].

On the other hand, stars can be swallowed whole if they are kicked directly through
the horizon of the MBH (so-called direct plunges) or gradually inspiral due to the emis-
sion of GWs The latter process, known as an “ Extreme Mass Ratio Inspiral” (EMRI)
is one of the main objects of interest for eLISA [Evolved Laser Interferometer Space
Antenna 3]. A compact object, such as a star so dense that it will not be disrupted

9



motivation

Figure 1: Schematic representation of the tidal disruption process. In the first panel
on the left, an extended star approaches the central MBH. As soon as the star
feels the overwhelming tidal forces acting on it, the initial spherical architec-
ture becomes spheroidal and the star stars to be torn apart. On the third
panel the star is totally ripped and about 50% of it accreted on to the MBH.
Credits: ESA and Stefanie Komossa. Illustration credit M. Weiss.
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motivation

Figure 2: Optical and X-ray images of RX J1242-11. Credits: (left)
ESO/MPE/S.Komossa and (right) NASA/CXC/MPE, [37].

by the tidal forces of the MBH, (say, a neutron star, a white dwarf or a small stellar
black hole), is able to approach very close to the central MBH. When the compact ob-
ject comes very close to the MBH, a large amount of orbital energy is radiated away,
causing the semi-major axis shrink. This phenomenon will be repeated thousand of
times as the object inspirals until is swallowed by the central MBH.

The “doomed” object spends many orbits around the MBH before it is swallowed.
When doing so, it radiates energy which can be conceptualised as a snapshot con-
taining detailed information about space-time and all the physical parameters which
characterise the binary, the MBH and the small stellar black hole: their masses, spins,
inclination and their sky position. The emitted GWs encode a map of the space-time.
If we can record and decode it, then we will be able to test the theory that massive
dark objects are indeed Kerr black holes as the theory of general relativity predicts,
and not exotic objects such as boson stars. This would be the ultimate test of general
relativity.

The detection of such an EMRI will allow us to do very exciting science: EMRIs
will give us measurements of the masses and spins of BHs to an accuracy which is
beyond that of any other astrophysical technique. Such information will tell us about
cosmic evolution, about the history and growth of MBHs in the nearby universe, with
an accuracy which has no precedent.

11





2
R E L A X AT I O N I N G A L A C T I C N U C L E I

For convenience, we will consider that our system is spherically symmetric. Since
we are interested in the close interaction between stars (both compact objects and ex-
tended stars, such as our sun), we need a source of exchange of E and J. We use and
abuse the term collisional by any effect not present in a smooth, static potential includ-
ing what is known in planetary dynamics as secular effects. Among these, standard
two-body relaxation excells not due to its relevance of contributing to EMRI or TDE
sources, but due to the fact that this is the best-studied effect; namely the exchange of
E and J between stars due to gravitational interactions.

Another possibility is physical collisions1. The stars come so close to each other that
they collide, they have a hydrodynamic interaction; the outcome depends on a number
of factors, but the stars involved in the collision could either merge with each other or
destroy each other completely or partially. Surprisingly, the impact of these processes
for the global evolution of the dynamics of galactic nuclei is negligible [30]. In most
of the cases when these extended stars, such as main-sequence stars (MS) collide, they
do not merge due to the very high velocity dispersion, and they will also not be totally
destroyed, because for that they would need a nearly head-on collision, so that they
have a partial mass-loss and are for our purposes uninteresting. For the kind of objects
of interest to us in this review, stellar black holes, the probability that they physically
collide or have a non-Newtonian interaction is negligible.

A third way of altering the J of stars are secular effects. They do nevertheless not
modify the E. If we assume that the orbits around the MBH are nearly Keplerian, the
shape, an ellipse, does not change and the orientation will not change much. If we
have another orbit with a different orientation, both orbits will exert a torque T on
each other. This will change J but not E. A Keplerian orbit can be described with its
semi-major axis a and eccentricity e. The a is only connected to E and, for a given a
the e is connected to the J. If one changes the J but not the E, the e will vary but not
the a. By decreasing the J, one increases the e.

In this section, however, we introduce the fundamentals of relaxation theory, fo-
cusing on the aspects that will be more relevant for the main interest of this review.
Further ahead we will address resonant relaxation and other “exotic” (in the sense

1 The terminology is somehow and as forewarned misleading; whilst in general we refer to “collisional”
to any effect leading to exchange of E and J among stars, here we mean real collisions between two stars.
For a thorough discussion of the mechanism and an extremely detailed numerical study, we refer the
reader to [30].
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relaxation in galactic nuclei

that they are not part of the traditional two-body relaxation theory) processes. For a
comprehensive discussion on two-body relaxation, we recommend the text books [59]
and [11] or, for a shorter but very nice introduction, the article [24].

We will first introduce handy timescales in Section 2.1 that will allow us to pinpoint
the relevant physical phenomena that reign the process of bringing stars (extended
or compact) close to the central MBH. We will then address a particular case of re-
laxation, in Section 2.2, dynamical friction. Later, in Section 2.3, we will define more
concisely the region of space-phase in which we expect stars to interact with the cen-
tral MBH. Once we have all of these concepts, we can cope with the problem of how
mass segregates in galactic nuclei. We will first see in detail the “classical” solution to
introduce in the papers a more recent and very important result, the so-called strong
mass segregation.

2.1 two-body relaxation

We introduce in this subsection some useful time-scales to which we will refer often
throughout this review; namely the relaxation time, the crossing time and the dynam-
ical time. These three time-scales allow us to delimit our physical system.

the relaxation time [19] defined as a time-scale which stems from the 2-body
small-angle encounters and gives us a typical time for the evolution of a stellar system.

This relaxation time could be regarded as an analogy of the shock time of the gas
dynamics theory, by telling us when a particle (a star) has forgotten its initial condi-
tions or, expressed in another way, when the local thermodynamical equilibrium has
been reached. Then we can roughly say that the most general idea is that this is the
time over which the star “forgets” its initial orbit due to the series of gravitational tugs
caused by the passing-by stars. After a relaxation time the system has lost all infor-
mation about the initial orbits of all the stars. This means that the encounters alter
the star orbit from the one it would have followed if the distribution of matter were
smooth. Therewith can we regard the relaxation time as the time interval required for
the velocity distribution to reach the Maxwell-Boltzmann form.

Consider two stars of masses m1 and m2 deflecting eachother such as in Figure 3.
The deflection angle θ is given by the relation

tan
θ

2
=

b0

b
, with b0 =

G(m1 + m2)

v2
rel

(1)

If the relative velocity vrel is high, θ is small and the larger the mass, the stronger the
deflection. This simple relation expresses the kernel of relaxation. One has to integrate
it over all possible parameters to get the relaxation rate. When we do the integration
over the impact parameter b whilst keeping vrel and the masses fixed, we have the
following picture of Figure 4. The test star encounters a lot of field stars, all of them

14



2.1 two-body relaxation

θ
b

m2

m1

Figure 3: Deflection angle θ of a “test” star of mass m1 with a field star of mass m2.

with the same mass m2 and relative velocity vrel. After a time δt, the velocity vector of
the test star has slightly changed direction by an angle θδt. On average, ⟨θδt⟩ = 0 but

⟨θ2
δt⟩ =

(π

2

)2 δt
t̂rlx

(2)

Therefore it is a diffusion process; ⟨θ2
δt⟩ ∝ δt [see, e.g., 33, 60]. We have introduced

the special relaxation time for this situation as

t̂rlx =
π

32
v3

rel
ln Λ G2 n⋆(m1 + m2)2 (3)

In this last equation, ln Λ, the Coulomb logarithm, has appeared as a result of integrat-
ing for all impact parameters. The information encoded in it is how many orders of
magnitude of b contribute to the relaxation,

ln Λ = ln
bmax

b0
≃ ln

Porb

b0/vrel
(4)

In this last equation b0, which we introduced before, is the effective minimum impact
parameter for relaxation. Our main focus is not a detailed review of stellar dynamics.
For a detailed description of the Coulomb logarithm, we refer the reader to [11, 40].
Therefore, we will simply comment that, for our purposes, ln Λ ≈ 10− 15 always. This
is very useful because the exact calculation can be rather arduous and almost an in-
cubus which to our knowledge nobody has attempted to implement in any calculation.
Therefore we mention only two special cases for the argument of the logarithm,

Λ ≈


0.01 N⋆ (a) for self-gravitating

stellar cluster
M•/m (b) close to the MBH

(5)
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relaxation in galactic nuclei

m1

δtm2

vrel

n⋆

θδt

Figure 4: The test stars suffers a change in direction by θδt due to the accumulation of
encounters with field stars.

In case (a) we have a self-gravitating cluster of stars in equilibrium with itself but
lacking a central MBH. The argument is proportional to the number of stars in the
system. In the situation in which a star is orbiting the MBH, the previous value is
formally no longer valid and one should use the value (b). Nevertheless, in effect this
is neglected because the value turns out to be ∼ 10. To define a local average value of
the relaxation time by integrating over the distribution of relative velocities.

It must nevertheless be noted that the way in which we have introduced the concept
of the relaxation time is a particular one. In equation 3 we have introduced the “en-
counter relaxation time” to stress that it depends on the characteristics of a peculiar
class of encounter: a star of mass m1 with “field stars” of mass m2 with a local density
n⋆ and a relative velocity vrel. It can be envisaged as the required time to deflect grad-
ually the motion of star m1 due to encounters with field stars by a RMS angle π/2.
This definition is useful to understand the fundamentals of relaxation, but it must be
noted that it is subject to this very peculiar type of encounter. However, in a general
case, we define the relaxation time inside the radius of influence for a system in which
the distribution of stars is spherically symmetric, the stellar-mass compact objects are
treated as single objects, with a two-body relaxation as the only mechanism that can
change the angular momentum and no mass segregation within the influence radius

rinfl =
GMBH

σ2
0

≈ 1 pc
(

MBH

106 M⊙

)(
60 km/s

σ0

)2

, (6)
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2.1 two-body relaxation

relv

Σ

Figure 5: Definition of the collision time.

within which the central MBH dominates the gravitational field, as

trlx(r) =
0.339
ln Λ

σ3(r)
G2⟨m⟩mCOn(r)

≃ 1.8× 108 yr
(

σ

100 km s−1

)3 (10 M⊙
mCO

)(
106 M⊙pc−3

⟨m⟩n

)
.

(7)
Here σ(r) is the local velocity dispersion. It is approximately equal to the Keplerian

orbital speed
√

GMBHr−1 for r < rinfl and has a value ≈ σ0 outside of it. n(r) is the
local number density of stars, ⟨m⟩ is the average stellar mass, mCO is the mass of the
compact object (we take a standard mCO = 10 M⊙ for stellar-mass black holes).

For typical density profiles, trlx decreases slowly with decreasing r inside rinfl. It
should be noted that the exchange of energy between stars of different masses —
sometimes referred to as dynamical friction, as we will see ahead, in section 2.2 in the
case of one or a few massive bodies in a field of much lighter objects— occurs on a
timescale shorter than trlx by a factor of roughly M/⟨m⟩, where M is the mass of a
heavy body.

As we will see later, relaxation redistributes orbital energy amongst stellar-mass
objects until the most massive of them (presumably stellar-mass black holes) form a
power-law density cusp, n(r) ∝ r−γ with γ ranging between ≃ 1.75 – 2.1 around the
MBH –depending on the solution to mass segregation considered– while less massive
species arrange themselves into a shallower profile, with α ≃ 1.4− 1.5 [2, 4, 8, 12, 13, 22,
28, 44, 48]. Nuclei likely to host MBHs in the LISA mass range (MBH ≲ few × 106 M⊙)
probably have relaxation times comparable to or less than a Hubble time, so that it is
expected that their heavier stars form a steep cusp.

collision time tcoll is defined as the mean time which has passed when the num-
ber of stars within a volume V = Σvrel△t is one (see Figure 5), where vrel is the relative
velocity at infinity of two colliding stars.

17



relaxation in galactic nuclei

Computed for an average distance of closest approach r̄min = 2
3 r⋆, this time is

n⋆V(tcoll) = 1 = n⋆ Σ vrel tcoll. (8)

And so,
tcoll =

m⋆

ρ⋆Σσrel
, (9)

with

Σ = πr̄2
min

(
1 +

2Gm⋆

r̄minσ2
rel

)
; (10)

σ2
rel = 2σ2

⋆ is the stellar velocity dispersion and Σ a collisional cross section with gravi-
tational focusing

the crossing time As the name suggests, this is the required time for a star to
pass through the system, to cross it. Obviously, its value is given by the ratio between
space and velocity,

tcross =
R
v

, (11)

where R is the radius of the physical system and v the velocity of the star crossing it.
For instance, in a star cluster it would be:

tcross =
rh

σh
; (12)

where rh is the radius containing 50 % of the total mass and σh is a typical velocity
taken at rh. One denominates it velocity dispersion and is introduced by the statistical
concept of root mean square (RMS) dispersion; the variance σ2 gives us a measure for
the dispersion, or scatter, of the measurements within the statistical population, which
in our case is the star sample,

σ2 =
1
N

N

∑
i=1

(xi − µa)
2.

Where xi are the individual stellar velocities and µa is the arithmetic mean,

µa ≡
1
N

N

∑
i=1

xi.

If Virial equilibrium prevails, we have σh ≈
√

GMh/rh, then we get the dynamical
time-scale

tdyn ≈

√
r3

h
GMh

≈ 1√
Gρ⋆

, (13)

where ρ⋆ is the mean stellar density.

18



2.2 dynamical friction

On the contrary to the gas dynamics, the thermodynamical equilibrium time-scale
trlx in a stellar system is large compared with the crossing time tcross. In a homoge-
neous, infinite stellar system, we expect in the limit t → ∞ some kind of stationary
state to be established. The decisive feature for such a Virial equilibrium is how quick
a perturbation of the system will be smoothed down.

The dynamical time in Virial equilibrium is [cf., e.g., 40]:

tdyn ∝
log(γN)

N
trlx ≪ trlx. (14)

If we have perturbations in the system because of the heat conduction, star accretion
on the BH, etc. a new Virial equilibrium will be established within a tdyn, which is
short. This means that we get again a Virial-type equilibrium in a short time. This
situation can be considered not far from a Virial-type equilibrium. We say that the
system changes in a quasi-stationary way.

2.2 dynamical friction

Consider now a star more massive than the average. In this case, relaxation boils
down to dynamical friction. The massive intruder will suffer from dynamical friction,
which is an effect of all encounters with lighter stars. For this special kind of star, the
timescale over which its orbital parameters change is not the usual relaxation time.
This star will lose kinetic energy in the following timescale:

tDF ∼ ⟨m⟩
m

trlx (15)

As we can see, if the object is 10 – 20 times more massive than the average, as in the
case of a stellar black hole, this timescale is 20 times shorter than the trlx.

In Figure 6 we have an illustration for what DF is. A massive intruder, a stellar black
hole, is travelling in a homogeneous sea of stars of density ρ and velocity dispersion
σ. The velocity vectors of the stars are rotated after the deflection and the projected
component in the direction of the deflection is shorter. Therefore, the massive object is
accumulating just after it a high-density stellar region. The perturber will feel a drag
from that region from the conservation of J in the direction of its velocity vector, just
as depicted in Figure 7. The direction does not change to first-order, but the amplitude
decreases. The intruder will feel a force given by the Chandrasekhar formula,

a⃗DF = − v⃗
tDF

(16)

− 4π ln Λ G2ρ M
v3 ξ(X)⃗v
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relaxation in galactic nuclei

M•

ρ

σ

v

Figure 6: In the reference frame of the encounter we depict a massive interloper, a
stellar black hole, traversing a sea of lighter stars which are deflected by it.
The velocity vector of the stellar black hole is bearely modified (at least in
direction) by the deflections, because they cancel out on average.

20



2.2 dynamical friction

Figure 7: The agglomeration of stars right behind the massive perturber creates a re-
gion of stellar overdensity that acts on the perturber, slowing it down, brak-
ing it.

In this last equation,

ξ(X) = erf(X)− 2π−1/2Xe−X2
(17)

X =
v√
2σ

The most interesting point is that if we plug into Eq. 17 the velocity of the perturber
which is v ≈ σ, we have that

tDF ∼ m
M

trlx ≪ trlx (18)

As we have already mentioned before, galactic nuclei in the range of what a mission
like LISA could observe have relaxation times that are shorter than a Hubble time.
In Figure 8, which is an adapted version of the figure to be found in the article of
[26], we have a schematic representation of what relaxation times in other observed
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galaxies could be. Each dot shows the mass of the central MBH or the upper limit to it
(the arrows). From this mass we can derive what the velocity dispersion would be at
0.1 pc and from observations of the brightness surface profiles we can estimate what
the stellar density at that distance would be. In many cases this distance is usually
not resolvable, so that one has to extrapolate in order to obtain the density at 0.1 pc,
which is what has been done in the figure. The blue, dashed lines correspond to
trlx(r = 0.1 pc), the relaxation time at that distance. Any system below 1010 yrs should
be relaxed and is, hence, interesting. For the range of frequencies we are interested
in, MBHs with masses typically less than a few 107 M⊙ (the region below the red line)
we can see only three systems (since M110 is only an upper limit) and M33 possibly
lacks an MBH. This low number does not mean that nuclei in the range of frequencies
of interest are rare, it simply means that it is hard to observe MBHs in that range of
masses. In this regard, a GW mission that could observe MBHs in that region would
provide us with very valuable information, since in the electromagnetic domain we
are still far from resolving those nuclei.

2.3 the difussion and loss-cone angles

As we have seen, the relaxation time is the required time for △v2
⊥/v2

⊥ ≃ 1 (i.e., the
change in the perpendicular velocity component is of the same order as the perpendic-
ular velocity component itself);

△v2
⊥ = nrlx · δv2

⊥,

△v2
⊥/v2

⊥ = 1 =
nrlx · δv2

⊥
v2
⊥

(19)

trlx = nrlx · tdyn =

(
v2
⊥

δv2
⊥

)
· tdyn, (20)

where nrlx is the numbers of crossings for △v2
⊥/v2

⊥ ≃ 1. This conforms to the defini-
tion of the relaxation time,△v2

⊥/v2
⊥ = t/trlx [17].

If we consider that θD is very small,

sin θD ≃ δv⊥
v

≃ θD

trlx ≃
tdyn

θ2
D

(21)

θD ≃

√
tdyn

trlx
. (22)

22



2.3 the difussion and loss-cone angles

L
IS
A

L
IS
A

Figure 8: Plane of the stellar density at 0.1 pc and the mass of the central MBH [taken
from 26] Relaxation (and collision times) at 0.1 pc from an MBH in the centre
of a galactic nucleus.
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Figure 9: Definition of the angle θlc.

We now introduce the loss-cone angle θlc as an illustrative example. Suppose that
the central object with mass M• has an influence radius rh. To define this radius we
say that a star will interact with the central object only when r ≤ rh. Then we look for
a condition at a place r > rh for a star to touch or to cross the influence radius of the
central object within a crossing time tcross = r/σr.

As we saw in the text, the condition that defines this angle is the following:

rp(E, L) ≤ rt,
θ ≤ θlc. (23)
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sin θ =
vt

v
, with θ ≪ 1

θ ≃ vt

v
=

L/r
v

. (24)

Where L := r vt is the specific angular momentum.
Now we derive an expression for this angle in terms of the influence radius. Within

the region r ≤ rh the star moves under the MBH potential influence, then

σ(r) ≈
√

GM•
r

=

√
GM•

Rh

√
Rh

r

= σ(Rh)
√

Rh/r = σc
√

Rh/r, (25)

since σ2
c ≡ GM•/Rh. The typical velocity of the orbit is ⟨v2⟩ ≃ 3σ3, where the factor

three stands for the three directions in the space. Since σ means the one- dimensional
dispersion, we have to take into account the dispersion of the velocity in each direction.
Then,

⟨v⟩ ≃
√

3σc
√

rh/r. (26)

Finally, we obtain the loss-cone angle,

θlc =

√
2
3

rt

r
. (27)

In the region in which r ≥ rh we can consider that the velocity dispersion is more or
less constant from this rh onwards, v ≈

√
3σc,

θlc =

√
2GM•rt√

3rσc
;

σc =
√

GM•/rh. (28)

The angle is

θlc ≈
1
r

√
2 rt rh

3
(29)

We derive the loss-cone velocity vlc(r) using angular momentum and energy con-
servation arguments. We just have to evaluate it at a general radius r and at the tidal
radius rt, where the tangential velocity is maximal and the radial velocity cancels (see
Figure 10).

For a general radius we have that
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v

vtg

rp

rt

vrr

vmax
tg

M•

Figure 10: Definition of the distance of closest approximation of the star in its orbit
to the MBH. In this point the radial component of the velocity of the star
cancels and the tangential component is maximum. In the figure “rp” stands
for the periapsis radius and “rt” for the tidal radius.
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E(r) =ϕ(r)−
vtg(r)2

2
− vr(r)2

2
L(r) =rvtg(r) (30)

For the tidal radius:

E(rt) =ϕ(rt)−
vtg(rt)2

2
L(rt) =rtvtg(rt), (31)

from the momentum conservation and the fact that vr(rt) = 0 we get that:

vtg(rt) =
r
rt

vtg(r). (32)

With energy conservation, and using the last result,

ϕ(r)−
vtg(r)2

2
− vr(r)2

2
=

ϕ(rt)−
r2

2r2
t

vtg(r)2. (33)

Then we get the tangential velocity of the stars in terms of r; namely, the loss-cone
velocity:

vlc(r) =
rt√

r2 − r2
t

×

√
2[ϕ(rt)− ϕ(r)] + vr(r)2. (34)

Therewith, the angular momentum is

L(rt) =rtvtg(r)|max = rt
r
rt

vtg(r) =

rvtg(r) = r
rt√

r2 − r2
t

√
2△ϕ + vr(r)2, (35)

where
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△ϕ ≡ ϕ(rt)− ϕ(r) =
GM•

rt
+ ϕ⋆(rt)−

GM•
r

− ϕ⋆(r) (36)

If we use the fact that r ≫ rt, then

GM•
rt

≫
(

GM•
r

+ ϕ⋆(r)
)
= ϕ(r) (37)

Also, since M• ≫ M⋆(rt),

GM•
rt

≫ ϕ⋆(rt). (38)

Thus,

vlc(r) ≈
rt

r

√
2GM•

rt
. (39)

If we use now the fact that

σr(r) = σr(rt)

(
r
rt

)−1/2

=√
GM•

rt

(
r
rt

)−1/2

, (40)

we have that √
GM•

rt
= σr(r)

(
r
rt

)−1/2

(41)

And so, it is in fair approximation

vlc(r) ≈
rt

r

√
2GM•

rt
≈ σr(r)

( rt

r

)1/2
. (42)
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3

S T E L L A R D Y N A M I C S A N D T H E C O S M I C G R O W T H O F S M B H S

3.1 tidal disruptions , gws and stellar dynamics

The challenge of detection and characterization of gravitational waves and TDEs is
strongly coupled with the dynamics of dense stellar systems. This is especially true in
the case of the capture of a compact object by a MBH. In order to estimate how many
events one can expect and what we can assess about the distribution of parameters
of the system, we need to have a very detailed comprehension of the physics. In this
regard, the potential detection of GWs and TDEs is an incentive to dive into a singular
realm otherwise irrelevant for the global dynamics of the system.

A harbinger in this respect has been the tidal disruption of stars as a way to feed the
central MBH. About 50% of the torn star remains are bound to the MBH and accreted
on to it, producing an electromagnetic flare which tops out in the UV/X-rays, emitting
a luminosity close to Eddington. This has been scrutinized attentively as a possible
way of identifying and characterizing an otherwise quiescent, possibly very distant,
galaxy [some possible TDEs have been recently reported in e.g. 9, 17, 18, 35, 42, 61].
Nonetheless, the complications of accretion are particularly intricate, tight on many
different timescales to the microphysics of gasous processes. Even on local, galactic
accreting objects the complications of accretion are convoluted. It is thus extremely
difficult to understand how to extract very detailed information about extragalactic
MBHs from the flare. The question of feeding a MBH is a statistical one. We do
not care about individual events to understand the growth in mass of the hole, but
about the statistics of the rates on cosmological timescales. Obviously, if we tried to
understand the individual processes, we would fail.

The question of what happens to a compact object as it approaches the central MBH
was never raised before we had the incentive of direct detection of gravitational radi-
ation. When we started to address this problem, we realised that there were many
questions of stellar dynamics that either did not have an answer or that had not even
been addressed at all. We now have more questions than answers.

We will discuss the relaxation processes that we know to play a major role in the
dynamics of this particular regime. This involves two-body as well as many bodies
coherent or non-coherent relaxation. The list of processes is most likely incomplete,
for there can still be additional, even more complicated processes unknown to us.
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Astrophysical objects such as a binary of black holes, generate perturbations in space
and time that spread like ripples on a pond. Such ripples, known as “gravitational
waves” or “gravitational radiation”, travel at the speed of light, outward from their
source. These gravitational waves are predicted by general relativity, first proposed
by Einstein. Whilst the strength of gravitational waves diminishes with distance, they
neither stop nor slow.

Measurement of these gravitational waves will give astrophysicists a totally new
and different way of studying the Universe: instead of analysing the propagation and
transformation of particles such as photons, we will have direct information from the
fabric of spacetime itself. The information carried by the gravitational radiation will
tell us in exquisite detail about the history, behaviour and structure of the universe:
from the Big Bang to black holes. Nonetheless, gravitational radiation has yet to be
detected.

3.2 the mystery of the growth of mbhs

The understanding of galactic nucleus (GN, the central-most core of a galaxy) has
advanced rapidly during the past decade, not least due to major advances in high
angular resolution instrumentation at a variety of wavelength domains. Observations
carried out with space-borne telescopes, such as the Hubble Space Telescope, or from
the ground, using adaptive optics, have allowed us to study the kinematics of stars
and gas in regions reaching down to sub-parsec scales for external galaxies and to
the milliparsec range for the Milky Way. An outstanding conclusion is that dark
compact objects, very probably supermassive black holes (SMBH), with masses of
M• ≃ 106 − 109 M⊙, occupy the centres of most galaxies for which such observations
can be made (see Kormendy & Ho 38 and Gültekin et al. 41). We have discovered
that an intimate deep link exists between the central SMBH and its host galaxy [38],
illuminated by the discovery of correlations between the mass of the SMBH, M•, and
global properties of the surrounding stellar system, e.g. the velocity dispersion σ of
the spheroid of the galaxy, known as the M − σ relation. In spite of some progress
in recent decades, many fundamental questions remain open. There is still no clear
evidence of SMBH feedback in galaxies, and the low mass end of the M − σ relation is
very uncertain. Claims of detection of “intermediate-mass” black holes (IMBHs) 1 at
the center of globular clusters raise the possibility that these correlations could extend
to much smaller systems [see e.g. 27, 28]. but the strongest –if not totally conclusive–
observational evidences for the existence of IMBHs are ultra-luminous X-ray sources.
The origin of these (I)MBH is still shrouded in mystery, and many aspects of their in-
terplay with the surrounding stellar cluster remain to be elucidated. The centre-most
part of a galaxy, its nucleus, consists of a nuclear star cluster of a few millions of stars
surrounding the SMBH within a distance of a few parsecs [see e.g. 55]. The nucleus
is naturally expected to play a major role in the interaction between the SMBH and

1 Black holes smaller than supermassive, found in the centre of galaxies, but heavier than stellar black
holes. Typically their masses range between 100 and 10,000 solar masses
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the host galaxy. In the nucleus, stellar densities in excess of a million stars per cubic
parsec and relative velocities of the order ∼ 100− 1000 km s−1 can be reached. In these
exceptional conditions, and unlike anywhere else in the bulk of the galaxy, collisional
effects come into play (except in globular clusters, but one important difference is that
the SMBH gives the central part of the cluster almost a Keplerian potential, and thus
very tricky resonance characteristics. This is one reason it has been difficult to analyze).
These include the so-called “2-body relaxation” (i.e. mutual gravitational deflections)
and impact between stars.

Although there is an emerging consensus about the growth of large-mass MBHs
thanks to Sołtan’s argument [60], MBHs with masses up to 107 M⊙, such as our own
MBH in the Galactic Centre (with a mass of ∼ 4× 106 M⊙), are enigmatic. In particular
because the SMBH mass in the universe is roughly in SMBHs of masses ∼ 108 M⊙.
There are many different arguments to explain their masses: accretion of multiple
stars from arbitrary directions [34], mergers of compact objects such as stellar-mass
black holes and neutron stars [51] or IMBHs falling on to the MBH [38], or by more
peculiar means such as accretion of dark matter [48] or collapse of supermassive stars
[4, 11, 32, 56, 80]. Low-mass MBHs and, thus, the early growth of all MBHs, are still a
conundrum.

3.3 the interplay between stars and smbhs

The way stars revolve around a SMBH and interact with it provides us with precious
information: the mass of the SMBH and its spin. Two fundamental observational
probes are (i) Tidal disruptions: If a star happens to pass very close to the SMBH, some
part of it or all of it may be torn apart because of the tidal effects. Many candidate
tidal disruption events (TDEs) have already been detected with ROSAT, Chandra and
Swift (see http://astrocrash.net/resources/tde-catalogue). They also have sig-
nificant optical/UV signatures in addition to X-rays and are therefore being found
with ground-based transient surveys. This number will explode with upcoming tran-
sient surveys like the Zwicky Transient Facility (ZTF) and the Large Synoptic Survey
Telescope (LSST), but also with SRG/eROSITA [36]. TDEs can be used as a probe of
accretion physics close to the event horizon of the SMBH, and hence of gravitation
in the strong regime [16, 53]: It is important to understand how stars can affect the
accretion flow and its variability [15] 2 , but also with SRG/eROSITA3 (ii) The spin
and quadrupole moment of the supermassive black hole at the Galactic center can

2 A planned X-ray telescope, http://www.the-athena-x-ray-observatory.eu/ – The second (L2) large
class mission within ESA Cosmic Vision Program, scheduled to start being constructed in 2019. Athena+
will be a hundred times more sensitive than the best of existing X-ray telescopes - Chandra X-ray Observatory,
and XMM-Newton[47]

3 The Extended Roentgen Survey with an Imaging Telescope Array, http://www.mpe.mpg.de/eROSITA –
eRosita is the primary instrument on-board the Russian “Spectrum-Roentgen-Gamma” (SRG) satellite
which will be launched in 2016 and placed in an L2 orbit. It will perform the first imaging all-sky survey
in the medium energy X-ray range up to 10 keV, and will be sensitive to TDEs occurring near SMBHs of
mass between 106−7 M⊙ in the local Universe (z ≲ 0.15)[36]
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in principle be measured via astrometric monitoring of stars orbiting at milliparsec
(mpc) distances, allowing to test the “no-hair” theorem [50]. (iii) Gravitational capture
of compact remnants: The gradual inspiral onto an SMBH of a stellar remnant due to
the emission of GWs, known as an “Extreme Mass Ratio Inspiral” because typically the
remnant has a mass of ∼ 10 M⊙ and the SMBH of 106 M⊙ [3, 5] is one of the main
objects of interest for the ESA eLISA L3 mission, presented in my papers [3, 7] It is
important to note that the precursor mission, LISA Pathfinder, which will test eLISA
technology, is scheduled to fly this year). A compact object, such as a star so dense that
it will not be disrupted by the tidal forces of the SMBH, (say, a neutron star, a white
dwarf or a small stellar black hole, althought a white dwarf can be tidally disrupted by
an IMBH, and we have a candidate for this, see Krolik & Piran 39), is able to approach
the central SMBH to very short distances and, hence, a large amount of orbital energy
is radiated away, causing the semi-major axis shrink.

This phenomenon will be repeated thousand of times as the object inspirals until is
swallowed by the central SMBH. The emitted GWs encode a map of the space-time. If
we can record and decode it, then we will be able to test the theory that massive dark
objects are indeed Kerr black holes as the theory of general relativity predicts, and not
exotic objects such as boson stars. This would be the ultimate test of general relativity.
The detection of such an EMRI will allow us to do very exciting science: EMRIs will
give us measurements of the masses and spins of SMBHs to an accuracy which is
beyond that of any other astrophysical technique. Such information will tell us about
cosmic evolution, about the history and growth of SMBHs in the nearby universe, with
an accuracy which has no precedent. For the success and future descopes of the eLISA
mission, it is important that we understand the systems that it will observe. A deep
theoretical comprehension of the sources which will populate eLISA’s field of view is
crucial to achieve its main goals.

3.4 a magnifying glass

The evolved Laser Interferometer Space Antenna / New Gravitational Wave Obser-
vatory [eLISA, see 3, 7, and also the official AEI URL4], based on the the former
NASA-ESA configuration [LISA, see e.g., 21], is a conceived space-borne observatory
for detecting low frequency gravitational waves (GW). The “full version of ” LISA,
which will be our reference point throughout the review, consists of three spacecraft
arranged in an equilateral triangle with sides of length 5 million kilometres, all in a
heliocentric orbit. LISA is designed to cover the low-frequency broadband of grav-
itational radiation, from about 0.1 to 100 millihertz. In this band of frequencies, the
Universe is populated by strong sources of GWs such as binaries of supermassive black
holes merging in galaxies, massive black holes “swallowing” entirely small compact
objects like stellar black holes, neutron stars and white dwarfs. The information is en-
coded in the gravitational waves: the history of galaxies and black holes, the physics of
dense matter and stellar remnants like stellar black holes, as well as general relativity

4 http://elisa-ngo.org/
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and the behaviour of space and time itself. Chinese mission study options [“ALIA”
from now onwards, see 15, 20, 39] will also be able to catch these systems with good
signal-to-noise ratios, although the mass-ratio for the capture of COs by MBHs will
not be as extreme. ALIA focuses rather on intermediate-mass ratio inspirals.

In any case, a key property of GW astrophysics is the fact that GWs interact only
very weakly with matter. The observations we will make with LISA will not suffer any
of the usual problems in astrophysics - absorption, scattering, or obscuration. This
is what makes LISA-like missions such as eLISA/NGO or ALIA unique. It is not
“merely” a test of general relativity; these missions would be able to corroborate the
underlying theory of the nature of the central dark objects which we now observe in
most galaxies. We will get direct information from the heart of the densest stellar
systems in the Universe: galactic nuclei, nuclear stellar clusters and globular clusters.
The LISA mission technology will be tested with the LISA Pathfinder5 mission, a 100%
European effort (from the European Space Agency), scheduled for launch in 2014 from
Kourou, French Guiana. LISA Pathfinder will contain one shortened arm of the full-
LISA interferometer. The main goal of LISA Pathfinder mission is to check that the
technology required by a LISA-like mission is feasible. Moreover, LISA Pathfinder will
be the first in-flight test of gravitational wave detection metrology.

For the full success of a mission such as LISA, it is important that we understand the
systems that we expect to observe. A deep theoretical comprehension of the sources
which will populate LISA’s field of view is important to achieve its main goals.

Whilst main-sequence stars are tidally disrupted when approaching the central
MBH, compact objects (stellar black holes, neutron stars, and white dwarfs) slowly
spiral into the MBH and are swallowed whole after some ∼ 105 orbits in the LISA
band. At the closest approach to the MBH, the system emits a burst of GWs which
contains information about spacetime and the masses and spins of the system. We
can envisage each such burst as a snapshot of the system. This is what makes EMRIs
so appealing: a set of ∼ 105 bursts of GWs radiated by one system will tell us with
the utmost accuracy about the system itself, it will test general relativity, it will tell us
about the distribution of dark objects in galactic nuclei and globular clusters and, thus,
we will have a new understanding of the physics of the process. New phenomena,
unknown and unanticipated, are likely to be discovered.

If the central MBH has a mass larger than 107 M⊙, then the signal of an inspiraling
stellar black hole, even in its last stable orbit (LSO) will have a frequency too low
for detection. On the other hand, if it is less massive than 104 M⊙, the signal will
also be quite weak unless the source is very close. This is why one usually assumes
that the mass range of MBHs of interest in the search of EMRIs for LISA is between
[107, 104] M⊙. Nonetheless, if the MBH is rotating rapidly, then even if it has a mass
larger than 107 M⊙, the LSO will be closer to the MBH and thus, even at a higher
frequency, the system should be detectable. This would push the total mass to a few
∼ 107 M⊙.

5 http://sci.esa.int/lisapf
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For a binary of a MBH and a stellar black hole to be in the LISA band, it has to have
a frequency of between roughly 1 and 10−5 Hz. The emission of GWs is more efficient
as they approach the LSO, so that LISA will detect the sources when they are close to
the LSO line. The total mass required to observe systems with frequencies between
0.1 Hz and 10−4 is of 104 − 107 M⊙. For masses larger than 107 M⊙ the frequencies
close to the LSO will be too low, so that their detection will be very difficult. On the
other hand, for a total mass of less than 103 M⊙ we could in principal detect them at
an early stage, but then the amplitude of the GW would be rather low.

On the top of this, the measurement of the emitted GWs will give us very detailed
information about the spin of the central MBH. With current techniques, we can only
hope to measure MBH spin through X-ray observations of Fe Kα profiles, but the
numerous uncertainties of this technique may disguise the real value. Moreover, such
observations can only rarely be made.

This means that LISA will scrutinize exactly the range of masses fundamental to the
understanding of the origin and growth of supermassive black holes. By extracting
the information encoded in the GWs of this scenario, we can determine the mass of the
central MBH with an astonishing relative precision of ∼ 10−4. Additionally, the mass
of the compact object which falls into the MBH and the eccentricity of the orbit will
be recovered from the gravitational radiation with a fractional accuracy also of ∼ 10−4.
All this means that LISA will not be “just” the ultimate test of general relativity, but
an exquisite probe of the spins and range of masses of interest for theoretical and
observational astrophysics and cosmology.

3.5 a problem of ∼ 10 orders of magnitude

For the particular problem of how does a compact object end up being an extreme-
massratio inspiral, we have to study very different astrophysical regimes, spanning
over many orders of magnitude.

galactic or cosmological dynamics In Figure 11 we depict the three differ-
ent realms of stellar dynamics of relevance for the problem of EMRIs. At the largest
scale exists the galaxy, with a size of a few kiloparsecs. Just as a point of reference, the
gravitational radius of a MBH of 106 M⊙ ∼ 5 · 10−8 pc. The relaxation time, trlx which
we will introduce with more detail ahead, is a timescale which can be envisaged as the
required time for the stars to exchange energy E and angular momentum J between
them, it is the time that the stars need to “see” eachother individually and not only the
average, background stellar potential of the whole stellar system, for the galaxy trlx is
larger than the Hubble time, which means that, on average, it has no influence on the
galaxy at all. A test star will only feel the mean potential of the rest of the stars and
it will never exchange either E or J with any other star. The system is “collisionless”,
in the meaning that two-body interactions can be neglected. This defines the realm of
stellar galactic dynamics, the one investigated in Cosmological simulations using, e.g.,
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N-body integrators. Since we do not have to take into account the strong interactions
between stars, one can easily simulate ten billion particles with these integrators.

cluster dynamics If we zoom in by typically a factor of 103, we enter the (mostly
Newtonian) stellar dynamics of galactic nuclei. There, trlx ∼ 108 − 1010 yrs. In this
realm stars do feel the graininess of the stellar potential. The closer we get to the
central MBH, the higher σ will be, if the system is in centrifugal equilibrium; the stars
have to orbit around the MBH faster. In particular, S2 (or S02), one of the S-stars (S0-
stars) for which we have enough data to reconstruct the orbit to a very high level of
confidence – as we saw in the previous section – has been observed to move with a
velocity of 15 · 103 km s−1. Typically, trlx is (on occasion much) shorter than the age
of the system, of a few ∼ 108 − 1010 yrs. For these kind of systems one has to take
into account relaxation, exchange of E and J between stars. The system is “collisional”.
When we have to take into account this in the numerical simulations, the result is that
we cannot simulate with N-body integrators more than some thousands of stars on
a computer. To get to more realistic particle numbers one has to resort to beowulf
supercomputers, special-purpose hardware or the graphic processor units.

relativistic stellar dynamics Last, in the right panel, we have the relativistic
regime of stellar dynamics when we enlarge the previous by a factor of ten million.
There the role of relativistic effects is of paramount importance for the evolution of
the system. In this zone, generally, there are no stars. Even at the densities which
characterise a galactic nucleus, the probability of having a star in such a tiny volume
is extremely small. What’s more, even if we had a significantly larger volume, or a
much higher density for the galactic nucleus, so that we had a few stars close to the
MBH, these would quickly merge with the MBH due to the emission of GWs, which
is what defines an EMRI. But they do it too fast. These systems can be collisional or
collisionless, depending on how many stars we have at a given time. If they are there,
they will exchange E and J between them. Nevertheless, relaxation is not well-defined
in this regime.

he key point here is how to replenish that area, so that there are other stars replacing
those which merge quickly with the central MBH. On average, there are zero stars. As
a matter of fact, and in general, for the general study of the stellar dynamics of galactic
nuclei, the role of this last realm is negligible. One does not have to bother with the
effects of GR; most, if not all, stars are on a Newtonian regime. The impact on the
dynamics of galactic nuclei is zero. It is somewhat impressive that this last region
dominated by the effects of GR has an effect worth studying at all. But, as we will
see ahead, the encoded information that one can recover from the detection of an
EMRI about its surrounding dynamical system is dramatic. If we want to address
this problem, we are, therefore, “forced” to cope with a problem of some seven orders
of magnitude in particular, when understanding the role of the dynamics of galactic
nuclei in relativistic dynamics, and of ten orders of magnitude in the big picture.
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Galactic dynamics 
Newtonian, non-collisional

Cluster dynamics 
Newtonian, collisional

Relativistic dynamics 
collisional or not (low N)

RSchw = 10−7 − 10−4 pc

ρ⋆, gal ∼ 0.05 M⊙pc−3

σ⋆, gal ∼ 40 km s−1

trlx, gal ∼ 1015 yrs

M• ∼ 106 − 109
M⊙

ρ⋆, cl ∼ 106 − 108
M⊙ pc−3

σ⋆, cl ∼ 100 − 1000 km s−1

trlx, cl ∼ 108 − 1010 yrs

Figure 11: On the left and with the largest scale the galaxy has an average density of
stars of about 0.05 M⊙pc−3. The velocity dispersion is ∼ 40 km s−1. From
these quantities one can infer that the relaxation time in the vicinity of
our Sun is trlx ∼ 1015 yrs. The upper panel shows the galactic nucleus
that such a galaxy has. A typical size for it is ∼ 1 pc, the stellar density
ranges between 106 − 108 M⊙ pc−3 and the velocity dispersion is of σ ∼
100 − 1000 km s−1. In this region, trlx ∼ 108 − 1010 yrs. In the last panel, we
have that the dynamics of the system is dominated by General Relativity.
The mass of the central object, an MBH, ranges between 108 and 109 M⊙
and its size is given by the Schwarschild radius, RSchw = 10−7 − 10−4 pc.
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3.5 a problem of ∼ 10 orders of magnitude

3.5.1 Actual data

In Figure 12 we show data constrainted by actual measurements. One of the very first
questions one has to address when trying to understand the stellar dynamics around a
MBH is how many stars are there and how do they distribute around it? Unfortunately there
are very few observations for this because we are interested in nuclei that harbour
lower-mass MBHs, so they therefore have a small radius of influence rinf and, thus,
they are observationally very difficult to resolve. Currently there are only a very few
galaxies that are both in the range of GW frequencies interesting to us and that have
a resolved rinf. For these we have information on how bound stars that can become
EMRIs are distributed around the central MBH. Obviously, the Milky Way (MW) is one
of these galaxies. In thefigure the stellar density profile of the MW is displayed. We
see that it goes up to at least 108 M⊙/pc3 in the inner regions. This number has been
calculated by assuming a population of stars; one has to deproject the observation,
because we are only seeing a few of the total amount of stars, the brightest ones. One
assumes that the observed stars are tracing an underlying population invisible to us.
This requires a considerable amount of modelling to obtain the final results. These
are uncertain by, at most, a factor of ten. In the same figure we have another nucleus,
M32, which should be harbouring an MBH with a mass similar to the one located in
the GC. The density profile happens to be similar to the one corresponding to the GC.
Whether this is a coincidence or something deeper is not clear. In any case, and to first
order of approximation, we can state that once we know the mass of the MBH, we know
the way stars distribute around it. Later the relevance of this point will be obvious to
the lector.

37



stellar dynamics and the cosmic growth of smbhs

ρ ∝ r
−1.5

Figure 12: Density profile for the GC of the MW and for M32, both with MBHs of
masses 3 × 106 M⊙ and influence radii ∼ 3 pc. The dashed curve on the
very left corresponds to a slope of ρ ∝ r−3/2 [adapted from 40, 43, 54].
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F E AT U R E D A RT I C L E S

For this dissertation I have decided to put together a series of papers that I have pub-
lised in the last years in The Astrophysical Journal (and Letters), Monthly Notices of
the Royal Astronomical Society, Astronomy & Astrophysics and Classical and Quan-
tum Gravity (this one is more focused on topics related to General Relativity and
Gravitation, and is leading in the field).

The nine articles that I have selected have as a common denominator the study
of the creation and evolution of sources of tidal disruption events and gravitational
waves. The order I have chosen is not chronological, but logical and allows the reader
to follow a natural flow of ideas to better picture the main goals of this dissertation
(for the full titles of the papers, acronyms, as well as an explanation of my contribution
and journal references, please see table 4). Here I give a succinct description of the
most important goals of every individual article. The papers are presented fully in the
next chapters and in the final one, in chapter iii, I present the general discussion of the
dissertation.

[Frag1] introduces the idea that the responsible for the observed kinematical proper-
ties of the Galactic Center was an accretion disc around our supermassive black
hole that went under fragmentation in the past. This paper is an analytical cal-
culation that solves a fundamental problem that has been open for a long time;
namely the observational absence of red giants, and has direct implications on
the distribution of compact remnants, in particular of compact cores, similar to
white-dwarfs, that eventually could end up being sources of GWs for a space-
borne observatory.

[Frag2] is a work that addresses a related problem: The fragmentation and formation
of stars in a gaseous disc, which in this case is surrounding not a single super-
massive black hole, but a binary of them. The disc is called therefore circumbi-
nary. This article was a major numerical effort that combined for the first time
two different approaches: Smoothed-particle hydrodynamics (SPH) and direct-
summation N-body. I investigated the impact of the binary on the event rate of
tidal disruptions.

[RER] is the natural follow-up of [Frag1]. My collaborator and I realised that the
stellar disc that forms once the gas has been depleted and stellar formation has
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featured articles

finished, induces a resonance in the innermost stellar population. This resonance,
a Kozai-Lidov-like one, gives a simple and elegant answer to the observed super-
thermal eccentricity distribution of the so-called S-stars in our Galactic Centre
and explains also the fact that these lighter stars (the S-stars) are closer to Sgr A*
and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. This was
a conondrum known as the “inverse mass-segregation” until now.

[Sep] addresses a scenario that has been thought to deliver the so-called S-stars close
to the SMBH. The tidal separation of a binary by the gravitational pull of an
SMBH is similar to the disruption of a star. The binary is separated and one of
the stars re-ejected into the stellar system at a much higher velocity, which might
produce a hyper-velocity star, and the remaining one is bound to the SMBH. The
tidal disruption, however, will have a particular signature that might be used to
charecterise the event.

[MS] was published before the previous articles, and it can be envisaged as the log-
ical next step that investigates the question of how stars distribute around the
supermassive black hole once all gas has been depleted. This work has a direct
impact on the event rate of tidal disruptions of extended stars and the forma-
tion of extreme-mass ratio inspirals, because it provides us with a realistic –and
more efficient– answer to the question of how stars segregate towards the centre
according to their masses.

[BF] describes an interesting effect I discovered when looking more closely to the prob-
lem of extreme-mass ratio inspirals in the context of relativistic stellar dynamics.
What would happen if a stellar black hole, on its way to become a probe to space
and time around a supermassive black hole, had relatively close a perturbing
star? I show that in such a case, the evolution of the EMRI is non-deterministic
because of a new dynamical effect that I have discovered, which is a result of rel-
ativistic periastron shift and secular effects. If the observation of an EMRI with
a space-borne observatory turns out to be very difficult because of the lack of
determinism, this does not necessarily mean that General Relavitity is a wrong
theory – A mere, simple nearby star could be the reason.

[Spin] is probably one of the most important breakthroughs in this field of research in
the last years. I show that, contrary to what had been previously thought, stellar
black holes on extremely radial orbits do not “plunge” into the supermassive
black hole after a very small series of bursts of gravitational radiation. If the
supermassive black hole is spinning, which is very likely in nature, the smaller
black hole does not plunge through the horizon, but becomes a coherent, very
loud source of gravitational waves, which means that the event rate of EMRIs
is larger than thought and also that they are more powerful. This allows us to
reach farther horizon distances, and hence expands the observable universe with
these unique probes of space and time.
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[IMRI] is to date the only existing numerical investigation of a globular cluster with
an intermediate-mass black hole (IMBH) using a direct-summation code that
displays the creation of an intermediate-mass ratio inspiral and follows it down
to a few Schwarzschild radii. Moreover, the numerical code that we use has the
implementation of the velocity recoil that the merged massive black hole system
receives after coalescence. Due to the relatively low velocity dispersion of the
cluster, as compared to e.g. a galactic nucleus, the IMBH escapes the whole
system, which has an impact on the global evolution.

[UCDs] uses the previous paper as a motivation to study the effect of recoiling IMBHs
in the observed cluster complexes of interacting galaxies, such as the Antennæ.
Such complexes harbour hundreds to thounsands of young clusters. If even a
very small fraction of them contain an IMBH, the black hole can escape after
coalescence with another black hole the host cluster and become a massive black
hole at large, i.e. free-floating between the many clusters. In this article I pro-
duced two big sets of numerical simulations: The first analyses the different
possible interactions between an IMBH and a cluster, depending on mass ratio,
relative velocity and impact parameter, and the second one studies the global
evolution of a cluster complex with many clusters while tracking the orbit of one
or many free-floating IMBHs, and their mutual interactions. I show that the clus-
ter complex can eventually form an Ultra-Compact Dwarf Galaxy, such as e.g.
Omega Centauri in the Milky Way, and that the IMBHs typically are accumu-
lated in the centre of it. This has important consequences in our understanding
of dwarf galaxy formation and evolution as well in sources of gravitational radi-
ation and tidal disruption of stars.
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[Frag1] “The Fragmenting Past of the Disk at the Galactic Center:
The Culprit for the Missing Red Giants”
The Astrophysical Journal Letters, Volume 781, Issue 1, article id. L18, 5 pp. (2014).
Amaro-Seoane, Pau; Chen, Xian
My contribution: I proposed the problem and contributed 50% to the
calculations and write-up.
Percentage of my contribution: 50%.

[Frag2] “Tidal Disruptions in Circumbinary Disks.
Star Formation, Dynamics, and Binary Evolution”
The Astrophysical Journal, Volume 764, Issue 1, article id. 14, 9 pp. (2013).
Amaro-Seoane, Pau; Brem, Patrick; Cuadra, Jorge
My contribution: I proposed the problem, ran the SPH simulations, helped with
the N-body simulations, and contributed to the plots and write-up.
Percentage of my contribution: 50%.

[RER] “A Rapidly Evolving Region in the Galactic Center:
Why S-stars Thermalize and More Massive Stars are Missing”
The Astrophysical Journal Letters, Volume 786, Issue 2, article id. L14, 5 pp. (2014).
Chen, Xian; Amaro-Seoane, Pau
My contribution: I proposed the problem and contributed 50% to the
calculations and write-up.
Percentage of my contribution: 50%.

[Sep] “Tidal disruptions of separated binaries in galactic nuclei”
Monthly Notices of the Royal Astronomical Society, Volume 425, Issue 4, pp. 2401-2406 (2012).
Amaro-Seoane, Pau; Miller, M. Coleman; Kennedy, Gareth F.
My contribution: For this paper I proposed the problem, participated in the numerical
simulations as well as in the analytical model. I did the write-up of most of the article.
Percentage of my contribution: 60%.

[MS] “The impact of realistic models of mass segregation
on the event rate of extreme-mass ratio inspirals and cusp re-growth”
Classical and Quantum Gravity, Volume 28, Issue 9, id. 094017 (2011).
Amaro-Seoane, Pau; Preto, Miguel
My contribution: In this work, which is a continuation of the former one, I have
analyzed, interpreted and visualized the results for the main results. I did the write-up.
Percentage of my contribution: 50%.

[BF] “The butterfly effect
in the extreme-mass ratio inspiral problem”
The Astrophysical Journal Letters, Volume 744, Issue 2, article id. L20, 6 pp. (2012).
Amaro-Seoane, Pau; Brem, Patrick; Cuadra, Jorge; Armitage, Philip J.
My contribution: I proposed the problem, developed the relativistic correction terms
for the code and carried out the analysis and interpretation of the results.
I did the write-up.
Percentage of my contribution: 80%.

[Spin] “The role of the supermassive black hole spin
in the estimation of the EMRI event rate”
Monthly Notices of the Royal Astronomical Society, Volume 429, Issue 4, p.3155-3165 (2013).
Amaro-Seoane, Pau; Sopuerta, Carlos F.; Freitag, Marc D.
My contribution: I proposed the problem, contributed to the derivation of the separatrices,
and estimated the event rates. I did the write-up.
Percentage of my contribution: 70%.

[IMRI] “Investigating the retention of intermediate-mass
black holes in star clusters using N-body simulations”
Astronomy & Astrophysics, Volume 557, id. A135, 8 pp. (2013).
Konstantinidis, Symeon; Amaro-Seoane, Pau; Kokkotas, Kostas D.
My contribution: I proposed the problem, analyzed the simulations, did the plots and
did the write-up.
Percentage of my contribution: 50%.

[UCDs] “Sowing the seeds of massive black holes in small galaxies:
Young clusters as the building blocks of Ultra-Compact-Dwarf Galaxies”
The Astrophysical Journal, Volume 782, Issue 2, article id. 97, 14 pp. (2014).
Amaro-Seoane, Pau; Konstantinidis, Symeon; Dewi Freitag, Marc; Miller, M. Coleman; Rasio, Frederic A.
My contribution: I proposed the problem, ran half of all simulations, did the plots and
did most of the write-up.
Percentage of my contribution: 70%.
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T H E F R A G M E N T I N G PA S T O F T H E D I S K AT T H E G A L A C T I C
C E N T E R : T H E C U L P R I T F O R T H E M I S S I N G R E D G I A N T S

Pau Amaro-Seoane1 and Xian Chen1

Published in The Astrophysical Journal Letters, Volume 781, Issue 1, article id. L18, 5 pp.
(2014).

Abstract: Since 1996 we have known that the Galactic Center (GC) displays a core-like distribution
of red giant branch (RGB) stars starting at ∼ 10′′, which poses a theoretical problem, because the GC
should have formed a segregated cusp of old stars. This issue has been addressed invoking stellar
collisions, massive black hole binaries, and infalling star clusters, which can explain it to some extent.
Another observational fact, key to the work presented here, is the presence of a stellar disk at the GC. We
postulate that the reason for the missing stars in the RGB is closely intertwined with the disk formation,
which initially was gaseous and went through a fragmentation phase to form the stars. Using simple
analytical estimates, we prove that during fragmentation the disk developed regions with densities much
higher than a homogeneous gaseous disk, i.e. “clumps”, which were optically thick, and hence contracted
slowly. Stars in the GC interacted with them and in the case of RGB stars, the clumps were dense enough
to totally remove their outer envelopes after a relatively low number of impacts. Giant stars in the
horizontal branch (HB), however, have much denser envelopes. Hence, the fragmentation phase of the
disk must have had a lower impact in their distribution, because it was more difficult to remove their
envelopes. We predict that future deeper observations of the GC should reveal less depletion of HB stars
and that the released dense cores of RGB stars will still be populating the GC.

5.1 introduction

The observations of the inner 0.5 pc (12′′) of the GC has led in recent years to interesting
and challenging discoveries that cannot be fully addressed in the context of standard
two-body relaxation theory (for a general summary about the GC, see e.g. Genzel et al.
2010). On the one hand, Buchholz et al. (2009); Do et al. (2009) discovered a spherical
core of RGs with a flat surface density profile. If these RGs trace an underlying old
stellar population (of ∼ 109 years), the total mass of the old stars might be ∼ 105 M⊙
(Merritt 2010). Moreover, Bartko et al. (2010); Levin & Beloborodov (2003); Lu et al.

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
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(2006); Paumard et al. (2006); Tanner et al. (2006) unveiled the presence of a mildly
thick (H/R ≃ 0.1, with H the height and R the radius) and young (2–7 Myr) stellar
disk, of about 100 Wolf-Rayet (WR) and O-type stars in near-circular orbits (e < 0.4).
The disk has a total mass of ∼ 104 M⊙ and a surface density profile of Σd(R) ∝ R−2.
The inner and outer edges of the disk are approximately at Rin ≃ 0.04 pc and Rout ≃
0.5 pc. There is also an indication for a second disk, with more eccentric stellar orbits
(e > 0.6) and smaller disk mass (< 5 × 103 M⊙), inclined by about 115◦ relative to the
first one, and with a contrary rotation. However, the existence of this second disk is
still in debate (Bartko et al. 2009; Lu et al. 2006; Paumard et al. 2006).

The problem of the missing RGs has been addressed by a number of different au-
thors whose approaches can be divided into three general scenarios: (i) along with the
discovery of the missing stars in the RGB, Genzel et al. (1996) suggested the interpreta-
tion that this could be attributed to stellar collisions due to the extreme stellar densities
reached in the GC. This idea has been explored extensively in the works of Alexander
(1999); Bailey & Davies (1999); Dale et al. (2009); Davies et al. (1998), but it cannot fully
explain the observations; (ii) it has also been hypothesized that a massive black hole
binary could scour out a core in the GC via three-body slingshots (Baumgardt et al.
2006; Gualandris & Merritt 2012; Löckmann & Baumgardt 2008; Matsubayashi et al.
2007; Portegies Zwart et al. 2006), but in order to reproduce a core as large as what is
observed, the mass of the secondary MBH at the GC should be at least ∼ 105 M⊙. This
would imply that the Milky Way recently had a major merger, ruled out by current ob-
servations (e.g. Chen & Liu 2013; Hansen & Milosavljević 2003; Yu & Tremaine 2003);
(iii) infalling clusters towards the GC could also steepen the density profile outside
10′′, making the inner 10′′ like a core (Antonini et al. 2012; Ernst et al. 2009; Kim &
Morris 2003), but strong mass segregation can rebuild the cusp in the MW in about
1/4 of the relaxation time (Alexander & Hopman 2009; Amaro-Seoane & Preto 2011;
Preto & Amaro-Seoane 2010). Hence, this argument would require a steady inflow of
a cluster roughly every 107 years to avoid cusp regrowth.

In this article we propose a simple, new scenario in which the depletion of RGs
is merely a consequence of the natural fragmentation phase that the gaseous disk
experienced. We prove that the regions of overdensity in the star-forming disk could
have removed the envelope of stars in the RGB after a rather low number of crossings
through the disk. The exact number depends on effects of non-linearity that cannot be
addressed in our simple analytical model. In section 5.2 we introduce the formation
of overdensity regions in the star-forming disk and the conditions for them to annul
the envelope of RGB stars. In 5.3 we derive the mean number of crossing times that
a star will hit one of the clumps in the disk depending on its orbital parameters and
in 5.4 the net effect on the clumps. We summarize our findings in section 5.5 as well
as the main implications.
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5.2 formation of clumps in the gaseous disk and envelope removal cri-
terion

The in situ star formation model suggests that the disk of WR/OB giant stars formed
2–7 Myrs ago in an accretion disk around the central MBH (Genzel et al. 2003; Levin
& Beloborodov 2003). To become self-gravitating and trigger star formation, the disk
initially should have had at least 104 M⊙ of gas, and could have been as massive
as 105M⊙ (Nayakshin & Cuadra 2005). When a RG crosses the gaseous disk with a
relative velocity v∗, only that part of the envelope with a surface density lower than

Σ∗ ≃
v∗√

Gm∗/r∗
Σd (43)

will be stripped off the RG by the disk because of the momentum imparted to that
section of the RG (Armitage et al. 1996). In the above equation, Σd denotes the surface
density of the disk where the impact happens, and m∗ and r∗ are the mass and radius
of the RG, so that

√
Gm∗/r∗ represents the escape velocity from the RG calculated at

its surface. The reason why we use the value of the escape velocity here and not at
deeper radii in the RG is that the density of a homogeneous disk,

Σd ∼ 104M⊙

(0.1 pc)2 ∼ 106 M⊙ pc−2 ∼ 200 g cm−2, (44)

is so low that when the RG crosses the disk, it will be barely scratched, i.e. only
material at the surface will be removed from it. For example, an impact at a distance
0.1 pc from the central MBH of mass M• ≃ 4 × 106 M⊙ has a relative velocity of v∗ ∼
400 km s−1. By comparing Σ∗ from Equation (43) and the RG model from Armitage et
al. (1996) for m∗ ∼ 1 M⊙ and r∗ ∼ 100 R⊙, less than ∼ 10−7 M⊙ of the RG envelope
will be lost due to the impact. Such a gaseous disk will not induce any noticeable
change in the structure of the RG. Only more massive disks, ≳ 105 M⊙, and long-
lived in the gaseous phase, ≳ 107 yrs, can lead to a more efficient depletion of the
envelope1, but these numbers strongly contradict current observations (Nayakshin &
Cuadra 2005; Paumard et al. 2006).

Because the disk itself is too tenuous to strip the entire envelope of any RG flying
through it, we postulate that the regions of overdensity that progressively form in the
disk, referred to as “clumps”, are dense enough to efficiently remove it completely
and release the inner compact core of the RGs. This depletion of RGs leads to their
flat spatial distribution and implicates the existence of a similar number of dense cores
within the same volume.

During fragmentation, a clump must satisfy the Jeans criterion to become self-
gravitating, that is, if its radius is Rc, the initial diameter must be comparable to
the Jeans length, i.e. 2Rc ∼ λJ ≃ cs/(Gρ)1/2, where ρ is the local gas density, and
cs the effective sound speed. Using Mc ≃ ρR3

c and cs ≃ H
√

GM•/R3 in hydrostatic

1 As in the work of Davies & Church (in preparation), private communication
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equilibrium, we can now link the properties of the clump, its mass Mc and radius Rc,
with the scale height H of the disk and the distance R to SgrA∗,

Rc

R
≃ 4Mc

M•

(
R
H

)2

≃ 10−2
(

Mc

102 M⊙

)(
H/R
0.1

)−2

, (45)

From the last equation we can derive the volume density ρc and surface density Σc for
the clumps,

ρc ≃ ρ ≃ Mc

R3
c
≃ M•

64R3

(
M•
Mc

)2 (H
R

)6

≃ 10−11g cm−3
(

Mc

102M⊙

)−2 ( H
0.1R

)6 ( R
0.1pc

)−3

, (46)

Σc ≃ ρcRc ≃
M•

16R2

(
M•
Mc

)(
H
R

)4

≃ 2 · 104g cm−2
(

Mc

102M⊙

)−1 ( H
0.1R

)4 ( R
0.1pc

)−2

. (47)

The stars in the disk are mainly O/WR, which have been observationally constrained
to have masses ranging between 64 − 128 M⊙ (Zinnecker & Yorke 2007), so in the
following we adopt Mc = 102 M⊙ as the fiducial value. We take H/R = 0.1 as
the thickness in view of the current observations of the disk at the GC. Then from
Equations (44) and (47), we can see that a clump is typically ∼ 102 more efficient in
destroying RGs than its analogue in an homogeneous gaseous disk.

We note that the argument that led to Equation (45) at the same time ensures that
the clumps will withstand the tidal forces arising from the MBH, because the Roche
radius, R(Mc/M•)1/3 ≃ (R/34)[Mc/(102M⊙)]1/3, is about three times larger than Rc
for an 100 M⊙ clump.

When a clump collides with a RG of mass m∗ ≃ 1 M⊙ and radius r∗ ≃ 150 R⊙, at a
relative velocity comparable to the orbital velocity of the clump vc ≃ 400[R/(0.1 pc)]−1/2

km s−1, the amount of mass stripped off from the star is

Mloss ∼10−5 M⊙
vc√

Gm∗/r∗

(
Σc

104 g cm−2

)
∼10−4.6 M⊙

(
Mc

102M⊙

)−1 ( R
0.1 pc

)−5/2

. (48)

The first line was derived by Armitage et al. (1996) numerically, and in the second line
we have used Σc from Equation (47) for scaling.

Successive impacts will remove even more efficiently the outer layer of the RG. This
is so, because the density gradient of the RG decreases (see equation 9 of Armitage
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et al. 1996 or Kippenhahn & Weigert 1990): The enclosed mass is reduced, and the
polytropic constant increases. The envelope therefore expands to even larger radii (see
upper panel of Figure 7 in Armitage et al. 1996). The timescale for the expansion is
the convective time, much shorter than the orbital period of the star – The RG has
achieved hydrostatic equilibrium much before the next impact. To account for this
effect, we assume that the nth impact strips a mass of f n−1

loss Mloss from the RG, where
floss > 1. After n impacts, the RG has lost a total mass of Mloss( f n

loss − 1)/( floss − 1).
In order to totally lose the envelope, we have to equate

Mloss
f n
loss − 1

floss − 1
= Menv ∼ 0.5 M⊙, (49)

where Menv is the mass in the envelope, and so

nloss ≃
1

ln floss

[
10 + ln( floss − 1) + ln

(
Mc

102M⊙

)
+2.5 ln

(
R

0.1 pc

)]
. (50)

For a RG of size r∗ ≃ 150 R⊙, the typical value of floss is 2 (Armitage et al. 1996).
Hence, it takes about 14 impacts with clumps of Mc ∼ 102 M⊙ located at R ∼ 0.1 pc to
completely remove the RG envelope. The corresponding nloss will increase to 80 (530)
if we assume floss = 1.1 (1.01). We note that for smaller but more common RGs, such
as those at the base of the RG branch, floss < 2 is more likely.

5.3 number of interactions with clumps

We now estimate the number of impacts that a RG experiences during successive
passages through the fragmenting accretion disk. At a given moment, suppose the
disk has a total of N clumps. The eccentricities of these clumps, as we saw in Sec-
tion 5.1, are not zero, but range between 0.1 − 0.4, ensuring a covering of the disk
surface by a fraction of N(Rc/R)2 for an infalling RG whose velocity vector is per-
pendicular to the disk plane. Such a RG with semimajor axis a ≲ 10′′ and period
P(a) ≃ 103.2 (a/0.1 pc)3/2 yrs, will collide with clumps at a rate Γ ∼ 2N(Rc/R)2/P(a).
Any RG on such an orbit will interact with clumps for a time scale comparable with the
fragmentation phase of the disk, tfrag. The exact value of this time depends strongly
on the initial conditions, but also on the cooling function and other variables (Amaro-
Seoane et al. 2013; Bonnell & Rice 2008; Mapelli et al. 2012; Nayakshin et al. 2007;
Wardle & Yusef-Zadeh 2008). Notwithstanding, we note that our model does not
rely on tfrag: Whatever its value is, a total number of at least Nc ∼ 102 clumps with
Mc ∼ 102 M⊙ will have formed if we want to match the observed number of WR/O
stars in the GC stellar disk. Consequently, at any given moment, the disk will harbor
N ∼ Nc(tc/tfrag) clumps, where we have introduced tc, the lifetime of a clump, whose
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value is derived later in this section. The total number of perpendicular collisions
during tfrag, n⊥, can be estimated to be

n⊥ ∼ Γtfrag ∼ Nc

[
2tc

P(a)

] (
Rc

R

)2

. (51)

As mentioned before, there is no dependence on tfrag itself. On the other hand, if the
orbital plane of RG is coplanar with the disk, the path of the RG covered inside the
disk will be longer than in the perpendicular configuration by a factor of πR/H, then
the number of collisions in the coplanar case is

n∥ ≃ 31 n⊥. (52)

For a RG with random orbital inclination, the number of collisions with clumps in
the disk will range between n⊥ and n∥. So as to derive their values, we still need to
estimate tc.

In the standard picture of massive star formation, different parts of a star-forming
clump evolve on different timescales (Zinnecker & Yorke 2007): the central part col-
lapses first due to its higher density and hence shorter free-fall timescale. This leads
to the formation of a protostar in the core of the clump. The outer layer contracts on a
longer timescale because of its lower density, but also due to the new source of heat at
the core of the clump, the forming protostar.

Unlike the standard star formation picture, in our case the clump is optically thick.
So the heat released by the protostar is kept in the clump, and must be dissipated
before the outer layer can contract further, in a self-regulating process of the growth
of the protostar and the contraction of the outer layer. This allows us to define tc. It
has been shown that the temperature of the clumps can achieve a value of the order
of T ∼ 103 K (Bonnell & Rice 2008; Mapelli et al. 2012). The opacity in the context of
molecular clouds has been estimated to be κ ≃ 0.1(T/1 K)1/2 cm2 g−1 (Bell & Lin 1994).
We can then calculate the optical thickness from Equation (47), κΣc ∼ 105(T/103 K)1/2.
The assumption of black-body in this context holds, so that the radiative cooling rate
at the surface of the outer layer is 4πσR2

c T4, where σ is the Stefan-Boltzmann constant.
For a given size of a clump, i.e. before it can contract to a smaller size, the outer layer

will emit a total energy of
(
4πσT4R2

c
)

tc. If we equate this energy with the total amount
of heat contained in the clump (i.e. in the gas and the protostar), GM2

c /Rc + GM2
∗/R∗,

we have that

tc ∼
GM2

∗/R∗
4πσT4R2

c

∼ 105yr
(

R
0.1 pc

)−2 ( M∗
102M⊙

)−2 ( T
103 K

)−4

. (53)
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To relate the radius R∗ of the protostar to its mass M∗, we adopt the empirical rela-
tion for H-burning stars that R∗ ∼ 1.29R⊙(M∗/M⊙)0.60 for M∗ > 1 M⊙ and R∗ ∼
R⊙(M∗/M⊙)0.97 for M∗ < 1 M⊙ (see e.g. Nayakshin et al. 2007). This is the reason
why in Equation 53 we have neglected the contribution from from the gas, GM2

c /Rc,
since for protostars as light as 0.2 M⊙, the heat released is already comparable to the
gravitational energy of the gas in the clump.

Knowing that Nc ∼ 102 clumps with Mc = 102 M⊙ have formed in the disk at
a ∼ 0.1 pc, we find n⊥ ∼ 2 and n∥ ∼ 60, therefore RGs with floss = 2 generally satisfy
the condition n⊥ < nloss < n∥. This means a complete loss of the envelope if the RG
is in a low-inclination orbit with respect to the disk, and a partial depletion of the
envelope if the RG is in a high-inclination orbit.

There is no good reason to believe that the clumps form in a single-mass distribution.
A more realistic one would naturally produce also lighter clumps. This is important,
because they are more efficient at removing RG envelopes: They have higher surface
densities (Σc ∝ M−1

c ), and each one contributes as many collisions with RGs as a more
massive clump can do; while the collisional cross section, R2

c ∝ M2
c is smaller, the

lifetime, tc ∝ R−2
c ∝ M−2

c , is elongated. Therefore, a disk harboring smaller clumps,
of masses Mc ∼ 1 − 10 M⊙, could in principle contribute significantly more to the
depletion of RGs, but this depends on their abundance, which unfortunately is not
available from observations yet.

Hence, during the self-gravitating past of the disk at the GC, a stellar core of RGs
with flat surface density distribution will be created. This core, once formed, will last
for a relaxation time. We note that these results are in agreement with the best fit to the
observed surface density of the RGs in our GC with an anisotropic angular-momentum
distribution and a core size of 0.1 pc (Merritt 2010).

5.4 impact on the clumps

At this point one could wonder whether the accumulated impacting of RGs on to the
clumps could eventually disrupt or heat them before a successful RG depletion. To
address this question, we estimate the amount of gas removed from a clump after one
crossing, i.e. the amount of gas “scooped” away in a cylinder of height comparable
to the size of the clump, Rc. As for the radius of the cylinder, we note that the ratio
between the radius of a RG (as the ones considered so far) and its Bondi radius rB is

r∗
rB

≃ 80
(

R
0.1 pc

)
, (54)

with rB :=
(
Gm∗/v2

c
)
. Therefore the radius is determined by r∗ and not rB. The RG

does scoop away matter from the clump because its surface density is 3 − 4 orders of
magnitude larger than that of the clump. The mass loss, ∆m ∼ r2

∗Σc, for a typical value
of Σc ∼ 107−8 M⊙ pc−2 and r∗ = 100 R⊙, is negligible.

One could also be worried that the energy deposition could heat up the clump and
make it less dense, but this is not the case: The maximum energy that can be deposited
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into a clump during each transit, ∆mv2
c , is trifling compared to the binding energy of

the clump, GM2
c /Rc, since

∆mv2
c

GM2
c /Rc

∼
(

r2
∗

RcR

)(
M•
Mc

)
∼ 10−3 (55)

for our fiducial massive clumps. The envelope of a RG is lost after nloss, i.e. some 15

passages. Such number of hits do not suffice to heat up a clump in disk to stop star
formation in it.

5.5 discussion

The problem of the missing bright red giants has been the focus of an ongoing debate
since its discovery, more than 15 years ago, by Genzel et al. (1996). A number of
different scenarios have been invoked to explain this deficit of old stars, but none
has until now provided a simple and efficient mechanism to solve the problem. In
this paper, considering a single episode of disk formation at the GC, we explain the missing
stars in the RGB in the natural context of the star-forming disk that after fragmentation
led to the currently observed stellar disk in our GC. We prove with simple analytical
estimates that the distribution of clumps in the disk is sufficient to ensure the removal
of the envelopes of the brightest RGs. Successive episodes of disk formation, separated
by ∼ 108 yrs, based on AGN duty cycle, would have formed of the order of ten
generations of clumps at the GC.

Toward lower luminosities, the HB stars however have an envelope about 100 times
denser (in surface density) than those of RGB stars, as it can be easily derived from the
calculated structures of solar-metalicity of HB giants of Girardi et al. (2000). Therefore,
due to momentum conservation (Equation 43), an HB star requires on the order of 100

more impacts with clumps to remove its envelope, although the non-linearity factor
floss is less clear in this case due to the lack of numerical investigations. We hence
predict that only a low percentage of them, those with a low inclination with respect
to the disk, will have received significant envelope damage. Number counting of
stars in the bin between 16.75 and 17.75 magnitudes in the K-band may indicate a
steepening of surface-density distribution for stars fainter than the HB (Schödel et al.
2007,their figure 17), pointing to the picture of partial depletion.

We also predict that the released cores of the RGB stars populate the region of the
GC where they lost their envelopes. However, detecting these cores in infrared (IR)
surveys may be difficult: (i) the core would exhaust the remaining hydrogen envelope
in a couple of Myrs, and would hence appear as very faint now while (ii) shifting its
peak emission to shorter wavelengths, becoming invisible in the IR filters (Davies &
King 2005).

To prove the densities of HB stars, we need deeper spectroscopic observations and
more complete photometric surveys down to the 18th K-magnitude. On the other
hand, numerical simulations are required to study the effects of non-linearity, our nloss
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and floss, in the interaction between the clumps and the envelops of stars in the RGB
but, more importantly, of those in the HB.
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T I D A L D I S R U P T I O N S I N C I R C U M B I N A RY D I S C S : S TA R
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Abstract: In our current interpretation of the hierarchical structure of the universe it is well established
that galaxies collide and merge with each other during their lifetime. If massive black holes (MBHs)
reside in galactic centres, we expect them to form binaries in galactic nuclei surrounded by a circumbinary
disc. If cooling is efficient enough, the gas in the disc will clump and trigger stellar formation in situ.
In this first paper we address the evolution of the binary under the influence of the newly formed stars,
which form individually and also clustered. We use SPH techniques to evolve the gas in the circumbinary
disc and to study the phase of star formation. When the amount of gas in the disc is negligible, we further
evolve the system with a high-accurate direct-summation N−body code to follow the evolution of the
stars, the innermost binary and tidal disruption events (TDEs). For this, we modify the direct N−body
code to (i) include treatment of TDEs and to (ii) include “gas cloud particles” that mimic the gas, so that
the stellar clusters do not disolve when we follow their infall on to the MBHs. We find that the amount
of stars disrupted by either infalling stellar clusters or individual stars is as large as 10−4/yr per binary,
higher than expected for typical galaxies.

6.1 introduction

Super-massive black hole (MBHs) binaries are expected to form after major galaxy
mergers. The main driving mechanism for the MBHs to sink to the centre is dynamical
friction, where they will form a binary and start to shrink the semi-major axis on their
way to the final merger. Slingshot of stars from the surrounding stellar environment
help the binary to further decay by exchanging energy and angular momentum, down
to distances of about 1 pc (Begelman et al. 1980). However, if the amount of stars
to interact with is depleted, there is a risk of stalling, so that the MBHs would not
coalesce within a Hubble time. This is the so-called “last-parsec problem” (see Merritt
& Milosavljević 2005,for a review on the whole process and references therein).

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
2 Departamento de Astronomía y Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile,

782-0436 Santiago, Chile
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tidal disruptions in fragmenting discs

Key factors to surmount this last “snag” in the evolution are, among others, the fact
that (i) in the case of binaries with a total mass of ≤ 107 M⊙, slingshot ejections suffice
to guarantee coalescence within a Hubble time (Milosavljević & Merritt 2003); (ii) the
role of gas may be crucial in the evolution of the binary, starting at larger scales. It
might well be that in a merger of gas-rich galaxies, if MBHs are present, they will
coalesce soon after the galaxies merge, in some 107 Myr, if the gas is distributed spher-
ically. If, on the other hand, the gas is forming a nuclear disc, the galaxies need only
to have 1% of their total mass in gas for this to happen. (Escala et al. 2004, 2005).
Cuadra et al. (2009) found that such gas discs could indeed commonly help in the
merger of SMBHs with masses in the range of our study, whilst this mechanism fails
for masses larger than ∼ 107 M⊙; (iii) following with stellar dynamics, resonant re-
laxation creates a steady state current of stars which can be as large as ten times the
non-coherent two-body relaxation (Hopman & Alexander 2006). This is a potential
source of new stars populating the depleted loss-cone; (iv) the work of Berczik et al.
(2006) shows that considering a non-spherically symmetric system the final parsec
problem is largely solved (v) massive perturbers, such as giant molecular clouds or
intermediate-mass black holes, can accelerate relaxation by orders of magnitude com-
pared to two-body stellar relaxation, so that many new stars are supplied to interact
with (Perets & Alexander 2008); (vi) it has been observed that young, compact star
clusters such as the Arches and Quintuplet systems reside near the Galactic centre. If
these star clusters have masses larger than 105 M⊙, they can make their way down to
the Galactic centre even if they start from a distance as large as 60 pc within a few
million years (McMillan & Portegies Zwart 2003). The tidal stripping of these young
stars could eventually provide the binary system with a new set of some ≈ 105 stars;
(vii) if intermediate-mass black holes (IMBHs), with masses ranging between 102−4 M·
exist in the centre of clusters, it has been predicted that within the innermost central
10 pc, we can expect to have some 50 IMBHs of masses 103 M⊙, and still some of them
at scales of a few milliparsecs (Portegies Zwart et al. 2006). The interaction of one
of these IMBHs with the binary of SMBHs would obviously accelerate the process of
shrinkage.

The studies just cited provide a number of mechanisms to make the binary shrink.
We expect then that a typical binary will be able to reach sub-pc separations, especially
in the case of relatively low-mass MBHs in gas-rich environments. In this study, we
concentrate on such a case (see section 6.2.1 for details), which is expected when the
parent galaxies are gas-rich and large amounts of gas fall to the centre of the new
system, together with the MBHs. At that location, the black holes get bound to each
other, thus forming a binary, and are surrounded by a massive, parsec-scale gaseous
disc (e.g., Dotti et al. 2007; Escala et al. 2005; Mayer et al. 2007).

Such gaseous discs are similar to proto-stellar discs: due to their high density com-
pared to the central object tidal force, the discs will be locally unstable to self-gravity,
meaning that perturbations in their density field will grow. However, if the gas is
unable to cool efficiently, then the gas will not be able to contract and form clumps,
and the density perturbations will be sheared apart, creating a quasi-steady spiral
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pattern. Remarkably, the spiral pattern transports the angular momentum outward,
making the disc behave as an accretion disc. On the contrary, if the gas is able to cool
quickly enough, then the density perturbations grow and form clumps, which shrink
and further accrete gas, breaking up the gaseous disc completely and turning it into
stars – the so-called fragmentation (e.g., Alexander et al. 2008; Gammie 2001; Lodato
2007; Nayakshin et al. 2007; Paardekooper 2012; Rice et al. 2005).

In either cooling regime, the situation where at the centre of the disc the central ob-
ject is a binary will lead to a non-trivial interaction between them. On previous studies
we have focused on the inefficient-cooling regime, showing that torques between the
gas and the binary will shrink the orbit of the latter, while the angular momentum
is driven out through the disc (Cuadra et al. 2009; Roedig et al. 2011, 2012). In this
paper we present the first numerical study of the fast cooling regime in which the disc
fragments into stars, and follow the dynamical evolution of the binary–stars system.
We carry out our study in two stages (see also Khan et al. 2012): first we model the
fragmentation of the disc using smoothed particle hydrodynamics, and then we switch
to our direct-summation N−body models to both follow the long-term evolution of
the system and to study the occurence of TDEs.

The reason for this two-step approach is that we first need to model the gas hy-
drodynamics in order to follow the fragmentation process of the gas, including the
formation of stars and their growth via mergers and accretion of gas. In principle, one
could wait for the gas to disperse or be accreted, and simply continue the same inte-
gration to follow the dynamical evolution of the stars for long time-scales. However,
the SPH code we are using is not designed to follow the collisional N-body dynamics
of the system, therefore, it is necessary to use a different code that allow us to model
the system of MBHs and stars in a meaningful way.

6.2 first stage in the evolution : gaseous disc and star formation in

situ

6.2.1 Two MBHs and a circumbinary disc

Following Cuadra et al. (2009), we concentrate on a binary with the following ini-
tial parameters: total mass Mbbh = M1 + M2, where M1 and M2 are the masses
of the individual MBHs, and mass ratio M1/M2 = 3, in a circular (Newtonian) or-
bit of separation a. The binary is surrounded by a corotating gaseous disc with
an initial mass Md = 0.2Mbbh and radial range 2a–5a. The gas is modelled as an
ideal gas with γ = 5/3, and radiative cooling is mimicked with a cooling time de-
fined as tcool(r) = β/Ω(r), where β is a free parameter that fixes the cooling rate,
Ω(r) =

√
GMbbh/r3 is the orbital frequency around the binary, and r is the distance

from the binary centre of mass. Since we are interested in the fragmentation regime,
in this paper we consider fast cooling rates, β ≤ 5. The choice of a disc that fragments
is realistic for self-gravitating discs that cool thermally, above a certain surface density
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threshold. Levin (2007) showed that, for the masses and distances we are interested in
here, that threshold lies in the 10–100 g/cm2 range.

This model for the system dynamics is scale-free, meaning that it can be scaled up or
down to different masses and lenghts. However, in order to introduce star formation
and also to estimate the rate of tidal disruption events (TDEs), we need to choose
physical units. With that aim we set the total mass of the binary as Mbbh = 3.5 · 106M⊙
and we choose a = 0.04 pc. This would be a typical mass for binary black holes in the
range that could be detected by a LISA-like experiment (Amaro-Seoane et al. 2012;
Amaro-Seoane et al. 2012b). The chosen separation corresponds roughly to the value
where we would expect binaries to spend the longest of their evolution in a simple
model that considers binary shrinking due to stellar scattering from a spherical cusp
(Milosavljević & Merritt 2003) and torques from a non-fragmenting disc (see Cuadra
et al. 2009, their eq. 12). 1

While several studies (Amaro-Seoane et al. 2010, 2009; Amaro-Seoane & Freitag 2006;
Khan et al. 2012, 2011; Preto et al. 2011) have shown that stellar dynamical processes
pump up the eccentricity of a binary MBH, in this case we are assuming the binary
has reached the inner parsec in a gas-rich environment. In such a case, the dynamical
friction of the gas on the MBHs drives them to form a circular binary (e.g., Dotti et al.
(2007)). Thus we choose a circular orbit for the initial configuration.

6.2.2 Implementation and treatment of the disc fragmentation

To follow the process of circumbinary disc fragmentation, we use a modified version
of the smoothed particle hydrodynamics (SPH) code (Gadget, Springel 2005; Springel
et al. 2001), combining the numerical methods of Nayakshin et al. (2007) and Cuadra
et al. (2009). Here we only briefly describe the methods, and refer the interested reader
to those papers for more details. We model the gaseous disc as an ensemble of initially
≈ 2× 106 particles of ≈ 0.35M⊙ each. The code calculates the gravitational and hydro-
dynamical interaction between gas particles, plus the gravitational interaction between
all particles, including the MBHs as well as the “proto-stars” and “stars” that form dur-
ing the simulation (see below). We use a softening of 0.001a for the gas particles and
of 0.01a for the proto-stars. The MBHs do not use softening, but a sink radius within
which gas particles are accreted. This radius had a value of 0.3a.

As initial conditions, we take the initially-circular system modelled by Cuadra et al.
(2009), at a time T ≈ 500 Ω−1

0 . In this way we skip the transient initial evolution
caused by the homogeneous initial conditions described in their work, and start from
a steady-state configuration in which the circumbinary disc has developed spiral arms.
Notice, however, that their simulations used β = 10, avoiding fragmentation. In our
new simulations we set the value of β to either 1, 2, 3, or 5. As a result, the disc
now forms clumps, which grow in a runaway fashion. Treating this this with a pure

1 Notice that the choice of a = 0.04 pc is below the classical ∼ 1 pc separation of the “final parsec problem”,
but for the range of masses considered in this work we deem it not a problem, as we summarized in the
introduction.
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6.2 first stage in the evolution: gaseous disc and star formation in situ

SPH model is not feasible, as the growing densities require ever shorter time-steps. To
circumvent this problem, we introduce sink particles to model the proto-stars that we
expect would form in these large density regions.

Proto-star particles are created when the gas density reaches 30 times the Roche tidal
limit, Mbbh/(2πr3). How many stars will form out of a gas density peak is a very
complex question, whose solution is well outside the possibilities of our study. In our
model we deal with this issue in an individual particle basis, i.e., each gas particle
is turned into one proto-star particle of the same mass. However, the newly formed
proto-star particles can merge with each other, thus forming higher mass stars. The
merger criterion is simply that their distance is smaller than 2 fmRp, where Rp is the
size of the proto-stars, which we typically take as 1015 cm, and fm is a free parameter
with fiducial value of unity that mimics the effect of gravitational focusing. The size
parameter corresponds to ∼ H/10 (where H is the disc scale-height), which is roughly
the thickness of the gas arms we observe in the simulations. Thus, in a two-step
process we are in principle allowing all the dense gas within the same overdensity
to form one proto-star. However, we only allow the proto-stars to merge with each
other as long as their masses do not exceed 30M⊙. Once they reach this mass we turn
the proto-star particle into an actual star particle. The motivation for this threshold is
twofold: numerically, we form an actual star out of >∼ 100 gas particles; physically, we
avoid the rapid formation of extremely massive stars. Stars can merge with proto-stars,
but not among each other.

Stars and proto-stars also grow by accreting their surrounding gas. We use an
Eddington-limited Bondi–Hoyle prescription to calculate their accretion rate, and then
pick up at random enough particles from the (proto-)star neighbours that are merged
with the sink particle (Springel et al. 2005). To calculate the Bondi–Hoyle and Edding-
ton accretion rates, we use the mass of the (proto) star, and a radius that is either the
main sequence value corresponding to that mass (eq. 11 in Nayakshin et al. 2007) for
the star particles, or the fixed value Rp for the proto-stars. This difference results in a
much faster growth for proto-stars than for stars.

The black holes also accrete the few gas particles that get too close to them. This
procedure is done mostly to avoid the short time-steps that would be required to follow
those gas particle orbits. Accretion on to the black holes is modelled simply with a
sink radius – all gas particles entering the region around 0.3a of either black hole are
taken away from the simulation, with their mass and momentum being added to the
corresponding MBH (Cuadra et al. 2006).

We have ran 6 different SPH simulations. Four of them use the fiducial values men-
tioned above, but differ on the strength of the cooling. We refer to these runs as beta1,
beta2, beta3a and beta5. Additionally, since we tend to form many very massive
stars, we explore the effect of decreasing the numerical size of the proto-stars, hin-
dering their growth. For β = 3 then we run two additional simulations, beta3b and
beta3c, in both of which we use a smaller size for the protostars of 1436.8 R⊙ instead
of the fiducial value of 14, 368 R⊙. Run beta3c has however a larger gravitational fo-
cusing factor of fm = 10 instead of the fiducial fm = 1. For both extra simulations then
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there is a more severe (Eddington) limit on the accretion rate for the proto-stars than
in the fiducial beta3a, while simulation beta3b has additionally a smaller likelihood
of proto-stellar mergers.

These choices in the conditions for gas cooling and for transforming gas particles
into “stars” arguably capture a sufficiently broad number of potential fragmentation
scenarios so as to envisage our analysis representative of a self-gravitating disc, within
the limitations of the rather expensive numerical experiments.

6.3 fragmenting discs

We run the SPH simulations of circumbinary discs for several hundred binary dynami-
cal times. Due to the gas self-gravity, clumps grow in the disc. Given the short cooling
times, these clumps contract, achieving the disc fragmentation. In most simulations,
after only ≈ 200 Ω−1

0 , the vast majority ( >∼ 90%) of the gas is turned into stars, as
expected. The system then reaches a quasi-steady state in which stars very slowly
accrete the tenous left-over gas (see Nayakshin et al. 2007). The gas morphology at
that stage for the different simulations is shown in Fig. 13.

The fragmentation rate is set by the cooling time of the disc, thus discs with lower
values of β will evolve faster. We can see this in figure 14, which shows the mass
in stars as a function of time for all the simulations. The fourth column in Table 1

shows the number of stars formed in each simulation. Considering only the variation
of β, it is clear that shorter cooling times result in larger amounts of stars, as expected
(Nayakshin et al. 2007). As the total stellar mass is approximately constant, the typical
stellar masses will be lower for shorter cooling times.

It is interesting to note that the star formation process is not uniform. Instead, it
happens preferentially in a few localised, relatively large regions, whose sizes are set
by the spiral-arm overdensities. Even though we allow proto-stars to merge when
they form close together, our numerical recipe avoids the formation of very large stars,
which forces the formation of “stellar clusters” (see the left panel of Fig. 17) 2. Some
of these clusters feel a strong torque from the spiral arm and are driven towards
the centre of the system, where the tidal force of the binary disperses them. This
stellar distribution affects the long-term dynamics of the system and has interesting
consequences for the production of tidal disruption events (§6.4.1).

In our tests with β = 3 and different stellar growth recipes we first notice that runs
beta3a and beta3c are practically identical, and that run beta3b has the same curve
of stellar mass growth. From this we conclude that in our simulations accretion is

2 For a movie of this simulation, visit the URL
http://members.aei.mpg.de/amaro-seoane/fragmenting-discs.
The encoding of the movie is the free OGG Theora format and should stream automatically with a
gecko-based browser (such as mozilla or firefox) or with chromium or opera. Otherwise please see e.g.
http://en.wikipedia.org/wiki/Wikipedia:Media_help_(Ogg) for an explanation on how to play it.
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6.3 fragmenting discs

Figure 13: Gas density projected in the X–Y plane perpendicular to the angular mo-
mentum vector of the system for beta1, beta2, beta3a, beta3b, beta3c and
beta5, from the left to the right and from the top to the bottom. White dots
represent the “sink” particles, i.e. the MBHs and the stars formed during
the simulations. All snapshots are at T = 300 Ω−1

0 but for the last one, which
was integrated up to T = 1000 Ω−1

0 , because in that run cooling is quite slow
and the number of stars is still very low at earlier times (see Fig. 14). Note
that there is virtually no difference betwen beta3a and beta3c. The figures
were made with Splash (Price 2007).
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not important and that stellar growth is driven by mergers of sink particles. 3 We
also notice that the number of stars formed is about an order of magnitude higher in
beta3b, which has 10 times smaller proto-stars than the fiducial run, and that the effect
of having smaller proto-stars in the simulation is similar to having a shorter cooling
time.

To continue our study of the evolution of the MBHs and circumbinary disc system,
we will take the masses, positions, and velocities of all sink particles and use them as
input in direct-summation N−body simulations. For simplicity, we take the snapshot
at time T = 300 Ω−1

0 for all configurations, except for beta5. Since in that run the
evolution is slower, we use the snapshot at T = 1000 Ω−1

0 , by which time 90% of the
gas has turned into stars.

6.4 the role of stars in the shrinking of the binary

To analyse the dynamical evolution of the MBH binary embedded in the stellar sys-
tem product of the stellar formation we use a direct-summation code, Nbody6. This
is a very expensive method because we integrate all gravitational forces for all formed
stars at every time step, without making any a priori assumptions about the system.
This code belongs to the family of dynamical codes for particle systems with relaxation
processes of Sverre Aarseth. The code uses the improved Hermite integration scheme
as described in (Aarseth 1999, 2003). Since these approaches integrate Newton’s equa-
tions directly, all Newtonian gravitational effects are included naturally. More crucial
for this subject is that it also incorporates both the KS regularisation and the chain reg-
ularisation, so that when stars are tightly bound or their separation becomes too small
during a hyperbolic encounter, the system is regularised (Kustaanheimo & Stiefel
1965). The advantages of this code as compared to the leap frog integrator of Gad-
get for our particular problem are obvious, namely the high accuracy in the energy
conservation, since we are interested in the correct evolution of the inner binary of
MBHs as well as in potential TDEs. For this aim, as we describe later, we modified the
standard version of Nbody6.

For each simulation, the initial masses, coordinates and velocities for the stars and
MBHs are taken from the Gadget data at the times shown in table 1. At that moment,
the gas mass – stellar mass ratio is very low (see table 1, column Mgas/M⋆). The
gravitational effect of gas is almost negligible and we do not include it in the simula-
tions. Despite our limit to the growth of “proto-star particles” in the SPH simulations
(see section 6.3), some “star particles” did manage to achieve very large masses. We
deem those unphysical, so in the initial conditions for our N−body runs we replace

3 This is actually not surprising, as stars grow by mergers in roughly the dynamical time inside an over-
density, tdyn ∼ (Gρ)−1/2, which corresponds to about hundred years for the density values required
for the introduction of sink particles. On the other hand, the Bondi accretion rate for a solar mass sink,
even for those very high densities, is only ṀBondi ∼ 10−5 M⊙yr−1 in our models, so the time required to
accrete a single SPH particle turns out to be tacc ∼ 3 × 104 yr.
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6.4 the role of stars in the shrinking of the binary

Figure 14: Accumulated stellar mass formed in the disc in M⊙ for our fiducial case of
a binary of 3.5 · 106 M⊙. All simulations but for β = 5, which needs a bit
longer, reach relatively fast the maximum of stellar mass and saturate with
values below 106 M⊙.
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Figure 15: Evolution of the density profile in one N−body simulation beta1 at differ-
ent times in the evolution. The dashed line corresponds approximately to
the position of the inner gap in the SPH simulation.

stars with masses m above 120 M⊙ with a cluster following a Plummer distribution
(Plummer 1911) consisting of equal mass stars with total mass m and radius

R =
( m

3Mbbh

)1/3
r, (56)

with r the distance to the centre-of-mass of the binary. The last equation corresponds
to the Roche lobe of the massive star with respect to the MBH binary with mass Mbbh.

In our N−body simulations, table 1, we exclude stars which are at a distance r >
100a, where a is the semi-major axis of the MBH binary. We assume those stars would
have only a negligible effect on the binary evolution. They correspond to about a
quarter of all stars in each simulation. As shown in figure 15, this cut in the cluster
did not affect its global structure, its density profile remains roughly constant at large
radii. The figure also shows that the region inside a few times the binary semi-major
axis gets depleted quickly by sling-shot interactions, as expected.
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6.4 the role of stars in the shrinking of the binary

Model SPH time Mgas/M⋆ NSPH NNB Nsplit
beta1 300 3% 2536 1895 4469

beta2 300 7% 1429 1141 2768

beta3a 300 9% 699 585 1924

beta3b 300 9% 5487 4486 5193

beta5 1000 10% 167 144 1146

beta3b95 95 – 5540 5540 5540

Table 1: Initial data for the NBODY6 runs. Notice that we do not integrate run beta3c

using the N−body technique, because it turned out to be identical to beta3a.
SPH time is the moment at which we stop the Gadget simulation, in units
of Ω−1

0 , Mgas/M⋆ is the ratio between gas and stellar mass at that moment,
NSPH is the number of stars that have been formed at that moment in the
Gadget simulation, NNB is the number of stars within a distance r < 100a
from the centre of mass of the binary and Nsplit is the number that we get
after splitting all very massive stars into sub-clusters, as explained in section
6.4. The reason why the last model has more stars than beta3b at T = 300
is because it corresponds to a previous moment in the evolution and, as we
explained above, protostars are allowed to merge with each other. This last
case is a special one, and we ran a dedicated simulation for it. See section 6.4.1.
Also, we note that while the gas was originally distributed in a rather narrow
radial range (2a − 5a), we end up with stars even at distances > 100 a. This
is due to N−body scattering, as many star particles are formed in relatively
crowded regions of the disc.

71



tidal disruptions in fragmenting discs

0.5 1.0 1.5 2.0 2.5 3.0

Time (Myr)

0.032

0.034

0.036

0.038

0.040

0.042
a

(p
c
)

beta1

beta2

beta3a

beta3b

beta5

300 10000 20000 30000 40000 50000

Time (Ω−1

0
)

0.5 1.0 1.5 2.0 2.5 3.0

Time (Myr)

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
c
c
e
n
tr

ic
it
y

beta1

beta2

beta3a

beta3b

beta5

300 10000 20000 30000 40000 50000

Time (Ω−1

0
)

Figure 16: Left panel: Evolution of the binary semi-major axis for all cases in the
N−body simulations in units of the initial orbital period Ω−1

0 and in Myrs.
Case beta3b was not integrated for more than 10,000 orbits because of nu-
merical issues due to the high number of stars in that simulation. Right
panel: Same for the eccentricity.

In figure 16 we see the evolution of a and e for all cases, integrated with Nbody6

with the results of the SPH simulations as input parameter. After some 10,000 orbits
the binaries reach a stagnation point from which the decay becomes much slower. The
decay rates (1/a)(∆a/∆t) averaged over the time period from 0.5 Myr to 3 Myr are:
beta1 : 7.2 × 10−9 yr−1, beta2 : 4.0 × 10−9 yr−1, beta3a : 8.0 × 10−9 yr−1, and beta5

: 4.0 × 10−9 yr−1 (although for this case we start at 1000 Ω−1
0 , which means actually

from 0.56 to 3.06 Myr). In the first 0.1 Myr of the evolution, the significant drop in
semi-major axis corresponds to decay rates of 6.7× 10−7 yr−1 for beta1, 5.4× 10−7 yr−1

for beta2, 5.4 × 10−7 yr−1 for beta3a and 3.2 × 10−7 yr−1 for beta5.

The early dynamical evolution (first few hundred Ω−1
0 ) is dominated by close en-

counters between the MBH binary and stars on radial orbits (i.e. in the loss cone of
the binary). This is naturally accompanied by a high rate of tidal disruptions (see fig-
ure 19) and a strong change in orbital binding energy of the binary. In the following
long-term evolution, the loss cone has been depleted and the binary is subject to the
secular effects of the disk as a non-spherical background potential. The effect of this
type of mass distribution is a slow exchange of orbital energy but a rather efficient
exchange of angular momentum (Merritt & Vasiliev 2010), which is consistent with
the significant increase in eccentricity that we observe in this phase compared to the
very slow decay rates in the semi-major axis.
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6.4 the role of stars in the shrinking of the binary

Figure 17: Same as figure 13 for the simulation beta3b. At the SPH time 95 the closest
stellar cluster hurls itself on to the binary and leads to an enhancement in
the TDEs. We take the position of stars and gas particles from the left panel
to start a dedicated direct-summation N−body integration which we name
after this instant of time, beta3b95.

6.4.1 An infalling cluster of young stars

In the SPH simulations modelling disc fragmentation we see large amounts of stars
falling to the immediate vicinity of the MBH binary. In particular, in simulation beta3b

we observe an infalling cluster 4 at T = 95 Ω−1
0 (see figure 17).

Since this is quite interesting from the stellar dynamics point of view, we run a
dedicated simulation for this particular situation with the direct-summation code.
Nonetheless, at this early stage in the evolution of the disc, there is a significant mass
in gas which has not yet transformed into stars. If we ran the simulation without
taking into account the gas, the small stellar clusters would dissolve, as their potential
wells would be abruptly much shallower and the stars could not be held together. We
therefore have to include a prescription in the N−body simulations for the role of the
gas, since including the gas particles directly is well outside the scope of our work.

In this dedicated N−body simulation we model each dense region that contains a
non-negligible amount of mass as one particle with a big softening length. For this,
we define a sphere at every region of interest. We then look at the SPH gas particle
distribution and group together all particles within this region, compute their total
mass, center-of-mass position and velocity and create one “cloud particle” with these
properties (see Fig. 18). In the subsequent N−body simulation these particles are
integrated separately, which required a modification in the code. In all gravitational

4 As in the former footnote about the movie, from T = 95 onwards in the simulation.
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Figure 18: Left panel: Initial configuration in the x-y plane perpendicular to the angular
momentum vector of the system for simulation beta3b95 of table 1. Stars
are shown with black dots, gas clouds with red circles. The MBHs are
depicted with green circles. Right panel: The same system after the cluster
falls on to the binary, after ∼ 1, 300 yrs. Note the enhanced number of stars
in the vicinity of the binary. This translates in a larger number of TDEs.

interactions, the gravitational potential of the cloud particle seen by a regular star is
then computed as

Φc = − GMc

rc + ϵ
, (57)

where Mc and rc are the mass and distance to the cloud particle and ϵ denotes the
softening length, taken to be of the order of the size of the corresponding sub-cluster.
Although the concept of cloud particles is already implemented in the standard version
of Nbody6, we modified it to integrate the cloud particles taking into account the
gravitational potential of the other clouds, stars and MBHs in order to follow correctly
the orbits around the central binary of MBHs.

The effect is that the particles in the sub-clusters now feel an additional gravita-
tional force corresponding to the cloud and thus stay within their respective group for
a longer time, which allows us to study their infall and to analyse TDEs. However,
after one close encounter of a gas cloud with one of the MBHs, the cloud would suffer
a stripping from the cluster and now float around as an unphysically big agglomera-
tion of mass. This means that we can get only a meaningful result for the very first
encounter of each sub-cluster with the binary. In this respect, when estimating the
TDEs for the infalling cluster, we will be giving a lower limit, since we cannot simulate
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6.5 tidal disruption events

Simulation TDEs (yr−1)
beta1 1.1 · 10−4

beta2 1.4 · 10−4

beta3a 6 · 10−5

beta3b 9 · 10−5

beta5 2 · 10−5

Table 2: Tidal event rates for the simulations of table 1.

realistically further interactions of the cluster with the MBH binary. In the right panel
of figure 18 we show the distribution of stars in the X–Y plane after the first interaction.

6.5 tidal disruption events

During the direct-summation N−body runs any star entering the tidal radius RT of
one of the MBHs is considered to be tidally disrupted and its mass is added to the
mass of the hole. For a solar-type star, this radius is (see e.g. Amaro-Seoane 2012,for a
derivation and examples)

RT = R⋆

(
MBH

m

)1/3

. (58)

In the last expression MBH is the mass of one of the MBHs, R⋆ the radius of the star
and m its mass. In order to estimate the radius of a star given its mass, we adopt the
simple relation R⋆ ∝ m0.6 (Demircan & Kahraman 1991; Gorda & Svechnikov 1998)
with the normalization that a solar mass star has solar radius. Using this in Eq. 58, we
can compute the tidal radius in solar radii:

RT,⊙ = 1.29 m0.6
⊙

(
MBH

m

)1/3

, (59)

where m⊙ is the mass of the star in solar masses and the pre-factor comes from an
empirical fit for high-mass stars.

In figure 19 we show the accumulated stellar mass fraction in tidal disruptions for
all simulations. Based on this figure and for a time interval of 0.1 Myr after the
initialization of the simulations, we can convert the values in tidal disruption events,
as shown in table 2. Notice that the rate is actually much higher at the beginning of
the simulations, but that result is likely to be affected by our initialisation choices.

discussion

In this work we have presented the first realisations of fragmenting discs around a bi-
nary of two MBHs in SPH with star formation followed by direct-summation N−body
simulations of the resulting systems. We have evaluated different fragmentation sce-
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Figure 19: Accumulated stellar mass in tidal disruptions for the different simulations
of table 1. Since we only track them in the N−body simulations, the curves
start at T = 300 Ω−1

0 but for model beta3b95, which as explained before,
had a dedicated run. Because we cannot simulate realistically more than
one infall of the cluster, we stop it after the first periapsis passage.
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6.5 tidal disruption events

narios based on an approximation for the cooling rate of the gaseous discs and differ-
ent prescriptions for the growth of protostars.

When the gas is almost completely depleted, we take the masses, positions and
velocities of the newly formed stars and feed them to the direct-summation N−body
integrations with the proviso that if the protostar has a mass above 120 M⊙, we convert
it into an agglomeration of stars following a Plummer profile of radius the Roche
radius of the protostar to avoid artificially-created very massive stars.

We find that the rate of decay in our direct N−body simulations is slower than the
≈ 10−6 yr−1 found in the SPH simulations of Cuadra et al. (2009), when scaling to the
same masses and separations.

We simulate with a dedicated direct-summation integration the particular case of a
simulation in which a cluster of stars that forms during the SPH simulation falls on
to the binary, the case beta3b95. For this, we modify Nbody6 to include “gas cloud”
particles that allow the infalling cluster to hold together in the dynamical simulation
in which we cannot realistically simulate the gas.

Infalling clusters such as this and the scattering of isolated stars lead to a significant
number of TDEs. To make an accurate estimation, we made a second modification
of Nbody6 to implement stellar tidal disruptions, and we find that the event rates lie
between 2 · 10−5− ∼ 10−4 per system per year, which lies on the high side of current
(uncertain) estimates for the TDE rate in standard galaxies, which typically lie between
10−5 − 10−6 yr−1 (Phinney 1989; Magorrian & Tremaine 1999; Syer & Ulmer 1999), and
lie well within the observed rates (Donley et al. 2002; van Velzen & Farrar 2012). A
particular interesting signature of these TDEs is the “reverberation mapping” response
of the circumbinary disc to a burst of emission produced by the TDEs. The light from
the burst excites the gas in the disc, producing emission lines. The time-variability of
the spectra, the echo of the TDE, during the months after the burst could in principle
allow us to constrain the disc structure (Brem, Amaro-Seoane, Cuadra & Komossa;
part II of this paper to be submitted).

While our simulations cannot follow the evolution of the binary for much longer
times, it is interesting to ask the question whether the semi-major axis of the binary
reaches distances that would lead it to coalesce within a Hubble time because of the
emission of gravitational radiation, measurable in a LISA-like detector such as eLISA
(Amaro-Seoane et al. 2012). For this, the binary has to shrink from an initial semi-major
of a ≈ 0.04 pc down to a ≈ 0.003 pc. This corresponds to an increase of orbital binding
energy of about one order of magnitude. The net change in binding energy after an
interaction with one bound star of mass m⋆ can be estimated as ∆E⋆ = Gm⋆Mbbh/a.
We start the direct-summation simulations with a ratio of stellar mass to MBH binary
mass of ≈ 10%, so that ab definitio the stellar mass that is formed is not enough for
the binary to shrink down to the phase in which the evolution is dominated by gravi-
tational radiation. Indeed, if we consider all stars in the disc to be ejected, we estimate
in the limit of this low mass ratio that the total effect of the stellar disc is of about
δEtot = GqM2

bbh/a, where q is the mass ratio of stellar mass to BH mass. Following
an argument similar to e.g. Quinlan (1996); Sesana et al. (2007), if we compare this to
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Figure 20: Same as the left panel of figure 16 but including the number of stars in
each simulation, for the same colour but in dashed lines. By the end of our
numerical treatment we have lost at least 50% in all cases.

the orbital energy at semi-major axis a, one finds that the relative change after eject-
ing all the stars is δEtot/E ≈ q/ν, where ν = 0.2 is the symmetric mass ratio, well
below what would be necessary to shrink the binary by one order of magnitude. We
note that indeed ejecting half of the stellar mass only shrinks the binary semi-major
axis by < 25%, as we see in the first 3 Myr of our N−body simulations, in figure 20.
While this is true for our specific scenario, we note that further episodes of gas inflow
towards the centre could potentially trigger more episodes of star formation in the
disc, which would lead to star scattering and a further skrinkage. Moreover, while we
have focused on the effect of stars formed in-situ on the binary, but the system will
be surrounded by a stellar cusp that constitutes an additional source of shrinkage for
the binary. The supply of stars that will interact with it can be enhanced by additional
mechanisms in a more realistic picture than that of an isolated, spherically symmetric
galactic nucleus, as we discussed in the introduction.
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A R A P I D E V O LV I N G R E G I O N I N T H E G A L A C T I C C E N T E R :
W H Y S - S TA R S T H E R M A L I Z E A N D M O R E M A S S I V E S TA R S A R E
M I S S I N G

Xian Chen1 & Pau Amaro-Seoane1

Published in The Astrophysical Journal Letters, Volume 786, Issue 2, article id. L14, 5 pp.
(2014).

Abstract: The existence of “S-stars” within a distance of 1′′ from SgrA∗ contradicts our understanding
of star formation, due to the forbiddingly violent environment. A suggested possibility is that they form
far and have been brought in by some fast dynamical process, since they are young. Nonetheless, all
conjectured mechanisms either fail to reproduce their eccentricities –without violating their young age–
or cannot explain the problem of “inverse mass segregation”: The fact that lighter stars (the S-stars) are
closer to SgrA∗ and more massive ones, Wolf-Rayet (WR) and O-stars, are farther out. In this Letter we
propose that the responsible for both, the distribution of the eccentricities and the paucity of massive stars,
is the Kozai-Lidov-like resonance induced by a sub-parsec disk recently discovered in the Galactic center.
Considering that the disk probably extended to smaller radius in the past, we show that in as short as (a
few) 106 years, the stars populating the innermost 1′′ region would redistribute in angular-momentum
space and recover the observed “super-thermal” distribution. Meanwhile, WR and O-stars in the same
region intermittently attain ample eccentricities that will lead to their tidal disruptions by the central
massive black hole. Our results provide new evidences that SgrA∗ was powered several millions years
ago by an accretion disk as well as by tidal stellar disruptions.

7.1 introduction

Observations of the Galactic Center (GC) going back as far as 20 years (see Genzel et
al. 2010, for a review) reveal three facts: (1) An isotropic cusp of young O/B and Wolf-
Rayet (WR) stars, starting at a distance of 30′′ from SgrA∗ and extending inward to
about 1′′ (1′′ ≃ 0.04 pc); (2) a mildly thick stellar disk, of about 100 WR and O-type stars,
spanning from an inner radius of 1′′ to an outer radius of about 10′′; and (3) populating
the innermost region, within 1′′ from SgrA∗, are a population of B stars, commonly
referred to as the “S-stars”, but no WR/O stars. A single star-formation (SF) episode

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
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a rapid evolving region

may have explained the formation of disk and cusp stars (Lu et al. 2013), the S-stars,
however, cannot have been born in this scenario, because the violent environmental
conditions within 1′′ do not allow in-situ SF. One way of populating that region is
by dynamical friction, but the associated timescale is too long. For this reason, the
problem has the reputation of the “paradox of youth” (Ghez et al. 2003; Morris 1993).

This issue has led to the idea that S-stars could have formed at larger radii and
brought in later by an efficient dynamical mechanism. One possibility is tidal separa-
tion of binaries (Ginsburg & Loeb 2006; Gould & Quillen 2003; Hills 1991). A binary,
formed at larger radius, can be set in such an orbit that at periapsis it will be tidally
separated by the central massive black hole (MBH), leaving one star, which could be
a B star, bound to the MBH at a typical radius of ≲ 1′′. However, the captured stars
would have very high eccentricities, typically about 0.93 − 0.99 (see the original work
of Hills 1991 and Amaro-Seoane 2012 for a review). It would require some 20 − 50
Myr for them to achieve the observed near-thermal distribution (e.g. Antonini & Mer-
ritt 2013; Perets et al. 2009; Zhang et al. 2013), with the aid of a very dense cusp of
segregated old stars which is in contradiction with current observations (Buchholz et
al. 2009; Do et al. 2009). Even in the presence of a dense cusp, there are two additional
issues: (1) the same process would work for WR/O stars, and we do not see them
within ≲ 1′′ (Alexander 2011) and (2) the oldest O/WR stars are ≲ 10 Myr, so there
has to be at least two SF episodes, since S-stars inside 1′′ need ≥ 20 Myr to thermalize.

Since the stellar disk initially must be gaseous, it has been proposed as another pos-
sibility that B stars migrated in it towards the center (Griv 2010; Levin 2007). However,
(1) this cannot explain the eccentricities of the S-stars because the migrating stars will
remain on near-circular orbits (Antonini & Merritt 2013; Madigan et al. 2011; Perets
et al. 2009), and (2) WR/O stars would have migrated towards the center due to the
same mecahnism, but we do not observe them there. Once SF is over (no more gas),
the stars in the disk, including the WR/O stars, would secularly torque each other
and drift away from nearly-circular orbits to rather eccentric ones (Madigan et al.
2009), and hence at periapsis they would populate the central 1′′, but, still, we do not
see WR/O-stars there either.

In this Letter we show that, provided the disk was heavier and more extended in the
past (Alig et al. 2011; Bonnell & Rice 2008; Hobbs & Nayakshin 2009; Mapelli et al. 2012;
Nayakshin et al. 2007; Wardle & Yusef-Zadeh 2008), it created a rapid evolving region
(RER) inside 1 ′′, where the angular momenta of stars rapidly redistribute because of
a Kozai-Lidov-like resonance. This RER can explain both the eccentricities of S-stars
and the absence of WR/O-stars because the latter are tidally disrupted.

7.2 disk-driven evolution

7.2.1 Timescales

To understand the effect of the disk, we first analyze the torque exerted by a wire of
mass δm and radius R on a background star of semi-major axis a (Ivanov et al. 2005;
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7.2 disk-driven evolution

Löckmann et al. 2008; Šubr & Karas 2005). Chen et al. (2011) showed that the timescale
for the wire to change the angular momentum of the star by a full cycle, i.e. to vary
the eccentricity e of the star from its minimum value to the maximum and back, is

TK =

{
2

3π
M•
δm

( a
R

)−3 P(a), Kozai − Lidov, a ≤ R/2,
16
√

2
3π

M•
δm

( a
R

)1/2 P(a), Non − determ., a > R/2,
(60)

where M• = 4 × 106 M⊙ is the mass of the MBH, and P(a) = 2π
(
a3/GM•

)3/2 ≃
1.4 × 103 (a/[0.1 pc])3/2 yr is the orbital period of the star. The reason for R/2 is a
requirement for having all orbits within the radius of the wire, including the most
eccentric ones, Rapo = a (1 + e) ∼ 2 a, with Rapo the apocenter distance. Equation (60)
is a generalization of the secular Kozai-Lidov (KL) timescale (see Naoz et al. 2013, and
references therehin): (1) In the regime a ≤ R/2 we recover this well-known secular
phenomenon but (2) when a ≳ R/2, i.e. when stellar orbits cross a sphere with a
radius of the wire, it provides good approximation to the non-deterministic (ND), but
not necessarily chaotic, evolution of the stellar orbit.

Admitting that an extended disk is a superposition of wires, one can derive the
corresponding timescale T′

K for the sum of torques to change the orbital elements of a
star in a full cycle (Chang 2009):

1/T′
K =

∫ Rout

Rin

d(1/TK), (61)

where Rin and Rout denote the inner and outer radii of the disk, d(1/TK) ∝ δm =
2πΣd(R)RdR, and Σd(R) is the surface density of the disk. During T′

K, when secular
evolution predominates, a star typically oscillates a full cycle between the maximum
and minimum eccentricities, which are predetermined by three orbital parameters,
namely eccentricity, position angle of periapsis (ω), and inclination angle relative to
the disk (θ). At any intermediate stage of that cycle, the “instantaneous” evolution
timescale, defined as tK(l) ≡ l/|l̇|, can be derived from

tK(l) ≃ lT′
K(a) (62)

(e.g. Chang 2009; Chen et al. 2011), where l ≡
√

1 − e2 is the dimensionless angular
momentum and the dot denotes the time derivative. The linear dependence on l
reflects the coherence of the disk torque during tK(l).

The MBH and cusp stars affect the KL-like evolution by perturbing the orbital pa-
rameters (e, ω, θ). We must distinguish two regimes: (1) At high e, ω is significantly
perturbed, because of the induced relativistic (GR) precession rate,

ω̇GR = 3(GM•)
3/2/

(
l2c2a5/2

)
, (63)
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with c the speed of light. It may even exceed the KL precession rate,

ω̇K ≃ 2π/
(
T′

K l
)

(64)

(e.g. Chang 2009). When this happens, the disk coherence is broken and the KL cycle
quenched, hence it defines a boundary to the region in phase space where the evo-
lution is driven by the disk. In some loose sense, this boundary is analogous to the
Schwarzschild barrier in galactic nuclei (Brem et al. 2014; Merritt et al. 2011). (2) At
low e, the perturbation on ω originates from the total stellar mass M∗(a) enclosed by
the orbit. The Newtonian precession rate

ω̇M ≃ 2πlM∗(a)/[M•P(a)] (65)

may exceed ω̇K in this regime, which imposes a second boundary (Chen et al. 2011).
Outside these boundaries, evolution of angular-momentum will be determined by

either two-body relaxation, with a characteristic timescale of

t2b(l) ≡ |l/l̇| ≃ l2 (M•/m∗)
2 P(a)/ (N ln Λ) (66)

(e.g. Kocsis & Tremaine 2011), or (scalar) resonant relaxation (RR, Rauch & Tremaine
1996), on a timescale of

tRR,s(l) ≡
∣∣∣∣ ll̇
∣∣∣∣ ≃ l2

1 − l2

(
M•
m∗

)2 P2(a)
Ntω

(67)

(Gürkan & Hopman 2007,who studied the dependence on e). In Equations (66) and
(67), m∗ denotes the average mass of one star, N = M∗(a)/m∗ is the number of stars
enclosed by the stellar orbit, ln Λ = ln(M•/m∗) is the Coulomb logarithm, and tω =
2π/|ω̇M − ω̇GR − ω̇K| is the joint precession timescale combining Newtonian, GR, and
KL precessions (Chen & Liu 2013).

Between the two boundaries is the RER: Any star in it cycles between the maximum
and minimum eccentricities predetermined by (e, ω, θ). Moreover, the two extrema
are evolving. The corresponding timescale is given by vectorial RR (Rauch & Tremaine
1996), which changes θ on a timescale of

tRR,v ≡
∣∣∣∣1θ̇
∣∣∣∣ ≃ 0.3

(0.5 + e2)2
M•
m∗

P(a)√
N

(68)

(Eilon et al. 2009; Gürkan & Hopman 2007). Inside RER, tRR,v is longer than the Newto-
nian and GR precession timescales, so vectorial RR does not impact the boundaries. Its
role is to characterize the required time for a star to explore in a random-walk-fashion
the range of maxima and minima in eccentricities fenced in by the boundaries of the
RER.
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7.3 sculpting the galactic center

7.2.2 A receding disk

The boundaries of the RER are changing because the properties of the disk have
changed during the past (1 − 10) Myr. We can distinguish two stages in the evolu-
tion of the disk.

(1) An early phase in which the disk was mostly gaseous and its inner edge reached
the innermost stable circular orbit (ISCO) at about 6GM•/c2 ≃ 10−6 pc (Levin
2007; Nayakshin & Cuadra 2005). This disk contained at least 104 M⊙ of gas,
to trigger fragmentation and star formation (Nayakshin & Cuadra 2005), and it
could have been as massive as (3− 10)× 104 M⊙ according to recent simulations
(Bonnell & Rice 2008; Hobbs & Nayakshin 2009; Mapelli et al. 2012; Nayakshin
et al. 2007). We will adopt a disk mass of Md = 3 × 104 M⊙ for this phase. It is
worth noting that stars formed in the outer disk may migrate inward (Griv 2010;
Levin 2007), so the disk inside R = 0.04 pc could contain both gas and stars.

(2) Today, after some (1− 10) Myr, the central 0.04 pc of the disk is no longer present,
because the gas is consumed by either star formation (Nayakshin & Cuadra 2005)
or black-hole accretion (Alexander et al. 2012), and the stars have had time to be
scattered out of the disk plane due to vectorial RR (Hopman & Alexander 2006;
Kocsis & Tremaine 2011). For this reason, we say the inner edge of the disk has
receded from the ISCO to the current location of Rin ≃ 1′′ ≃ 0.04 pc (e.g. Paumard
et al. 2006), while the outer edge is still the same, at Rout ≃ 12′′ ≃ 0.5 pc. The
present mass of the disk is Md = 104 M⊙ (Bartko et al. 2010; Paumard et al.
2006).

In both situations, we modeled the disk surface density as a power-law of Σd(R) ∝
R−1.4 (Bartko et al. 2010), which leads to a mass of 6× 103 M⊙ at 10−6 pc < R < 0.04 pc
in the early phase. To derive M∗(a) and N in Equations (65)-(68), we adopted the
broken-power-law model from observations (Genzel et al. 2010), whose density slop
is γ = 1.3 for the inner 0.25 pc. We assumed an average stellar mass of m∗ ≃ 10 M⊙
(also see Kocsis & Tremaine 2011, for discussions). In this model, we have tRR,v ≃
1.5 × 106 (0.5 + e2)−2(a/1′′)0.65 yr for stars in the central arcsec of the Galaxy.

7.3 sculpting the galactic center

7.3.1 Rapid Evolving Region

In Figure 21 we display the boundaries of the RER. The left panel corresponds to
Rin = 10−6 pc and the right one to Rin = 0.04 pc. In this (1 − e) – a plane, at any
location, we can estimate the instantaneous evolution timescale as:∣∣∣∣1 − e

ė

∣∣∣∣ = e(1 − e)
l2 tK(l) ≃

e(1 − e)
l

T′
K(a). (69)
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We can then identify the lines with constant evolution timescales, i.e. the con-
tours. We call them “isochrones”, and depict them as blue dotted curves. Outside
the RER the isochrones are shown in grey and determined by either two-body scat-
tering, e (1 − e) t2b (l)/l2, or RR process, e (1 − e) tRR,s(l)/l2, whichever timescale is
shorter.

Two striking conclusions from a first look at this figure are (1) stars in the RER evolve
on very short timescales, of the order of 103−5.5 yrs, to complete a full KL cycle. As
discussed previously, after a time of tRR,v, any star at a < 1′′ would have fully explored
the angular-momentum range within the RER. (2) As the disk recedes, the boundaries
come closer and the RER shrinks. Any star that finds itself out of the RER will be
“frozen” from the point of view of another star which still is in it: The timescales
outside RER are long.

Since short evolution timescale leads to low probability of stellar distribution, today
(right panel of Figure 21), the absence of S-stars within the RER boundaries may be
a plausible observational corroboration that the RER does exit at the GC. At present,
the only measured object within the RER boundaries is G2 (red dots, Gillessen et al.
2013). From its nearby isochrones, we see that G2 must have been formed less than
105.5 years ago.

7.3.2 A close thermalization of the S-stars

The two more successful scenarios of depositing B stars close to the GC, i.e. binary
separation and disk migration, place these stars well within the RER (left panel of
Figure 21). These stars are able to sufficiently mix in angular-momentum space, on
a timescale of tRR,v ≃ 0.7 Myr in the binary-separation scenario and of tRR,v ≃ 6
Myr in the disk-migration one. The latter mechanism (disk migration) requires much
longer time to reach the superthermal distribution in eccentricities becasue of the e
dependence of Equation (68). We note that these timescales are at least 10 times shorter
than those from the earlier models, which neglected the RER.

The fully-mixed eccentricities do not necessarily have a thermal distribution (Brem
et al., in preparation). Following the argument that longer evolution timescale corre-
lates with higher probability distribution, we will have dN/de ∝ dt/de, and substitut-
ing Equation (69) for dt/de, we can derive dN/de ∝ dt/de ∝ e/l. This distribution
function is steeper than a thermal one, dN/de ∝ e. The steepness stems from the
linear dependence of the evolution timescale (l/l̇) on the orbital angular momentum
l, whereas in the case of two-body relaxation and RR, the evolution time scales with
1 − e2.

Figure 22 compares various cumulative probability distribution functions (CPDFs)
for e, derived from two theoretical models –a thermal one and our RER model– as well
as from observations. It is clear that compared to the thermal distribution, the RER
one is in better agreement with the observations.
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Figure 21: Mapping evolution timescales in the a – (1− e) plane. The thick grey line on
the left-hand-side corresponds to the last stable orbit (LSO) around SgrA∗.
The thick solid black curve is the result of equating the KL precession rate,
ω̇K, to its relativistic equivalent, ω̇GR. Above that curve, dynamical evo-
lution is determined by KL effect up to the next solid black curve, which
comes from equating ω̇K to ω̇M, the precession rate induced by the enclosed
stellar mass. The dashed black parallel lines crossing the figures from the
top to the bottom indicate the typical tidal-disruption radii for B, O, and
WR stars. The blue dotted isochrones, fenced in the region where the evolu-
tion is governed by the KL mechanism, are associated with the logarithms
of the KL timescales given by Equation (69). The grey dotted isochrones are
associated with the logarithms of the two-body-relaxation or RR timescales,
whichever is shorter. The small orange triangles at the top-right corners
depict the loci of the red giants in the GC. In the left panel, the two grey
boxes depict the expected birth places of S-stars in the binary-separation
and migration-in-disk models (also see Antonini & Merritt 2013). In the
right panel, the dots correspond to: S-stars not associated with the young
stellar disk (small-blue Gillessen et al. 2009), the infalling G2 object (also
called DSO, see Eckart et al. 2013, for a different interpretation of its nature)
measured at different times or different wavelengths (small-red Gillessen et
al. 2013), S2/S0-2 (big-blue, the brightest S-star, Eisenhauer et al. 2003; Ghez
et al. 2003), and S102/S0-102 (small-cyan, Meyer et al. 2012), the S-star with
the shortest period known.
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7.4 discussions

7.3.3 Depleting WR/O stars

For a star of mass m∗ and radius r∗, if its eccentricity becomes so high that the orbital
pericenter distance from SgrA∗ becomes smaller than the tidal radius

rt ≃ r∗

(
M•
m∗

)1/3

≃ 4 × 10−6 pc
(

r∗
R⊙

)(
m∗
M⊙

)−1/3

, (70)

it will be tidally disrupted (Rees 1988). In Figure 21 we show typical rt associated
with B, O, and WR stars. Once stars cross it from the right to the left, they are lost.
This drain is enhanced in the RER by the shorter and shorter timescales, as the stars
progressively move to the left.

To calculate rt, we assume m∗ = (7, 25, 60) M⊙ respectively for the three types
of stars (Zinnecker & Yorke 2007). Main-sequence stars less massive than 7M⊙ are
below the current detection limit of observations. Correspondingly, we have adopted
r∗ = 4 R⊙ for main-sequence B stars, and r∗ = 40 R⊙ and 80 R⊙ respectively for O-
and WR stars. B stars can be envisaged as main-sequence stars, but O- and WR stars
are more massive, and shorter-lived. We hence adopt larger radii for them, 3–4 times
larger than typical radii on the main-sequence, since they have evolved off the main
sequence (Bartko et al. 2010; Paumard et al. 2006).

We can see in the left panel of Figure 21 that any WR star in a stripe defined between
0.15′′ ≲ a ≲ 0.8′′ and any O star in 0.2′′ ≲ a ≲ 0.8′′ will be tidally disrupted, because
it will have explored all the (1 − e) space in ∼ 106 yrs. Similarly, for B stars, the
corresponding stripe is delimited by the narrower zone 0.5′′ ≲ a ≲ 0.8′′. In fact, this
predicted gap (for B stars) does occur in the current distribution of S-stars (right panel
of Figure 21). If we had assumed a disk mass of Md > 3× 104 M⊙, this gap would have
broadened to incorporat the region where a < 0.5′′, and it would contradict current
observations. Therefore, an upper limit to the disk mass can be derived, approximately
3 × 104 M⊙.

By looking at the left panel again, we realize that only WR/O stars with a > 0.8′′ and
low e can survive, because they are always outside of the RER and cannot drift quickly
enough to higher e. Indeed, WR/O stars have been discovered only at a ≳ 1′′ but not
inside. In principle, our model cannot deplete WR/O stars at a < 0.1′′, because at such
small a the RER does not reach the tidal radii. Observations did not find any WR/O
star there, maybe because the extrapolation of the disk density profile Σ(R) ∝ R−1.4

results in < 1 WR/O star at R < 0.1′′.

7.4 discussions

In this Letter we have presented a picture that explains the distribution of the eccen-
tricities of S-stars and the absence of more massive stars within 1′′ of SgrA∗. Our sole
hypothesis is that around (1 − 10) Myr ago, the disk had extended down to R ≪ 0.04
pc. We find that the torque exerted by the disk creates a region at the GC in which
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a rapid evolving region

the dynamical evolution is significantly accelerated as compared to other regions, by
a factor ranging from 10 to 100 times, and we call it the “rapid evolving region”.

Our scenario agrees with current observations about the nonexistence of an old
segregated cusp in the GC (Buchholz et al. 2009; Do et al. 2009), contrary to other
works, which crucially rely on the cusp to thermalize the S-stars (Antonini & Merritt
2013; Madigan et al. 2011; Perets et al. 2009; Zhang et al. 2013). Because the time that
is needed to randomize angular momentum is now shortened to (0.7 − 6) Myr, our
model is able to accommodate various possibilities for the formation of S-stars, while
other models rely heavily on when S-stars were brought to the GC (Antonini & Merritt
2013; Perets et al. 2009).

Moreover, our RER scenario unifies two observational facts that have been thought
until now to be disconnected: We successfully populate the observed range of e for
B stars and we can duplicate the observed discontinuity of WR/O stars above and
below 1′′. Both of them will be established in as short as (0.7− 6) Myr, so we can even
unify the origin of all the young stellar populations in the GC to only one single SF
episode. This unification does pose a problem for earlier models: If all B stars formed
simultaneously with WR/O stars, since this must be less than 6 Myr ago (because
WR/O stars cannot be older), two-body relaxation and RR will fail to explain the
distribution of e.

At this stage, it is crucial to theoretically understand the dynamical response of the
old stellar population to the RER, and test it against the observations of dimmer (than
B-type), older stars. If they match, it would be a robust evidence that the RER has
indeed played a role in sculpting the GC.
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T I D A L D I S R U P T I O N S O F S E PA R AT E D B I N A R I E S I N G A L A C T I C
N U C L E I

Pau Amaro-Seoane1, M. Coleman Miller2, & Gareth F. Kennedy3

Published in Monthly Notices of the Royal Astronomical Society, Volume 425, Issue 4, pp.
2401-2406 (2012).

Abstract: Several galaxies have exhibited X-ray flares that are consistent with the tidal disruption of a
star by a central supermassive black hole. In theoretical treatments of this process it is usually assumed
that the star was initially on a nearly parabolic orbit relative to the black hole. Such an assumption leads
in the simplest approximation to a t−5/3 decay of the bolometric luminosity and this is indeed consistent
with the relatively poorly sampled light curves of such flares. We point out that there is another regime
in which the decay would be different: if a binary is tidally separated and the star that remains close to
the hole is eventually tidally disrupted from a moderate eccentricity orbit, the decay is slower, typically
∼ t−1.2. As a result, careful sampling of the light curves of such flares could distinguish between these
processes and yield insight into the dynamics of binaries as well as single stars in galactic centres. We
explore this process using three-body simulations and analytic treatments and discuss the consequences
for present-day X-ray detections and future gravitational wave observations.

8.1 introduction

In the past few years, several galaxies have exhibited X-ray/UV flares consistent with
the tidal disruption of a star by a supermassive black hole (SMBH; for flare observa-
tions see Dogiel et al. 2009; Donley et al. 2002; Gezari et al. 2009). These candidate
disruptions are relevant to the fueling of some active galactic nuclei (particularly low-
mass ones; see Wang & Merritt 2004) and contain important information about stellar
dynamics in the centers of galaxies. In addition, they are related to one of the processes
believed to lead to extreme mass ratio inspirals (EMRIs), in which a stellar-mass ob-
ject spirals into a supermassive black hole; EMRIs are thought to be among the most

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
2 University of Maryland Department of Astronomy and Joint Space-Science Institute, College Park, MD,

20742-2421, USA
3 Institut de Ciències del Cosmos, Facultat de Física Marti i Franquès, 1 E-08028 Barcelona, Spain
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tidal disruptions of separated binaries

promising sources for milliHertz gravitational wave detectors such as the Evolved Laser
Interferometer Space Antenna (LISA, see Amaro-Seoane et al. 2012, 2007).

Analyses of stellar tidal disruptions have focused on stars whose orbits are nearly
parabolic relative to the SMBH (Rees 1988). In this case, roughly half the stellar ma-
terial becomes unbound and the rest rains down on the SMBH with a rate that, for
simplified stellar structure, scales with the time t since disruption as Ṁ ∼ t−5/3 (this
is expected at late times even for more realistic structure; see Lodato et al. 2009).

There is, however, another possible path to disruptions. Binaries that get close
enough to a SMBH can be tidally separated without destroying either star. The re-
sult is that one star becomes relatively tightly bound to the SMBH whereas the other
is flung out at high speed. The bound star will undergo dynamical interactions and
its orbit will also shrink and circularise due to gravitational radiation. The star may
eventually be tidally disrupted, but on an orbit that is much more bound than in the
standard scenario. This will lead to a remnant disc of the type analyzed by Cannizzo
et al. (1990), for which the accretion rate decreases more slowly than in the parabolic
scenario: Ṁ ∼ t−1.2 for reasonable opacities. If flare light curves are sampled suffi-
ciently these decays could in principle be distinguished from each other, which would
give us new insight into stellar dynamics and the prospects for EMRIs.

Here we present numerical and analytical analyses of binary tidal separation and
subsequent tidal disruption of the remaining star. We note that there exist similar but
not identical numerical studies. In particular Gould & Quillen (2003) use a mass for the
black hole of 3.6× 106 M⊙ but show results only for the subset that give captured stars
with similar parameters to the observed stars S2-0. Their initial binary distributions
are similar to ours, although they do not examine binaries with initial semi-major axis
< 1 AU and focus on higher masses. Ginsburg & Loeb (2006) address a black hole
mass of 4 × 106 M⊙ and their binaries are formed of two stars of masses 3 M⊙. They
present a few sample orbits of captured stars similar to the S-stars, but do not give
a detailed distribution. Perets & Gualandris (2010) also focus on 4 × 106 M⊙ MBHs,
and find as expected that the captured stars tend to have high eccentricities e > 0.97,
but do not give a periapsis distribution for the stars. Madigan et al. (2009) present
in their notable work direct-summation N−body simulations of small discs of stars
with semi-major axes of 0.026 and 0.26 pc with 4 106 M⊙ MBHs, which produced stars
with high eccentricities that did not, however, enter the region of greatest interest to
us. Hence we have performed new numerical simulations to explore our scenario.

In § 2 we discuss tidal separations and present our three-body simulations of the
process. In § 3 we use these results as initial conditions and analyze the competition
between stellar dynamical processes (which can raise or lower the eccentricity) and
gravitational radiation (which shrinks and circularises the orbit) to determine the mass
ranges most likely to lead to moderate eccentricities at the point of disruption. In
§ 4 we discuss the tidal process itself, and argue that the small but nonzero residual
eccentricities mean that for sufficiently low-mass SMBHs the star will typically be
disrupted rather than settling into a phase of steady mass accretion onto the SMBH.
We present our conclusions in § 5.
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8.2 binary tidal separation

8.2 binary tidal separation

Tidal separation of binaries by SMBHs was first discussed by Hills (1988). He sug-
gested that one member of the binary would be ejected with a velocity of > 103 km s−1,
a “hypervelocity star” (HVS); several such objects have now been observed (see Brown
et al. 2009 for a discussion of their observed properties). The other member would set-
tle into a fairly tightly bound orbit around the SMBH; see Miller et al. (2005) for a
discussion in the context of extreme mass ratio inspirals into an SMBH.

To simulate this process we assume a uniform distribution of pericentre distances
between 1 and 700 AU for the orbit of the binary around a 107 M⊙ MBH. The initial
orbit is also assumed to be parabolic and to have its relative inclination uniformly
distributed over a sphere. In total 228,000 numerical simulations were conducted using
a generalized three-body code described by Zare (1974) and Aarseth & Zare (1974).
This numerical integrator is based on Kustaanheimo-Stiefel regularisation of a two-
body system, which is described in Aarseth (2003); Kustaanheimo & Stiefel (1965).
The total energy and angular momentum of the system are conserved to a high degree
of accuracy and close encounters between bodies do not induce unphysical velocities.

The resulting distribution for the pericentre distance and eccentricity of the captured
population, as well as the velocity distribution for the star re-ejected into the stellar
system, are shown in Fig.(23) for an initial internal binary eccentricity of ei = 0.4
and stellar mass of 1M⊙. To produce this figure we chose 107 sets of parameters for
fixed eccentricities and drew the semimajor axis of the initial stellar binary from a
log normal distribution between 0.05 and 10 AU. This is taken from observations of
period distribution of binaries in local field stars (Duquennoy & Mayor 1991). The
mean would be about 0.37 AU.

In the figure we show the resulting probabilities, where we plot the probability of
finding a captured star with a particular pericentre and eccentricity bin given that a
binary is scattered to within 700 AU of the MBH. The distribution of semimajor axes
for captured stars is shown in Fig.(24) for a 1M⊙ star that was taken from an initial
stellar binary with eccentricity ei = 0.0, 0.4, 0.7 or 0.9.

We now discuss the evolution of the orbits of the stars after capture, under the
combined influence of two-body relaxation and gravitational radiation.

8.3 competition between stellar dynamics and gravitational radia-
tion

Suppose that a binary has been tidally separated by a close passage to a supermassive
black hole, but that the remaining object is outside the tidal radius (i.e., it is not torn
apart yet). Gravitational radiation will circularise the orbit as it shrinks, but dynamical
processes can increase the eccentricity. Eventually, the star will move inside the tidal
radius and (as we argue in § 4) will probably be tidally disrupted if the SMBH is
sufficiently low-mass.
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Figure 23: Distribution of the pericentre distance and eccentricity of the captured com-
panion at the tidal separation radius for an initial eccentricity of ei = 0.4
and stellar mass of 1M⊙. Other eccentricities do not change significantly
the shape of the distribution. The red line indicates the maximum pericen-
tre distance for which the tidal disruption happens within a Hubble time
under the influence of gravitational radiation alone. In the limit e → 1, rp
approaches the tidal disruption radius, which we display as a green line, at
at 1.3 AU, although this cannot be seen directly in the figure because we are
using a resolution of δe = 10−4.
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8.3 competition between stellar dynamics and gravitational radiation

Figure 24: Cumulative probability distribution of the semimajor axis of the captured
star after the tidal separation of the binary for a 1M⊙ star. The colours
denote the initial eccentricity of the binary before being disrupted by the
MBH, where black (solid line) is ei = 0.0, red (dashed line) is ei = 0.4,
green (dot-dashed line) is ei = 0.7 and blue (dotted line) is ei = 0.9. The
probabilities of captures are different in the different eccentricity cases, in
particular the case ei = 0.9 is easier to capture than the others.
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In this section we discuss the dynamics subsequent to a tidal separation. We pre-
sume that the pericentre of the orbit of the remaining star is outside the tidal radius,
so that there is no immediate tidal disruption. The star will then be subjected to two-
body interactions that can change the semimajor axis and eccentricity of its orbit. In
principle resonant relaxation (Rauch & Tremaine 1996) could also play a role, in par-
ticular due to the high eccentricity the orbit has, since the component of the torque
is linearly proportional to eccentricity (Gürkan & Hopman 2007), but for the relevant
tight orbits general relativistic pericentre precession essentially eliminates this effect
(Merritt et al. 2011). We will therefore focus exclusively on two-body interactions.

The two-body energy relaxation time (during which the semimajor axis of the orbit
will be roughly doubled or halved) for a star of mass m moving against a background
of density ρ and velocity dispersion σ is (Spitzer 1987)

ten ≈ 0.3
ln Λ

σ3

G2ρm
. (71)

Here ln Λ ∼ 10 is the Coulomb logarithm. For our purposes, however, it is not the
semimajor axis but the pericentre distance that is important, because this is what deter-
mines whether the star enters the tidal region. It is therefore the angular momentum
relaxation time that is more relevant. For a nearly circular orbit this time is comparable
to the energy relaxation time, but as we saw in § 8.2 the initial eccentricity is close to
unity in almost all cases. The angular momentum of an orbit scales as

√
a(1 − e2), so

an orbit with eccentricity e has an angular momentum a factor of (1− e2)1/2 less than a
circular orbit with the same semimajor axis. Two-body relaxation is a diffusive process,
hence the expected change in energy or angular momentum after time t scales as t1/2.
As a result, the angular momentum relaxation time is a factor of [(1− e2)1/2]2 = 1− e2

less than the energy relaxation time:

tam =
0.3

ln Λ
σ3

G2ρm
(1 − e2) . (72)

For e ∼ 1 this is much shorter than the energy relaxation time, hence we will assume
that a is fixed throughout. We also note that because angular momentum relaxation
is a random walk process the angular momentum could go up or down; if it goes up
then nothing interesting happens to the star, hence we will consider only the case in
which the angular momentum and hence the pericenter distance decreases.

To be more quantitative, let us suppose that we have a galactic center with a super-
massive black hole of mass M with a stellar mass density profile ρ(r) = ρ0(r/rinfl)

−α

inside the radius of influence rinfl ≡ 2GM/σ2
0 , where σ0 is the velocity dispersion in

the bulge of the galaxy. The radius of influence is by definition the radius inside
of which the total stellar mass equals the black hole mass, hence the normalization
is ρ0 = 3−α

4π
M

r3
infl

. Suppose we make the simplifying approximation that the velocity

dispersion is σ(r) = σ0(r/rinfl)
−1/2 (this scaling is accurate for r ≪ rinfl but not for

r ∼ rinfl because of the mass contribution from stars). Let us assume in addition an
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8.3 competition between stellar dynamics and gravitational radiation

M − σ0 relation of the form M = 108 M⊙(σ0/200 km s−1)4 (Tremaine et al. 2002). Then
rinfl ≈ 3M1/2

7 pc, where M = 107M7 M⊙, and

tam ≈ 7 × 1011 yr(3 − α)−1M5/4
7 m−1

0 (r/rinfl)
α−3/2

(1 − e2) (73)

with m0 ≡ m/M⊙. tam is the timescale on which two-body processes can raise or
lower the pericentre distance significantly. Competing against this is the gravitational
radiation timescale

tGR ≈ 3 × 1015 yr m−1
0 M−2

7

( a
1000AU

)4
(1 − e2)7/2 . (74)

Over a time t ≈ tGR, the orbit shrinks and circularises significantly. Setting the two
timescales equal to each other and noting that the pericentre distance is rp = a(1 − e)
gives a critical pericentre distance of

rp, crit ≈ 16 AU (8 × 10−4)(2α−3)/5

(3 − α)2/5M(8−α)/5
7

( a
1000AU

)(2α−6)/5
. (75)

Typical values for rp, crit can be read directly off of the simulations. For one that can
decay faster than a Hubble time it is < 10 AU, and for one that can decay faster than
it would be disrupted by two-body relaxation it is more like 5 AU. At a smaller peri-
centre distance than is given by this expression, gravitational radiation dominates the
evolution; conversely, at a larger pericentre distance, two-body relaxation dominates.

At the MBH masses ∼ 107 M⊙ that we consider, there may or may not be time for the
stars to relax dynamically, hence it is not clear which value of α to take. If strong mass
segregation occurs then α = 2 is likely (Alexander & Hopman 2009; Amaro-Seoane
& Preto 2011; Preto & Amaro-Seoane 2010), but flatter slopes may also be relevant,
particularly if there has been scouring by a previous massive black hole merger and
the system has not yet readjusted. For a selection of slopes we find

rp,crit ≈ 14 AUM13/10
7 (a/1000 AU)−3/5, α = 3/2

rp,crit ≈ 7 AUM5/4
7 (a/1000 AU)−1/2, α = 7/4

rp,crit ≈ 4 AUM6/5
7 (a/1000 AU)−2/5, α = 2 . (76)

We will simplify by assuming that gravitational radiation is unimportant until rp =
rp, crit, at which point it takes over completely with no further influence from two-body
effects. If this is true, then the next question is whether rp, crit is greater than the
tidal radius. If we focus on main sequence stars of mass m ≲ M⊙, then over a wide
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range of masses their radii are reasonably fit by R⋆ ≈ 0.85R⊙(m/M⊙)2/3 (Demircan &
Kahraman 1991) and the tidal radius is

rT ≈ R⋆

(
3M
m

)1/3

≈ 1.3 AUM1/3
7 m1/3

0 . (77)

Thus we see that stars in this mass range will typically enter the gravitational radiation
regime before they are tidally disrupted. Given that the critical pericenter is just a
few times the tidal radius, and that many aspects of this calculation are uncertain, it
is quite possible that although tidal effects drop off very sharply with distance they
could have an impact on the orbit outside rT. An exploration of this possibility would
require careful hydrodynamic simulations, but for our purposes we will assume that
they are not dominant.

Assuming that this is the case, we can compute the eccentricity of the orbit at the
point that the pericentre distance equals rT, when (as we show in the next section)
the star is likely to be tidally disrupted instead of settling into a phase of steady
accretion. We calculate the eccentricity by noting that to lowest (quadrupolar) order,
pure evolution via gravitational radiation conserves the quantity

C = ae−12/19(1 − e2)

(
1 +

121
304

e2
)−870/2299

(78)

(Peters 1964). We saw in § 8.2 that the initial eccentricity after tidal separation is nearly
unity, so 1 + e ≈ 2. From our assumptions we also know that rp = a(1 − e) = rp, crit.
Finally, if we assume that at the tidal radius the eccentricity is eT ≪ 1, so that aT ≈ rT,
we get

aTe−12/19
T ≈ 1.8rp, crit

eT ≈ 0.4
(

rp, crit

rT

)−19/12

. (79)

For our three slopes the eccentricity at the tidal radius is thus

eT ≈ 0.01 M−551/360
7 m19/36

0 (a/1000 AU)19/20, α = 3/2

eT ≈ 0.03 M−209/144
7 m19/36

0 (a/1000 AU)19/24, α = 7/4

eT ≈ 0.07 M−247/180
7 m19/36

0 (a/1000 AU)19/30, α = 2 (80)

We now explore the consequences of the star sinking inside the tidal radius with this
eccentricity, and argue that tidal disruption is the most likely outcome if the SMBH
has sufficiently low mass. We then demonstrate that tidal disruption with a small
eccentricity leads to a different light curve than the more commonly considered tidal
disruption of a star on a parabolic orbit.
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8.4 hydrodynamics near and inside the tidal radius

Suppose that the star sinks gradually under the influence of gravitational radiation
towards the tidal radius. The tidal stresses increase as ∼ (R⋆/r)6, where R⋆ is the
stellar radius and r is the distance from the SMBH. Therefore the star will be flexed
and distorted, and internal modes will be excited as it sinks (for a recent discussion
and simple model of this complicated process, see Ogilvie 2009). If the energy from
these modes could be dissipated then the orbit would undergo tidal circularisation
and might end up in a stable mass transfer state. However, the energy that must be
dissipated is significantly larger than the binding energy of the star. To see this, note
that at the tidal radius rT, we have rT = (3M/m)1/3R⋆. The binding energy of the star
is E⋆ ≈ Gm2/R⋆. The binding energy of the orbit is Eorb ≈ GMm/rT. Circularisation
of an orbit with eccentricity e at constant angular momentum releases an energy e2Eorb,
so the ratio of released energy to stellar binding energy is

e2 Eorb

E⋆
≈ e2

(
M
m

)(
R⋆

rT

)
≈ 3−1/3e2

(
M
m

)2/3

. (81)

If M ∼ 107m the ratio is therefore ∼ 3 × 104e2. From the previous section we found
e ∼ 0.01 − 0.07 for M = 107 M⊙, so the energy required to circularise the orbit would
be ∼ 3 − 150 times the binding energy of the star. If this energy could be released
slowly this would cause no problems (note for comparison that in its lifetime the Sun
will radiate a few hundred times its binding energy). However, the thermal (Kelvin-
Helmholtz) time for solar-type stars is a few tens of millions of years, much longer than
the inspiral time in our case and thus the tidal stresses will build up more rapidly than
their mode energy can be radiated.

The competition is therefore between the time needed for gravitational radiation
to move the star into the tidal radius (where mass transfer will ensue) and the time
needed for circularisation due to tidal dissipation to deposit a stellar binding energy
into the star and thus, presumably, to tidally disrupt the star. Note that Alexander &
Morris (2003) discussed how tidal energy could produce “squeezars" with a different
appearance from normal stars, without destroying the stars if the pericentre distance
is sufficiently large. Here we are interested in the conditions for tidal destruction.

To evaluate this we adapt the expressions from Leconte et al. (2010) for the energy
deposition rate of tidal dissipation in a planet due to its eccentric orbit around a star.
They find

Ėtides = 2Kp

∣∣∣∣Na(e)−
N2(e)
Ω(e)

∣∣∣∣ (82)

where

N(e) =
1 + 15

2 e2 + 45
8 e4 + 5

16 e6

(1 − e2)6 , (83)

Na(e) =
1 + 31

2 e2 + 255
8 e4 + 185

16 e6 + 25
64 e8

(1 − e2)15/2 , (84)
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Ω(e) =
1 + 3

2 e2 + 1
8 e4

(1 − e2)5 , (85)

and

Kp ≈ 9
4

Q−1
(

Gm2

R∗

)(
M
m

)2 (R∗
a

)6 (GM
a3

)1/2

(86)

In the last equation Q is the quality factor of the star, a standard parameterisation
of the rate of tidal effects on to the star. The magnitude of Q is notoriously uncertain;
values of Q = 105−6 are commonly used (see, e.g., Miller et al. 2009 for a recent
example). If we use the expression aT = (3M/m)1/3R∗ for the tidal radius, this last
expression reduces to

Kp ≈ 1
4

Q−1
(

Gm2

R∗

)(
a

aT

)−6 (GM
a3

)1/2

. (87)

In the limit e ≪ 1 we find Na(e) ≈ 1 + 23e2, N2(e) ≈ 1 + 27e2, and Ω(e) ≈ 1 + 15
2 e2.

Thus

Ėtides ≈
7
4

Q−1e2
(

Gm2

R∗

)(
a

aT

)−6 (GM
a3

)1/2

. (88)

Thus the time needed to circularise the available energy ∼ e2(M/3m)2/3(Gm2/R∗) at
a = aT is

Tcirc,tide ≈ e2(M/3m)1/3(Gm2/R∗)
×[(7/4)Q−1e2(Gm2/R∗)(GM/a3)1/2]−1

= 3 × 107 s QM2/3
7 m−1/6

0

(89)

where in the second line we have substituted R∗ = 0.85R⊙m2/3
0 and aT = (3M/m)R∗.

The circularisation time from gravitational radiation alone, at e ≪ 1, is

Tcirc,GW ≈ (15/304)c5a4/(G3µM2)

≈ 6 × 1011 s M−2/3
7 m1/3

0
(90)

(Peters 1964), where in the last line we again substituted in a = aT. Thus Tcirc,GW/Tcirc,tide ≈
2 × 104Q−1M−4/3

7 m1/2
0 , which for Q ∼ 105−6 is typically less than unity, hence only a

fraction Tcirc,GW/Tcirc,tide of the circularisation energy will go into tidal heating. Note,
however, that for lower masses the eccentricity at the tidal radius is larger (scaling
roughly as M−3/2 for our three power laws) and that the ratio of circularisation energy
to the internal binding energy scales as e2, meaning that the total energy dissipated
tidally scales as ∼ M−4, approximately. Thus even for Q = 106, several times the
stellar binding energy will be dissipated for M < 3 × 106 M⊙.

If instead the SMBH mass is large, so that gravitational wave circularisation dom-
inates over tidal circularisation, we expect that the star will settle into a period of
steady mass transfer. The rate would be such that it balances the inward movement
due to gravitational radiation, i.e., the characteristic time would be of order the grav-
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8.4 hydrodynamics near and inside the tidal radius

itational radiation time. For our typical values, this is roughly 105 years, implying a
rate of ∼ 10−5 M⊙ per year. Even if the luminosity is produced with an efficiency of
10%, this would produce a luminosity of only ∼ 1041 erg s−1, weak enough and steady
enough that it would not be distinguishable from a standard low-luminosity AGN. We
therefore focus on the possibility that the star is tidally disrupted and that its debris is
subsequently accreted by the SMBH.

If a star is disrupted from a low-eccentricity orbit the evolution of its tidal debris
proceeds differently than if it is disrupted from a parabolic orbit. To see this, note
that in the original argument of Rees (1988) it was demonstrated that the spread in
the binding energy of the debris is comparable to the range in orbital binding energy
from one side of the star to the other. If m/M ∼ 10−7, therefore, the fractional spread
is ∼ (m/M)1/3 ∼ 10−2. As a result, if an orbit with a pericentre r ∼ rT has an
eccentricity e ≳ 0.99, the debris semi-uniformly samples binding energies from zero
to the binding energy of the original stellar center of mass. The assumption of exactly
uniform sampling (equal mass for equal range in binding energy) leads to a mass
accretion rate that scales with time t as t−5/3; this law is more generally obtained
at late times even for more realistic assumptions about stellar structure (e.g. Lodato
et al. 2009). In contrast, if the spread in debris energies is much less than the average
binding energy (corresponding to e ≪ 0.99 in our example), then to lowest order the
debris moves in a thin stream that intersects itself and settles within a few orbits into
a remnant disc.

Such discs were studied by Cannizzo et al. (1990), who found that for plausible
opacities the accretion rate would decay more gradually, e.g., Ṁ ∝ t−1.2 for Thomson
scattering. Moreover, because the debris would all be bound to the SMBH (unlike
for the parabolic case, where roughly half the stellar mass escapes to infinity), the
accretion rate could be quite substantial for comparatively low-mass SMBHs. For
Thomson scattering, the expressions from Cannizzo et al. (1990) lead to

Ṁ = 2 × 1023 g s−1
( α

0.1

)4/3
ρ̄7/9M−10/9

7

(
∆M
M⊙

)5/3

. (91)

Here ρ̄ is the average density of the star in units of g cm−3, ∆M is the mass of
the remnant disc (which will initially be the mass of the star) and α is the Shakura
& Sunyaev (1973) viscosity parameter. For M7 ≲ 1 this therefore has the possibility
of shining at luminosities that are a significant fraction of the Eddington luminosity
LE = 1.3 × 1045M7 erg s−1 assuming an efficiency L/Ṁc2 = 0.1.

As pointed out to us by E. S. Phinney (2010, personal communication), depending
on the very uncertain details of how tidal energy is deposited, is it possible that there
will be a gravitational wave signature that attends the electromagnetic signature of dis-
ruption. In particular, it is not well established whether the tidal energy is deposited
uniformly in the volume of the star or primarily where most of the matter is (both of
which would lead to full disruption) or primarily in the envelope. If the last occurs,
then the envelope would be stripped and lead to significant accretion with the char-
acteristic decay discussed above, but the dense core would survive and could spiral
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in further. This would lead to a coincident gravitational wave signal that could be
detected with the proposed LISA if the source is close enough (Freitag 2003).

8.5 conclusions

In his work, Hopman (2009) estimates that for a galactic nucleus such as ours, the
tidal separation rate of binaries which start far away from the MBH is ΓGC

tid sep ∼ 7 ×
10−7( fb|GC/0.05) yr−1, where “GC” stands for Galactic Center and fb is the fraction of
stars in binaries. Fig.(6) of Hopman (2009) shows that the rate increases when we go to
higher energies, because the loss-cone is depleted, allowing more binaries to “survive”
in their way to the GC. Yu & Tremaine (2003) estimate that the number is enhanced by
an order of magnitude by binaries not bound to the MBH. More remarkably, the event
rates can be at least temporarily enhanced by many orders of magnitude if one considers
the role of massive perturbers, such as giant molecular clouds or intermediate-mass
black holes, which can accelerate relaxation by orders of magnitude as compared to
two-body stellar relaxation (Perets et al. 2007). Another important potential boosting
effect is the possibility that the potential is triaxial and not spherically symmetric
(Merritt & Poon 2004; Poon & Merritt 2002, 2004). Taking these effects into account,
we assume ΓGC

tid sep ∼ 10−5( fb|GC/0.05) yr−1. The fraction of main sequence stars that
will eventually spiral into the SMBH after tidal separation is at least a few percent, so a
plausible estimate of the total event rate for tidal disruptions of a single star originated
by a separated binary in a Hubble time is ΓGC ∼ 10−7( fb|GC/0.05) yr−1, and it could
be higher. This rate is probably a subset of the rate at which single stars are likely to
encounter SMBHs on parabolic orbits (see Amaro-Seoane et al. 2007,for a discussion of
such extreme mass ratio inspirals). It is therefore possible that events with the L ∝ t−1.2

decay characteristic of low-eccentricity disruption may have rates smaller or similar to
events with the L ∝ t−5/3 decay that is expected to be signatures of disruption of single
stars in galactic nuclei and that is consistent with the initial decay of the recent Swift
event Sw 1644+57 (Bloom et al. 2011).
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T H E I M PA C T O F R E A L I S T I C M O D E L S O F M A S S S E G R E G AT I O N
O N T H E E V E N T R AT E O F E X T R E M E - M A S S R AT I O I N S P I R A L S
A N D C U S P R E - G R O W T H

Pau Amaro-Seoane1 & Miguel Preto2

published in Classical and Quantum Gravity, Volume 28, Issue 9, id. 094017 (2011)

Abstract: One of the most interesting sources of gravitational waves (GWs) for LISA is the inspiral
of compact objects on to a massive black hole (MBH), commonly referred to as an “extreme-mass ratio
inspiral” (EMRI). The small object, typically a stellar black hole (bh), emits significant amounts of GW
along each orbit in the detector bandwidth. The slowly, adiabatic inspiral of these sources will allow us
to map space-time around MBHs in detail, as well as to test our current conception of gravitation in the
strong regime. The event rate of this kind of source has been addressed many times in the literature and
the numbers reported fluctuate by orders of magnitude. On the other hand, recent observations of the
Galactic center revealed a dearth of giant stars inside the inner parsec relative to the numbers theoretically
expected for a fully relaxed stellar cusp. The possibility of unrelaxed nuclei (or, equivalently, with no
or only a very shallow cusp, or core) adds substantial uncertainty to the estimates. Having this timely
question in mind, we run a significant number of direct-summation N−body simulations with up to half
a million particles to calibrate a much faster orbit-averaged Fokker-Planck code. We show that, under
quite generic initial conditions, the time required for the growth of a relaxed, mass segregated stellar
cusp is shorter than a Hubble time for MBHs with M• ≲ 5× 106 M⊙ (i.e. nuclei in the range of LISA). We
then investigate the regime of strong mass segregation (SMS) for models with two different stellar mass
components. Given the most recent stellar mass normalization for the inner parsec of the Galactic center,
SMS has the significant impact of boosting the EMRI rates by a factor of ∼ 10 in comparison to what
would result from a 7/4−Bahcall & Wolf cusp resulting in ∼ 250 events per Gyr per Milky Way type
galaxy. Such intrinsic rate should translate roughly into ∼ 102 − 7 × 102 sbh’s EMRIs detected by LISA
over a mission lifetime of 2 or 5 years, respectively), depending on the detailed assumptions regarding
LISA detection capabilities.

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
2 Astronomisches Rechen-Institut, Mönchhofstr. 12-14, D-69120 Heidelberg, Germany
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9.1 introduction

Nowadays it is well-established that a massive dark object, very possibly a massive
black hole (MBH) with a mass of about 4× 106M⊙, is lurking in the centre of the Milky
Way (Ghez et al. 2008; Eisenhauer et al. 2005; Ghez et al. 2005; Gillessen et al. 2009).
While there is an emerging consensus about the origin and growth of supermassive
black holes (SMBH, with masses about or larger than 108M⊙) (DiMatteo et al. 2008;
Ferrarese & Ford 2005; Volonteri 2010), MBHs with smaller masses such as the one
in the Galactic centre remain a (relatively) understudied enigma. One of the keys to
understanding the growth and evolution of MBHs in this lower mass range resides in
the dynamics of stars in their vicinity. This is the case mainly because relaxation times
there are low enough that the surrounding stellar systems should have had enough
time—through two-body relaxation alone—to evolve towards a steady-state which is
independent of the particular initial conditions at the time of formation. The Galactic
center is thought to fulfill such condition. It is the universality of such relaxed stellar
nuclei that gives us a crucial predictive power on the expected properties of the MBH
environment, on the stellar candidates for close interaction with the central MBH and
on the resulting gravitational wave (GW) signatures. If, on the contrary, non-relaxed
systems were generic, then one would need to resort to case-by-case modelling of each
galactic nucleus.

The ideal probe for these innermost regions of galaxies is the GW radiation that is
emitted by stellar bhs and other compact objects that come very close to the MBH. One
of the main channels for interaction between stars and a central MBH is the adiabatic,
slow inspiral of compact remnants (CR) into the MBH due to the emission of GWs—an
EMRI. During such an event, the small body effectively acts as a probe of spacetime
close to the MBH as its orbit slowly shrinks due to the energy and angular momentum
lost in the form of GW radiation. In case of 105 − 106M⊙ MBHs, after some ∼ 104 − 105

orbits in the LISA band ( forb ≳ 10−4 Hz and a periapsis a ≲ few × RSchw, since we
only consider sources which are completely embedded in the band, and not bursting
sources), the small body eventually merges with the MBH. The information contained
in the waves will allow us to determine the parameters of these binary system with an
unprecedented accuracy (see for instance Babak et al. 2010; Barack and Cutler 2004),
corroborate the existence of MBHs and maybe even provide the first direct detection
of an intermediate MBH (in case the primary is ∼ 103−4M⊙).

LISA will thus scrutinize exactly the mass range about which electromagnetic ob-
servational information is currently lacking. In its most general form, the EMRI
problem—the astrophysical modelling of event rates and parameters for EMRIs—
spans many orders of magnitude. From the bulge regions at few×10 pc, where the dy-
namics is essentially collisionless –but from where single stellar bhs and binaries with
CRs originate; down to the parsec scale of the nucleus itself which evolves secularly
over (local) relaxation timescales; and then further down to milliparsec scales where
relativistic effects start to dominate the evolution. But, however, once a steady state
configuration establishes itself in the central parsec region, the EMRI rates are rather

110



9.2 mass segregation

expected to depend strongly on the (universal) density distribution of CRs within (in
order of magnitude) O(0.01pc) from the hole. This is indeed the region from which
these inspiralling sources are expected to originate (Hopman & Alexander 2005). The
dynamics in this tiny volume has been rather unexplored until the relevance of EMRIs
and sub-parsec observations of the Galactic center have raised its interest. Since then,
many authors have devoted a number of works to the analysis of this peculiar regime
(Alexander & Hopman 2003; Freitag 2003; Hopman & Alexander 2006; Sigurdsson and
Rees 1997).

We discuss in this work the stellar distribution of dense stellar systems around
MBHs in the LISA mass range. Realistic modeling of mass segregation—which is the
natural outcome for any realistic stellar population—will strongly impact the expected
EMRI rates, since it favors the accumulation of heavier objects towards the center
(Alexander and Hopman 2009; Preto and Amaro-Seoane 2010a; Hopman & Alexan-
der 2006). In Section 2, we begin by summarizing the results obtained by Preto and
Amaro-Seoane (2010a) that show how to calibrate the FP calculations with direct N-
body simulations1; then, still in the same section, we present new results concerning
the robustness of N-body realisations of stellar cusp growth with respect to the total
particle number N. In section 3, we present new results on the growth of stellar cusps
from a variety of initial conditions resulting from carving a cavity in the star’s phase
space distribution function. This is motivated from a variety of astrophysical mecha-
nisms that may lead to cusp destruction; and these mechanisms are critically assessed
in the end of the section. We show that, under very generic circumstances, the time re-
quired for the growth of a cusp is shorter than a Hubble time. Therefore, quasi-steady,
mass segregated, stellar cusps are expected to be common around MBHs in the LISA
mass range. But see Merritt (2010) and Madigan et al. (2010) for different perspectives.
EMRI detection rates for LISA are expected to peak for M• ∼ 105 − 106M⊙ (Gair 2009)
leading us to conclude that at least a sizeable fraction of these events should origi-
nate from strongly segregated cusps. Finally, in Section 4 we present new estimates
on the expected EMRI rates in mass segregated nuclei and conclude that our realistic
modeling of mass segregation has a significant impact on these rates.

9.2 mass segregation

The distribution of stars around a massive black hole is a classical problem in stel-
lar dynamics (Bahcall and Wolf 1976; Lightman and Shapiro 1977). Bahcall and Wolf
(1976) have shown, through a kinetic treatment that, within the radius of gravitational
influence of the hole rh, in case all stars are of the same mass, this quasi-steady distri-
bution takes the form of power laws, ρ(r) ∼ r−γ, in physical space with ρ(r) the stellar
density at a radius r and f (E) ∼ Ep in energy space (with E the energy and γ = 7/4

1 Direct N-body simulations compute the gravitational accelerations between particles using the exact
Newton’s law, without introducing any approximations to compute the gravitational potential (Binney
and Tremaine 2008).
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and p = γ − 3/2 = 1/4)2. This is the so-called zero-flow solution for which the net flux
of stars in energy space is precisely zero. Preto et al. (2004) and Baumgardt et al. (2004)
were the first to demonstrate the robustness of the corresponding direct-summation
N-body realizations, and have therefore validated the assumptions inherent to the
Fokker-Planck (FP) approximation—namely, that scattering is dominated by uncorre-
lated, 2-body encounters and, in particular, dense stellar cusps3 populated with stars
of the same mass are robust against ejection of stars from the cusp. The latter result is
not trivial as for a BW γ = 7/4 cusp stellar densities are extremely high at the center
and the fraction of stars with speeds close to the escape velocity from the cusp is quite
high at all radii r ≲ rh, with rh the influence radius of the MBH (Preto 2010).

Single mass models are very poor approximations of real stellar populations. To first
order of approximation, an evolved stellar population can be represented by two (well-
separated) mass scales: one in the range O(1M⊙) corresponding to low mass main-
sequence stars, white dwarfs (WDs) and neutron stars (NSs); another with O(10M⊙)
representing stellar bhs. Therefore, for simplicity, here we restrict our discussion to
models with two mass components and leave the more general case to another work
in preparation (Preto and Amaro-Seoane 2010b).

When stars of two different masses are present, there is mass segregation which is
a process by which the heavy stars accumulate near the center while the lighter ones
float outward (Khalisi et al. 2007; Spitzer 1987). Accordingly, stars with different mass
get distributed with different density profiles. Bahcall and Wolf (1977), henceforth
BW77, have argued heuristically that a scaling relation pi = mi/mj × pj (where the
subindices i, j refer to the light or heavy components) establishes itself and depends
only on the mass ratio. Here, as in the single-mass case, the crucial assumption is
that all components are abundant enough that they undergo enough scattering among
themselves and with the other components as to stabilize into an approximate zero-
flow solution. Obviously, this cannot happen independently of the number fraction of
the different stellar masses (Alexander and Hopman 2009; Preto and Amaro-Seoane
2010a). In the realistic situation where the number fraction of heavy objects (in our
case, stellar bhs) is small, a new solution coined by Alexander and Hopman (2009) as
strong mass segregation (SMS) obtains with density of heavy objects scaling as ρH(r) ∼
r−α, where α ≳ 2. The solution has two branches and can be parametrized by the
parameter

∆ =
D(1)

HH + D(2)
HH

D(1)
LH + D(2)

LH

≈ NHm2
H

NLm2
L

4
3 + mH/mL

, (92)

where NL and NH are the total number of light and heavy stars, mL and mH are the
corresponding individual masses. ∆ provides a measure of the importance of the
heavy star’s self-coupling relative to the light-heavy coupling (in terms of the 1st and

2 We note that 12 years before the work of BW, Gurevich (1964) derived a similar solution for how electrons
distribute around a positively charged Coulomb center, which is the equivalent of the MBH in our case.

3 In this work, a nucleus is said to be a core if γ < 1; it is said to be a cusp if γ > 1.
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2nd order diffusion coefficients); and it depends essentially on the mass and number
ratios, which is one parameter more than proposed by BW77. The weak branch, for ∆ >
1 corresponds to the scaling relations found by BW77; while the strong branch, for ∆ <
1, generalizes the BW77 solution4. Stellar populations with continuous star formation
and an initial mass function (IMF) given by dN/dM ∝ M−α will be characterized by
∆ < 1 if α ≳ 1.8 and ∆ < 1 otherwise; and, in particular, Salpeter and Kroupa’s IMF
generate evolved stellar populations with ∆ < 1 (Alexander and Hopman 2009).

There is a straightforward physical interpretation for the strong branch of mass
segregation. In the limit where heavy stars are very scarce, they barely interact with
each other and instead sink to the center due to dynamical friction against the sea of
light stars. Therefore, a quasi-steady state develops in which the heavy star’s current
is not nearly zero and thus the BW77 solution does not hold exactly anymore. Indeed,
in the limit where the number fraction fH of heavy stars is vanishingly small, as is
the case of nuclei with realistic IMFs, the stellar potential is dominated by the light
component. In this case, the light stars should evolve as if in isolation and develop a
γL ∼ 7/4 density cusp. The scarce heavy stars sink to the center due to dynamical
friction against the background of light stars, and will not exert any significant back-
reaction on them (Preto 2010).

Figure 1 displays the FP and NB evolutions of the spatial density ρL(r) and ρH(r)
for models with two mass components corresponding to different initial profiles, MBH
masses and total particle number N. The starting models are either γ = 1 or γ = 1/2
Dehnen profiles for both components with a MBH of 1% or 5% of the total mass of
the cluster. Dehnen density profiles are defined by ρ(r) = (3 − γ)MTOT/4πrγ(rb +
r)4−γ, have total stellar mass MTOT, an inner (outer) logarithmic slope γ (4 − γ) and
a break radius rb = 1 (which is larger than rh in all cases). We adopt units where
G = MTOT = 1. The density of both components reaches a quasi-steady state within ∼
0.2Trlx(rh), where Trlx(rh) relaxation time measured at the influence radius (Preto and
Amaro-Seoane 2010a). The top and middle panels display the strong mass segregation
solution with γH ∼ 2.1 as expected for ∆ = 0.08 ( fH = 2.5 × 10−3); while, in the
bottom panel, ∆ = 13.2 ( fH = 0.429) displays the weak solution for which γH ∼ 7/4.
The former value was chosen to be close to the number fraction of stellar bhs to be
expected from a standard Salpeter or Kroupa’s IMF; the latter value is chosen to be
representative of the regime of weak segregation studied by BW77. One can see from
Figure 1 that in the case of weak segregation ρH > ρL everywhere due to the extremely
high number of heavy objects; in contrast, in the SMS regime ρH > ρL only for r ≲
0.01rh (and the light objects dominate in number almost everywhere). In all cases the
asymptotic slopes are valid within ∼ 0.1rh and are totally predictable once ∆ is known.
These results agree pretty well with the predictions for the SMS regime (Alexander
and Hopman 2009).

The particle number in our direct-summation N−body simulations sample ranges
from N = 124, 000 to N = 512, 000; our results do not show evidence of any depen-

4 The choice of the names is based upon the resulting slopes in the density profiles, which are steeper
(stronger) or shallower (weaker)

113



strong mass segregation: event rate of emris and cusp re-growthClass. Quantum Grav. 28 (2011) 094017 P Amaro-Seoane and M Preto

-4

-2

0

2

4

6

-1.5 N=124K

MBH=0.05

FP
NB

-2.1

Δ = 0.08

-4

-2

0

2

4

lo
g 1

0ρ
(r

)

-1.5

N=512K

MBH=0.01

-2.1

Δ = 0.08

-4

-2

0

2

4

-4 -3 -2 -1 0 1

r

-1.5

N=124K

MBH=0.05

-3 -2 -1 0 1

r

-1.8

Δ = 13.2

Figure 1. Evolution of density profiles. Mass density profiles, ρL(r) (left panels) and ρH (r) (right
panels) at the end of the integrations, after ≈ 0.2Trlx(rh). Red curves are from FP calculations and
green curves are from NB simulations. The agreement between both methods is quite good. The
mass ratio between heavy and light stars is R = 10, representing the expected typical mass ratio
between light stars (MS stars, WDs and NSs) and stellar bhs, as explained in the text; the number
fraction of heavy stars fH = 2.5 × 10−3 (top and middle panels) and fH = 0.429 (lower panels),
corresponding to the strong and weak segregation regimes, respectively. The initial condition is a
Dehnen profile with central slope γ = 1 for the top and bottom panels (Preto and Amaro-Seoane
2010), γ = 1/2 in the middle panel; a central MBH with 5% of the total mass of the cluster and
1% likewise. The particle number is N = 124 000 (top and bottom) and N = 512 000 (middle).
The asymptotic slope γH decreases from � 2 to ≈ 7/4 when moving from the strong to the weak
branch of the solution. The asymptotic slope γH ≈ 3/2 throughout, or just slightly below this
value. The arrows point to radii rh and 0.1rh.

Figure 1 displays the FP and NB evolutions of the spatial density ρL(r) and ρH (r) for
models with two mass components corresponding to different initial profiles, MBH masses
and total particle number N. The starting models are either γ = 1 or γ = 1/2 Dehnen profiles
for both components with a MBH of 1% or 5% of the total mass of the cluster. Dehnen density
profiles are defined by ρ(r) = (3 − γ )MTOT/4πrγ (rb + r)4−γ , have total stellar mass MTOT,
an inner (outer) logarithmic slope γ (4 − γ ) and a break radius rb = 1 (which is larger than
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Figure 25: Evolution of density profiles. Mass density profiles, ρL(r) (left panels) and
ρH(r) (right panels) at the end of the integrations, after ≈ 0.2Trlx(rh). Red
curves are from FP calculations, green curves are from NB simulations. The
agreement between both methods is quite good. The mass ratio between
heavy and light stars is R = 10, representing the expected typical mass ratio
between light stars (MS stars, WDs and NSs) and stellar bhs, as explained in
the text; the number fraction of heavy stars fH = 2.5× 10−3 (top and middle
panels) and fH = 0.429 (lower panels), corresponding to the strong and
weak segregation regimes respectively. The initial condition is a Dehnen
profile with central slope γ = 1 for the top and bottom panels (Preto and
Amaro-Seoane 2010a), γ = 1/2 in the middle panel; a central MBH with
5% of the total mass of the cluster and 1% likewise. The particle number is
N = 124, 000 (top and bottom) and N = 512, 000 (middle). The asymptotic
slope γH decreases from ≳ 2 to ≈ 7/4 when moving from the strong to the
weak branch of the solution. The asymptotic slope γH ≈ 3/2 throughout,
or just slightly below this value. The arrows point to radii rh and 0.1rh.
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9.3 cusp re-growth

dence on total N, nor on the initial value of γ, once the results are re-scaled appropri-
ately (i.e. measured in terms of the relaxation time). The agreement between NB and
FP methods is quite good in all cases.

9.3 cusp re-growth

9.3.1 Current observations: A missing cusp

We have seen that theory predicts a steady state cusp that reaches extremely high
densities in the center near the MBH. Furthermore, given a normalization at, say, rh
and a knowledge of the stellar mass function (and thus of ∆), the density profile inside
rh becomes completely determined. But observations are much more complicated
to interpret. First, one must realize that there are very few galaxies for which the
influence radius rh can be resolved. In fact, except for the nearest galaxies, rh covers an
angular region in the sky which is too small to be resolved even with the HST. The HST
has an angular resolution of ∼ 0.1′′. In the case of galaxies in the Virgo cluster, at ∼ 17
Mpc of distance, it can only resolve regions with linear sizes ≳ 8.25 pc. Therefore, HST
would not be able to resolve SgrA*’s radius of influence if it were at the distance of
Virgo. Since rh ∝ M1/2

• , it can only start to resolve the influence radius of Virgo’s MBHs
that have masses M• ≳ 4 × 107M⊙. Second, even in the few cases for which rh can be
resolved to some extent, it still is necessary to assess whether the observed stars (only
those that are bright enough to be detected) really trace the underlying (dynamically
dominant) invisible population. Third, given the fact that, as we have seen, stars tend
to segregate by mass, there is an extra uncertainty related to the unknown stellar mass
function. Moreover, there are indications that star formation events are common in
galactic nuclei and furthermore that the resulting IMF in these sub-parsec regions may
be substantially different from that of the field stars and biased towards heavy masses
(Bartko et al. 2010). Finally, it is necessary to deproject the observations and, in the
(inevitable) absence of complete knowledge of phase space coordinates, one must rely
on kinematic assumptions regarding the (an-)isotropy of stellar velocities and on the
three dimensional shape of the stellar system.

Nevertheless, it has come as a surprise that very recent spectroscopic observations
of the Galactic center revealed a core (or even a dip) in the surface distribution of
the old stellar population (essentially red giants) which should have had time to relax
into a cuspy density profile (Buchholz et al. 2009; Do et al. 2009). The caveat is that the
detected stars are still a small fraction, of about 5%, of the stellar population as a whole
and therefore do not exclude the presence of an extended dark cluster (presumably
made of stellar bhs and other CRs)—which would indeed agree with our theoretical
expectations.
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Figure 2. Time for cusp re-growth. Single-mass relaxation time at rh for single-mass cored models
as a function of MBH mass. The shaded area covers [0.1Trlx, 0.2Trlx]—the time for cusp re-growth
if there is no hole in the initial DF. The three dashed lines above the shaded region represent
the average time needed for the cusp re-growth in case one imposes an initial cavity with size
Rcav = 0.5, 1 or 2 pc. The horizontal dashed curve represents 13 Gyr. It can be seen that the time
needed to re-grow a cusp around MBH with masses M• � 5 × 106 M� is below a Hubble time so
long as the initial cavity is smaller than � 2 pc.

dashed curves represent the actual times for cusp re-growth as measured from FP calculations
(Preto and Amaro-Seoane 2010).

It is difficult to devise plausible mechanisms for the formation of such large cores in the
stellar distribution. For instance, the inspiral of an IMBH of mass M• ∼ 103–4 M� that forms
an unequal-mass binary with the MBH and ejects stars through three body encounters would
tend to progressively wipe out the stellar cusp. However, the core radius carved by such an
event is rc ∼ 0.02–0.04 pc (Baumgardt et al 2006) and thus a steady inflow of such IMBHs
(one every 107 years for a Hubble time) would be required in order to carve a large core 50 or
100 larger. Such large inflow of IMBHs have been proposed by Portegies Zwart et al (2006).
This does not seem very likely anymore in light of the fact that such IMBHs were hypothesized
to be formed by runaway mergers of stars in the centre of globular clusters. However, at solar
metallicities, such a mechanism seems very inefficient. Mass loss due to very strong winds
severely limits the growth of the stellar object being formed and the likely end result of a
runaway merger is a ∼100 M� Wolf–Rayet star. At lower metallicities, mass loss is lower
and the remnant can be more massive ∼260 M�, but in any case it will not form an IMBH
(Glebbek et al 2009). In sum, it looks very unlikely that sufficient IMBHs can be formed in
order to generate such steady inflow to the Galactic centre. Another possibility would be that
SgrA* is a binary MBH, but this would most likely imply that there has been a, more or less
recent, major merger involving the Milky Way. This would contradict the apparent pure-disk
nature of the Galaxy, as theoretical interpretations of stellar kinematic data of the Galactic
Bulge seem to favour that the Bulge is part of the disk and not a separate component resulting
from a merger Shen et al (2010)y—aside from the fact that there are strong constraints from
the SgrA* proper motion (Reid and Brunthaler 2004).

Stars in a Keplerian potential, GM•/r , do not precess because of the 1 : 1 resonance
between their radial and azimuthal frequencies. Resonant relaxation (RR) results from the
coherent torques that such stars exert on each other leading to a fast evolution of their orbital

8

Figure 26: Time for cusp re-growth. Single-mass relaxation time at rh for single-
mass cored models as a function of MBH mass. The shaded area covers
[0.1Trlx, 0.2Trlx]—the time for cusp re-growth if there is no hole in the initial
DF. The three dashed lines above the shaded region represent the average
time needed for the cusp re-growth in case one imposes an initial cavity
with size Rcav = 0.5, 1 or 2 pc. The horizontal dashed curve represents 13

Gyr. It can be seen that the time needed to re-grow a cusp around MBH
with masses M• ≲ 5 × 106M⊙ is below a Hubble time so long as the initial
cavity is smaller than ≲ 2 pc.
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9.3 cusp re-growth

9.3.2 Carving a hole in the stellar distribution

To assess the likelihood that the Galactic center is indeed unrelaxed, it is natural to ask:
how long does it take to re-grow a cusp if, at some point, it has been destroyed? A
complete answer will, of course, depend on the extent to which the cusp was destroyed,
i.e. how much mass was expelled from the original cusp and over which radial range.
At this level, it does not matter very much which mechanism led to the destruction of
the cusp. We discuss briefly possible scenarios for cusp destruction at the end of the
section.

In order to investigate this question, we have concocted a set of initial conditions
purported to mimic the outcome of a destroying cusp event—such as the carving of a
cavity in phase space through the ejection of stars by, say, an infalling IMBH or, follow-
ing a major merger, by a MBH. We model the outcome of such an event by imposing
that all stars with binding energies larger than some E0 or almost equivalently, with
semimajor axis smaller than GM•/2E0, are not present in the initial DF. In fact, inside
rh the MBH dominates the gravitational potential and E ∼ GM•/2a. We thus set up
an initial Dehnen model with f (E) = 0 for E > E0—in other words, there is an initial
cavity in the phase space DF, but not in physical space as the stars with lower energy
still entail ρ(r) ∼ r−1/2 at the center, although with a smaller amplitude than the orig-
inal model. The values of E0 were chosen to represent cavities of size Rc = 0.5, 1, 2
pc resulting from the inspiral of an IMBH/MBH. Note that these models are, by con-
struction, isotropic in the velocity distribution. 5 Our fiducial model is a Milky Way
type nucleus with M• = 4 × 106M⊙, some 106M⊙ in total stellar mass inside 1 pc dis-
tributed according to an initial central density slope γ = 1/2, two components with
masses mL = 1M⊙ and mH = 10M⊙, and 0.1% of stellar bhs by number. When the
stellar distribution has no phase space cavity, this translates into having stars down to
roughly 10−5 pc. Having validated the FP models with detailed N-body simulations,
we now proceed in the rest of the paper to describe results obtained with the (much
faster) FP approach.

Figure 2 shows the times for cusp re-growth computed with FP for different galactic
nuclei models. The time for cusp re-growth is defined as the time it takes for a given
initial density profile (ρ(r) in space or f (E) in phase space, with or without an initial
cavity) to reach its asymptotic slope, which depends on ∆, down to r ∼ 0.01rh. This
is indeed the scale which is resolved by recent observations of the Galactic center
(Schödel et al. 2009). The shaded region represents the time of cusp re-growth for a
range of R and fH (all in the SMS regime, ∆ < 1) for the case where f (E) extends to
high E without any cut. It can be seen that, for M• ≲ 107M⊙, cusps grow in less than
a Hubble time; in the particular case of the Milky Way nucleus with M• ∼ 4 × 106M⊙,
it takes no longer than ∼ 4.8 Gyr to fully re-grow a steady-state, mass segregated,
stellar cusp and only ∼ 2.4 Gyr to have it grown down to 0.01rh. If, instead, an initial
cavity is imposed at the center with size Rcav = 0.5, 1 or 2 pc in case of the Milky Way

5 We assume that the timescale for isotropization of velocities is much shorter than that associated with the
cusp re-growth; in any event this should not affect our estimates by more than 10% or 20% maximum.
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(or Rcav = 0.2rh, 0.4rh or 0.8rh in case of a generic nucleus), times for re-growth are
represented by the dashed curves above the shaded region. In this case, times for cusp
re-growth increase; in the Milky Way case, it becomes ∼ 4.8, 7.2 or 12 Gyr, respectively.
Note that, in the mass range 105 − 106M⊙, the times for cusp re-growth are definitely
much shorter than a Hubble time—even if a fairly large cavity of size comparablee to rh
is hypothesized. The full curve represents the relaxation times computed at the radius
of influence rh, while the dashed curves represent the actual times for cusp re-growth
as measured from FP calculations (Preto and Amaro-Seoane 2010a).

It is difficult to devise plausible mechanisms for the formation of such large cores in
the stellar distribution. For instance, the inspiral of an IMBH of mass M• ∼ 103−4M⊙
that forms an unequal-mass binary with the MBH and ejects stars through three body
encounters would tend to progressively wipe out the stellar cusp. However, the core
radius carved by such an event is rc ∼ 0.02 − 0.04 pc (Baumgardt et al. 2006) and
thus a steady inflow of such IMBHs (one every 107 years for a Hubble time) would be
required in order to carve a large core 50 or 100 larger. Such large inflow of IMBHs
have been proposed by Portegies Zwart et al. (2006). This does not seem very likely
anymore in light of the fact that such IMBHs were hypothesized to be formed by run-
away mergers of stars in the center of globular clusters. However, at solar metallicities,
such mechanism seems very inneficient. Mass loss due to very strong winds severely
limits the growth of the stellar object being formed and the likely end result of a run-
away merger is a ∼ 100M⊙ Wolf-Rayet star. At lower metallicities, mass loss is lower
and the remnant can be more massive ∼ 260M⊙, but in any case it will not form an
IMBH (Glebbek et al. 2009). In sum, it looks very unlikely that sufficient IMBHs can
be formed in order to generate such steady inflow to the Galactic center. Another
possibility would be that SgrA* is a binary MBH, but this would most likely imply
that there has been a, more or less recent, major merger involving the Milky Way. This
would contradict the apparent pure-disk nature of the Galaxy, as theoretical interpre-
tations of stellar kinematic data of the Galactic Bulge seem to favor that the Bulge is
part of the disk and not a separate component resulting from a merger Shen et al.
(2010)y—aside from the fact that there are strong constraints from the SgrA* proper
motion (Reid and Brunthaler 2004).

Stars in a Keplerian potential, GM•/r, do not precess because of the 1 : 1 resonance
between their radial and azimuthal frequencies. Resonant relaxation (RR) results from
the coherent torques that such stars exert on each other leading to a fast evolution
of their orbital angular momenta over timescales ≲ Tpr, where Tpr is the precession
timescale due to departures from an exact Kepler potential (Rauch and Tremaine 1996).
Madigan et al. (2010) suggest that RR, by increasing the rate of angular momentum
diffusion in the near-Keplerian gravitational potential around the MBH, may boost
the tidal disruption rate of stars and could thus create a near-cavity (out to ∼ 0.1 pc)
in the stellar distribution. It is certain that RR operates to some extent in the inner
parsec, but we doubt it can completetly explain the dearth of red giant stars there or,
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more generally, the full destruction of a cusp—including CRs such as stellar bhs6 First,
their final density distribution does not show a cavity, nor a shallow cusp profile, for
r ≳ 0.1 pc; instead, they get final slopes γ ∼ 1.5 for r ≳ 0.1 pc. This is in contrast
with observations which show a decaying density for r ≲ 0.24 pc (Buchholz et al.
2009). Second, we believe that their Monte-Carlo calculations severely underestimate
the rate at which the cusp re-grows; in fact, they obtain a timescale which is ∼ 10− 30
times longer than that obtained with our N-body simulations (which are free from
any simplifying dynamical assumptions), and also from ours and their own recent FP
calculations (Hopman and Madigan 2010). Third, were they to use the latter rates,
and given that the time RR takes to deplete the cusp is of the same order as the time
we obtain for cusp re-growth, the net effect of RR on the cusp would likely be minute.
Moreover, stellar bhs cannot be tidally disrupted, and this makes them less susceptible
to be extracted from the cusp than 10M⊙ stars.

9.4 emris rates

9.4.1 Adiabatic and abrupt EMRIs: Estimation of the rates

Given a steady state stellar bhs continue to diffuse in (E, J)-space and some of them
eventually come into close interaction with the MBH. During a close interaction, a
stellar bh can either be promptly scattered into the MBH, accompanied by a single or
a few brief bursts of GWs in the LISA band—the so-called “direct-plunges”—, though
they are not likely detectable unless if emitted from the Galactic center (Hopman et al.
2007), or scattered outwards in the cusp. In either case, it does not live enough to be-
come an EMRI. Alternatively, it may undergo a very slow, adiabatic, inspiral without
being appreciably disturbed by other stars and, in this case, it will eventually become
an EMRI detectable by LISA. An EMRI object thus has to spend very many orbits
without being significantly scattered by the gravitational tugs of the other stars. In
other words, they must fullfill the following inspiralling criterion: the time TGW it takes
for the inspiral, due to orbital energy lost by GW emission only, must be shorter than
the typical time TJ it takes on average to drift in angular momentum by an amount
J which equals its orbital angular momentum. Otherwise, they will be promptly cap-
tured by the MBH before entering the LISA band. The inspiral criterion can be stated
in terms of the parameter s being smaller than unity, s = TGW/TJ < 1. For TGW > TJ ,
it is almost certain that this object has either taken an almost radial orbit and fallen
into the MBH as a direct plunge or has been scattered outwards. 7 It turns out that
this parameter simply scales with orbital’s semimajor axis: s ∝ a3/2−p (Hopman &
Alexander 2005), which means that it is a decreasing function of a so long as p < 3/2.

6 Resonant relaxation is, nevertheless, very likely to have a significant impact on the EMRI event rates
(Hopman and Alexander 2006).

7 In steady state, on average each star that drifts outward by an amount J will be compensated by another
that drifts inward by the same amount. This balance only breaks down for those orbits that fall on to the
hole, since there are obviously no stars coming out of it to keep detailed balancing.
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This is indeed the case in both regimes of mass segregation. Furthermore, Hopman &
Alexander (2005) have shown that the probability for a successful inspiral as a function
of orbital semimajor axis (or energy) is almost a step function of semimajor axis. If
a < aGW, it is almost certain that the stellar bh will become an EMRI; it will almost
certainly not become one in case the inequality sign is reversed (and the width of the
“transition region” is very small). This crucial threshold quantity demarcates the or-
bits which are close enough to the MBH to sucessfully decouple from the rest of the
cluster and undergo the slow, adiabatic inspiral that defines an EMRI from those more
weakly bound orbits that will be perturbed out of the EMRI tracks due to scattering
with other stars.

Therefore, in order to estimate the EMRI event rate, given a steady state f (E), ob-
tained via the FP equation, one essentially counts the number of stars that populate the
region of phase space for which the inspiralling criterion above is satisfied and divide
it by the local relaxation time. Note that here, for simplicity, we ignore other driving
mechanisms—in particular, we ignore resonant relaxation. Under these assumptions,
the EMRI rate for stellar bhs is approximately given by

ΓEMRI = f•
∫ +∞

EGW

dE
n(E)

ln(Jc(E)/Jlc) Trlx(E)
, (93)

where f• is the number fraction of SBHs in the stellar population, n(E) is the total
number of stars per unit energy(n(E) ∝ f (E), see Preto (2010)), Jc(E) =

√
GM•/2E

is the specific angular momentum of a circular orbit of energy E, Jlc = 4 GM•/c is
the loss-cone angular momentum and Trlx = 0.34 σ3/[G2(m•ρ• + m∗ρ∗) ln Λ] is the
relaxation time. The log term in the denominator in (93) arises from the phase space
(partial) depletion resulting from the presence of the loss cone. The conversion be-
tween r and E is, for r ≪ rh, ⟨E(r)⟩ = GM•/2r or E = GM•/2a. The critical radius
aGW, or energy EGW, for EMRIs is approximately aGW = 0.01rh; and, to first order, aGW
is independent of M• (Hopman & Alexander 2005).

9.4.2 The relevance of realistic models of mass segregation for the rates

The weak regime of SMS, and corresponding BW solution, would lead to a fairly high
intrinsic rate, per galaxy, of EMRIs. In fact, Figure 3 shows that, for a Milky Way
nucleus, in case ∆ > 1, the intrinsic EMRI rate is ≳ 103 per Gyr. This is, however,
unrealistic as such scenario pressuposes an unrealistically high number fraction of bhs
( f• ≳ 0.0325 for ∆ > 1). In the more realistic case, when ∆ ∼ 0.03 the BW solution
would entail a strong supression of the EMRI rate to—at best—a few tens of events per
Gyr. This is where SMS solution appears to rescue us. SMS implies a higher density of
bhs inside rh as compared with the γ = 7/4 solution, and in this way—by decreasing
the local Trlx and increasing n(E) close to the MBH—it partially, but not completely,
compensates for the small number fraction of bhs entailed by realistic mass functions.

In order to quantitatively evaluate the boost ΓSMS/ΓBW to the EMRI rates from SMS,
for a given ∆ and a fixed mass normalization at rh, one needs to estimate what would
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Figure 3. EMRI rate as a function of �. The number of stellar bh EMRI events per Gyr in a
Milky Way type nucleus (M• = 4 × 106 M� and M∗(<1pc) = 106 M�) as a function of the
parameter �. This is computed from a two-component mass segregated stellar cusp (γH ≈ 2.1
and γL ≈ 1.5) with mass ratios R = 10 and 15 obtained from FP calculations. In the case of the
fiducial value f• = 10−3, � ≈ 0.03; in those circumstances, each Milky Way type nucleus will
produce on average ∼250 stellar bh EMRIs per Gyr.
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Figure 4. Boost on the EMRI rates from strong segregation. One can see that, for values of � < 1,
there is a significant boost to the EMRI rates in comparison to which it would result in the case of
a γ = 7/4 BW cusp. In particular, for our fiducial value � ∼ 0.03 (f• ∼ 10−3), the boost is of the
order of a factor 10 with respect to a 7/4-BW cusp with the same mass normalization at r = 1 pc.

where the indices FP mean that the profile is taken from the FP calculation. rL (and EL) is a
reference radius (energy) chosen according to rL ∼ 0.1rh.

Figure 4 shows the boost to the EMRI rates due to SMS relative to what would be obtained
from a BW profile. Going from an unrealistically high f•, as adopted by BW77 (say � = 3),

11

Figure 27: EMRI rate as a function of ∆. The number of stellar bh EMRI events per Gyr
in a Milky Way type nucleus (M• = 4 × 106M⊙ and M∗(< 1pc) = 106M⊙)
as a function of the parameter ∆. This is computed from a two-component
mass segregated stellar cusp (γH ≈ 2.1 and γL ≈ 1.5) with mass ratios
R = 10 and 15 obtained from FP calculations. In the case of the fiducial
value f• = 10−3, ∆ ≈ 0.03; in those circumstances, each Milky Way like
nucleus will produce on average ∼ 250 stellar bh EMRIs per Gyr.
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be the rate if the spatial and phase space densities were determined by the γ = 7/4
cusp for r ≲ 0.1rh. This is done as follows: we define analytically both ρ(r) and f (E)
that would result from a γ = 7/4 inside 0.1rh

ρ(r) = ρFP(r), r > rL

ρ(r) = ρFP(rL)×
( rL

r

)7/4
, r ≤ rL, (94)

and

f (E) = fFP(E), E < EL

f (E) = fFP(EL)×
(

E
EL

)1/4

, E ≥ EL, (95)

where the indices FP mean that the profile is taken from the Fokker-Planck calculation.
rL (and EL) is a reference radius (energy) chosen according to rL ∼ 0.1rh.

Figure 4 shows the boost to the EMRI rates due to SMS relative to what would be
obtained from a BW profile. Going from an unrealistically high f•, as adopted by
BW77 (say ∆ = 3), to a more realistic f• (say ∆ = 0.03), while neglecting the existence
of SMS, one supresses the EMRI rate by factors of ∼ 100 − 150 (the former would lead
to ∼ few × 103 EMRIs per Gyr; the latter is reduced to ∼ few tens per Gyr). However,
by taking into account the SMS solution, for this low ∆ = 0.03, we boost again the
rates by a factor close to 10, thus partially compensating the reduction of EMRIs (from
few tens to a few hundred per Gyr; in fact, there are ∼ 250 per Gyr in case ∆ = 0.03
for a Milky Way nucleus). We conclude that the apparently inocuous and tiny change
of the logarithmic slope from γH = 7/4 to γH ∼ 2 can have a substantial effect (a
factor of ∼ 10) on the expected EMRI rate.

Figure 5 shows the dependence of the intrinsic EMRI rate on the mass of the central
MBH, where the validity of the M• − σ relation was assumed (Ferrarese & Ford 2005).
We see that the EMRI rate for stellar bhs scales as ∝ M−0.19

• , independently of R and
f•. Its absolute normalization depends obviously on the number fraction f• of sbhs, in
agreement with Figures 3 and 4.

One can make a rough conversion of the estimated intrinsic rate into LISA detec-
tion rates. Following Gair (2009), who made a number of assumptions regarding the
local density of MBHs and its spin distribution, plus on the LISA detection capabili-
ties, we find that according to its equation (7), LISA will see around ∼ 102 − 7 × 102

EMRI events during a 2-year or 5-year mission, respectively. Note that these rates may
change by factors of ∼ 2− 3 as a function of corrections to the local MBH mass density
(Graham and Driver 2007); moreover, the uncertainties regarding the efficiency of RR
and other channels may still affect the rate predictions by one or two orders of magni-
tude. A lot of work still remains to be done; nevertheless, the consequences regarding
the SMS regime are significant and under control.
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Figure 3. EMRI rate as a function of �. The number of stellar bh EMRI events per Gyr in a
Milky Way type nucleus (M• = 4 × 106 M� and M∗(<1pc) = 106 M�) as a function of the
parameter �. This is computed from a two-component mass segregated stellar cusp (γH ≈ 2.1
and γL ≈ 1.5) with mass ratios R = 10 and 15 obtained from FP calculations. In the case of the
fiducial value f• = 10−3, � ≈ 0.03; in those circumstances, each Milky Way type nucleus will
produce on average ∼250 stellar bh EMRIs per Gyr.
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Figure 4. Boost on the EMRI rates from strong segregation. One can see that, for values of � < 1,
there is a significant boost to the EMRI rates in comparison to which it would result in the case of
a γ = 7/4 BW cusp. In particular, for our fiducial value � ∼ 0.03 (f• ∼ 10−3), the boost is of the
order of a factor 10 with respect to a 7/4-BW cusp with the same mass normalization at r = 1 pc.

where the indices FP mean that the profile is taken from the FP calculation. rL (and EL) is a
reference radius (energy) chosen according to rL ∼ 0.1rh.

Figure 4 shows the boost to the EMRI rates due to SMS relative to what would be obtained
from a BW profile. Going from an unrealistically high f•, as adopted by BW77 (say � = 3),

11

Figure 28: Boost on the EMRI rates from strong segregation. One can see that, for
values of ∆ < 1, there is a significant boost to the EMRI rates in comparison
to which it would result in the case of a γ = 7/4 BW cusp. In particular, for
our fiducial value ∆ ∼ 0.03 ( f• ∼ 10−3), the boost is of order of a factor 10
with respect to a 7/4-BW cusp with the same mass normalization at r = 1
pc.
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Figure 5. EMRI rates as a function of MBH mass in strongly segregated nuclei. The EMRI rate
depends on the MBH mass, �SMS ∝ M−0.19• . Shown are curves for � = 0.03 (f• = 10−3 and
10−2) and three different mass ratios between heavy and light stars, R = 10 and 15.

to a more realistic f• (say � = 0.03), while neglecting the existence of SMS, one suppresses
the EMRI rate by factors of ∼100–150 (the former would lead to ∼few × 103 EMRIs per
Gyr; the latter is reduced to ∼ few tens per Gyr). However, by taking into account the SMS
solution, for this low � = 0.03, we boost again the rates by a factor close to 10, thus partially
compensating the reduction of EMRIs (from few tens to a few hundred per Gyr; in fact, there
are ∼250 per Gyr in case � = 0.03 for a Milky Way nucleus). We conclude that the apparently
innocuous and tiny change of the logarithmic slope from γH = 7/4 to γH ∼ 2 can have a
substantial effect (a factor of ∼10) on the expected EMRI rate.

Figure 5 shows the dependence of the intrinsic EMRI rate on the mass of the central
MBH, where the validity of the M• − σ relation was assumed (Ferrarese and Ford 2005).
We see that the EMRI rate for stellar bhs scales as ∝ M−0.19

• , independently of R and f•. Its
absolute normalization depends obviously on the number fraction f• of sbhs, in agreement with
figures 3 and 4.

One can make a rough conversion of the estimated intrinsic rate into LISA detection rates.
Following Gair (2009), who made a number of assumptions regarding the local density of
MBHs and its spin distribution, plus on the LISA detection capabilities, we find that according
to its equation (7), LISA will see around ∼102–7 × 102 EMRI events during a 2 year or
5 year mission, respectively. Note that these rates may change by the factors of ∼2–3 as a
function of corrections to the local MBH mass density (Graham and Driver 2007); moreover,
the uncertainties regarding the efficiency of RR and other channels may still affect the rate
predictions by one or two orders of magnitude. A lot of work still remains to be done;
nevertheless, the consequences regarding the SMS regime are significant and under control.

5. Conclusions

We have considered simplified stellar models of galactic nuclei, with only two mass
components, which harbour MBHs that fall into the LISA detection bandwidth. For quite
generic initial conditions, such stellar clusters are expected to have reached a relaxed, mass
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Figure 29: EMRI rates as a function of MBH mass in strongly segregated nuclei. The
EMRI rate depends on the MBH mass, ΓSMS ∝ M−0.19

• . Shown are curves
for ∆ = 0.03 ( f• = 10−3 and 10−2) and three different mass ratios between
heavy and light stars, R = 10 and 15.
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9.5 conclusions

9.5 conclusions

We have considered simplified stellar models of galactic nuclei, with only two mass
components, which harbor MBHs that fall into the LISA detection bandwidth. For
quite generic initial conditions, such stellar clusters are expected to have reached a
relaxed, mass segregated, steady state which is independent of initial conditions at
the time of formation. Strong (realistic) mass segregation is a robust outcome from the
growth and evolution of stellar cusps around MBHs in the mass range 104 − 107M⊙
to which LISA will be sensitive. Our N-body results validate the Fokker-Planck de-
scription of the bulk properties of the stellar distribution. SMS boosts the EMRI event
rates with respect to what would be implied by a shallower stellar density profile (e.g.
γ = 7/4, which has been the working assumption of almost all event rate estimates
in the literature so far) that also respect the mass normalization obtained from obser-
vations of the Galactic center at 1 pc from the hole. In particular, our fiducial models
of the Galactic center are enhanced by a factor of ∼ 10—leading to a predicted value
of ∼ 250 stellar bh EMRIs per Gyr. The FP formalism assumes two-body relaxation as
the only dynamical driver present—this could be a severe restriction at radii ≲ 0.01rh,
inside which even the NB simulations with higher N in our sample start to run out of
particles and where RR could play an important role (Hopman and Alexander 2006;
Madigan et al. 2010). Other crucial mechanisms are resonant relaxation, (small) tri-
axiality of the galactic potential, tidal separation of binaries and massive perturbers
(see e.g. Amaro-Seoane et al. 2007, for a review). These are the subject of our current
research work, and the extent to which they can significantly affect the EMRI rates is
still an open question.
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T H E R O L E O F T H E S U P E R M A S S I V E B L A C K H O L E S P I N I N
T H E E S T I M AT I O N O F T H E E M R I E V E N T R AT E

Pau Amaro-Seoane1, Carlos F. Sopuerta2, & Marc Dewi Freitag3

Published in Monthly Notices of the Royal Astronomical Society, Volume 429, Issue 4,
p.3155-3165 (2013).

Abstract: One of the main channels of interactions in galactic nuclei between stars and the central
massive black hole (MBH) is the gradual inspiral of compact remnants into the MBH due to the emission
of gravitational radiation. This process is known as an “Extreme Mass Ratio Inspiral” (EMRI). Previous
works about the estimation of how many events space observatories such as LISA will be able to observe
during its operational time differ in orders of magnitude, due to the complexity of the problem. Never-
theless, a common result to all investigations is that the possibility that a compact object merges with the
MBH after only one intense burst of GWs is much more likely than a slow adiabatic inspiral, an EMRI.
The later is referred to as a “plunge” because the compact object dives into the MBH, crosses the horizon
and is lost as a probe of strong gravity for eLISA. The event rates for plunges are orders of magnitude
larger than slow inspirals. On the other hand, nature MBH’s are most likely Kerr and the magnitude of
the spin has been sized up to be high. We calculate the number of periapsis passages that a compact
object set on to an extremely radial orbit goes through before being actually swallowed by the Kerr MBH
and we then translate it into an event rate for a LISA-like observatory, such as the proposed ESA mission
eLISA/NGO. We prove that a “plunging” compact object is conceptually indistinguishable from an adi-
abatic, slow inspiral; plunges spend on average up to hundred of thousands of cycles in the bandwidth
of the detector for a two years mission. This has an important impact on the event rate, enhancing in
some cases significantly, depending on the spin of the MBH and the inclination: If the orbit of the EMRI
is prograde, the effective size of the MBH becomes smaller the larger the spin is, whilst if retrograde, it
becomes bigger. However, this situation is not symmetric, resulting in an effective enhancement of the
rates. The effect of vectorial resonant relaxation on the sense of the orbit does not affect the enhancement.
Moreover, it has been recently proved that the production of low-eccentricity EMRIs is severely blocked
by the presence of a blockade in the rate at which orbital angular momenta change takes place. This is
the result of relativistic precession on to the stellar potential torques and hence affects EMRIs originating
via resonant relaxation at distances of about ∼ 10−2 pc from the MBH. Since high-eccentricity EMRIs

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
2 Institut de Ciències de l’Espai (CSIC-IEEC), Campus UAB, Bellaterra, Spain
3 Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
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are a result of two-body relaxation, they are not affected by this phenomenon. Therefore we predict that
eLISA EMRI event rates will be dominated by high-eccentricity binaries, as we present here.

10.1 motivation

We know, mostly through high-resolution observations of the kinematics of stars and
gas, that most, if not all, nearby bright galaxies harbour a dark, massive, compact
object at their centres. (Ferrarese & Ford 2005; Kormendy 2004). The most spectac-
ular case is our own galaxy, the Milky Way. By tracking and interpreting the stellar
dynamics at the centre of our galaxy, we have the most well-established evidence for
the existence of a massive black hole (MBH) (Ghez et al. 2008; Eisenhauer et al. 2005;
Ghez et al. 2005; Gillessen et al. 2009). Observations of other galaxies indicate that
the masses of MBH can reach a few billion solar masses (M⊙). The existence of such
a MBH population in the present-day universe is strongly supported by Sołtan’s ar-
gument that the average mass density of these MBHs agrees with expectations from
integrated luminosity of quasars (Sołtan 1982; Yu & Tremaine 2002). Many correlations
linking the MBH’s mass and overall properties of its host spheroid (bulge or ellipti-
cal galaxy) have been discovered. The tightest are with the spheroid mass (Häring &
Rix 2004), its velocity dispersion (M − σ relation, Tremaine et al. 2002) and degree of
concentration (Erwin et al. 2004). Consequently, understanding the origin and evolu-
tion of these MBHs necessitates their study in the context of their surrounding stellar
systems.

The ideal probe of these regions is the gravitational radiation (GWs) that is emitted
by some compact stars very close to the black holes, and which will be surveyed by
eLISA/NGO (evolved Laser Interferometer Space Antenna / New Gravitational Wave
Observatory Amaro-Seoane et al. 2012; Amaro-Seoane et al. 2012b). This mission will
scrutinise the range of masses fundamental to the understanding of the origin and
growth of supermassive black holes; i.e. MBHs with masses below 107 M⊙.

10.2 emris and direct plunges

For a binary of a MBH and a stellar black hole to be in a LISA-like band, it has to
have a frequency of between roughly 1 and 10−5 Hz. The emission of GWs is more
efficient as they approach the LSO, so that the observatory will detect the sources
when they are close to the LSO line. The total mass required to observe systems with
frequencies between 0.1 Hz and 10−4 Hz is of 104 − 107 M⊙. For masses larger than
107 M⊙ the frequencies close to the LSO will be too low, so that their detection will
be very difficult. On the other hand, for a total mass of less than 103 M⊙ we could in
principal detect them at an early stage, but then the amplitude of the GW would be
rather low.

To interact closely with the central MBH, stars have to find themselves on “loss-cone”
orbits, which are orbits elongated enough to have a very close-in periapsis (Amaro-
Seoane & Spurzem 2001; Frank & Rees 1976; Lightman & Shapiro 1977). The rate of
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tidal disruptions can be established semi-/analytically if the phase space distribution
of stars around the MBH is known (Magorrian & Tremaine 1999; Syer & Ulmer 1999;
Wang & Merritt 2004, for estimates in models of observed nearby nuclei). To account
for the complex influence of mass segregation, collisions and the evolution of the
nucleus over billions of years, detailed numerical simulations are required, however
(Amaro-Seoane 2004; Amaro-Seoane & Preto 2011; Freitag et al. 2006; Baumgardt et al.
2004; David et al. 1987a,b; Preto & Amaro-Seoane 2010; Freitag & Benz 2002; Khalisi
et al. 2007; Murphy et al. 1991).

As the star spirals down towards the MBH, it has many opportunities to be deflected
back by two-body encounters onto a “safer orbit” (Alexander & Hopman 2003; Amaro-
Seoane et al. 2007), hence even the definition of a loss cone is not straightforward. Once
again, the problem is compounded by the effects of mass segregation and resonant
relaxation, to mention two main complications. As a result, considerable uncertainties
are attached to the (semi-)analytical predictions of capture rates and orbital parameters
of EMRIs.

Naively one could assume that the inspiral time is dominated by GW emission and
that if this is shorter than a Hubble time, the compact object will become an EMRI.
This is wrong, because one has to take into account the relaxation of the stellar system.
Whilst it certainly can increase the eccentricity of the compact object, it can also perturb
the orbit and circularise it, so that the required time to inspiral in, tGW, becomes larger
than a Hubble time. The condition for the small compact object to be an EMRI is that
it is on an orbit for which tGW ≪ (1 − e) tr (Amaro-Seoane et al. 2007), with tr the
local relaxation time. When the binary has a semi-major axis for which the condition is
not fulfilled, the small compact object will have to be already on a so-called “plunging
orbit”, with e ≥ eplunge ≡ 1 − 4 RSchw/a, where RSchw is the Schwarzschild radius
of the MBH, i.e. RSchw = 2GM•/c2, with M• being the MBH mass. It has been
claimed a number of times by different authors that this would result in a too short
burst of gravitational radiation which could only be detected if it was originated in our
own Galactic Center (Hopman et al. 2007), because one needs a coherent integration of
some few thousands repeated passages through the periapsis in the eLISA bandwidth.

Therefore, such “plunging” objects would then be lost for the GW signal, since they
would be plunging “directly” through the horizon of the MBH and only a final burst
of GWs would be emitted, and such burst would be (i) very difficult to recover, since
the very short signal would be buried in a sea of instrumental and confusion noise
and (ii) the information contained in the signal would be practically nil. There has
been some work on the detectability of such bursts (Berry & Gair 2012; Hopman et al.
2007; Rubbo et al. 2006; Yunes et al. 2008), but they would only be detectable in our
galaxy or in the close neighborhood, but the event rates are rather low, even in the
most optimistic scenarios.

The typical size of the central MBH can be associated with the gravitational radius
(radial horizon location) of the MBH, which in the case of the Milky Way MBH cor-
responds to approximately RSchw ∼ 1.3 × 107 km ≈ 4.1 × 10−7 pc (neglecting spin
contributions). This number gives a good indication of how small are these MBHs in
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size, which means they have a small cross section and hence, the chances a star has to
“plunge” through the horizon of the MBH directly are very small.

To quantify the probability for star absorption by a MBH it is crucial to take into
account the location of the Last Stable Orbit (LSO) of a test massive body in terms
of the MBH parameters. According to General Relativity, these are the mass M• and
its intrinsic angular momentum or spin S• = a• M•c, where a• is the spin parameter
with length dimension and subject to the constraints 0 ≤ a•c2/(GM•) ≤ 1. The LSO
location is given by a surface in the orbital configuration space that can be described
in terms of the parameters (p, e, ι), where p is the dimensionless semilatus rectum, e is
the eccentricity, and ι is the orbital inclination (with respect to the MBH spin axis) of
the orbit. Equivalently one can also use the semimajor axis a, or the periapsis location
rperi, instead of p. The periapsis and apoapsis radii are given then by:

rperi =
GM• p

c2(1 + e)
,

rapo =
GM• p

c2(1 − e)
. (96)

It is well-known (see e.g. Bardeen 1970) that the LSO, for the case of circular orbits,
lies at 3 RSchw for non-spinning MBHs, while it is shifted out to 9GM•/c2 for retro-
grade orbits and down to GM•/c2 for prograde orbits, and these values correspond to
the case of “extremal” MBHs, characterized by maximal spins, i.e. a•c2/(GM•) = 1 .
Despite this fact, traditional EMRI event rate estimations are based on considerations
that neglect the spin of the MBH. Taking into account the spin one would expect
(considering the asymmetry between prograde and retrograde orbits) an increase of
the number of EMRIs since some of the traditionally neglected “direct plunges” can
actually be disguised EMRIs.

10.3 orbital geodesic motion around a kerr mbh

In order to show the importance of the effect of the spin in the estimation of the
number of EMRIs that will produce a significant amount of GW cycles in the band
of eLISA, we present here two types of calculations. The first one is to adapt known
results about the stability of orbits of massive objects around a MBH to our discussion.
The second is an estimation of the number of cycles for for orbits which would be
plunging orbits for a Schwarzschild MBH, or orbits with no sufficient cycles when
the MBH was assumed to be non-spinning for the case with spin. We show that a
significant fraction of them are actually EMRIs with sufficient cycles to be detected by
a space-based observatory like eLISA. Parts of these calculations, mainly due to the
high eccentricities involved, require numerical computations.

At this point it is useful to review some basic characteristics of the orbital geodesic
motion of massive bodies around a Kerr MBH. First of all, the geometry of a Kerr
MBH is axisymmetric (with respect to the spin axis) instead of spherically-symmetric
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as in the case of Schwarzschild MBHs, and this means that the inclination of the orbit
with respect to the spin axis, ι, plays an important role in the dynamics. Actually,
orbits outside the equatorial plane are not planar, like in Keplerian motion or orbits
around a Schwarzschild MBH, but instead they would precess around a plane with a
certain inclination ι with a frequency that we call fθ , where θ refers to the polar Boyer-
Lindquist coordinate of the MBH (Boyer & Lindquist 1967; Misner et al. 1973). In
addition, relativistic effects cause precession of the periapsis, and this already happens
for Schwarzschild MBHs, so that we have to consider two more frequencies, fr and fφ.
The first one, fr, is associated with the radial motion and the time to go from periapsis,
rperi, to apoapsis, rapo, and back. The second one, fφ, is associated with the azimuthal
motion around the spin axis and the time to complete a full turn (2 π) around this axis,
or in other words, the time for the azimuthal angle φ to increase 2π radians.

In summary, generic bound motion around a Kerr MBH exhibits three fundamental
frequencies, ( fr, fθ , fφ) and this implies that the GW emission of an EMRI will be quite
rich in structure (not only these GWs will contain features with these frequencies but
also with a number of harmonics of them), encoding the detailed geometry of the cen-
tral Kerr MBH. The GW emission will back react on to the system and this translates in
particular in a change of the orbital parameters (p, e, ι) of the orbit. These changes can
be estimated by considering the energy and angular momentum carried away from the
extreme-mass-ratio binary by the GWs emitted. More specifically, the GW emission
changes the constants of motion of the geodesic motion, namely the energy per unit
mass (normalized with respect to the star mass, m), E, the angular momentum along
the spin axis per unit mass, Lz, and the so-called Carter constant per unit mass square,
C, which is associated with an extra symmetry of the Kerr geometry, similar to what
happens in certain axisymmetric Newtonian potentials (Binney & Tremaine 1987). Ac-
tually, the set of constants (E, Lz, C) parametrizes the geodesic orbit in the same way
as the set of orbital parameters (p, e, ι) does. Therefore, there is a mapping between
these two sets (see Schmidt 2002) which is going to be crucial in the calculations that
we present here. The explicit form of this mapping is quite complex and we do not in-
clude it here, we just mention that we used the implementation described in Sopuerta
& Yunes (2011).

In the case of a non-spinning Schwarzschild MBH, where ι and C do not play any
role, the mapping is much more simple and is given by:

E2

c2 =
(p − 2 − 2e)(p − 2 + 2e)

p (p − 3 − e2)
, (97)

L2
z =

G2M2
• p2

c2(p − 3 − e2)
. (98)

Using the symmetries of the geometry of a Kerr MBH we can separate the equations
for geodesic orbital motion so that the trajectory of a massive body, described in terms
of Boyer-Lindquist coordinates {t, r, θ, φ}, can be written as follows
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ρ2 dt
dτ

=
1
∆

(
Σ2 E

c
− 2a•r•

Lz
c

r
)

(99)

ρ4
(

dr
dτ

)2

=

[(
r2 + a2

•
) E

c
− a•

Lz
c

]2

−(
Q
c2 + r2

)
∆ ≡ R(r) (100)

ρ4
(

dθ

dτ

)2

=
C
c2 − L2

z
c2 cot2 θ − a2

•

(
1 − E2

c2

)
cos2 θ (101)

ρ2 dφ

dτ
=

1
∆

[
2a•r•

E
c

r +
Lz
c

∆ − a2
•sin2 θ

sin2 θ

]
. (102)

In the last set of equations we have introduced the following definitions:

r• ≡
GM•

c2 ,

Q ≡ C + (Lz − a•E)2 ,

ρ2 ≡ r2 + a2
• cos2 θ

∆ ≡ r2 − 2r•r + a2
• = r2 f + a2

•, with f ≡ 1 − 2 r•
r

. (103)

For convenience, we also define the quantity Σ2 ≡ (r2 + a2
•)

2 − a2
•∆ sin2 θ . The first

equation tells us how the coordinate time t changes with respect to the proper time
τ and the other three describe the trajectory in space. One can combine the four
equations to obtain the spatial trajectory in terms of coordinate time t, the time of
observers at infinity, i.e. (r(t), θ(t), φ(t)).

10.4 kerr and schwarzschild separatrices

In figures 30 and 31 we show plots of the location of the LSO in the plane a (pc)
- (1 − e), including the Schwarzschild separatrix between stable and unstable orbits,
p − 6 − 2e = 01, for both prograde and retrograde orbits and for different values of
the inclination ι. Each plot corresponds to a different value of the spin, showing how
increasing the spin makes a difference in shifting the location of the separatrix between
stable and unstable orbits, pushing prograde orbits near GM•/c2 while retrograde
orbits are pushed out towards 9GM•/c2. The procedure we have used to build these
plots is a standard one. Briefly, given a value of the dimensionless spin parameter
s ≡ a•c2/(GM•) and a value of the eccentricity e and inclination angle ι we apply the
following algorithm:

1 The relation between p and a is a = (GM•/c2)(p/(1 − e2)) .
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10.4 kerr and schwarzschild separatrices

1. We start from an initial value of the semilatus rectum p which, together with
the value of the eccentricity fixes the apoapsis and periapsis radii through the
equations in (96). On the other hand, the inclination of the orbital plane can also
be described in terms of the polar angle θ, so that θinc represents the inclination
angle and is closely related to ι (see e.g., Drasco & Hughes 2004). The advantage
of using θinc is that it is related in a simple way to the extrema of θ, θmin satisfying
–see equation (101)

(
dθ

dτ

)
θ=θmin

= 0 , (104)

by θinc = sign(Lz)
(

π
2 − θmin

)
, with

sign(Lz) =

{
+1 for prograde orbits ,
−1 for retrograde orbits .

(105)

Then, from the condition of extrema of θmin and its relation to θinc, we can find the
value of the Carter constant C in terms of the energy E and angular momentum
along the spin axis Lz.

2. From the conditions of extrema of periapsis and apoapsis,

(
dr
dτ

)
r=rperi

=

(
dr
dτ

)
r=rapo

= 0, (106)

[see equation (100)], and using the expression of C in terms of (E, Lz) from the
previous point, we find the values of (E, Lz) (and hence of C too).

3. The radial motion for geodesic orbits around Kerr has four extrema, the periapsis
and apoapsis locations and two more radii, r3 and r4, such that

rapo ≥ rperi ≥ r3 > r4. (107)

Actually, r4 always lies inside the horizon radius,

rH =

(
GM•

c2

)(
1 +

√
1 − s2

)
, (108)

i.e. r4 < rH. For any stable orbit, it is obvious that the radial motion happens
inside the interval [rperi, rapo]. However, for orbital configurations with rperi =
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Figure 30: LSO for a MBH of mass 4 × 104 M⊙ and a SBH of mass m• = 10 M⊙ for
a Kerr MBH of spin s = 0.4 (left) and s = 0.7 (right). The Schwarzschild
separatrix is given as a solid black line. Curves above it correspond to
retrograde orbits and inclinations of ι = 5.72, 22.91, 40.10, 57.29, 74.48 and
89.95◦ starting from the last value (89.95◦). In the left panel we can barely
see any difference from the different inclinations due to the low value of the
spin.

r3, the potential of the MBH changes its shape and the orbits become unstable,
marking the location of the LSO. In this case, we have that(

dR(r)
dr

)
r=r3

= 0, (109)

where R(r) denotes the right-hand side of the evolution equation for the radial
position r (see equation 100).

The calculations in this algorithm are done numerically, so we check whether this
condition is satisfied to some tolerance level. In the case it is not satisfied, we use
this information to prescribe the next value of p and come back to the first point in
the algorithm. The process is repeated until we identify the LSO with the desired
accuracy.

10.5 number of cycles

The second type of relativistic computations that we have performed concerns the es-
timation of the number of cycles that certain EMRI orbital configurations that were
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Figure 31: As in figure 30 but for a spin of s = 0.99 (left) and s = 0.999 (right
panel). The larger the spin, the “further away” the Kerr LSO gets from
the Schwarzschild LSO.

thought to be plunging orbits (or orbits with no sufficient cycles) in the case of non-
spinning MBHs can spend in a frequency regime of f ∈ [10−4, 1] Hz during their
last year(s) of inspiral before plunging into the MBH. This is important to assess how
many of these EMRIs will have sufficient Signal-to-Noise Ratio (SNR) to be detectable.
The way in which these estimations have been done is the following. We start with
a certain orbital configuration characterized by the orbital parameters (p(0), e(0), ι(0)).
Equivalently, we can characterise the initial orbital configuration by the constant of
motions (E(0), Lz(0), C(0)). Hence, the idea is to track the inspiral without actually inte-
grating the equations of geodesic motion of section 10.3 or any other type of equations
that follow the trajectory. Instead, we picture the inspiral as a sequence of geodesic
orbits, each of them characterized by orbital parameters (p(i), e(i), ι(i)) (or equivalently,
constants of motion (E(i), Lz(i), C(i))) with i = 0, . . . , Nplunge, being Nplunge the final
plunging configuration. The transition between each orbital configuration is governed
by the GW emission. Our particular algorithm to follow the inspiral goes as follows
(our implementation uses the formulæ in the appendices of Sopuerta & Yunes 2011

and the formulae derived by Gair & Glampedakis 2006):

1. Given an orbital configuration (p(i), e(i), ι(i)) and its associated constants of mo-
tion (E(i), Lz(i), C(i)), we compute the averaged evolution of the constants of mo-
tion, (Ė, L̇z, Ċ), using the formulæ of (Gair & Glampedakis 2006), which com-
bine post-Newtonian calculations at the 2PN order with fits to results for the
GW emission based on the Teukolsky formalism (Teukolsky 1973) (for details
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see Drasco & Hughes (2006); Glampedakis et al. (2002); Hughes (2000, 2001);
Hughes et al. (2005)).

2. For the given orbital parameters we estimate the radial period Tr, that is the time
to go from apoapsis to periapsis and back to apoapsis (see Fujita & Hikida 2009;
Schmidt 2002 for details of this computation. In Fujita & Hikida 2009 there is a
typo in one of the relevant formulae for our computations fixed in the appendices
of Sopuerta & Yunes 2011).

3. We compute the change in the constants of motion. To that end, due to the
fact that the GW emission by an EMRI is relatively weak, we do not consider in
general just one passage through periapsis, but several of them, say Nperi

(i) . Thus,
the change in the constants of motion is:

(∆E(i), ∆Lz(i), ∆C(i)) = (Ė(i), L̇z(i), Ċ(i))

× Nperi
(i) × Tr. (110)

And from here,

(E(i+1), Lz(i+1), C(i+1)) = (E(i), Lz(i), C(i))+

(∆E(i), ∆Lz(i), ∆C(i)). (111)

4. From these new constants of motion and using similar techniques to the ones
described above for the LSO computation we can find the new orbital parame-
ters (p(i+1), e(i+1), ι(i+1)). We then go back to the first step and follow the inspiral
until we detect that the new configuration corresponds to an unstable orbit cor-
responding to the plunge. We estimate the number of cycles as the number of
times that the stellar object turned around the spin axis, N cycles

φ .

In Table 3 we show some results for a series of inspirals whose initial orbital param-
eters are such that the pair (e, p) lies on the separatrix between stable and unstable
orbits in the case of non-spinning MBHs (i.e. p = 6 + 2e). Therefore, these are in-
spirals that under the assumption that spin can be neglected would have no cycles in
the eLISA band. However, we can see from the values for the number of cycles in
the table that many of those systems actually perform a significant number of cycles,
more than sufficient to be detectable with good SNR. The number of cycles has been
associated with Nφ (the number of times that the azimuthal angle φ advances 2π)
which is usual for binary systems. However, as we have discussed above the struc-
ture of the waveforms from EMRIs is quite rich since they contain harmonics of three
different frequencies. Therefore the waveforms have cycles associated with the three

140



10.6 impact on event rates

frequencies ( fr, fθ , fφ) which makes them quite complex and in principle this is good
for detectability (assuming we have the correct waveform templates). Another fact
that is worth mentioning is that the cycles quoted in Table 3 happen just before plunge
and take place in the strong field region very near the MBH horizon. Then, these
cycles should contribute more to the SNR than cycles taking place farther away from
the MBH horizon. Regarding the accuracy of these estimations, the main sources of
error are the approximations made for the radiation-reaction effects, which are based
on a post-Newtonian expansions and fits to results from black hole perturbation the-
ory. Corrections from higher-order terms will introduce corrections to these results
that depend on the EMRI configuration, but those corrections should not affect the
magnitude of these numbers. In the Table we quote the integers that are closer to the
numerical result.

10.6 impact on event rates

Only a certain fraction of stars in phase space will come close enough to interact with
the MBH. These stars are said to belong to the “loss-cone” (see e.g. Amaro-Seoane &
Spurzem 2001; Frank & Rees 1976).

For radii larger than 0.01 pc the main leading mechanism for producing EMRIs
is two-body relaxation (Amaro-Seoane et al. 2007; Amaro-Seoane 2012; Hopman &
Alexander 2005), and this is the region of phase-space in which our analysis is ap-
plied with priority, since for a Schwarzschild MBH one has just direct plunges. For
radii below 0.01 pc we note that the enhancement in the EMRI event rate due to res-
onant relaxation predicted by Hopman & Alexander (2005) is severely affected by the
presence of a blockade in the rate at which orbital angular momenta change takes
place. This so-called “Schwarzschild barrier” is a result of the impact of relativis-
tic precession on to the stellar potential torques, as recently shown by Merritt et al.
(2011) with a few direct-summation N−body simulations expanded with a statistical
Monte-Carlo study. Indeed, this “Schwarzschild barrier” has been corroborated in
an independent work with a statistical study based on a sample of some 2,500 direct-
summation N−body simulations by Brem et al. (2012) in which the authors include
post-Newtonian corrections and also, for the first time, the implementation of a solver
of geodesic equations in the same code. This barrier poses a real problem for the pro-
duction of low-eccentricity EMRIs. However, high-eccentricity EMRIs, which had been
classified until now wrongly of “plunges” do not have this problem, since they are a
product of pure two-body relaxation. This is why we will only focus on two-body
relaxation for the estimation of the rates.

The event rate can be hence approximately calculated as

ṄEMRI ≃
∫ aEMRI

0

dN•(a)
ln
(
θ−2

LC

)
tr(a)

, (112)

with θLC the loss-cone angle, N•(a) the number of stellar black holes (SBHs) within a
semi-major axis a and aEMRI a maximum radius within which we estimate the event
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MBH mass MBH Spin Semimajor axis Eccentricity Inclination Time to plunge Time in band Cycles in band
M• (M⊙) s a(0) (pc) 1 − e(0) ι(0) (rad) Tplunge (yrs) Tband (yrs) Nφ

5.0 · 104 0.30 9.57 · 10−3 10−6 0.00 3.92 · 102 0.06 914
5.0 · 104 0.30 9.57 · 10−3 10−6 0.70 3.92 · 102 0.06 625
5.0 · 104 0.90 9.57 · 10−3 10−6 0.00 3.92 · 102 0.11 4174
5.0 · 104 0.90 9.57 · 10−3 10−6 1.00 3.92 · 102 0.08 2646
1.0 · 105 0.70 1.91 · 10−2 10−6 0.00 7.87 · 102 0.29 6968
1.0 · 105 0.70 1.91 · 10−2 10−6 1.00 7.86 · 102 0.23 3411
1.0 · 105 0.99 1.91 · 10−2 10−6 0.00 4.70 · 103 0.38 8938
1.0 · 105 0.99 1.91 · 10−2 10−6 0.70 3.92 · 103 0.32 7892
5.0 · 105 0.30 9.57 · 10−2 10−6 0.00 4.31 · 104 1.98 8246
5.0 · 105 0.30 9.57 · 10−2 10−6 1.00 4.31 · 104 1.61 3061
5.0 · 105 0.95 9.57 · 10−2 10−6 0.00 5.10 · 104 2.00 40093
5.0 · 105 0.95 9.57 · 10−2 10−6 1.00 4.31 · 104 2.00 27600
1.0 · 106 0.30 1.91 · 10−2 10−5 0.00 1.27 · 104 1.98 10943
1.0 · 106 0.30 1.91 · 10−2 10−5 1.00 1.19 · 104 1.91 3552
1.0 · 106 0.70 1.91 · 10−2 10−5 0.00 1.35 · 104 1.99 51308
1.0 · 106 0.70 1.91 · 10−2 10−5 1.00 1.20 · 104 1.99 23291
1.0 · 106 0.90 1.91 · 10−2 10−5 0.00 1.40 · 104 1.99 58841
1.0 · 106 0.90 1.91 · 10−2 10−5 1.00 1.17 · 104 2.00 38245
1.0 · 106 0.99 1.91 · 10−2 10−5 0.00 1.43 · 104 2.00 61726
1.0 · 106 0.99 1.91 · 10−2 10−5 1.00 1.17 · 104 2.00 47678
5.0 · 106 0.30 9.57 · 10−2 10−5 0.00 1.44 · 105 1.93 5258
5.0 · 106 0.30 9.57 · 10−2 10−5 1.00 1.36 · 105 0.00 0
5.0 · 106 0.70 9.57 · 10−2 10−5 0.00 1.55 · 105 2.00 40687
5.0 · 106 0.70 9.57 · 10−2 10−5 1.00 1.36 · 105 2.00 14936
5.0 · 106 0.90 9.57 · 10−2 10−5 0.00 1.61 · 105 2.00 41369
5.0 · 106 0.90 9.57 · 10−2 10−5 1.00 1.35 · 105 1.99 30695
1.0 · 107 0.30 1.91 10−6 0.00 4.02 · 106 1.99 3089
1.0 · 107 0.30 1.91 10−6 1.00 3.78 · 106 0.00 0
1.0 · 107 0.70 1.91 10−6 0.00 4.27 · 106 2.00 23425
1.0 · 107 0.70 1.91 10−6 1.00 3.79 · 106 1.98 8747
1.0 · 107 0.99 1.91 · 10−1 10−5 0.00 1.44 · 106 1.98 22455
1.0 · 107 0.99 1.91 · 10−1 10−5 1.00 1.18 · 106 1.99 28589
5.0 · 107 0.30 9.57 · 10−1 10−5 0.00 1.44 · 107 0.00 0
5.0 · 107 0.30 9.57 · 10−1 10−5 1.00 1.36 · 107 0.00 0
5.0 · 107 0.70 9.57 · 10−1 10−5 0.00 1.55 · 107 1.72 4247
5.0 · 107 0.70 9.57 · 10−1 10−5 1.00 1.35 · 107 0.00 0
5.0 · 107 0.99 9.57 · 10−1 10−5 0.00 1.65 · 107 1.88 4422
5.0 · 107 0.99 9.57 · 10−1 10−5 1.00 1.35 · 107 1.52 4625

Table 3: This table shows the main properties of some (prograde) inspirals that initially
lie on the separatrix (LSO) of non-spinning MBHs and hence they would not
be detectable in the eLISA band. The numbers in the first five columns have
been already introduced in the text. The sixth column gives the time it takes
for each inspiral to get to plunge. The seventh column shows how much
time it spends in band assuming the plunge occurs at the end of the eLISA
mission time (assumed to be 2 yrs here). The last column show the number of
orbital cycles in band (during Tband), defined as the number of times that the
azimuthal angle φ advances 2π during the last two years before plunge. The
number of GW cycles can be then defined as twice this number.
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rate ṄEMRI. We assume that the SBHs distribute around the central MBH following
a power-law cusp of exponent γ, i.e. that the density profile follows ρ ∝ r−γ within
the region where the gravity of the MBH dominates the gravity of the stars, with γ
ranging between 1.75 and 2 for the heavy stellar components (Alexander & Hopman
2009; Amaro-Seoane et al. 2004; Amaro-Seoane & Preto 2011; Bahcall & Wolf 1976,
1977; Preto et al. 2004; Preto & Amaro-Seoane 2010; Peebles 1972) and see Gurevich
(1964) for an interesting first idea of this concept2. We then have that the number of
stars within a radius r is

n(r) =
(3 − γ)

4 π

(
M•
m⋆

)(
1

R3
infl

)(
r

Rinfl

)−γ

. (113)

Hence, the number of SBHs within a is

N•(a) ≃ N0

(
a

R0

)3−γ

. (114)

Hence, we have that

dN•(a) = (3 − γ)
N0
R0

(
a

R0

)2−γ

da . (115)

10.6.1 The Schwarzschild case

We know that (see e.g. Alexander & Livio 2001; Amaro-Seoane & Spurzem 2001)
θ−2

LC ≃ Jmax/JLC. Since the loss-cone angular momentum can be approximated as
JLC ≃ 4 GM•/c and Jmax =

√
GM•a, we have that

θ−2
LC ≃

√
a

8 RSchw
, (116)

We assume also that relaxation is dominated by a single stellar black hole (SBH) pop-
ulation, since because of mass segregation the most massive objects sink down to the
centre and the light stars are pushed out from the centre. The relaxation time at a
distance a is

tr(a) = t0

(
a

R0

)γ−3/2

, (117)

with

t0 = 0.3389
σ3

0
ln Λ G2m2

• n0
. (118)

2 The authors obtained a similar solution for how electrons distribute around a positively charged Coulomb
centre.
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Since (see e.g. Amaro-Seoane et al. 2007)

n0 =
3 − γ

4π
N0R3

0 (119)

σ2
0 =

1
1 + γ

GM•
R0

, (120)

we have that equation (118) becomes

t0 ≃ 4.26
1

(3 − γ)(1 + γ)3/2

√
R3

0(GM•)
−1

ln Λ N0

(
M•
m•

)2

. (121)

We now define a critical radius at which the two regimes that lead the evolution of
the EMRI decouple. The first evolution is dominated by relaxational processes, via
exchange of E and J between SBHs on a capture orbit with stars from the surround-
ing stellar system, while in the second regime the evolution of the EMRI is totally
dominated by the emission of gravitational waves. This is given in figure 1 of Amaro-
Seoane et al. (2007) with their red curve. In other words, the line gives us the radius
as a function of a at which the relaxational time at periapsis is approximately equal to
the timescale defined by the approximation of Peters (1964). Hence, we have to solve

tr(a)(1 − e) = K tGW(a, e)
J(a, e) = JLC

(1 − e) a =
8 GM•

c2 (122)

In the first equality, K is a factor of order unity. In the last equality we assume a
Schwarzschild radius and we assume that the LSO is at 4 × RSchw Approximating
e ∼ 1, the function f (e) from Peters (1964) f (e) = 425/(768

√
2). Hence

tGW(a, e) ∼=
√

2
24
85

c5

G3
a4

M2
• m•

(1 − e)7/2 . (123)

And so, finally from equations (122), (117) and (121) and solving for aEMRI, we have
that

aEMRI ≃ R0

[
16.97 K (3 − γ) (1 + γ)3/2 ln Λ N•

m•
M•

] 1
γ−3

. (124)

Or, absorbing some constants into a newly defined Kγ,
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aEMRI = Kγ R0

(
1

ln Λ
M•

N• m•

) 1
3−γ

Kγ :=
[
16.97 K (3 − γ) (1 + γ)3/2

]
. (125)

We can then derive the event rate for the Schwarzschild case, based on 112,

ṄSchw
EMRI

∼= 0.235
4 (3 − γ)2 (1 + γ)3/2

9 − 4γ
K

9−4γ
2

γ

ln Λ
2γ−3
6−2γ

ln
(

aEMRI
8 RSchw

) (N•m•
M•

) 3
6−2γ

√
GM•

R3
0

. (126)

The last equation is based on the assumption that equation (122) holds, and the last
equality, (1 − e)a = 8 GM•/c2, is the “effective” value of the periapsis for the last
parabolic stable orbit (LSO from now onwards) for a Schwarzschild MBH. I.e. if the
star is on an orbit that in Newtonian dynamics leads to a periapsis smaller than this
value, the star disappears if we take into account relativistic dynamics.

10.6.2 The Kerr case

In the Kerr case we simply have to recalculate where this LSO is by taking into account
the value of the spin of the MBH. We then have to either shrink or enlarge it by a certain
factor function of the inclination and spin, W(ι, s), so that the effective pericentre of
LSO is

(1 − e) a = W(ι, s)× 8 GM•
c2 . (127)

This quantity can be derived from the separatrices of the figures in section 10.3. If
the orbit can get closer to the MBH in the Kerr case, then W(ι, s) < 1; otherwise
W(ι, s) > 1. Since the separatrices are nearly parallel, we hence can define W(ι, s)
like

W(ι, s) :=

⟨
aLSO, Kerr

aLSO, Schw

⟩
=

1
N ∑

i

aLSO, Kerr(ei)

aLSO, Schw(ei)
. (128)

That is, given a spin and an inclination, we take for N values of the eccentricity the
semimajor axis corresponding to the Kerr value, aLSO, Kerr(e) and to the Schwarzschild
case, aLSO, Schw and we sum for the ratio of the two semi-majors over all eccentricities.
This allows us to calculate by how much the LSO has been “shifted”.
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Spin (s) Inclination (ι, rad) W(ι, s)
0.900 0.100 0.429452

0.900 0.400 0.448093

0.900 0.700 0.499450

0.900 1.000 0.598278

0.900 1.300 0.739339

0.900 1.570 0.883679

0.900 -0.100 1.415955

0.900 -0.400 1.377239

0.900 -0.700 1.295011

0.900 -1.000 1.175760

0.950 0.100 0.370036

0.950 0.400 0.386009

0.950 0.700 0.436921

0.950 1.000 0.548352

0.950 1.300 0.708257

0.950 1.570 0.867320

0.950 -0.400 1.396449

0.950 -0.700 1.309052

0.950 -1.000 1.181942

0.950 -1.300 1.024866

0.990 0.100 0.297301

0.990 0.400 0.306924

0.990 0.700 0.354716

0.990 1.000 0.494738

0.990 1.300 0.679468

0.990 1.570 0.852821

0.990 -0.100 1.454732

0.990 -0.400 1.411720

0.990 -0.700 1.320145

0.990 -1.000 1.186631

0.990 -1.300 1.020814

0.999 0.100 0.260205

0.999 0.400 0.264063

0.999 0.700 0.310302

0.999 1.000 0.479038

0.999 1.300 0.672349

0.999 1.570 0.849364

0.999 -0.100 1.458589

0.999 -0.400 1.415145

0.999 -0.700 1.322624

0.999 -1.000 1.187655

0.999 -1.300 1.019828

Table 4: Values for W .
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If we redo the derivation of (126) taking into account equation 127, we can obtain
ṄEMRI in function of W , ṄKerr

EMRI and, hence, we can calculate the ratio of the rates as a
function of the inclination ι and spin s:

aKerr
EMRI = aSchw

EMRI ×W
−5

6−2γ (ι, s) (129)

ṄKerr
EMRI = ṄSchw

EMRI ×W
20γ−45
12−4γ (ι, s) . (130)

For instance, for a spin of s = 0.999 and an inclination of ι = 0.4 rad, we estimate
that W ∼ 0.26 and, thus, ṄKerr

EMRI ∼ 30. I.e. we boost the event rates by a factor of 30 in
comparison to a non-rotating MBH.

10.7 net effect of resonant relaxation on emri rates

10.7.1 The role of vectorial resonant relaxation

To understand the impact of the previous calculation on event rates for EMRIs we
have to elaborate on prograde and retrograde orbits. We have seen that retrograde
EMRI orbits see the central MBH as an effectively “larger” MBH; i.e. it is easier to
plunge through the horizon. Contrary, prograde EMRI orbits “see” the effective size
of the MBH shrink and, thus, have a harder time in hitting the central MBH. It is
therefore important to assess the orientation of orbits in the regime of interest. It takes
on average (vectorial) resonant relaxation (RR) a time tRR, v to rotate coherently the
orbital plane of an orbit by an angle π/2 (Hopman & Alexander 2006). To change a
prograde (retrograde) orbit to a retrograde (prograde) orbit, it takes four times longer:
The π/2 rotation is the maximum that can be obtained over the self-quenching time;
the rest to get up to a full π rotation is done non-coherently over 4 coherence times
(see Bregman & Alexander 2011,for a discussion of the numeric prefactors).

It should be noted that vector RR is invariant under precession (see e.g. Hopman &
Alexander 2006). We must note also that the change in the inclination of the orbit with
respect to the spin axis due to GW emission is relatively rather small (see Hughes (2000,
2001)), so small that frequently it has been assumed to be constant, which provides an
extra equation for the evolution of the Carter constant in the inspiral process, making
things significantly simpler.

The dependence of the transverse RR torque (i.e. direction-changing torque) on the
eccentricity has been measured from simulations by Gürkan & Hopman (2007). In
their work, the authors derive that it grows quadratically by a factor 3 in total from 0
to 1.

The radius of the sphere of influence is

rinfl =
1

1 + γ

GM•
σ2

0
≈ 1 pc

1
1 + γ

(
M•

106 M⊙

)(
60 km/s

σ0

)2

, (131)
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for a given exponent γ. Within this radius the relaxation time is

tr(r) ∝ (1 + γ)−3/2 ln Λ σ3(r)
G2⟨m⟩mCOn(r)

≃ 2 × 108 yr (1 + γ)−3/2
(

σ

100 km s−1

)3 (10 M⊙
mCO

)
(

106 M⊙pc−3

⟨m⟩n

)
. (132)

In this equation we follow the usual notation: σ(r) is the local velocity dispersion; for
r < rinfl it is approximately the Keplerian orbital speed

√
GM•r−1; n(r) is the local

density of stars, ⟨m⟩ is the average stellar mass, mCO is the individual mass of the
compact object, which we assume to be all SBHs, and take a mass of mCO = 10 M⊙
for all of them. In the vicinity of a MBH, (r < rinfl), Λ ≈ M•/m⋆ (Bahcall & Wolf 1976;
Lightman & Shapiro 1977), and typically ln Λ ∼ 11.

Relaxation redistributes orbital energy amongst stellar-mass objects until SBHs form
a power-law density cusp, n(r) ∝ r−γ with γ ≃ 1.75 around the MBH, while less
massive species arrange themselves into a shallower profile, with α ≃ 1.4 − 1.5 as we
have mentioned earlier, although recent studies have found a general solution to the
problem of mass segregation around MBH in galactic nuclei, with a more efficient
diffusion for the heavy stars, reaching a γ ∼ −2 in the “strong mass-segregation”
regime (Alexander & Hopman 2009; Amaro-Seoane & Preto 2011; Preto & Amaro-
Seoane 2010).
Since σ(r)2 = GM•/r and we take that ⟨m⟩ = 0.7 M⊙ and, as mentioned, mCO =
10 M⊙, we have all information to derive tr, peri(r) := (1− e) tr from Equation (132) and
(113).

As regards the explicit expression for the characteristic timescale for vectorial reso-
nant relaxation, from Hopman & Alexander (2006) we have that

tRR, v = P(a)
M•
m⋆

βv(e)2√
N(a)

, (133)

where we have taken into account the corrections for high values of e as given in
Gürkan & Hopman (2007), βv(e) = 0.28 (e2 + 0.5) and P(a) = a3/2/(GM•)

1/2. This
allows us to follow the dependence with the radius (and eccentricity) of the ratio
tr, peri/tRR, v.

If we now equate the timescales of interest, the gravitational radiation driven time
tGW, defined as in the approximation of Peters (1964), to the two-body relaxation time
at periapsis, tr, peri, we obtain the short-dashed curve of figure 32 on the left of this
line, the contribution of GW radiation to orbital evolution dominates over two-body
relaxation. In the absence of resonant relaxation, if a SBH crosses this line from the
right (lower eccentricities), it will become an EMRI, provided, of course, that it is
still on a stable orbit, i.e. above the separatrix corresponding to its orbital orientation.
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Figure 32: Left panel: Relation between different timescales in the s = 0.999 case. As in
the prior section, we display the Schwarzschild separatrix as a solid, black
line and the separatrices for different inclinations with different curves in
light grey. The dashed, blue line shows the value of a and 1− e for which the
vectorial resonant relaxation timescale (tRR, v) is equal to the gravitational
loss timescale (tGW). The dashed, dotted line corresponds to the values of
a and 1 − e for which the relaxation time at periapsis (tr, peri) equals the
gravitational loss timescale. Right panel: Same as the left panel but zoomed
to see where the dashed, red curve intersects the last one of the retrograde,
Schwarzschild and prograde separatrices. We show this with a blue dot and
a long-dashed curve for the retrograde case which yields the last separatrix,
with a green dot and a green, short-dashed curve for the Schwarzschild
separatrix and with a red dot and a dash-dotted curve for the last separatrix
of the prograde case. These lines give us aEMRI, retro, aEMRI, Schw and aEMRI, pro,
correspondingly.

For a Schwarzschild MBH, all separatrices are the same and there is a unique critical
point (PS). A SBH with a semi-major axis larger that the value at PS will experience a
direct plunge if relaxation brings its eccentricity to a high value because it will cross
the separatrix (and be swallowed in less than an orbital time) before it has a chance
to enter into the GW-dominated regime. Conversely, objects with smaller semi-major
axis values are much more likely to end up as EMRIs rather than plunges.

For a fast spinning SMBH, the separatrix for prograde orbits is shifted to signifi-
cantly lower a values, with a corresponding higher value of the critical semi-major
axis, corresponding to the point PP in figure 32. As we have explained above, it is this
effect which can lead to a significant increase in the EMRI rate, combined with the
fact that the critical point for retrograde orbits (PR) is much less affected and that an
isotropic orbit distribution is expected, thanks to relaxational processes. However this
increase in EMRI rate would can be thwarted by vector RR if this process can change
the orbital orientation of a SBH after it has crossed the “tGW = tr, peri” line and before
it has completed its GW-driven inspiral, i.e. on a timescale shorter than tGW. Indeed, if
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the orbit becomes significantly less prograde as the the inspiral takes place, due to RR,
the separatrix moves up and the SBH might suddenly find itself on a plunge orbit.

To check for this possibility, we also plot, in figure 32, a long-dashed line corre-
sponding to the condition tGW = tRR, v, with tGW < tRR, v on the left of this line. SBHs
that cross the “tGW = tr, peri” line while on the left side of the “tGW = tRR, v” line keep
their orbital orientation during their inspiral and complete it without abrupt plunge.
One can see that, for our choice of parameters, this is the case for all prograde orbits.
On the other hand, retrograde orbits can cross the “tGW = tr, peri” line while RR is
still effective enough to change their orientation during inspiral. However, the effect
of RR on retrograde orbits cannot reduce significantly the total EMRI rate and may
even increase it slightly because (1) these orbits contribute less that the prograde ones
(and more to the plunge rate) and (2) statistically, RR is more likely to make the orbit
become less retrograde which pushes down the separatrix.

Finally, we also note that for the other proposed mechanism to produce EMRIs, the
tidal separation of a binary containing a compact object (Amaro-Seoane et al. 2007;
Miller et al. 2005), the captured objects typically have much lower eccentricities and
smaller semi-major axis. Therefore, they cross “tGW = tr, peri” line and start their
inspiral, with orbital parameters well above the uppermost separatrix (for retrograde
orbits). As the GW-driven trajectory in the e − a plane is basically parallel to the
separatrices, there is no danger of a premature plunge, even though RR has ample
time to flip the orbital orientation during inspiral.

10.8 conclusions

In this article we have addressed the problem of direct plunges and MBHs. If this is
a Schwarzschild MBH, the compact object will plunge through the horizon and will
hence not contribute to the mapping of space and time around the MBH, contrary to
an EMRI, which describes thousands of cycles before it merges with the central MBH.
On the other hand, the event rate of plunges is much larger than that of EMRIs, as a
number of different studies by different authors using different methods find.

Up to now spin effects of the central MBH have been always ignored. Hence, the
question arises, whether a plunge is really a plunge when the central MBH is spinning.
This consideration has been so far always ignored.

So as to estimate EMRI event rates, one needs to know whether the orbital configu-
ration of the compact object is stable or not, because this is the kernel of the difference
between an EMRI and a plunge. In this paper we take into account the fact that the
spin makes the LSO to be much closer to the horizon in the case of prograde orbits but
it pushes it away for retrograde orbits. Since the modifications introduced by the spin
are not symmetric with respect to the non-spinning case, and they are more dramatic
for prograde orbits, we prove that the inclusion of spin increases the number of EMRI
events by a significant factor. The exact factor of this enhancement depends on the
spin, but the effect is already quite important for spins around s ∼ 0.7.
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10.8 conclusions

We also prove that these fake plunges, “our” EMRIs, do spend enough cycles inside
the band of eLISA to be detectable, i.e. they are to be envisaged as typical EMRIs. We
note here that whilst it is true that EMRIs very near the new separatrix shifted by the
spin effect will probably contribute not enough cycles to be detected, it is equally true
for the old separatrix (Schwarzschild, without spin). In this sense, we find that the
spin increases generically the number of cycles inside the band for prograde EMRIs
in such a way that EMRIs very near to the non-spin separatrix, which contributed few
cycles, become detectable EMRIs. In summary, spin increases the area, in configuration
space of detectable EMRIs. We predict thus that EMRIs will be highly dominated by
prograde orbits.

Moreover, because spin allows for stable orbits very near the horizon in the prograde
case, the contribution of each cycle to the SNR is significantly bigger than each cycle
of an EMRI around a non-spinning MBH.

We then show that vectorial resonant relaxation will not be efficient enough to
change prograde orbits into retrogrades once GW evolution dominates (which would
make the EMRIs plunge instantaneously, as they would be in a non-allowed region of
phase space).

These new kind of EMRIs we describe here, high-eccentric EMRIs, are produced by
two-body relaxation and, as such, they are ignorant of the Schwarschild barrier. While
low-eccentricity EMRIs run into the problem of having to find a way to travers this
barrier, our “plunge-EMRIs” do not. We predict that EMRI rates will be dominated by
high-eccentricity binaries, with the proviso that the central MBH is Kerr.
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T H E B U T T E R F LY E F F E C T I N T H E E X T R E M E - M A S S R AT I O
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Abstract: Measurements of gravitational waves from the inspiral of a stellar-mass compact object into
a massive black hole are unique probes to test General Relativity (GR) and MBH properties, as well
as the stellar distribution about these holes in galactic nuclei. Current data analysis techniques can
provide us with parameter estimation with very narrow errors. However, an EMRI is not a two-body
problem, since other stellar bodies orbiting nearby will influence the capture orbit. Any deviation from
the isolated inspiral will induce a small, though observable deviation from the idealised waveform which
could be misinterpreted as a failure of GR. Based on conservative analysis of mass segregation in a Milky
Way like nucleus, we estimate that the possibility that another star has a semi-major axis comparable
to that of the EMRI is non-negligible, although probably very small. This star introduces an observable
perturbation in the orbit in the case in which we consider only loss of energy via gravitational radiation.
When considering the two first-order non-dissipative post-Newtonian contributions (the periapsis shift
of the orbit), the evolution of the orbital elements of the EMRI turns out to be chaotic in nature. The
implications of this study are twofold. From the one side, the application to testing GR and measuring
MBHs parameters with the detection of EMRIs in galactic nuclei with a millihertz mission will be even
more challenging than believed. From the other side, this behaviour could in principle be used as a
signature of mass segregation in galactic nuclei.

11.1 motivation

A stellar mass black hole or neutron star executes ∼ 105−6 orbits during the final year
of inspiral toward a ∼ 106 M⊙ supermassive black hole (MBH). The large number of
cycles implies that a phase-coherent measurement of the inspiral, achievable through
detection of low frequency gravitational waves, would be a tremendously powerful
probe of the spacetime near a black hole (Amaro-Seoane et al. 2007; Hughes 2009).

1 Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam, Germany
2 Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica de Chile, Santiago, Chile
3 JILA, University of Colorado and NIST, at Boulder, 440 UCB, Boulder, CO 80309-0440, USA
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butterflys and emris

Among other things, it would enable a precise determination of the spin of the su-
permassive black hole, and a test of General Relativity that is independent of current
constraints derived from pulsar timing data.

There is no foreseeable instrument sensitive enough to detect gravitational waves
from extreme mass ratio inspirals (EMRIs) over time scales comparable to the or-
bital period. As a consequence, realizing the astrophysical and gravitational physics
promise of EMRIs requires an assurance that the inspiral can be accurately modeled
over many orbits using templates calculated by solving the 2-body problem in Gen-
eral Relativity (for a review, see e.g., Barack 2009). It is therefore necessary to assess
whether gas, stars or other compact objects in the vicinity, could significantly perturb
EMRI trajectories. In the case of gas, perturbations to stellar mass black holes or neu-
tron stars1 are securely negligible provided that accretion on to the black hole occurs
in a low density, radiatively inefficient flow (Narayan 2000). Such flows are much more
common than dense accretion discs, which would yield observable phase shifts during
inspiral (Kocsis et al. 2011), at least at the relatively low redshifts where EMRIs may
be observed.

In this Letter, we quantify the nature and strength of possible perturbations from
point mass perturbers: low mass stars or compact objects in tight orbits around the su-
permassive black hole. Any perturbers are unlikely to orbit close enough to the EMRI
to undergo strong interactions, so the regime of interest is one where the third body is
relatively distant and the interaction weak. The Newtonian analog of this problem has
been studied extensively in the context both of Solar System satellite evolution, and
for transit timing variations of extrasolar planets (Agol et al. 2005; Dermott, Malhotra
& Murray 1988; Holman & Murray 2005; Veras, Ford & Payne 2011). In Newtonian
gravity, perturbations are strong only at the location of mean motion resonances, and
these have the effect of inducing small jumps in eccentricity upon divergent resonance
crossing. This would already be interesting for the EMRI problem, since the jumps in
eccentricity would result in a perturbation to the gravitational wave decay rate, and
an eventual dephasing of the waveform. However, as we will see, the inclusion of
post-Newtonian corrections changes the evolution qualitatively. Computing trajecto-
ries that include the two first-order non-dissipative post-Newtonian corrections, we
find evidence of dependence on initial conditions in the evolution of the perturbed in-
ner binary, such that arbitrarily small variations in the initial orbit lead to significantly
different future behaviour.

11.2 astrophysical limits on perturbers

Is it likely that a star or compact object will be present close enough to perturb the orbit
of an EMRI? Excluding low mass MBHs (M• < 106 M⊙), where the stellar tidal disrup-
tion limit comes into play, the existence of perturbers is not excluded by elementary

1 White dwarf EMRIs are excluded here, because mass loss from the compact object itself could form a
dynamically significant disc even if the background accretion flow is of low density(Zalamea, Menou &
Beloborodov 2010).

158



11.3 methods

arguments. Neither, however, is it easy to calculate the probability distribution of per-
turbers, whose proximity will depend upon the details of discreteness and relativistic
effects very close to the MBH, and mass segregation and EMRI injection mechanisms
in galactic nuclei (Amaro-Seoane et al. 2004; Freitag et al. 2006; Preto et al. 2004).

Rather than face these difficulties, we limit ourselves here to order of magnitude
estimates for the likely location of the nearest star and compact object. For stars,
assumed to be of a single mass M∗, we assume a cusp-like distribution with density
profile ρ ∝ R−γ, extending from the MBH to its radius of influence RBH = GM•/σ2.
Here σ is the velocity dispersion of the galaxy. Using the fact that the enclosed mass,
M(R) ≃ M• at R = RBH, we find that the expected radius of the innermost star, R1, is,

R1

Rg
=

(
M∗
M•

)1/(3−γ) ( c
σ

)2
, (134)

where Rg = GM•/c2. This formula yields an explicit estimate for R1 once we adopt a
relation between M• and σ (Gültekin et al. 2009). For the location of the next nearest
compact object (or EMRI), we use an even simpler approach. We calculate the expected
semi-major axis for uncorrelated inspirals due to gravitational radiation (Peters 1964),
assuming near-circular orbits and rate ṄEMRI. Finally, we plot the tidal limit (e.g. Rees
1988) for 0.3 M⊙ main-sequence stars.

Figure 33 shows these estimates as a function of M•. For a standard cusp slope
γ = 1.75, there is likely to be a low mass stellar perturber within a few hundred
Rg for M• > 106 M⊙. Similarly, if the EMRI rate is as high as 10−6 yr−1, there is a
significant chance (at least a few percent) that a second compact object will be present
between 10 − 102 Rg for 106 M⊙ < M• < 107 M⊙. Clearly, these crude estimates
do not demonstrate that most EMRIs will be perturbed by third bodies, but they do
suggest that perturbers may be close enough in some galaxies to motivate detailed
consideration of their dynamical effects.

11.3 methods

We are interested in the secular effect of a star acting on an EMRI which will describe
thousands of orbits in the detector bandwidth and slowly decay. The kind of effects
on the wave that we are looking at are tiny, though detectable, and the mass difference
between the two binaries (the MBH-EMRI and the MBH-star systems) is huge. We
need therefore a numerical tool capable of integrating the plunging orbit of the EMRI
while inducing a minimal error in the integration, since data analysis techniques can
detect e.g. eccentricity differences of the order ∆e ∼ 10−3 (Amaro-Seoane et al. 2010;
Key & Cornish 2011; Porter & Sesana 2010). We hence have chosen to use a direct
N−body approach (Aarseth 1999, 2003), the planet code, written by Aarseth2. This is
the most expensive method because it involves integrating all gravitational forces for

2 who, as is his admirable custom, has made the code publicly available http://www.ast.cam.ac.uk/

~sverre/web/pages/nbody.htm
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butterflys and emris

Figure 33: Estimates for the semi-major axis of the innermost perturbing body around
a massive black hole, scaled to the hole’s gravitational radius Rg = GM•/c2.
The red lines show the location of the innermost star, estimated assuming
that stars of mass 0.3 M⊙ follow a single power-law cusp of index γ in a
galaxy on the M•-σ relation. The green line shows the tidal disruption limit
for such stars. The blue lines show the average (upper) and 1% probability
(lower) location of the next nearest EMRI, assuming uncorrelated inspirals
at a rate of 10−6 yr−1.
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11.4 dissipation of energy and resonances

all three bodies at every time step, without making any a priori assumptions about
the system. Our approach employs the improved Hermite integration scheme, which
requires computation of not only the accelerations but also their time derivatives. Since
we are simply integrating Newton’s equations directly, all gravitational effects are
included. For the purpose of our study, nonetheless, we have included relativistic
corrections to the Newtonian forces (the forces can be found in the same page in the
toy code3). This was first implemented in a direct-summation N−body code by Kupi
et al. (2006). For this, one has to add perturbations in the integration, so that the forces
are modified by

F =

Newt.︷︸︸︷
F0 +

periapsis shift︷ ︸︸ ︷
c−2F2︸ ︷︷ ︸

1PN

+ c−4F4︸ ︷︷ ︸
2PN

+

energy loss︷ ︸︸ ︷
c−5F5︸ ︷︷ ︸
2.5PN

+

neglected︷ ︸︸ ︷
O(c−6) (135)

In the last equation “PN” stands for post-Newtonian. We note that the perturbations
do not need to be small compared to the two-body force (Mikkola 1997). The expres-
sions for F2, F4 and F5 can be found in Blanchet & Faye (2001), their equation 7.16.

11.4 dissipation of energy and resonances

We first analyse the system by contemplating only the relativistic effect of dissipation
of energy; i.e. our simulations only incorporate the 2.5 PN correction term. We stop the
integration when the separation between the stellar BH and the MBH is a• = 5 RSchw,
which approximately corresponds to the limit where the PN approximation is not
valid anymore. The inspiral down to this distance takes typically in our simulations
some 440,000 orbits.

In Fig.(34) the test stellar black hole of mass m• = 10 M⊙ has been initially set in
such an orbit that it is totally embedded in a LISA-like detector band (i.e. with an
orbital period < 105 secs, namely P• = 6 × 103 secs) and is hence an EMRI; its initial
semi-major axis is a•, i ≃ 1.45 × 10−6 pc and its eccentricity e•, i = 0.05. The perturber,
a star of mass m⋆ = 10 M⊙ is initially on an orbit in which the semi-major axis has the
value a⋆, i ≃ 4.1 × 10−6 pc and the eccentricity at T = 0 is e⋆, i = 0.5. The inclination of
the system EMRI – star was set to 30◦ initially in the upper panel. This constitutes our
reference system.

In the figure, the straight lines mark the condition P⋆/P• = A, with A an integer, P⋆
the period of the star around the MBH and P• the period of the EMRI around the MBH;
i.e. where the resonances occur. The first three resonances have an impact on e• which
can be seen on the plot; later resonances do also affect e•, with ∆ e• ∼ 10−3. We also
note that in the upper panel one can see in-between smaller jumps; they correspond
to higher-order resonances, P⋆/P• = 5.5, 6.5 and 7.5.

We made the choice for an initial inclination of 30◦ to avoid another effect that
introduces a change in the eccentricity. In the lower panel we have exactly the same

3 ftp://ftp.ast.cam.ac.uk/pub/sverre/toy/README
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system but for i⋆ = 45◦. With this value, and the fact that the orbit is prograde, the
Kozai oscillation of eccentricity is present (Kozai 1962). Even if the eccentricity of the
EMRI e• suffers the characteristic Kozai oscillations, the loci for the resonances still
fulfill the condition P⋆/P• = integer.

11.5 does the flap of the star at apoapsis set off a tornado at peri-
apsis?

In this subsection we address numerically the effect of including the relativistic peri-
apsis shift along with the dissipation of energy; i.e. the set of corrections as specified
in Eq.(135). As we show below, the effect of the periapsis shift changes completely
the evolution of the system. In Fig.(35) we show four cases. One of them corresponds
to the reference system but taking into account the periapsis shift. We only display
these examples but note that the behaviour is also chaotic4 for other nearby choices
of i⋆. When using an initial inclination of i⋆ = 45◦, which corresponds to the same
situation as in the lower panel of Fig.(34) but taking into account the periapsis shift,
along with another case which is identical but for i⋆ = 45.0000000001◦, we find also a
chaotic result which moreover eliminates the secular Kozai oscillation of e.

We have systematically studied this chaotic behaviour by running hundreds of simu-
lations in which we methodically increase in minimal differences an initial dynamical
orbital parameter such as the inclination, semi-major axis or eccentricity. In all cases
and parameters the evolution corroborates the chaotic behaviour of the system. We
have also tested a mass for the perturbing star of 5 and 1.44 M⊙, as well as different
values of e⋆ (0.1, 0.3, 0.7 and 0.9), with similar results.

In order to fence in the region within which the system is chaotic, we systematically
increase the semi-major axis of the star and run the same experiment. We start with the
same difference in inclination at a slightly larger semi-major axis, and then regularly
increase it until we reach one order of magnitude over the fiducial case, as we depict
in Fig.(36). The chaotic behaviour ceases at about one order of magnitude of the initial
value of a⋆ in the reference case.

11.6 quantifying the dependence on initial conditions of the system

In this section we present a way of characterizing the rate of separation of infinitesi-
mally close trajectories systematically. To achieve this we compare our fiducial model
with another case in which we set up the EMRI in an (almost) imperceptibly differ-
ent initial orbit (the initial difference is 2 × 10−10 pc, while the objects are moving on
the same ellipse) and keep the same initial conditions of the MBH and the perturber.
Hence EMRI in the second case differs only from the reference case slightly and has

4 When we use the word, we do not follow the rigorous mathematical definition of chaos. We mean a
strong dependence on the initial conditions.
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Figure 34: Upper panel: Results for the fiducial case using the direct-summation
N−body integrator. The mass of the MBH is M• = 106 M⊙, the mass of
the stellar black hole is m• = 10 M⊙. See text for more details. Lower panel:
Same configuration but with an initial inclination of the star of i⋆ = 45◦

instead of 30◦, i.e. the inclination triggers the Kozai mechanism, since
i⋆ > 39.2◦ and the orbit is prograde. As mentioned in the previous case,
even if the changes in eccentricity cannot be directly seen in the curve, they
are of the order ∆ e• ∼ 10−3.
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Figure 35: Fiducial case with energy dissipation and periapsis shift correcting terms
for different initial inclinations of the perturber. The solid (red) curve cor-
responds to i⋆ = 30◦, the long-dashed (green) to i⋆ = 30.001◦, the short-
dashed (blue) corresponds to the fiducial case plus a billionth of a degree,
i⋆ = 30.0000000001◦ and the dotted (magenta) to the reference plus a 10−13

of a degree, i⋆ = 30.0000000000001◦.
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Figure 36: Same as in Fig.(35) but we set initially the perturber at a larger and larger
initial semi-major axis. From the top to bottom and from the left to the
right, the semi-major axis of the perturber is a⋆ = 4 × 10−6 pc, 6 × 10−6 pc,
9 × 10−6 pc and 4.07243 × 10−5 pc. Solid lines correspond to i⋆ = 30◦ and
dashed lines to i⋆ = 30.0000000001◦.
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an initial distance separation of r0. We say that the two models are in phase provided
that

r ≈ r0. (136)

If the two different realizations reach a separation

r ≈ 2 a• (137)

the EMRI bodies are moving out of phase, on entirely unrelated orbits. We thence are
able to estimate a characteristic timescale τdeph for the system to become out of phase.
In Fig.(37) we display the separation of the two systems for different distances to the
perturber. From these figures we can measure the value of a characteristic timescale
τdeph for a given a⋆.

From the data points obtained in the upper panels of Fig.(37) we can then derive
the relation displayed in the lower panel. For large enough distances, of the order of
∼ 10−5 pc the two timescales converge and the system becomes deterministic.

11.7 conclusions

In this paper we have addressed the role of a perturbation on an EMRI by a nearby
star. The system depends extremely on minimal changes in the initial conditions (as
small as a 10−9 part in the inclination) lead to a very different dynamical evolution.
In all cases, however, the Kozai mechanism is washed out by the periapsis shift, as
one can expect (see e.g. Blaes et al. 2002; Holman et al. 1997). For distances of the
order of a⋆ ∼ 10−5 pc the system enters the chaotic regime, for perturbing masses
as small as 1.44 M⊙. While we cannot state clearly whether this will be a common
feature for EMRIs, since the different dynamical and relativistic phenomena involved
in the problem are many and not straightforward (see for a review Amaro-Seoane
et al. 2007 and also Amaro-Seoane 2011 for a dedicated review of the dynamics), it
seems plausible that for a Milky Way-like galaxy a star can be at such a radius from
the EMRI system that it will significantly perturb it. From the standpoint of detection
and data analysis, this is yet another complication of the problem and could even lead
to the misinterpretation that nature’s GR is not what we believe it to be. On the other
hand, from the point of view of stellar dynamics, the detection of one of these systems
would shed light on our current understanding of galactic dynamics in general and
mass segregation in particular.
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Figure 37: Upper panels: From the left to the right and from the top to the bottom
we show the separation r for a increasing separation of the perturbing star
of 3.5 × 10−6, 3.9 × 10−6, 4.375 × 10−6, and 4.5 × 10−6 pc. The dashed line
shows the critical distance 2 a•. Note the different timescales in the lower
panels. Lower panel: τdeph against distance to the perturber normalized to
the gravitational radiation timescale of the isolated system τinsp; i.e. the
merger timescale without the perturber acting onto the binary MBH-EMRI.
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I N V E S T I G AT I N G T H E R E T E N T I O N O F I N T E R M E D I AT E - M A S S
B L A C K H O L E S I N S TA R C L U S T E R S U S I N G N - B O D Y
S I M U L AT I O N S
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Abstract: Contrary to supermassive and stellar-mass black holes (SBHs), the existence of intermediate-
mass black holes (IMBHs) with masses ranging between 102−5 M⊙ has not yet been confirmed. The
main problem in the detection is that the innermost stellar kinematics of globular clusters (GCs) or small
galaxies, the possible natural loci to IMBHs, are very difficult to resolve. However, if IMBHs reside
in the centre of GCs, a possibility is that they interact dynamically with their environment. A binary
formed with the IMBH and a compact object of the GC would naturally lead to a prominent source of
gravitational radiation, detectable with future observatories. We use N-body simulations to study the
evolution of GCs containing an IMBH and calculate the gravitational radiation emitted from dynamically
formed IMBH-SBH binaries and the possibility that the IMBH escapes the GC after an IMBH-SBH merger.
We run for the first time direct-summation integrations of GCs with an IMBH including the dynamical
evolution of the IMBH with the stellar system and relativistic effects, such as energy loss in gravitational
waves (GWs) and periapsis shift, and gravitational recoil. We find in one of our models an intermediate
mass-ratio inspiral (IMRI), which leads to a merger with a recoiling velocity higher than the escape
velocity of the GC. The GWs emitted fall in the range of frequencies that a LISA-like observatory could
detect, like the European eLISA or in mission options considered in the recent preliminary mission study
conducted in China. The merger has an impact on the global dynamics of the cluster, as an important
heating source is removed when the merged system leaves the GC. The detection of one IMRI would
constitute a test of GR, as well as an irrefutable proof of the existence of IMBHs.

12.1 motivation

Intermediate-mass black holes (IMBHs), with masses M ∼ 102−5 M⊙ possibly exist
at the centres of globular clusters (GCs) or small galaxies, if we assume that they
follow the observed correlations between super-massive BHs (SMBHs) and their stellar
surroundings (see Gültekin et al. 2009; Miller 2009; Miller & Colbert 2004; Tremaine
et al. 2002, and references therein). Due to their mass, these objects cannot form via
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72076 Tübingen, Germany, and Department of Physics, Aristotle University of Thessaloniki, Thessaloniki
54124 Greece
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the formation scenarios of stellar-mass black holes, which are the final results of stellar
evolution of massive stars (Belczynski et al. 2010; Fryer 1999; Fryer & Kalogera 2001)
or SMBHs with masses M ∼ 106−9 M⊙, that exist at the centres of galaxies (Gillessen
et al. 2009; Rees 1978, 1984) and for which there exists an emerging consensus about
their formation (Madau & Rees 2001; Volonteri & Rees 2005).

There have been proposed several scenarios for the formation of IMBHs most of
which require extremely dense environments, similar to the centers of GCs, for the
IMBHs to form and grow in mass (Miller & Colbert 2004; van der Marel 2004). Miller
& Hamilton (2002) suggest in their work that such massive black holes (BHs) can form
from repeated mergers of a ∼ 50 M⊙ BH, located at the center of a GC, with other
SBH of lower mass. The ∼ 50 M⊙ threshold is required to ensure that the BH will
not receive large recoil velocities after each merger and so will remain bound to the
GC. According to (Miller & Hamilton 2002) the initial ∼ 50 M⊙ BH could be formed
either directly from the collapse of a massive star, or from a large number of SBH-SBH
mergers, which would produce mostly escaping SBHs, but also a minority of large
BHs, bound to the GC.

An interesting scenario for the formation of IMBHs in the early evolution of GCs,
has been studied by Freitag et al. (2006a); Gürkan et al. (2004); Portegies Zwart et al.
(2004); Portegies Zwart & McMillan (2000, 2002); Quinlan & Shapiro (1990). According
to this scenario, the most massive stars sink to the centre of a GC even before they
become BHs and thus the cluster experiences an early core collapse during which the
central density of stars becomes large enough, that massive stars start to rapidly and
continuously merge with each other (see also Goswami et al. 2012; Portegies Zwart
et al. 2004). This runaway process very soon leads to the formation of a very massive
star (VMS), located close to the centre of the GC. It is unknown how stellar evolution
proceeds in such a VMS (Glebbeek et al. 2009), but if it is assumed that the star directly
collapses to a BH, without significant mass-loss, this could form an IMBH. Accretion
of stars and gas during the next Myrs could increase its mass up to two orders of
magnitude (Vesperini et al. 2010). Finally, as in SMBHs, Population III stars have been
proposed as possible progenitors of IMBHs (see van der Marel 2004; Whalen & Fryer
2012, and references therein), but there are still many uncertainties in the evolution of
such a star (Heger & Woosley 2002).

Although the formation of IMBHs has been studied extensively during the last
decades and their existence has been proposed in the early 70s (Bahcall & Ostriker
1975; Frank & Rees 1976; Wyller 1970), there is still no direct proof of their existence.
However, there is an increasing number of favouring evidences that suggest that they
should exist. The most prominent evidence is from the observations of ultra-luminous
X-ray sources (ULXs, Feng & Soria 2011), which are usually associated to IMBHs. The
brightest known ULX, known as HLX-1, is located in the outskirts of the edge-on S0a
type galaxy ESO243-49 and is currently the strongest IMBH candidate. Based on the ex-
treme luminosity of the X-ray source, which has a maximum of up to 1.1× 1042 erg s−1

in the 0.2− 10 keV band, Farrell et al. (2009) derive a conservative lower limit of 500 M⊙
for the potential IMBH (see also Farrell et al. 2010; Godet et al. 2009). More recent ob-
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servations measured a peak luminosity of 1.3 × 1042 erg s−1 (Godet et al. 2011) and a
possible period of variability of ∼ 1yr (Godet et al. 2012; Servillat et al. 2011). X-ray
luminosities up to ∼ 1041 erg s−1 can be explained by super-Eddington accretion to
∼ 20 M⊙ SBHs (Begelman 2002) and/or beaming (King 2008). However, larger BH
masses are needed for explaining luminosities > 1041 erg s−1. For HLX-1 the most
recent estimate for the mass of the potential IMBH is ∼ 3 × 103 − 105 M⊙ (Davis et al.
2011; Godet et al. 2012; Servillat et al. 2011), very well in the range of masses of IMBHs.
Further investigations of HLX-1 confirmed its extraordinary luminosity by proving its
association with galaxy ESO243-49 at a distance of 95 Mpc (Wiersema et al. 2010), and
thus made the evidence of an IMBH even stronger. Interestingly, the X-ray source is
not located at the center of the host galaxy, but it lies at a distance ∼ 3.3 kpc from its
center and ∼ 0.8 kpc out of the galactic plane, possibly associated with a star cluster
which appears to be in the same area. According to Farrell et al. (2012) this cluster
has a mass of ∼ 4 × 106 M⊙ and is either a massive young star cluster or an old GC.
Optical observations of HLX-1 with VLT seem to rule out the case of a massive star
cluster and favour the presence of a ∼ 10 Gyr old globular cluster with mass < 106 M⊙
or a < 10 Myr small star cluster with mass ∼ 104 M⊙ (Soria et al. 2012, 2010).

Other recent interesting observational examples that point to the existence of these
objects can be found in the work of Sutton et al. (2012), which evaluates a sample of
eight extreme luminosity ultra-luminous X-ray source candidates and state that the
observed luminosities can be explained in terms of IMBHs with masses in the range of
103 − 104 M⊙. Another X-ray source that might be associated with an IMBH is found
at the center of the nearby (d = 3.1 Mpc, Karachentsev et al. (2004)) dwarf lenticular
galaxy NGC 404 (Binder et al. 2011). Using both stellar and gas dynamical mass
estimates, Seth et al. (2010) estimated the mass of the potential IMBH to be ∼ 105 M⊙,
which agrees with recent estimates from Expanded Very Large Array observations
(Nyland et al. 2012) and from X-ray observations (Binder et al. 2011). Finally, Nyland
et al. (2012) confirmed the location of the source at the center of the nuclear star cluster
hosted by NGC 404 and ruled out other possible scenarios such as an X-ray binary,
stellar formation or a supernova remnant.

The above observational examples provide strong evidence of the existence of IMBHs,
but do not indisputably prove that they exist. A direct proof would come from detailed
kinematical observations of stars moving under the influence of the IMBH at the cen-
ters of GCs. Unfortunately, the radius of influence of an IMBH is only of a few arc
seconds (Chanamé et al. 2010; Miller & Colbert 2004; Peebles 1972), so it is very dif-
ficult, if not impossible, to accurately determine its mass by measuring the velocities
of stars moving under its influence, with the currently available instruments. This
technique has been successfully used for determining the mass of the SMBH at the
centre of the Milky Way galaxy, where the stellar environment is less dense than the
core of GCs and also there exists a number of young and bright stars, moving under
the gravitational influence of the SMBH which have been followed by observations for
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more than 15 years (Gillessen et al. 2009). The radius of influence R of an IMBH of
mass M• can be defined as:

R =
GM•

σ2 , (138)

where σ the velocity dispersion at the center of the cluster. At a distance d this trans-
lates to an angular radius of influence (Bender 2005):

α = 1′′
( M•

103 M⊙

)( σ

10 km s−1

)−2( d
10 kpc

)−1
(139)

For a 104 M⊙ IMBH the influence radius is of ∼ 5′′, assuming a central velocity dis-
persion of σ = 20 km s−1 and a distance of ∼ 5 kpc (see also Miller & Colbert 2004,
for a similar example). Also, since GCs are old systems, this small sphere of influence
contains mainly massive stellar remnants and old, dim stars that could not be easily
observed and traced. For the above reasons, kinematical techniques can currently only
give upper limits on the mass of the potential IMBHs at the centers of galactic GCs
(Anderson & van der Marel 2010; Lützgendorf et al. 2012; Noyola et al. 2010; van der
Marel & Anderson 2010) (see also Kirsten & Vlemmings 2012; Strader et al. 2012, for
observations that do not support the IMBH scenario). Since such limits are based on
measurements of proper motions, velocity dispersion or line of sight motions away
of the sphere of influence of the potential IMBH, alternative to IMBH explanations
cannot be ruled out (Baumgardt et al. 2003, 2005). Hence, we would need the Very
Large Telescope Interferometer (VLTI) and one of the next-generation near-infrared
instruments, the VSI or GRAVITY (Eisenhauer et al. 2008; Gillessen et al. 2006). In that
case we could improve the astrometric accuracy by an order of magnitude and thus
we would possibly be in the position of detecting the innermost kinematics of a GC
around a potential IMBH and thus measure accurately its mass.

An interesting avenue towards the direct detection of an IMBH, which would not
require future optical or infrared telescopes and several years of observations, is GW
astronomy. Additionally, IMBH-SBH binaries that might form in GCs represent an
excellent test of GR, since they are similar to extreme mass-ratio inspirals (Amaro-
Seoane et al. 2007). In particular, space-borne detectors such as the ESA-led eLISA
(Amaro-Seoane et al. 2012) or Chinese mission study options (“ALIA” from now on-
wards, see Bender et al. 2005; Crowder & Cornish 2005; Gong et al. 2011) will be able
to catch these systems (which might also be referred as intermediate mass-ratio in-
spirals, IMRIs) with good signal-to-noise ratios (SNR) if the GC is not further than
z ∼ 0.7 (Amaro-Seoane et al. 2012; Miller 2006; Miller & Hamilton 2002). According to
Miller & Hamilton (2002), LISA will be able to detect around 10 IMBH-SBH binaries
at any given time, while the merger of the BHs might be detectable by LIGO-II (and
Advanced LIGO should see many of them Amaro-Seoane & Santamaría 2010; Fregeau
et al. 2006).

If an IMRI forms in a GC, it is undoubted that sooner or later it will lead to an IMBH-
SBH merger. Recent studies from numerical relativity (Lousto et al. 2010; Lousto &
Zlochower 2011a,b; Koppitz et al. 2007; Pollney et al. 2007; Rezzolla 2009; Rezzolla et al.
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2008) show that BH-BH mergers result to a gravitational wave recoil which, depending
on the mass-ratio and spins of the merging BHs, might be as large as ∼ 5000 km s−1

(Lousto & Zlochower 2011a). The mass-ratio of an IMRI in a GC is large enough to
avoid such large recoils, but it is still possible for an IMBH of mass up to ∼ 103 M⊙ to
receive a kick greater than the escape velocity of the GC and therefore leave the system
(Holley-Bockelmann et al. 2008).

In this work we use N-body simulations to study the interactions of an IMBH with
SBHs in young star clusters and describe, for the first time, the production on an IMRI
with our direct-summation code in one of our integrations. In Section 12.2 we describe
the numerical tool and choice of the initial data used for the simulations. In Section
12.3 we describe the interactions of the IMBH with SBHs in the simulation we observed
an IMRI, and we discuss the possibility that the gravitational recoil velocity assigned to
the IMBH after the merger, kicks the IMBH out of the GC. In Section 12.4 we calculate
the gravitational radiation from such an IMRI in an approximate way. Finally, in
Section 12.5 we conclude our work showing that an IMRI would be detectable by
future space-based GW detectors, such as LISA, we discuss the effects of the ejection
of the IMBH on the GC, their possible connection with ULXs not associated with GCs
and we present our future plans for a statistical study of IMBH-SBH interactions in
GCs.

12.2 numerical tool and initial conditions

We integrate the dynamical evolution of a globular cluster containing a 500− 1000 M⊙
IMBH with Myriad (Konstantinidis & Kokkotas 2010), a direct-summation N−body
code that integrates all gravitational forces for all particles at every time step. The
programme uses the Hermite integration scheme (Aarseth 1999, 2003). This requires
computation of not only the accelerations, but also their time derivatives. Particles
that are tightly bound or with very small separation are integrated using the time-
symmetric Hermite scheme (Kokubo et al. 1998), which is a symplectic integrator
that makes the numerical errors oscillate between two limits that can be controlled by
the choice of the time step. The code uses post-Newtonian correcting terms to the
Newtonian forces, including 1, 2 and 2.5 order, as described for the first time in an
N−body code by Kupi et al. (2006) (their equations 1, 2 and 3), as well as a recipe for
gravitational recoil. The recoil velocity depends strongly on the mass ratio of the two
holes, on the magnitude of their spins and on their directions with respect to the plane
of the orbit (see e.g. Rezzolla 2009, and references therein). The equation that we have
implemented in the code is taken from Lousto et al. (2010),

v⃗ = (vm + v⊥ cos ξ) ê1 + v⊥ sin ξ ê2 + v∥ ê3. (140)

In the last equation, the indices ⊥ and ∥ stand for perpendicular and parallel directions
with respect to the orbital angular momentum vector L⃗ of the binary. ê1 is a unit vector
and lies on the plane of the orbit connecting the two MBHs, with direction from the
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heavier to the lighter one. ê2 is also on the plane of the orbit, but perpendicular to
ê1, with direction such that ê1, ê2 and ê3 construct an orthonormal system, with ê3
defined such that it is the unit vector parallel to L⃗. ξ is the angle between the unequal
contributions of mass and spin to the recoil velocity. We assign random, maximal spins
to the stars of the GC, and in particular we initially give the IMBH a spin a = S/M2

(see e.g. Lousto et al. 2010) of 0.998.

We assume that the IMBH forms at the center of the cluster when the GC is 10 Myr
old. This agrees with the formation scenario of runaway stellar mergers (Portegies
Zwart & McMillan 2002) and also of the repeated SBH-SBH mergers (Miller & Hamil-
ton 2002). For our study the number and masses of SBHs are of particular importance.
Therefore, before creating the initial data for our simulations, we studied the number
of SBHs and their masses assuming different initial mass functions (IMF) and metal-
licities. For the initial mass function (IMF) we use Kroupa-like distributions (see
Kroupa 2001a; Kroupa et al. 1993) and also simple power law distributions with dif-
ferent values for the slope α (see Salpeter 1955). We fix the total number of stars to
N = 32768, the lower stellar mass limit to mlow = 0.2 M⊙ and the upper mass limit to
mupper = 150 M⊙. Finally, we use values for the metallicity Z ranging from 0.0001 to
0.02. We investigate in total 15 models with different slopes of the IMF and metallic-
ities and for each one of them we create a set of 100 random realisations. We evolve
the stars of each realisation to 10 Myr using the stellar evolution code sse (Hurley
et al. 2000) and we calculate averages for the number of SBH created and also for their
higher and lower masses. The results are described in Table 5. Assuming no super-
nova kicks, the number of SBHs created depends strongly on the choice of the IMF
slopes and ranges from ∼ 20 to ∼ 70 in our models. On the other hand the masses of
the SBHs depend on the metallicity and range from ∼ 3 M⊙ (for Z = 0.02) to ∼ 27 M⊙
(for Z < 0.001).

For the initial data of our simulations, we picked 4 representative cases from our
investigation that produce low and high numbers of SBHs. We also picked a value Z
= 0.001 for the metallicity as typical for a GC which resulted in the formation of SBHs
with masses between ∼ 13 M⊙ and 27 M⊙. In those models all stars with masses
above 20 M⊙ have evolved off the main sequence at 10 Myr.

For our fiducial simulation A, we choose slopes α1 = 1.3 and α2 = 2.4, which, after
stellar evolution until t = 10 Myr, result in 62 stellar-mass BHs in the system, close to
the highest number of SBHs created in our models. For the distribution of stars and
BHs in the cluster, we use a King profile (King 1966) with concentration parameter
W0 = 7. The initial escape velocity at the centre of the cluster is ∼ 17 km s−1. At the
centre of the cluster we introduce an IMBH of mass M• = 500 M⊙ and correct the
velocities of all stars and BHs of the GC to reach dynamical equilibrium. We created
also three additional initial data changing the IMF, the mass of the IMBH and/or the
initial concentration of the clusters. Case B is like A but with M• = 1, 000 M⊙ and
α2 = 2.5, which results in 52 SBHs; case C is like B but with a King parameter of 6 and
48 SBHs. Finally, case D is like A but with a King parameter of 6 and α1 = 1.2 and
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IMF Z NBHs MBH max MBH min
Kroupa ’93 0.02 26 ± 4 14.11 ± 0.90 3.33 ± 0.28

Kroupa ’93 0.001 22 ± 5 25.58 ± 2.60 14.50 ± 0.22

Kroupa ’93 0.0001 23 ± 4 26.46 ± 0.64 15.35 ± 1.54

Kroupa ’01 0.02 71 ± 9 15.00 ± 0.26 3.14 ± 0.15

Kroupa ’01 0.001 68 ± 9 26.19 ± 0.16 13.88 ± 0.08

Kroupa ’01 0.0001 69 ± 9 26.88 ± 0.23 14.13 ± 1.24

Salpeter 0.02 54 ± 6 14.77 ± 0.47 3.19 ± 0.17

Salpeter 0.001 50 ± 6 26.05 ± 0.30 13.38 ± 0.01

Salpeter 0.0001 51 ± 6 26.74 ± 0.40 14.12 ± 1.51

Power Law (α = 2.5) 0.02 29 ± 5 14.21 ± 0.85 3.38± 0.32

Power Law (α = 2.5) 0.001 26 ± 4 25.86 ± 0.52 14.88 ± 0.22

Power Law (α = 2.5) 0.0001 27 ± 4 26.38 ± 0.62 15.66 ± 2.06

Power Law (α = 2.4) 0.02 45 ± 6 14.60 ± 0.68 3.25 ± 0.24

Power Law (α = 2.4) 0.001 41 ± 6 26.03 ± 0.28 13.11 ± 1.70

Power Law (α = 2.4) 0.0001 42 ± 6 26.77 ± 0.32 14.47 ± 1.67

Table 5: Description of the full set of initial data created for the investigation of the BH
number and masses using different IMFs. We use a Kroupa ’93 (Kroupa et al.
1993), a Kroupa ’01 (Kroupa 2001b), a Salpeter (Salpeter 1955) and two simple
power law mass functions with slopes α = −2.5,−2.4. For each IMF we use
three different values for the metallicity (Z), 0.0001, 0.001 and 0.02 and we
create 100 realisations for each IMF-Z combination. We then evolve the stars
up to 10 Myr using the stellar evolution code sse. Finally, we find averages for
the number of BHs (third column) and their minimum (fourth column) and
maximum (fifth column) masses. In all data sets the total number of stars is
32768 and their initial masses range from 0.2M⊙ to 150M⊙.
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Case α1 α2 NBHs W0 MIMBH [M⊙]
A 1.3 2.4 62 7 500

B 1.3 2.5 52 7 1000

C 1.3 2.5 48 6 1000

D 1.2 2.7 17 6 500

Table 6: Initial data for the 4 simulations.

α2 = 2.7, which result in only 17 SBHs, close to the lower number of SBHs created in
our test models. The initial data for the 4 simulations are described in Table 6.

We performed the dynamical evolution of each of the 4 models using Myriad, which
treats the stars and stellar remnants as point particles, but takes into account their
sizes in the case of collisions. No primordial mass segregation is taken into account,
so the BHs are formed in all the distances from the centre of the cluster. The absence
of initial mass-segregation leads to an underestimate of the initial frequency of IMBH-
SBH interactions, but, as we will show below, most of the most massive SBHs sink
to the center and interact with the IMBH very soon. Stellar evolution is only used
for creating the initial data for our models. During the N-body simulations stellar
evolution is turned off, so the masses of stars and the masses and the number of
remnants remain constant in time. This is a simplification, which does dot have a
significant impact on the dynamics of the IMBH and therefore on our results. Further
(i.e. after the 10 Myr of the initial data) stellar evolution would create a number of
SBHs with very low mass (< 10 M⊙), which would have a negligible influence on
the dynamics of the IMBH and on a possible binary that the IMBH would form with
one of the higher-mass SBHs. Low-mass SBHs are expected not to be able to replace
higher-mass SBH as companions of the IMBH. Instead, they are expected to be ejected
easily through natal kicks and interactions with the IMBH and other higher-mass SBHs
(Baumgardt et al. 2004).

From our set of simulations, only case A had an IMRI; we will therefore focus on this
case in the remainder of the article. As of now, Myriad runs only with the assistance
of the special-purpose GRAPE system (Makino et al. 2003), so that we are subjected to
the the availability and performance of GRAPE systems.

12.3 dynamics of the system

Initially, the IMBH interacts strongly with a sub-group of stars and SBHs that contains
approximately 20 members. As the system evolves, the members of this sub-group
change. Soon, most of the stellar-mass BHs of the system sink towards the centre and
start to interact with the IMBH and its environment. During this process, some of them
receive big kicks due to 3-body interactions and are slingshot away from the centre of
the cluster or GC itself. After T ∼ 3 Myr the first stable IMBH-SBH binary forms. The
companion of the IMBH is a SBH with mass m•, 11 = 23.9 M⊙ and the initial semi-major
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axis of this binary is a ∼ 88 AU. At T ∼ 9.2 Myr this binary has a strong interaction
with another SBH of the system. The interaction leads to a change of companion for
the IMBH, which now builds a binary with a SBH of mass m•, 18 = 20.1 M⊙. The initial
semi-major axis of the new binary is a ∼ 17.6 AU. This binary survives for nearly
40 Myr, but its characteristics vary significantly. At T ∼ 49 Myr the semi-major axis
changes to a ∼ 5 AU, while the eccentricity increases to e = 0.965. At this point
in the simulation, this binary interacts strongly with the second most massive SBH,
which leads to a companion exchange. The new binary has an initial semi-major axis
of a ∼ 6.55 AU and a very high eccentricity, of e = 0.999. The mass of the new
companion SBH is m•, 2 = 26.54 M⊙. In Fig.(38) we show the evolution of the semi-
major axis and eccentricity for all of these binaries combined into a single curve. After
some T ∼ 13, 000 yr the binary merges and the resulting IMBH receives a random
recoil velocity that depends on the mass ratio of the two members of the system and
on the random spins that the code assigned to them. This “gravitational rocket” or
recoil is such that the resulting velocity exceeds the escape velocity and the merged
system leaves the GC. This is due to the fact that we are using a low number of stars
for the clusters; more realistic clusters will have larger escape velocities, so that the
retained fraction of recoiling IMBH is larger and not well-represented by our case. We
studied the distribution of recoil velocities for a merger of a binary similar to that of
simulation A. We ran a two-body interaction 107 times and calculated the recoil using
equation (140) with different spin orientations and magnitudes for the two black holes.
We found that the most probable recoil velocity for a binary such as the one of case
A peaks around 25 km s−1, with a probability of 21% that the merged system achieves
velocities greater than 50 km s−1, of the order of realistic GC escape velocities.

In Fig. (39) we show the evolution of the distances of the 10 most massive SBHs
from the center. The SBHs inspiral the center very rapidly, as long as the IMBH exists
in the cluster. Some of them escape the system, after passing very close to the central
binary. After the IMBH merges with its binary companion SBH, the coalesced system
leaves the GC and the trajectories of the remaining SBHs are not as steep, because they
orbit the center of density of the GC without sinking rapidly into it.

In Fig. (40) we show the Lagrange radii of the cluster during the simulation. We
stop the simulation at ∼ 10 Myr after the ejection of the IMBH. From t=0 until the
ejection of the IMBH, which happened at t ∼ 49 Myr, the Lagrange radii increase
constantly. This agrees with other results of other N-body (Baumgardt et al. 2004) and
recent Monte Carlo (Umbreit et al. 2012) simulations of GCs containing IMBHs, and
it happens because the central IMBH and the IMBH-SBH binary that forms almost
instantly after the beginning of the simulation, act as a heating source for the cluster.
Kinetic energy is transferred from the IMBH-SBH binary to the stars and SBHs that
pass close from the density center making the binary constantly harder and the stars
more energetic and thus expanding the cluster. When the IMBH is removed from
the cluster, the heating source is absent, so the cluster starts contracting slowly as is
obviously shown in the Lagrange radii. The shrinkage of the cluster would continue
until the central number density of stars becomes high enough that another heating
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Figure 38: Evolution of the semi-major axis and eccentricity of the different three bi-
naries formed with the IMBH. Shortly after the beginning of the simulation,
the IMBH builds a binary with the SBH with the 11th most massive mass,
m•, 11. This corresponds to the first part of the curve (dashed blue curve).
Later there is an interaction which leads to a companion exchange for the
binary, the SBH with the 18th most massive mass, m•, 18. This binary lives
for about 40 Myr. We can see that the two first binaries have phases of very
high eccentricity, ebin ∼ 1, but not high enough to lead to a coalescence. The
jumps in ebin indicate that the IMBH-SBH is still in a regime in which inter-
actions with other stars play an important role. The system shrinks further
and further until there is a three-body interaction. The binary is unbound
and for a short period of time the IMBH has no companion, as indicated
in the zoom-in subplots embedded in both, the upper and lower panels.
Then the final binary forms, with the second most massive SBH. This bi-
nary is very hard and quickly losses energy via GWs radiation, which very
efficiently leads to circularization and the final merger.
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Figure 39: Distance R• to the density center of the GC of the ten most massive SBHs
and the IMBH (solid black line). Strong interactions of the SBHs lead to
ejection of four of them before the IMBH merges. They are removed from
the simulation when R• > 10 pc and they are unbound with the GC. At T ∼
47.7 Myr the IMRI leads to a coalescence that kicks the resulting merged
system off the GC.
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source (i.e. a new binary) is formed at the center. Even though we integrated the
system for another ∼ 10 Myr after the ejection, no such source formed.

In all simulations the IMBH had as a companion a SBH, which was replaced several
times with another SBH usually of greater mass. In the end, the companion of the
IMBH was one of the most massive SBHs of the cluster. Most of the lower-mass
SBHs after sinking to the center and interacting with the central IMBH-SBH binary,
were kicked out of the GC. Also, in none of the simulations we find a main-sequence
or giant star tidally disrupted by the IMBH. This is in agreement with the models of
(Baumgardt et al. 2004) which contain a number of massive SBHs. In our models, apart
from the IMBH, SBHs are the most massive objects in the GC and therefore sink to
the center faster than any other star. As a result a IMBH-SBH binary forms very soon
with the companion of the IMBH being more massive than any other non-SBH object
of the cluster. Thus, only interactions of the binary with another SBH of comparable
or higher mass than the current companion of the IMBH may lead to a companion
exchange, so it is almost impossible for a normal star to come too close to the IMBH
to get tidally disrupted. Therefore, tidal disruptions of stars are not favoured in our
models.

After the merger, the IMBH leaves the GC without any companion. This may be
an artifact of the low number of stars used in the simulation. In real clusters a small
number of stars or remnants are expected to be bound to the IMBH, so if the IMBH
receives a large kick, they will follow it outside the GC. In this case, and if there are no
massive SBHs among the IMBH companions, some stars might be tidally disrupted by
the IMBH, and thus the system might become a ULX not associated with a GC.

12.4 gravitational waves from an imri

In this section we follow the binary IMBH-SBH from the standpoint of emission of
GWs. In Fig.(41) we can see the evolution of the IMRI in a semi-major axis and orbital
period – eccentricity plane. The binary enters the plot from the top with a high ec-
centricity, which places it very close to the innermost stable circular orbit, but the loss
of energy quickly circularises it and drives it to lower eccentricities. As we discussed
in the previous section, the binary forms with a very small initial semi-major axis, so
that it hardens very efficiently. Hence, the binary follows closely what we can expect
from the approach of Peters (1964), since the post-Newtonian terms lead the evolution
of the system, which can be regarded as dynamically decoupled from the GC. It then
enters the band of a LISA-like or ALIA detector with a significant eccentricity and
the simulation is stopped when the semi-major axis is a = 5 RSchw, the Schwarzschild
radius of the IMBH. That is the moment at which the code assigns a recoil velocity to
the merged system based on the spins of the two compact objects.

In Fig.(42) we can see the same from the perspective of the characteristic amplitude
and frequency of the waves. We display the first harmonics in the approximation of
Keplerian ellipses of Peters & Mathews (1963).
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Figure 40: Lagrangian radii showing the evolution of different mass fractions in the
cluster: from the top to the bottom 90, 80 ... 20, 10, 5, 3, 2, 1 and 0.1% of the
total mass. The green rectangle shows the interval of time before and after
the kick of the IMBH off the cluster. All mass curves suffer a jump at the
moment of ejection. After the removal of the heating source from the center,
the curves are flatter and their slopes start to decrease.
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Figure 41: Inspiral of the SBH into the IMBH from the top to the bottom and from
the left to the right in the eccentricity–semi-major axis plane. The red, solid
curve starting at a very eccentric orbit shows the results of the Nbody sim-
ulation. The dashed, green region corresponds to the band of a LISA-like
mission. Dashed, blue curves correspond to the trajectories due only to
the emission of GWs in the Peters & Mathews (1963) approximation. We
also plot the corresponding merger timescales in the same approximation
in dashed, blue lines starting at 1010 years, and in solid, black lines the
corresponding trajectories for evolution by GW emission Peters (1964) ap-
proximation. The black-shaded region on the right corresponds to the last
stable circular orbit. Since the binary starts at a very high eccentricity, it
basically follows one of the solid black lines, because it merges quickly and
does not interact with other stars in the system.
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Figure 42: Characteristic amplitude hc of the first harmonics of the quadruple gravita-
tional radiation emitted during the inspiral of the IMRI. The numbers show
the first four of the harmonics. The orbital evolution is calculated in the
Peters (1964) approximation and the amplitudes as in Peters & Mathews
(1963). We assume the source is at a distance D = 1 Gpc. We indicate with
a solid curve the noise curve

√
f Sh( f ) for the ALIA detector with an arm-

length of 3 × 109 m, a telescope diameter of 0.58 m, and a 1-way position
noise of 8/

√
Hz pm; i.e. the 3H configuration of Gong et al. (2011). We also

add the noise curve for a LISA-like detector (in grey, Larson et al. 2000),
with the Galactic binary white dwarf confusion background (Bender & Hils
1997). Note that the SNR is not given by the height above the curve, but
by the area below it. For each panel we show the ratio R0

p/Rs, the initial
periapsis distance over the Schwarzschild radius of the system. We indicate
the moments in the evolution for which the time to coalescence is 5, 1 yr, 1

hour, 10 minutes and 1 sec.
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12.5 conclusions

In this work we have investigated with a direct-summation code the evolution of GCs
that harbour an IMBH in their center. The code uses relativistic corrections and a pre-
scription for gravitational recoil. For one of the cases we find that an IMRI forms with
a SBH due to close interactions, which leads to the ejection of IMBH after coalescence.
We follow the properties of the IMRI from a standpoint of the global evolution of the
cluster and of GW.

Before the formation of the IMRI and the subsequent ejection of the IMBH, the clus-
ter experiences strong expansion as a result of two-body relaxation in the presence of
an IMBH. The IMBH-SBH binaries that are formed transfer kinetic energy to the stars
that sink to the center and as a result the GC expands significantly. Some of the inner
Lagrange radii of the cluster almost double in size during the first ∼ 50 Myr of dynam-
ical evolution. Also, most of the massive SBHs sink to the center very rapidly and after
interacting with the IMBH, if they do not become its companions, they receive large
kicks and get ejected violently from the GC. After the ejection of the IMBH, the GC
slowly starts to contract as a result of the absence of the heating source at the center.
This might lead to another core collapse of the GC, something we do not observe in
the simulation in the first 10 Myr after the ejection if the IMBH.

In our simulations, the IMBH forms a binary with a SBH very early and then ex-
changes its companion several times. In the simulation we observed an IMRI, the
IMBH formed a binary with the second most massive SBH of the system. The initial
high eccentricity of the IMBH-SBH binary lead to an IMRI and a subsequent merger.
We showed that for z ⩽ 0.7 the energy loss of the binary in GWs is easily detectable
by space-borne missions such as a LISA-like observatory (Amaro-Seoane et al. 2012)
or ALIA in its 8 pc configuration. Moreover, the IMRI enters the bandwidth of the
detectors with a very high eccentricity, e = 0.9987, as with the EMRIs. One year before
the final coalescence, the system still retains a residual eccentricity of e ∼ 0.12, and ten
minutes before merger of e ∼ 10−3, which is detectable by data-analysis techniques
(Amaro-Seoane et al. 2010; Key & Cornish 2011; Porter & Sesana 2010).

IMRIs represent a test of GR, as well as a probe of space and time around massive
black holes and also of the innermost kinematics of GCs to very large distances, of the
order of a few Gpc. On the top of that, a successful detection would represent very
robust proof for the existence of IMBHs. The fact that the kick is making the merged
system leave the GC is possibly an artifact of the low particle number we used in
the simulations, though in principle recoiling velocities can be much higher than the
escape velocity of a cluster, of the order of ∼ 50 km s−1 (see e.g. Holley-Bockelmann
et al. 2008; Rezzolla 2009). However, we have also demonstrated that there is a non-
negligible statistical probability that a similar case leads to a kick of the IMBH off a
realistic GC.

In our simulations we do not observe any tidal disruption of stars and also in the
simulation in which we had an IMRI, the IMBH left the system without any compan-
ion. This is probably also an artifact of the low number of stars used in the simulations.
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In real clusters normally there is a small number of stars bound to the IMBH, so after
all the SBHs are ejected and probably after some IMBH-SBH mergers, the IMBH will
be followed by a number of main-sequence or giant stars, even if it is ejected from the
GC. Therefore, if after the IMBH-SBH merger the IMBH remains in the GC, it might
soon become an X-ray source at the center of the cluster, similar to the ULXs that are
located at the centers of GCs (e.g. the ULX at NGC 404 Binder et al. 2011; Nyland et
al. 2012). On the other hand, if it escapes the GC, followed by the stars bound to it,
it might soon become a ULX outside of the GC. In this context, HLX-1 might be an
escaping IMBH that originated at the center of ESO243-49 and received a large recoil
velocity after a merger with a massive SBH. The kick is responsible for the escape if
the IMBH, which is followed by a number of stars gravitationally bound to it. This
scenario supports one of the possible scenarios for HLX-1 suggested by Soria et al.
(2012) according to which the HLX-1 is an IMBH embedded in a young population of
stars with ages < 10 Myr and total mass with upper bound of ∼ 104 M⊙. A larger
number of simulations of escaping IMBHs using a realistic number of stars would be
appropriate for testing this scenario.

In spite of the code been ported to run on a PC with special-purpose hardware
GRAPE, we can not cover a broader parameter space, nor study cases with a larger
number of stars, or study the global dynamical evolution of the GC after the kick for a
longer time. We plan on performing a better parameter space exploration thanks to the
availability of GPUs, which will allow us to address the limitations we described above.
This will allow us to investigate the potential global structure of the GC after the kick,
since the impact on the cluster could in principle be a signature for the process. Also,
it will allow us to study also the properties and detectability of the escaping IMBHs
and their possible companions.
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S O W I N G T H E S E E D S O F M A S S I V E B L A C K H O L E S I N S M A L L
G A L A X I E S : Y O U N G C L U S T E R S A S T H E B U I L D I N G B L O C K S O F
U LT R A - C O M PA C T- D WA R F G A L A X I E S

Pau Amaro-Seoane1, Symeon Konstantinidis2, Marc Dewi Freitag3, M. Coleman
Miller4 & Frederic A. Rasio5

Published in The Astrophysical Journal, Volume 782, Issue 2, article id. 97, 14 pp. (2014).

Abstract: Interacting galaxies often have complexes of hundreds of young stellar clusters of individ-
ual masses ∼ 104−6 M⊙ in regions that are a few hundred parsecs across. These cluster complexes
interact dynamically, and their coalescence is a candidate for the origin of some ultracompact dwarf
galaxies (UCDs). Individual clusters with short relaxation times are candidates for the production of
intermediate-mass black holes of a few hundred solar masses, via runaway stellar collisions prior to the
first supernovae in a cluster. It is therefore possible that a cluster complex hosts multiple intermediate-
mass black holes that may be ejected from their individual clusters due to mergers or binary processes,
but bound to the complex as a whole. Here we explore the dynamical interaction between initially free-
flying massive black holes and clusters in an evolving cluster complex. We find that, after hitting some
clusters, it is plausible that the massive black hole will be captured in an ultracompact dwarf forming
near the center of the complex. In the process, the hole typically triggers electromagnetic flares via stel-
lar disruptions, and is also likely to be a prominent source of gravitational radiation for the advanced
ground-based detectors LIGO and VIRGO. We also discuss other implications of this scenario, notably
that the central black hole could be considerably larger than expected in other formation scenarios for
ultracompact dwarfs.

13.1 introduction

Several bound systems of young, massive clusters in colliding galaxies have been ob-
served using the Hubble Space Telescope (HST). The best studied case is the Antennæ
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galaxies (NGC 4038/4039), the nearest example of two colliding disc galaxies listed in
the Toomre (1977) sequence. HST observations reveal in this system the existence of
relatively small regions (compared with the size of the galaxies) harbouring hundreds
or thousands of young clusters (Whitmore 2006; Whitmore et al. 2010, 1999). In partic-
ular, Whitmore et al. (2010) observed 18 areas (“knots”) of sizes spanning 100− 600 pc
which contain hundreds of clusters. The mass function of those systems, which we
will henceforth refer to as “Cluster Complexes” (CCs), is

dN/dM ∝ Mβ, (141)

with β = −2.10 ± 0.20 in the range M ∼ 104−5 M⊙ (see also Zhang & Fall 1999).
Bastian et al. (2006) found in the same system low-mass CCs with masses around
106M⊙ and diameters of some 100 − 200 pc. One of the best studied CCs in the
Antennæ galaxy is “knot S”, with a total mass of 108M⊙ and a total radius of ∼ 450pc
(Whitmore et al. 1999). Other galaxies with recently discovered CCs include NGC 7673

(Homeier et al. 2002), M82 (Konstantopoulos et al. 2009), NGC 6745 (de Grijs et al.
2003), Stephan’s Quintet (Gallagher et al. 2001) and NGC 922 (Pellerin et al. 2010).

CCs are bound systems (Bruens et al. 2011; Fellhauer & Kroupa 2005; Kroupa 1998;
Whitmore et al. 2010) and on relatively short time-scales at least some of their member
clusters will merge to form a single object. Kroupa (1998) and Fellhauer & Kroupa
(2005) have postulated CCs as the breeding ground of Ultra-Compact Dwarf Galaxies
(UCDs). Following this idea, Bruens et al. (2011) performed N−body simulations of
CCs with different total masses (105.5 − 108 M⊙) and initial Plummer radii 10− 160 pc.
They conclude that UCDs, Extended Clusters (ECs) or even large Globular Clusters
(GCs) might be the product of an agglomeration of clusters in CCs. They find in their
simulations that almost all members of a CC merge in less than 1 Gyr. In some cases
this timescale can be as short as 10 Myr. By the end of their simulations a very massive
cluster forms in the centre of the CC, with a mass of 26 − 97% the mass of the initial
CC and a radius of ∼ 50 pc.

Theoretical and numerical studies show that at least a fraction of young star clusters
could host intermediate-mass black holes (IMBHs, black holes with masses ranging
between 102−4 M⊙) at their centres. A possible formation path is that in a young
cluster, the most massive stars sink to the centre due to mass segregation. After a
high-density stellar region forms, stars start to collide and merge with each other.
A number of numerical studies with rather different approaches show that, under
these circumstances, at least one of the stars increases its mass rapidly in a process
of runaway collisions (Freitag et al. 2006a,b; Gürkan et al. 2004; Portegies Zwart et al.
2004; Portegies Zwart & McMillan 2000). Nonetheless, there are a number of open
questions regarding this process. One of the main uncertainties is the role of stellar
winds. In principle at approximately solar metallicity winds may limit the mass of this
very massive star (VMS) to a few hundreds of solar masses rather than a few thousands
(Belkus et al. 2007). Nevertheless we note that this requires a substantial extrapolation
of already uncertain wind loss rates to stellar masses an order of magnitude beyond
what is observed. Also, the collision process might lead to lumpy bags of stellar cores
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in an extended envelope rather than to relaxed stars near the end of the runaway
collision (M. Davies, private communication). In addition, when Suzuki et al. (2007)
combined direct N−body simulations with smooth particle hydrodynamics (SPH) they
found that stellar winds would not hinder the formation of the VMS. It is thus possible
but not certain that IMBHs can form in young clusters. We will assume their existence
as a working hypothesis.

Apart from the obvious interesting implications for models of galaxy formation and,
in particular, of UCDs, mergers of clusters in CCs are a powerful source of gravita-
tional waves if these harbour central IMBHs in their respective centres (Amaro-Seoane
et al. 2010; Amaro-Seoane & Freitag 2006; Amaro-Seoane et al. 2009; Amaro-Seoane
& Santamaría 2010). In particular, Amaro-Seoane & Freitag (2006) showed that such
mergers would lead to the formation of an IMBH binary, which would merge in a time
scale as short as ∼ 7 Myr. Such a merger would be easily detected with space-borne
observatories and also with ground-based detectors such as Advanced LIGO or Ad-
vanced VIRGO (AdLIGO/AdVIRGO) if it occurs within ∼ 2 Gpc (Fregeau et al. 2006).
Using more realistic waveforms including spins, Amaro-Seoane & Santamaría (2010)
find that the detection distance is increased significantly, up to an orientation-averaged
distance of ∼ 5 − 12 Gpc, depending on the spin configuration and mass ratios. In the
case of the Einstein Telescope (ET), the same authors find that the maximum redshifts
for ET are z ∼ 10, which implies that binaries of IMBHs will be a cosmological probe.

Numerical relativity simulations show that during the merger of the holes, gravita-
tional radiation is emitted asymmetrically with the size of asymmetry depending on
the mass ratio of the two black holes and on their spin magnitude and orientation
(Baker et al. 2008; Boyle & Kesden 2008; Campanelli et al. 2007a,b; Gonzalez et al.
2007; Healy et al. 2009; Herrmann et al. 2007a,b; Lousto & Zlochower 2008; Lousto
et al. 2010; Lousto & Zlochower 2011b; Pretorius 2005; Sopuerta et al. 2006; van Meter
et al. 2010; Zlochower et al. 2010) If this recoiling velocity exceeds a few times the
velocity dispersion of the merged cluster, then the IMBH leaves the host cluster. There
is a massive black hole at large in the CC. Even if an IMBH escapes from one cluster,
it might still be bound to the CC as a whole, which means that it has the possibility of
interacting with other clusters and, perhaps, their IMBHs.

In this article we address the formation of ultra-compact dwarf galaxies by the ag-
glomeration of young clusters in CCs, along with the role of one or more recoiling
IMBHs, using direct-summation N−body simulations. For this, we run a set of ∼ 200
individual experiments in which we vary mass ratios, relative speeds, and impact pa-
rameter to study in detail the interaction between a single IMBH and a cluster. We
then study the interaction of one or more IMBHs at large in a CC with individual
clusters with an additional set of N−body simulations. We correct for the trajectory
of the IMBH, based on point dynamics and the mass loss in the individual clusters,
by using the previous 200 experiments. We also follow the growth of a seed UCD in
a CC and record all stellar disruptions triggered by the presence of the IMBH(s). For
realistic models of CCs we find that the IMBH(s) end up captured by the seed UCD
or by a smaller cluster which is close to the UCD. Thus, if the fraction of IMBHs in
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the CC ( f• from now onwards) is not zero, this is a process of allocating one or more
IMBH at the very centre of a UCD.

13.2 interactions between a recoiling imbh and an individual young

cluster

In this section we make a study of the parameter space for a collision between a
recoiling IMBH and an individual young cluster in a CC. We run a set of ∼ 200 direct
N−body simulations to build a grid which we will later use in our simulations of
the IMBH in the CC, as explained in the introduction. Initially we set the IMBH and
the cluster on an orbit with positive relative speed and thus positive total energy in
the initial state, i.e. a hyperbolic orbit, as described in Amaro-Seoane (2006). We
schematically show this for reference in Fig. (43) and follow a similar notation. The
initial trajectory of the IMBH would bring it within a minimum distance dmin of the
cluster centre if the cluster was replaced by a point particle. In the centre-of-mass
reference frame (COM),

x• = λcl d,
xcl = −λ• d,
v• = λcl vrel,
vcl = −λ• vrel (142)

where vrel is the relative velocity of the two objects d is their separation vector, x• ,cl
are the positions of their centres, and λ• ,cl = m• ,cl/(M• + Mcl).

The number of stars in the cluster is always N⋆ = 3× 104 and we use for their initial
distribution a King model of concentration W0 = 7 (King 1966; Peterson & King 1975),
and all stars have the same mass, to simplify the interpretation of the results, although
we note that a mass function could have an impact in the outcome of individual hits.
Stellar evolution is not taken into account for the same reason. Although the number
of stars we simulate is still below of what we can expect from a real cluster, we deem
the dynamical interaction to be correct but for probably the most extreme mass ratios
in which the mass ratio between the IMBH and the total mass in the cluster is one and
two. We include these cases for completness but note that in those cases the stars in
those clusters do not represent a single star but a set of them. I.e. the IMBH will hit
lighter clusters with those mass ratios, and the orbital evolution of the IMBH will be
correctly estimated in our simulations, but the trajectory of a single star in such clusters
does not trace one single star, but a set of them. The simulations are performed with
the direct-summation NBODY4 programme of Aarseth (2003). This choice was made
for the sake of the accuracy of the study of the orbital parameter evolution of the IMBH
and mass loss in the cluster; this numerical tool includes both the KS regularisation
(Kustaanheimo & Stiefel 1965) and chain regularisation, which means that when two
or more particles are tightly bound to each other or the separation is very small during
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M•

Mcl

x•

dmin

vcl

xcl

v•

Figure 43: Geometry for the initial conditions of the parabolic collision, in the COM
of the IMBH–cluster system. To obtain the grid displayed in Fig.(44), we
systematically vary dmin, the relative velocity and the mass ratio between
the IMBH and the cluster.
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a hyperbolic encounter, the system becomes a candidate to be regularised in order to
avoid problematical small individual time steps. The basis of direct N−body codes
relies on a Hermite integrator scheme (Aarseth 1999, 2003) for which we need not only
the accelerations but also their time derivatives. This extra computational overhead is
necessary for us to follow reliably the orbital evolution of every single star (or IMBH)
in our system. While the code was not meant to integrate clusters in which a particle
is significantly much more massive than the rest of them, a mass ratio of the order of
what we have considered in this study leads to an accurate integration, with individual
time integration errors of the order of 10−10 in energy.

At the end of an N-body run, we need to identify the particles that are still forming
a bound cluster, the particles that are bound to the IMBH, and the particles that have
become unbound. We also need to know whether the IMBH has been captured by
the stellar cluster. We have therefore developed an iterative algorithm. To initialize
the procedure, we make a (computationally) quick guess of which particles are bound
to the cluster and which ones form a bound group including the IMBH (the “IMBH
group”). Note that a given particle can be in both groups, for instance if the IMBH
has been captured by the cluster and has sunk to its centre or is orbiting it. For this
first guess, stellar particles are considered bound to the IMBH group if they are bound
to the IMBH (i.e., we do not take into account the self-gravity of the bound stars
themselves).

For the first-guess cluster, one assumes that its centre corresponds to the median
position of all stellar particles, i.e. the x, y and z components of the “centre” are taken
to be the medians of the corresponding components of the positions of all the stellar
particles. The median turns out to be a much more robust estimate of where the bulk
of the particles is, compared to the average position or the centre of mass (i.e. the mass-
weighted average position) as those quantities are very sensitive to the the positions
of a few particles ejected at large distances from the rest. For this first guess, the 90 %
of the particles closest to this median position are assumed to be part of the cluster.

For the first iteration, we have to compute the binding energy of a particle relative
to the cluster group, hence we need to know the velocity of that group. To estimate
the velocity of the cluster in the first-guess attribution, we take the average velocity
of the 10 % of the particles closest to the assumed centre. This number is sufficient to
avoid large fluctuations due to individual particle velocities (“random velocities”). On
the other hand, taking a significantly larger fraction of particles is neither necessary
nor advisable as it is not yet known which particles are actually bound together as
a cluster. We have to make sure that the velocity defined in the procedure is a good
estimate of that of the actual bound cluster. Otherwise, the kinetic energies relative to
this first-guess cluster are biased towards high values and the iterative procedure fails
at identifying a bound cluster. The iterations proceed as follows: For each particle,
the binding energies relative to the cluster and the IMBH group are computed. For
this, we have to estimate the position of the centre of each group and its velocity. For
the IMBH group, they are fixed to the values of the IMBH itself. For the cluster, the
centre position and velocity are defined to be the mass-weighted mean values for all
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Figure 44: Outcomes of all 196 simulations of encounters between a cluster with King
parameter W0 = 7 and an IMBH. Each panel shows the results for a given
mass ratio MBH/Mcl. The abscissa of each plot is the minimum distance
dmin, computed assuming 2-body dynamics, in units of the half-mass radius
Rh. The ordinate is the relative velocity at infinity V∞, in units of Vh ≡
(GMcl/Rh)

1/2, a typical velocity dispersion for the cluster. Solid round
dots show “mergers”, i.e., cases where the IMBH has been captured by the
cluster and has settled at its centre. Solid triangles are cases in which the
IMBH is orbiting the cluster (a merger is likely to be the long-term outcome).
Open squares are “fly-throughs”. The number just below a symbol (in blue
in the on-line colour version) is fractional mass loss from the cluster in
percent. The second, lower number (in orange in the on-line colour version)
is the fractional reduction in specific binding energy of the cluster, also in
percent. A number above a symbol indicates how many stellar particles are
bound to the IMBH (when it has not merged with the cluster).
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particles within half a “typical size” of the previous estimate of the centre. The typical
size of the cluster is the harmonic mean of the distance to its centre (for all particles
considered bound to it):

Rtyp = Rharm ≡ Mcl

(
∑

mi

Ri

)−1

. (143)

One advantage of defining Rtyp using the harmonic mean, instead of using the half-
mass radius or some other Lagrangian radius, is that this does not require a sorting
of the particles. The gravitational energy is computed assuming a spherical mass
distribution, i.e., as if each particle bound to a group (cluster or IMBH group) was
a spherical shell of matter, of radius Ri centred on either the IMBH position or the
estimated centre of the cluster. Typically, the attributions of the particles to either or
both groups converge after fewer than ten iterations.
At the end, the attributions are cleaned up in the following way. If a stellar particle be-
longs to both the cluster and the IMBH group, the binding energies to both structures
are compared. It will be kept as member of the IMBH group only if the binding energy
to the IMBH group is larger than to the cluster group. In that case, it will also be kept
as member of the cluster only if the IMBH itself is bound to the cluster. This reduces
the number of double-members in a reasonable way, still allowing for situations such
as the IMBH having captured some stars while being itself on a bound orbit around
the (main) cluster.
Finally, to interpret the results, we allow for three different outcomes. A merger is
when the IMBH group is bound to the cluster (as determined assuming each group is
a point mass) and the distance between the centres of the groups is smaller than the
sum of the Rtyp’s. A satellite situation arises when the two groups are bound but the
distance between their centre is larger than twice the sum of the Rtyp’s. A flyby is when
the groups are unbound and the distance between their centres is larger than either
the sum of the total extent of each group or five times the sum of the Rtyp’s. Any
other situation would be considered as unknown but does not occur if the N−body
simulation has been carried out for a sufficient duration.
In Fig.(45) and 46 we show two particular cases for the IMBH – cluster interaction in
the COM frame which, although not representative for the whole sample displayed
in Fig.(44), are interesting in terms of the dynamics of the system 1 . In the first case
dmin = 1, which leads to an almost head-on collision between the IMBH and the cluster.
Nonetheless, because of the low relative velocity and mass ratio, the interaction does
not lead to a huge mass loss from the cluster. Even if at T = 45.60 Myr the IMBH
and cluster seen to be unbound, the IMBH is still forming a binary with the COM of

1 The interested reader can visit
http://members.aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxies,
for movies based on the results of the figures (the last URL is a 3D version of the second movie). The
encoding of the movies is the free OGG Theora format and should stream automatically with a gecko-
based browser (such as mozilla or firefox) or with chromium or opera. Otherwise please see e.g.
http://en.wikipedia.org/wiki/Wikipedia:Media_help_(Ogg)

for an explanation on how to play the movies.
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the cluster and, hence, the semi-major axis decays again. After some 154 Myrs the
IMBH settles down to the centre and is captured. In the second figure, the larger
mass ratio has a significant impact in terms of mass loss. Already after 11.62 Myr the
IMBH has captured some stars from the cluster, which remain bound to the trajectory
of the hole and follow its trajectory. This satellite and the IMBH are nevertheless still
gravitationally bound to the cluster and hence fall back again. The higher mass in the
IMBH–satellite system leads to a rather large mass loss from the original cluster. After
80.50 Myrs the IMBH is at the centre of the remaining cluster.

13.3 interactions between a single recoiling imbh and clusters in a

cc

13.3.1 Integrator and first considerations

Now that we have completed the grid of individual IMBH-cluster interactions, we can
explore the scenario in which one IMBH is at large in a CC, interacting with many
different IMBH on its way, either to an eventual escape from the CC, or down to the
very centre, where the seed of a UCD is forming by the mergers of clusters. In this
section we will assume f• = 2/Ntot, where Ntot is the total number of clusters in the
CC; that is, only two clusters in the whole CC harbour an IMBH and we also assume
that they have coalesced and the merged hole escaped from the host cluster. As we
will see, the presence of the IMBH triggers stellar disruptions in individual clusters of
the CC, which could potentially represent a fingerprint of this process. In next section
we will look at larger values of f•.

The numerical code that we use for the simulations of the CC and the IMBH
is Myriad (Konstantinidis & Kokkotas 2010), which uses the Hermite fourth-order
predictor-corrector scheme with block time steps (Makino & Aarseth 1992) for advanc-
ing the particles in time, while the accelerations and their derivatives are computed
using GRAPE-6 (Makino et al. 2003) special purpose computers. Close encounters be-
tween particles (i.e. between clusters or between the IMBH and a cluster) are detected
using the GRAPE-6 and evolved with a time-symmetric Hermite fourth-order integra-
tor (Kokubo et al. 1998). Even though the code was originally designed for dynamical
simulations of stars in star clusters, its flexible modularity made it easy to adapt to our
particular problem. In particular, we assigned a radius to each particle representing a
cluster, and we allowed clusters to merge with each other whenever the distance was
smaller than the sum of the radii. In the simulations the IMBH is also a particle with
a radius set to its Schwarzschild radius.

From the individual IMBH-cluster simulations presented previously we have data
for the outcomes based on the mass ratio M•/Mcl, the distance of closest approach
between IMBH and cluster, and the relative velocity of the two objects and, thus, the
change in kinetic energy of the IMBH. We use these results to correct the position
and velocity of the IMBH after each interaction with a cluster in the simulation of the
CC. This also provides us with information about the number of stellar disruptions
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Figure 45: Projection in the X–Y plane of all trajectories of the stars (star symbols) in
a cluster and the IMBH (red circle) for 12 different moments in the interac-
tion. In this particular case, the process leads to the capture of the IMBH.
For visibility, the radius of the IMBH and the stars has been artificially mag-
nified. We also depict the previous 60 positions of the IMBH with a solid,
green line. The mass ratio between the IMBH and the cluster is 0.01, the
minimum distance of approach of the COM of the cluster and the IMBH is
dmin = 1 and V∞ = 1km s−1.

204



13.3 interactions between a single recoiling imbh and clusters in a cc

Figure 46: Same as in Fig.(45) for 15 different times. The mass ratio in this case is
0.333, dmin = 5 and V∞ = 3km s−1.
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triggered by the IMBH, as well as the characteristics of the cluster which captures the
IMBH (if any). If a capture does occur, the simulation finishes and then we record
the position of the “trapping” cluster in the CC. Another possible termination of the
simulation is if the IMBH leaves the CC, because its speed is high enough to escape
the complex.

13.3.2 Assumptions for the initial conditions of the CC and the IMBH

Initially we fix the radius of the CC, RCC, to a typical value coming from observational
data and populate it with individual clusters following equation 141. In particular,
in the “knots” of the Antennæ galaxy one observes a mass distribution with n =
−2. The number of observed individual clusters in CCs is of the order of 100, but the
actual number might actually be thousands, most of which are simply too faint to
be observed (as discussed in e.g. Fellhauer & Kroupa 2005). We set the total mass
of the CC to a typical observed value, MCC ∼ 106 − 108 M⊙. The individual clusters
have half-mass radii ranging between 0.5 and 4 pc and are distributed initially in the
CC following a Plummer model (Plummer 1911) with a cut off radius (see table 7).
The masses of the clusters are discrete and come from the M•/Mcl ratios that were
used in the IMBH–cluster N−body simulations. Then, for M• = 5 × 103M⊙ and
M•/Mcl = 0.01, 0.033, 0.1, 0.33, 1, 2, the discrete masses of the clusters in the CC are
5× 105M⊙, 1.51515× 105M⊙, 5× 104M⊙, 1.51515× 104M⊙, 5× 103M⊙ and 2.5× 103M⊙.
When two clusters collide in the CC simulation, we assume a 20% mass loss, based on
the simulations of the collisions of two clusters of Amaro-Seoane et al. (2009); Amaro-
Seoane & Freitag (2006), so the cluster product of the merger of two individual clusters
has a mass which is 80% of the sum of the masses and a new radius, equal to the radius
of the more massive cluster plus the 20% of the sum of the radii of the two clusters.

The IMBH in the merged cluster is assumed to be the product of a merger of two
IMBHs that were located at the centres of two merging star clusters. We assume that
this happened close to the centre of the CC, where most of the individual cluster-
cluster collisions take place, because this is where the numerical density of clusters
is highest. Hence, we initially place the IMBH at the centre of the CC. We choose a
mass of M• = 5 × 103 M⊙, which determines the masses of individual clusters from
the grid given in the previous section. The recoil speed of the merged IMBH could
in principle be up to ∼ 5000 km s−1 (Boyle & Kesden 2008; Herrmann et al. 2007a,b;
Lousto & Zlochower 2011a,b)for optimal mass ratios, spins, and spin orientations. The
recoils of greatest interest to our present study are in the ∼ 100 km s−1 range, because
the merged IMBH will then escape from its host cluster but be bound to the CC as a
whole. It is difficult to judge how representative this will be for the mergers of actual
IMBHs in CCs. Assuming the spin orientations are random, speeds in this range are
characteristic of mass ratios q ∼ 0.1 for substantial spins, or spins a/M ∼ 0.1 for mass
ratios comparable to unity (Lousto et al. 2010; van Meter et al. 2010). For our purposes
we will study the case of vrecoil = 100 km s−1. At this speed, the escape time from a
cluster of total radius ∼ 10pc is ∼ 0.1Myr. Hence we simply place the IMBH initially
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Figure 47: Kinetic energy difference between the initial and final kinetic energy (Tkinf, i
and Tkinf, f respectively) normalized to the initial energy for all collisions be-
tween the IMBH and the clusters resulting in a fly-through for all N−body
simulations.
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ID N MCC (M⊙) RCC (pc) ID N MCC (M⊙) RCC (pc)

A1 5 × 102 1.522 × 107 45 E1 3 × 103 4.32 × 107 122
A2 5 × 102 1.522 × 107 90 E2 4 × 103 5.75 × 107 165
A3 5 × 102 1.522 × 107 132 E3 4 × 103 5.75 × 107 246
A4 5 × 102 1.522 × 107 168 E4 4 × 103 5.75 × 107 329
A5 5 × 102 1.522 × 107 255
B1 1 × 103 1.522 × 107 90 F1 5 × 103 7.18 × 107 122
B2 1 × 103 1.522 × 107 128 F2 5 × 103 7.18 × 107 165
B3 1 × 103 1.522 × 107 169 F3 5 × 103 7.18 × 107 248
B4 1 × 103 1.522 × 107 252 F4 5 × 103 7.18 × 107 330
B5 1 × 103 1.522 × 107 333
C1 2 × 103 2.9 × 107 126 G1 6 × 103 8.6 × 107 122
C2 2 × 103 2.9 × 107 167 G2 6 × 103 8.6 × 107 165
C3 2 × 103 2.9 × 107 252 G3 6 × 103 8.6 × 107 248
C4 2 × 103 2.9 × 107 336 G4 6 × 103 8.6 × 107 330
D1 3 × 103 4.32 × 107 124 H1 8 × 103 1.14 × 108 122
D2 3 × 103 4.32 × 107 166 H2 8 × 103 1.14 × 108 165
D3 3 × 103 4.32 × 107 249 H3 8 × 103 1.14 × 108 248
D4 3 × 103 4.32 × 107 332 H4 8 × 103 1.14 × 108 330

Table 7: Simulation ID, number of clusters, total mass and cut-off radius of the CC.
Note that the table is vertically split in two subtables.

at the centre of the CC, not bound to any cluster, and assume that it recoils in a random
direction.

For the evolution of the recoiling IMBH we must take into account the loss of kinetic
energy every time it hits a cluster. In figure (47) we can see the distribution of the
resulting kinetic energy after a hit for all fly-by simulations of figure (44). While there
is a spread in the distribution, there is a strong spike around 10% of loss for about 50%
of all simulations. We have therefore adopted a slightly larger value, of 20%. This loss
of energy will result into a rather negligible deacceleration of the IMBH, so that it will
have more chances to escape the CC, and it will also lead to a lower number of stellar
tidal disruptions. On the other hand, a bit less than 50% of all “fly-throughs” have at
least over ∼ 5% of relative loss after one hit. This situation is more appealing from a
dynamical standpoint, and therefore we will first address it. In the next sections we
will assume an average loss of 20% for the “fly-throughs” hits, and in section 13.5 we
will briefly explore the other situation.

Our parameter space consists of the number of clusters N and the initial radius of
the CC, RCC. The total mass MCC of the CC is a consequence of N, because the masses
of the clusters are assumed to follow a power law. The total radius that we use varies
from 45 pc to 330 pc. Given the mass and the size of the CCs, the initial escape speeds
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at the centres of the CCs are between 27 − 137km s−1. All details for all simulations
are given in table 7.

13.3.3 Results of the simulations

In figure 50 we present the results of our 34 CC simulations. In simulations A1-A5,
B1-B5, C1-C4, D1-D4, E3-E4, F4, G4 and H4 the IMBH escapes the CC after between
zero and a few interactions with clusters. These cases correspond to smaller-mass
CCs or to low initial concentrations. In simulations E1-E2, F1-F3, G1-G3, and H1-H4,
which are more representative of observed CCs, the IMBH is captured in the CC after a
significant number of interactions and ends up being trapped by an individual cluster,
which can be the UCD seed (cases E1, E2, F2, F3, and H2). We show two particular
cases which led to the capture of the IMBH in figures 48 and 49.

The IMBH goes through a very large number of interactions with individual clusters
until it is eventually trapped. This number depends on the density of clusters in the
CC. In 6 simulations, the IMBH gets captured by a cluster that has not yet merged
with other clusters. In 5 simulations, the cluster that captures the IMBH is the central
cluster of the CC, the seed UCD. We show in table 8 the details about the cluster
that captures the IMBH, the distance from the centre where this takes place, and the
mass of the most massive cluster in the system at the time of the IMBH-capture, i.e.,
the mass of the UCD seed. An interesting process in the dynamical evolution of the
system is that the IMBH triggers stellar collisions, i.e., stars are set on such an orbit
that they collide and disappear from the system. We note that only in one case, in
simulation F1, one star was torn apart by the tidal forces of the IMBH acting on a star.
The middle number next to each circle of figure 50 corresponds to star-star collisions
triggered by the IMBH in the clusters. We can conclude that one should expect a star-
star collision in a CC every 5 − 8Myr. In figure 51 we show the accumulated number
of stellar collisions that led to a disruption in function of the time for simulation G3,
as well as the accumulated number of hits between the IMBH and a cluster.

The third number next to each circle of Figure 50 is the initial escape velocity at
the centre of the CC. As it is obvious, CCs with values < 100km s−1 retain the IMBH
due to our choice of the initial recoiling speed. An interesting case is simulation H4

in which the escape velocity is 84km s−1, but the IMBH escapes because the system is
initially not very concentrated and the IMBH has only 2 interactions with clusters. In
this case, the energy of the IMBH did not decrease enough to be trapped in the CC.
Simulation G3 corresponds to the opposite situation. Even though the escape speed
is the same as in H4, the IMBH remains in the system because the CC is denser, so
that the IMBH has a chance of interacting significantly with clusters and, hence, of
decreasing its kinetic energy below the threshold. In figure 52 we have the evolution
of the velocity of the IMBH in simulation G3 compared with the escape velocity at the
radius of the CC where the IMBH is. Initially, the escape velocity is lower than the
velocity of the IMBH, ensuring the escape of the IMBH from the system, but the IMBH
loses energy rapidly during the first few Myr because of its interactions with clusters.
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Figure 48: Formation of the UCD seed at the centre of the CC. We show a projection
in the X–Y plane of all individual clusters for the simulation F3. The radii of
the clusters have been artificially magnified, heavier members have larger
sizes and darker colours relative to every panel for the sake of visibility. This
means that even if the colours of the heaviest clusters in the last panel are
as dark as the most massive ones in the first panel, the clusters in the last
panel are heavier and larger. After 7.44 Mys we can already see how the
more massive clusters start to agglomerate at the centre of the CC. Later,
at T ∼ 40 Myr, all of them are confined to the central part of the CC and
in the last panel we can see that only a handful of clusters are heavy and
a very massive cluster is sitting at the very centre, while lighter clusters
occupy all of the remaining space. The mass of this very massive cluster
is 2.9 × 106M⊙ and constitutes the seed of the UCD. See http://members.

aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxies, model F3 for
an animation of the process.

210

http://members.aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxies
http://members.aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxies


13.3 interactions between a single recoiling imbh and clusters in a cc

Figure 49: Same as in Fig.(48) but for simulation G3. In this case we show a zoom
of diameter 600 pc. As in the first figure, after some ∼ 100 Myr we have
a very massive cluster at the centre and all other clusters are much lighter.
The heaviest cluster at this time has a mass of 5.5 × 105 M⊙, while clusters
with masses 5.2 × 105 M⊙, 5.0 × 105 M⊙, 1.9 × 105 M⊙, 1.4 × 105 M⊙ and
6.5 × 104 M⊙ lie very close to the centre of the CC. See http://members.

aei.mpg.de/amaro-seoane/ultra-compact-dwarf-galaxies, model G3 for
a movie of the figure.
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Figure 50: Outcome of the CC simulations. The x-axis shows the number of clusters
in each simulation, while the y-axis shows the initial radius of the CC. The
upper x-axis shows the total mass of the system in M⊙. Every circle cor-
responds to a single entry of Table 7 in a way such that the circle at the
bottom left corresponds to the simulation with ID A1 and the circle at the
top right corresponds to the simulation with ID H4. An open circle indicates
a simulation where the IMBH finally escaped the CC. On the other hand,
a filled circle represents a simulation where the IMBH remained bound to
the system. Next to every circle there are three numbers. The first (black)
shows the number of clusters hit by the IMBH until either it escapes the
CC or it is captured by a cluster. The second (red) number is the number
of stars that are tidally disrupted by the IMBH and the number of star-star
collisions triggered by the IMBH in the clusters. The third number indicates
the initial escape velocity at the centre of the CC in km s−1.
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Figure 51: Cumulative number of IMBH and cluster hits for the simulation G3 (in-
verted, light magenta triangles) and of stellar collisions leading to a disrup-
tion (blue triangles) as a function of time.
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Figure 52: IMBH speed (dashed, red line with stars) and instantaneous escape veloc-
ity (solid, green curve with spheres) for the IMBH as a function of time in
simulation G3. Even though initially the IMBH recoiling speed is higher
than the required threshold to escape the CC, soon after ∼ 0.80 Myrs the in-
teractions with individual clusters lower its kinetic energy and it is trapped
in the CC, in the meaning that the speed drops below the threshold.
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ID Coll T[Myr] Rcapt[pc] Mcl[M⊙] MUCD[M⊙] TDF[Myr] TFH[Myr] TFC[Myr]

E1 1 14 9.6 1.9 × 106 1.9 × 106 142 0.197 12.57
E2 0 38.2 10.3 1.2 × 106 1.2 × 106 129 0.09 33.59
F1 4 9.7 42 5 × 103 6.5 × 105 2400 0.047 2.14
F2 9 28.2 18.4 7.3 × 105 7.3 × 105 240 0.067 0.54
F3 6 118 15.4 2.9 × 106 2.9 × 106 367 0.1 0.28
G1 3 10.14 45.6 2.5 × 103 1.1 × 106 4300 0.011 0.35
G2 3 13.1 23.8 1.5 × 104 6.6 × 105 762 0.009 0.009
G3 11 167.4 92.7 2.5 × 103 4 × 106 7900 0.1 44.8
H1 4 11.7 15.5 5.6 × 105 1.3 × 106 26 0.012 3.65
H2 9 20.1 17.8 1.8 × 106 1.8 × 106 360 0.15 5.32
H3 11 49.9 30.2 1.5 × 105 9.7 × 105 167 0.28 9.54

Table 8: Data for the simulations where the IMBH was captured by a cluster of the
CC. The first column shows the ID of the simulation (see table 7). The second
column shows the number of stellar collisions triggered by the IMBH. The
third column displays the time of capture of the IMBH by a single cluster. The
fourth shows the distance from the centre of the CC, where the IMBH was
captured. The next column gives us the mass of that cluster and the mass of
the heaviest cluster in the CC by that time; i.e. the mass of the forming UCD.
The sixth column corresponds to an estimate for the IMBH to reach the centre
of the CC by dynamical friction (see text). The last two columns show the
time the IMBH hits a cluster for the first time and the time of the first stellar
collision in the CC. In the particular case of simulation F1 there was a tidal
disruption of a star by the IMBH.
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13.4 interactions between multiple recoiling imbhs and clusters in

a cc

In this section we investigate a scenario in which f• > 1. We use the initial configura-
tion of F3 as described in table 7 as our fiducial CC system and study the evolution
of systems of five and ten IMBHs at large. For this, we set them initially close to the
centre and allow them to be kicked off the host cluster at the same time, T = 0, as a
simplifying assumption. In real systems there will be a time lag:

τbin = τrun τIMBH τmerg. (144)

where τrun is the timescale for a cluster to evolve to the runaway phase, τIMBH is the
timescale for the VMS to become unstable and form an IMBH and τmerg is the timescale
for the cluster to merge with another cluster. The phenomena involved are various and
the assumptions inherent to τrun and τIMBH prevent realistic estimates, as we explained
in the introduction. On the other hand, Amaro-Seoane & Freitag (2006) estimate that
τmerg ∼ 7 Myr, which compared to the timescale for the CC to reach the seed UCD
phase, of the order of ∼ 100 Myr, is a rather short interval of time and can be regarded
as instantaneous. In view of these arguments, we assume that the IMBHs are expelled
instantaneously from their host clusters at different places of the CC at T = 0.

In table 9 we show the results for the first simulation, in which we place five IMBHs
around the centre, as indicated in column number three. IMBHs #2 – 5 have been
distributed over the surface of a sphere of radius 17.32 pc and only one, #1, is very close
to the centre, to avoid the artificial formation of various binaries of IMBHs when we
start the simulation. We assign the holes initial recoil speeds between 50 − 100 km s−1

and different directions and then let the system evolve. We find that after some ∼ 34
Myr all IMBHs have been either captured by an individual cluster which is sinking
the the centre due to DF, or formed a satellite with a cluster. In figure 53 we show the
CC at T = 62.37 Myr. We stop the simulation at that time because the satellites are
consuming all of the computational power. In the process and up to that time, there
are 7 stars that have been disrupted in the CC, as we can see in the table.

In table 10 we repeat the same exercise but for a system with 10 IMBHs. The initial
setup is identical to the previous one. We find that in this case three holes leave the
system due to an increase in their kinetic energy. The rest of them have formed a hard
binary with a cluster and will eventually be captured.

13.5 lower kinetic energy loss

In the simulations of the previous sections we assumed a loss of relative kinetic energy
of ∼ 20% for the hits that led to a fly-through, although it could be much larger than
that, as we saw in figure 47. While this is true for a bit less than 50% of all systems,
the rest of them had a peak in the distribution around ∼ 5%. We have addressed the
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IMBH ID Outcome Rinit (pc) Vinit/Vesc T (Myr) RUCD
fin (pc) Mcl(M⊙) # Stellar disr

1 capture 0.0024 0.89 14.24 51.2 2.5 × 103
1

2 capture 17.32 0.70 12.41 103 7.85 × 105
2

3 satellite 17.32 0.71 34 0 9.6 × 105
2

4 satellite 17.32 0.94 9.45 9.5 5.44 × 105
1

5 capture 17.32 0.76 2.35 118.2 5 × 105
1

Table 9: Data for the simulation with five IMBHs in a CC. The first column shows
the ID of the IMBH, the second column the outcome of the BH after 35 Myr,
which can be either a capture, a satellite (the IMBH is orbiting a cluster and
will eventually merge with it) or an escape (the IMBH escapes the whole CC).
The third column displays the initial distance of the IMBH from the center of
the CC. The fourth corresponds to the initial velocity of the normalised to the
local escape velocity from the cluster. The fifth gives the time at which the
outcome was measured. The sixth shows the final distance of the capturing
cluster from the most massive cluster of the system, the seed UCD. In this
case, IMBH #3 is captured by the seed, and thus this distance is zero. The
seventh is the mass of the capturing cluster at the time of capture. Finally, the
last column shows the number of stellar collisions in clusters that have been
triggered by the IMBH.

IMBH ID Outcome Rinit (pc) Vinit/Vesc T (Myr) RUCD
fin (pc) Mcl(M⊙) # Stellar disr

1 satellite 0.0018 0.56 1.9 130.7 7.5 × 105
2

2 satellite 17.33 0.97 23.8 130.7 1.6 × 106
2

3 satellite 17.33 0.99 8.9 112.2 1.44 × 106
3

4 satellite 17.33 0.89 9.1 163.5 2.2 × 106
1

5 escaper 17.33 0.56 - - - 5

6 escaper 17.33 0.59 - - - 0

7 escaper 17.33 0.88 - - - 7

8 satellite 17.33 0.90 10.2 8.7 2.7 × 106
1

9 satellite 17.33 0.56 5.7 140.5 7.75 × 106
0

10 satellite 25.99 0.72 4.4 140.5 1.47 × 106
1

Table 10: Same as in table 9 but for ten holes. In this case three IMBHs leave the CC.
We find 22 stellar disruptions during the simulation.
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Figure 53: Projection in X–Y of all clusters for the simulation in which we have ini-
tially 5 IMBHs. We show in white, orange, blue, green, yellow, and red the
clusters that captured the holes (or will capture, if in satellite, see text). For
clarity we depict all other clusters with the same radius and colour (light
orange). The green cluster harbours two IMBHs and the blue cluster too.
The later one merged with an IMBH and after that with another one which
contained another IMBH.
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Figure 54: Same as figure (50) but assuming a fixed loss of kinetic energy of 5% after
every hit for the fly-throughs.

situation of a larger loss first, because it leads to more interesting effects from a pure
dynamical standpoint.

However, we deem it necessary to we repeat some experiments in the evolution of
the CC to understand the other regime. Therefore, we repeat experiments G1, G2, G3,
G4, H1, H3, H4 of table 7 but this time we assume a loss of 5% after every hit for the
fly-throughs. In figure (54) we can see the results. We have reduced the exploration to
the range of radii and total mass that could be more interesting for our analysis. We
can see that although the total number of stellar disruptions is signficantly reduced, it
is not zero. Also, in four configurations the IMBH at large is captured eventually by
the forming CC.

13.6 summary and conclusions

In this work we have presented results that address the formation of UCD from young
clusters, and the role of recoiling IMBHs in a CC. The formation of the IMBH in
clusters is used as a working hypothesis, and hence also the possibility that these
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interact with the young clusters. For that, we first ran a set of ∼ 200 direct-summation
N−body simulations that covers the parameter space for individual IMBH–cluster
encounters. We methodically varied the mass ratio between the IMBH and the cluster,
the relative velocity, and the impact parameter. This allowed us to build a grid with
the expected outcome of the interaction and the modification of the kinetic energy
of the IMBH. Later we ran additional direct-summation N−body simulations for a
scenario in which one IMBH is at large in a CC. The IMBH is assumed to be the
result of the coalescence of two holes, which led to the expulsion of the hole from
the initial host cluster. We studied the dynamical evolution of this single IMBH in an
evolving CC. Parallel to the individual interactions between the IMBH and clusters in
the CC, which are corrected using the above-mentioned table, clusters are colliding
and merging with each other, which results in the formation of a run-away individual
cluster, which typically after ∼ 100 Myrs contains almost all of the mass of the CC.
This is what we designate “the seed of an ultra-compact dwarf galaxy”, since this very
massive cluster is the result of the successive amalgamation of smaller clusters in the
initial distribution of the CC.

We find that for realistic CCs (i.e. those which resemble observations, such as the
knots of the Antennæ), the IMBH is either eventually captured by the seed UCD (in
those simulations less dense initially) or by a smaller cluster (in the simulations with
the largest concentrations of clusters at the centre) which, however, is close to the
centre of the CC, so that it will in the course of time sink down to the very centre,
where the seed UCD is settled. The typical timescale for this trapping is of about
∼ 200 Myr.

We can see this by estimating the dynamical friction time TDF. This is the timescale
for the IMBH captured in a cluster to reach the centre. For an object with mass m
moving in a system of total mass M it is given by (see e.g. Binney & Tremaine 2008)

TDF =
1.17
ln Λ

M
m

r
Vh

, (145)

where r is the distance from the centre of the system, Vh is the root mean square
(RMS) velocity dispersion of the system and ln Λ the Coulomb logarithm, which is of
the order of unity. From table 8 we can see that in almost half of the cases in which
the IMBH was retained in the CC, it is captured by the most massive cluster of the
system, the seed UCD. TDF is in all cases a few tens or hundreds of Myrs. On the other
hand, when the IMBH gets captured by a smaller cluster (6 out of the 11 simulations),
TDF is of the order of ∼ 1 Gyr, still well below a Hubble time. We note also that this
analytical calculation is an overestimate, because the CC evolves dynamically with
time and there is a huge accumulation of mass in the innermost region which will
significantly reduce the timescale for the IMBH to reach the seed UCD.

When the IMBH remains bound to the CC, the average time for it to hit a cluster is
0.16 − 0.43Myr. On the other hand, the mean time taken by the IMBH to fly through a
star cluster is of the order of 0.1Myr. Hence, after recoiling and before getting captured,
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the IMBH spends 1/3 of its time interacting with clusters, so that the possibility to find
an IMBH in a cluster of a newly formed (less than 100Myr old) CC is about ∼ 30%

We repeated the exercise with a CC harbouring initially 5 and 10 IMBHs which
were distributed with different velocities. We find that after some ≲ 30 Myr most of
the holes are either captured by a single cluster or have formed a hard binary with one
in regions relatively close to the runaway cluster, the seed of a UCD which is forming
in the CC. We cannot follow the further evolution of the system due to the limitations
inherent to our approach. We also note that gas is very likely to play an important
role in the whole process. In particular, in some CCs the oldest cluster is located at the
centre of the gas cloud (Whitmore et al. 2010). In our simulations we have neglected
this, since we are limited by our codes, which rely on pure particle dynamics. Still,
even if we could actually have implemented a (rough) approach for the gas with an
external force, the complexity of the problem justifies our first approach. We have
decided to postpone the role of the gas for upcoming work. The same applies to mass
loss because of stellar evolution, although statistically, since the IMBH interacts with
clusters of different masses, the global dynamical evolution is well represented by our
models, within our limitations.

Also, reducing the relative kinetic energy loss for fly-throughs leads to a reduced
number of tidal disruption events, but we still find some systems for which the impli-
cations are similar to the analysis that used a larger loss.

While the number fraction of IMBH in the mass-range of 102−4 M⊙ in CCs is an
unknown, they sink to the centre in a time which is much shorter than the Hubble time.
The scenario that we have described here leads to the formation of a very massive
black hole at the centre of the UCD, with a mass that depends on unknowns, such
as the formation rate of IMBHs in the CC. The internal velocities of the systems we
study are not as extreme as those explored by Merritt et al. (2009) in the context of
hypercompact stellar systems, because the seed UCD inherits the central velocity from
the resulting mergers between individual clusters. When the UCD is formed, the
velocity will roughly be what one can expect from a dense stellar system in dynamical
equilibrium. A very interesting feature of the process of sowing an UCD with an
IMBH is that independently of whether the IMBH stays in the CC or escapes, it triggers
star-star collisional disruptions in the clusters it hits. This could be envisaged as an
electromagnetic signature of the scenario.
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D I S C U S S I O N

13.7 foreword

This dissertation reflects an important part of one of my main research topics during
the last years. I studied theoretical physics in Spain, and I specialized in particle and
mathematical physics. In Heidelberg, where I did both my Diplomarbeit and PhD, I
studied stellar and gas dynamics in dense stellar systems, such as galactic nuclei and
globular clusters. Later I moved to the Max-Planck Institute for Gravitational Physics
(Albert Einstein Institute), where my main concern moved towards the connection
between GR and theoretical astrophysics.

The connection between these two domains is the creation of gravitational wave
(GW) sources, detectable with a space-borne GW observatory, such as eLISA, and also,
at least to some extent, the tidal disruption of extended stars, such as our sun. Many
disruption candidates may have already been detected with ROSAT, Chandra and
Swift 2, and the number will surge with upcoming transient surveys like the Zwicky
Transient Facility (ZTF), the Large Synoptic Survey Telescope (LSST), SRG/eROSITA,
as well as the ESA L2 mission Athena+.

These two problems share one important characteristic: One has to understand how
a star, a compact object or a stellar-mass black hole can reach the supermassive black
hole, assumed to be the massive dark object lurking at the very centre of the host
dense stellar system, which in the work presented here can be either a galaxy, or a
globular cluster.

In the case of an extended star, a single close passage around the supermassive
black hole is enough, since we do not address the problem of tidal heating in this dis-
sertation. The star is torn apart and energy is released. This burst of electromagnetic
radiation is very interesting and can provide us with information about the local en-
vironment where the disruption took place. However, in the case of a compact object,
such as a white dwarf3, a neutron star or a stellar black hole, one –or for all matters a
few– pericentre passage is not enough, since we are interested in the accumulation of
hundreds to thousands of coherent bursts of gravitational radiation4. This is the price
that one has to pay. The reward is the first test ever of GR in the strong regime, to be
able to confirm the existence of black holes, and to measure the characteristic parame-
ters with errors that have no precendent in the whole history of astronomy. In particular, we
will be able to:

2 See http://astrocrash.net/resources/tde-catalogue

3 Note that a white dwarf can be tidally disrupted by an intermediate-mass black hole.
4 Such bursting sources provide us with some information about the binary, but because of their very low

signal-to-noise ratio, they are very difficult to detect, and the parameter extraction becomes extremely
challenging.
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• Establish the existence of black holes for the first time
• Measure the red-shifted mass M•, z with an error of between 1-0.1%
• Directly measure the spin of the MBH with an error of 0.1 -0.01%

Although it might seem a too strong statement, I deem it fair to say that in astronomy
there has not been any other mission conceived, planned or even thought of ever that
can do the science that we can do with EMRIs.

13.8 discussion of the results in the broader context of the habili-
tation

For this dissertation I have gathered nine articles that investigate the questions pre-
sented previously. I have decided to start from results that are directly related with
what we know, with (of course) electromagnetic observations of the GC. The GC is an
ideal laboratory for dense stellar systems and, hence, for stellar dynamics and also gas
dynamics, since the current observations can be related to the past of the MW, when it
contained more gas than now. Apart from understanding better these electromagnetic
observations, by studying this problem we address also fundamental questions linked
to sources of gravitational radiation.

Indeed, in this context [Frag1]5 provides us with a simple answer to the
problem of missing bright RGs at the GC. In these 15 years, many different
scenarios have been proposed, but none of them is efficient enough. In my
work, and assuming a single episode of disc formation at the GC, I can
explain the absence of these RGs. While one episode suffices, in my paper
I note that the more likely situation is that many have occurred. I.e. even in
the lower-limit assumption, my results can explain the observations from
first-principle calculations. HB stars have an envelope 100 times denser
in surface density, so that they require 100 more impacts. This leads to a
partial depletion – Only a percentage of them (with low inclnations) will
have received envelope damage. For EMRIs this is of particular relevance,
because I predict that the removal of the envelope means that the released
RGs’ cores populate the GC. Galaxies with an SMBH that previously had a
gaseous disc extending towards deep radii will have a larger population of
EMRI candidates than we had expected so far. These cores are very difficult
to detect in infra-red. The core will typically exhaust the H envelope in a
few Myrs, so that the radiation will be very faint. Moreover, while it is
consuming the remaining H, it will slowly shift in their peak emission to
shorter wavelengths, making them invisible in infra-red filters.

Fragmenting discs are also important to investigate to understand how often do
SMBHs coalesce in galactic nuclei. We expect that prior to the merger, the two SMBHs

5 For the full titles of the papers, acronyms, as well as an explanation of my contribution and journal
references, please see table the table of papers

230



Discussion

will be surrounded by a so-called circumbinary accretion disc. How efficiently the
torques of the gaseous disc act on to the binary of SMBHs to make it shrink and
approach the GW-dominated regime is a question deeply entwined with another one:
How effective does gas turn into stars. Apart from the impact on the binary shrinkage,
star formation in an accretion disc has a twofold interest: (i) Being so deep in the
potential well of the SMBHs, many of these stars will approach one of them and hence
are potential sources of TDEs and (ii) those that remain bound but are not tidally
disrupted can in principle become a compact object and produce a prominent source
of GWs if trapped by one of the SMBHs.

In this context, [Frag2] explores a fragmenting disc, but in this case, and
contrary to [Frag1], which was a purely analytical paper, the analysis is
based on heavy numerical simulations and the disc surrounds not just one
MBH, but a binary of them. The motivation was to study the influence
of a fragmenting, star-forming disc on to the evolution of the binary. For
this, we adapted an SPH code, Gadget2, to account for star formation via
an ad-hoc cooling function that turns overdensity regions into “stars”. We
run different coolings and explore different prescriptions for the growth
of protostars and wait until the system has run out of gas (i.e. until the
gas density is negligible), to then use the last snapshot of the simulations
to feed pure dynamical integrations with NB6 running on GPUs. We find
that the rate of decay in our NB6 simulations is slower than in similar pure
SPH simulations in the related literature, which employ a rather rudimen-
tary leap-frog integrator. One particular case that drew my attention had a
full stellar cluster promptly falling on to the binary. To investigate it more
closely, we run a dedicated NB6 simulation in which we modified the inte-
grator to take into account the presence of the potential well of the gas. We
observe for this case a particularly large one but in general an enhanced
rate of TDEs, between one and two orders of magnitude than current (al-
though uncertain) estimates for the TDE rate in standard galaxies (i.e. with
a single MBH).

The depletion of gas and star-formation can lead to structures such as the one ob-
served in our MW. The presence of the so-called S-stars at the GC is an enigma due
to their age, and their dynamical properties –in particular their distribution of eccen-
tricities, have remained a conundrum. Together with my postdoc, I have addressed
this second point in an article which I deem to be one of the crucial results of my
research, and which has been envisaged by colleagues pivotal towards understanding
not only this kinematical characteristic of the S-stars, but the general properties of the
innermost stellar dynamics of the GC.

In the following paper, [RER] which can be regarded as the analytical
continuation of [Frag1], we study the impact of the stellar disc that results
from the depletion of gas around our SMBH on to the stellar properties
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of the GC. Making just one single assumption, namely that the currently
observed stellar disc was in the past of gaseous nature and reached closer
radii to the SMBH, we can naturally explain the observed super-thermal
distribution of the S-stars and the absence of more massive stars, and show
that both are naturally linked. Up to now these two observational facts
had been thought to be unrelated. We predict the existence in the GC of a
region of phase-space in which any dynamical object evolves on timescales
much shorter than the common ones, which is why we call it the “rapid
evolving region” (RER), and define its boundaries. We can explain current
observations about the nonexistence of an old segregated cusp in the GC
contrary to other works, which crucially rely on the cusp to thermalize the
S-stars. Moreover, our theoretical work does not rely on where and how
the S-stars were formed, while other models rely heavily on when S-stars
were brought to the GC. Besides the obvious consequences for TDEs, the
existence of the RER must be analyzed more closely to understand the
implications for EMRIs.

These S-stars cannot have been born in-situ at the GC because it is a too violent
environment that prevents star formation. If they are born farther away, they must be
transported by a mechanism acting on timescales shorter than the ages associated with
these very young stars. A possibility explored in detail has been the tidal separation
of a binary by the gravitational forces of an SMBH.

[Sep] addresses this problem. With an analytical treatment which relies
on a sample of numerical experiments, my colleagues and I proof that the
bound star that remains close to the hole is eventually tidally disrupted
from a moderate eccentricity orbit, the decay of the bolometric luminosity
is slower than the standard case in which the star was initially on a nearly
parabolic orbit relative to the black hole. In principle, sampling of the light
curves of these electromagnetic flares could reveal the nature of the process.
This has also implications for GW sources, since depending on how tidal
energy is deposited, is it possible that there will be a gravitational wave
signature that attends the electromagnetic signature of the TDE (personal
communication by E. S. Phinney).

To obtain an answer to the question of how many EMRI events can we expect for
a space-borne observatory, the very first question we need to look into is how stars
distribute around an SMBH. This happens to be one of the oldest questions in the
context of stellar dynamics and SMBHs, which goes back to the earlies 70’s. Whilst we
have a very good understanding in the approximation in which all stars in the galactic
nucleus have only one kind of mass, the problem happens to be a much harder one
when we consider the next logical step: To consider to well-separated mass groups.

[MS] looks into this problem and finds that the commonly-assumed an-
swer based on calculations from the 70’s, while mathematically correct, are
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not physically relevant. In this respect, I have found the correct solution
to how stars segregate in galactic nuclei, and the solution is more efficient
than what we had thought since the 70’s. The implications for event rates
of EMRIs are important, since our more rigurous mass segregation model
predicts a boost factor in the rates that, for a MW-like galaxy can be of up
to one order of magnitude more than we believed until now.

Our knowledge of how stars distribute around SMBHs in a cuspy way, following
a power-law distribution, breaks when we are too close to the SMBH. Although it
does not seem too likely that two stars are relatively close to each other at the scale of
milliparsec, there is no guarantee that this is not the case. Motivated by papers that
analyse migration and resonances in planetary systems, I investigated the possibility
that an EMRI had a close-by perturbing star, and expected to see a Kozai-Lidov-like
resonance affecting the evolution of the eccentricity. Per se this would already be
fatal because for detection we would have to develop many more waveforms, but
what I found was more dramatic: The absence of determinism in the evolution of the
dynamical parameters of the system.

In my [BF] paper I look into this problem with a set of numerical direct-
summation simulations that take into account periapsis shift and energy
loss in the form of GWs. I find that a deviation in the inclination of a
perturbing star as small as 10−13 degrees as compared to a reference set-
up drastically changes the evolution of the eccentricity of the EMRI. This
means that the perturbing star destroys determinism in the system. If stars
that close to EMRIs are frequent, the detection will be challenging. More-
over, the lack of determinism can also be wrongly interpreted as GR being
a wrong theory. It is likely that the fault is to be attributed to a perturbing
star than a failure of GR. This possibility is a risk that deserves a closer
examination.

For many decades, the EMRI event rate has led us to examine the microphysics
around MBHs in dense stellar systems. An EMRI has always been envisaged as a
“fragile system”, meaning that the captured CO can easily be scattered off from its
inspiraling orbit by the successive gravitational tugs from other stars at apocentre6 .
This is so because whilst at pericentre the MBH and the CO are very likely to be alone
(but see [BF]), the stellar density increases more and more the closer the CO is from
apocentre, where the bulk of the stellar system is. A small deflection at apocentre
can result into a large deviation at pericentre, so that COs venturing into “too large”
apocentres are doomed to be deviated from the orbit, by either being reabsorbed by
the surrounding stellar system in larger semi-major axes, or by plunging through the
event horizon of the MBH after a few bursts of gravitational radiation, and is called a
“plunge”. The latter is the end result of the orbit becoming more and more eccentric,

6 One can estimate the radius from the MBH within which EMRIs “are safe”, as discussed in my paper,
which is of about 0.01 pc
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to the point in which it is almost radial, so that it “hits” the MBH. There will be
gravitational waves emitted in the process, but so few that the source is basically
unobservable because of the low SNR. Moreover, even if it were observable, with a
few bursts we cannot do the science that we can do with EMRIs, that comprehend
hundreds to thousands of bursts from a coherent source.

Nature’s MBH are very likely spinning, i.e. Kerr black holes and not
Schwarzschild. In [Spin] I prove that for a spinning MBH it is almost
impossible for a CO to become a plunge. This has drastic consequences
and implications, because EMRIs originating from the “safe” region have
a very low event rate due to the simple reason that we do not have many
stars in those radii (≤ 0.01 pc). I show with an analytical relativistic cal-
culation that EMRIs can originate at much larger radii, and that they have
a much larger eccentricity. I estimate that the event rate, which depends
on the spin and inclination, can be boosted up to two orders of magnitude.
Again, this is because they originate where the bulk of the stellar density is.
Moreover, since they are so eccentric, they are very loud, and the horizon
distance should be located much farther, enhancing the observational vol-
ume of a space-borne mission. Also, in view of recent results by Alexander,
Merritt, Mikkola and Will, as discussed in the paper, that predict that EM-
RIs born in the “safe region” are blocked due to a combination of secular
effects and relativistic precession, leading to much lower event rates than
expected, the EMRIs that I discuss do not suffer of this problem, because
they are the end result of a chaotic process, which knows nothing about
secularity.

LISA was originally an ESA-NASA concept, which later developed to what we call
now eLISA, a 100% ESA L2 approved mission. We had to descope the concept, and
this led to the sweet spot of the observatory shifting towards lower masses for the
MBH, of about a few 105 M⊙. Therefore, when looking for EMRIs, we are actually
talking about IMRIs, i.e. mass ratios of about 104−5. This has important implications,
since we must now investigate lower-mass MBH, and IMBHs. This objects are found
in dwarf galaxies, ultra-compact dwarf galaxies, and globular clusters. The dynamics
around these holes in these loci is quite different from what we have around SMBHs
and MBHs in galactic nuclei. Interestingly, it is these kind of mass ratios that we can
properly integrate with direct-summation N−body integrators. Larger mass ratios
typically introduce numerical errors in the integration (although there are some work
arounds), because these integrators were developed originally to deal with dense stel-
lar systems without massive objects, in which the largest mass ratios between stars do
not exceed more than two orders of magnitude.

In my work [IMRI] I present the first and (to my knowledge and on this
date) only existing numerical integrations of a globular cluster harbouring
an IMBH with a relativistic capture of a stellar-mass black hole. The merger
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leads to the ejection of the IMBH after coalescence. After that, the GC
slowly starts to contract as a result of the absence of the heating source at
the center. This might lead to another core collapse of the GC, something
we do not observe in the simulation in the first 10 Myr after the ejection
if the IMBH. I show that the IMRI enters the bandwidth of the detectors
with a very high eccentricity, of e = 0.9987. One year before the final
coalescence, the system still retains a residual eccentricity of e ≈ 0.12, and
ten minutes before merger of e ≈ 10−3 , which is detectable by data-analysis
techniques. The detections of this eccentricity, along with the information
about masses, could be used as a probe to indentify the host system, where
the IMRI formed.

Clusters like the one addressed in [IMRI] are very common in interacting galaxies,
such as the Antennæ galaxies. There we observe the so-called “cluster complexes”,
which are relatively small regions (compared with the size of the galaxies) harbouring
hundreds or thousands of young clusters. Observational work has proven that a num-
ber of them are gravitationally bound, so that the two clusters will merge into one in
a relatively short time, as I have shown in another article which I have not added to
this habilitation, because of space limit. If a fraction of these clusters in the complexes
harboured an IMBH, it is likely that the IMBH will be ejected out of the host cluster
because of a relativistic merger with a CO or with another IMBH. We have hence a
free-floating IMBH in an environment in which we have a very high density of dense
clusters, so that a collision among the two of them is not excluded. Besides from the
obvious prominent source of GWs, short after it, the ejection process can also lead
to a TDE. Having a coincident –or closely coincident– EM flare is a very attractive
possibility, because it would provide us with the associated redshift of the source.

In [UCDs] I address this scenario with a combination of two numerical
schemes to cover most of the parameter space. On the one hand, I had to
explore the different possibilities of how an IMBH collides with a cluster,
with a set of about 200 direct-summation N−body simulations, and on the
other, I had to take into account the fact that the cluster complex evolves
with time, it is not static. This leads to cluster-cluster interactions, and
a segregation of the more massive clusters to the centre of the complex,
which leads to the formation of a very massive cluster, the seed of an ultra-
compact dwarf galaxy. For complexes which resemble observations the
IMBH is either eventually captured by the seed UCD (in those simulations
less dense initially) or by a smaller cluster (in the simulations with the
largest concentrations of clusters at the centre) which, however, is close to
the centre of the CC, so that it will in the course of time sink down to
the very centre, where the seed UCD is settled. The escaping IMBH leads
to TDEs and star-star collisions, and both emit an EM flare that might be
linked to the previous source of GW as a red-shift indicator.
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carnificinæ, quam hı̄c vōbis ostendeō.
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