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2 Abstract

2 Abstract

The cytoskeleton is an essential component of living cells. It is composed of different types of protein fila-

ments that form complex, dynamically rearranging, and interconnected networks. The cytoskeleton serves

a multitude of cellular functions which further depend on the cell context. In animal cells, the cytoskeleton

prominently shapes the cell’s mechanical properties and movement. In plant cells, in contrast, the presence

of a rigid cell wall as well as their larger sizes highlight the role of the cytoskeleton in long-distance intra-

cellular transport. As it provides the basis for cell growth and biomass production, cytoskeletal transport

in plant cells is of direct environmental and economical relevance. However, while knowledge about the

molecular details of the cytoskeletal transport is growing rapidly, the organizational principles that shape

these processes on a whole-cell level remain elusive.

This thesis is devoted to the following question: How does the complex architecture of the plant cytoskeleton

relate to its transport functionality? The answer requires a systems level perspective of plant cytoskeletal

structure and transport. To this end, I combined state-of-the-art confocal microscopy, quantitative digital

image analysis, and mathematically powerful, intuitively accessible graph-theoretical approaches.

This thesis summarizes five of my publications that shed light on the plant cytoskeleton as a transportation

network: (1) I developed network-based frameworks for accurate, automated quantification of cytoskele-

tal structures, applicable in, e.g., genetic or chemical screens; (2) I showed that the actin cytoskeleton dis-

plays properties of efficient transport networks, hinting at its biological design principles; (3) Using multi-

objective optimization, I demonstrated that different plant cell types sustain cytoskeletal networks with cell-

type specific and near-optimal organization; (4) By investigating actual transport of organelles through the

cell, I showed that properties of the actin cytoskeleton are predictive of organelle flow and provided quanti-

tative evidence for a coordination of transport at a cellular level; (5) I devised a robust, optimization-based

method to identify individual cytoskeletal filaments from a given network representation, allowing the in-

vestigation of single filament properties in the network context. The developed methods were made publicly

available as open-source software tools.

Altogether, my findings and proposed frameworks provide quantitative, system-level insights into intracel-

lular transport in living cells. Despite my focus on the plant cytoskeleton, the established combination of

experimental and theoretical approaches is readily applicable to different organisms. Despite the necessity

of detailed molecular studies, only a complementary, systemic perspective, as presented here, enables both

understanding of cytoskeletal function in its evolutionary context as well as its future technological control

and utilization.
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2 Abstract

Zusammenfassung

Das Zytoskelett ist ein notwendiger Bestandteil lebender Zellen. Es besteht aus verschiedenen Arten von

Proteinfilamenten, die ihrerseits komplexe, sich dynamisch reorganisierende und miteinander verknüpfte

Netzwerke bilden. Das Zytoskelett erfüllt eine Vielzahl von Funktionen in der Zelle. In Tierzellen bestimmt

das Aktin-Zytoskelett maßgeblich die mechanischen Zelleigenschaften und die Zellbewegung. In Pflanzen-

zellen hingegen kommt dem Aktin-Zytoskelett eine besondere Bedeutung in intrazellulären Transportpro-

zessen zu, bedingt insbesondere durch die starre pflanzliche Zellwand sowie die Zellgröße. Als wesentlicher

Faktor für Zellwachstum und somit auch die Produktion von Biomasse, ist Zytoskelett-basierter Transport

daher von unmittelbarer ökologischer und ökonomischer Bedeutung. Während das Wissen über die mole-

kularen Grundlagen Zytoskelett-basierter Transportprozesse beständig wächst, sind die zugrunde liegenden

Prinzipien zellweiter Organisation bisher weitgehend unbekannt.

Diese Dissertation widmet sich daher folgender Frage: Wie hängt die komplexe Architektur des pflanzlichen

Zytoskeletts mit seiner intrazellulären Transportfunktion zusammen? Eine Antwort auf diese Frage erfordert

eine systemische Perspektive auf Zytoskelettstruktur und -transport. Zu diesem Zweck habe ich Mikrosko-

piedaten mit hoher raumzeitlicher Auflösung sowie Computer-gestützte Bildanalysen und mathematische

Ansätzen der Graphen- und Netzwerktheorie kombiniert.

Die vorliegende Dissertation umfasst fünf meiner Publikationen, die sich einem systemischen Verständnis

des pflanzlichen Zytoskeletts als Transportnetzwerk widmen: (1) Dafür habe ich Bilddaten-basierte Netz-

werkmodelle entwickelt, die eine exakte und automatisierte Quantifizierung der Architektur des Zytoske-

letts ermöglichen. Diese Quantifizierung kann beispielsweise in genetischen oder chemischen Versuchen

genutzt werden und für eine weitere Erforschung der genetischen Grundlagen und möglicher molekularer

Interaktionspartner des Zytoskeletts hilfreich sein; (2) Ich habe nachgewiesen, dass das pflanzliche Aktin-

Zytoskelett Eigenschaften effizienter Transportnetzwerk aufweist und Hinweise auf seine evolutionären Or-

ganisationsprinzipien liefert; (3) Durch die mathematische Optimierung von Transportnetzwerken konnte

ich zeigen, dass unterschiedliche Pflanzenzelltypen spezifische und optimierte Organisationsstrukturen des

Aktin-Zytoskeletts aufweisen; (4) Durch quantitative Analyse des Transports von Organellen in Pflanzenzel-

len habe ich nachgewiesen, dass sich Transportmuster ausgehend von der Struktur des Aktin-Zytoskeletts

vorhersagen lassen. Dabei spielen sowohl die Organisation des Zytoskeletts auf Zellebene als auch seine

Geometrie eine zentrale Rolle. (5) Schließlich habe ich eine robuste, optimierungs-basierte Methode entwi-

ckelt, die es erlaubt, individuelle Filamente eines Aktin-Netzwerks zu identifizieren. Dadurch ist es möglich,

die Eigenschaften einzelner Zytoskelettfilamente im zellulären Kontext zu untersuchen. Die im Zuge dieser

Dissertation entwickelten Methoden wurden frei und quelloffen als Werkzeuge zur Beantwortung verwand-

ter Fragestellung zugänglich gemacht.

Insgesamt liefern die hier präsentierten Ergebnisse und entwickelten Methoden quantitative, systemische

Einsichten in die Transportfunktion des Zytoskeletts. Die hier etablierte Kombination von experimentellen

und theoretischen Ansätzen kann, trotz des Fokusses auf das pflanzliche Zytoskelett, direkt auf andere Or-

ganismen angewendet werden. Als Ergänzung molekularer Studien bildet ein systemischer Blickwinkel, wie

er hier entwickelt wurde, die Grundlage für ein Verständnis sowohl des evolutionären Kontextes als auch

zukünftiger Kontroll- und Nutzungsmöglichkeiten des pflanzlichen Zytoskeletts.
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3 Introduction

3 Introduction

The cytoskeleton is an essential intracellular component of organisms from all kingdoms of life. It is com-

posed of different components, typically comprising actin filaments, microtubules, and intermediate fila-

ments, which are protein polymers that may rearrange dynamically through (de-)polymerization processes

and form intricate network structures (Section 3.1). While many aspects of cytoskeletal composition and

function are conserved across species, there are notable differences, in particular between animal and plant

cells (Section 3.2). In plants, the actin cytoskeleton provides the basis for cellular transport and, hence,

cell maintenance and growth (Section 3.3). Despite the importance of actin-based cellular transport, the

vast majority of studies has focused on elucidating its molecular details, neglecting a systems perspective.

However, only a systems perspective can enable understanding of the organizational principles and of the

intricate coordination of cellular transport at a cellular level (Section 3.5). Although system-wide actin-

based cellular trafficking has been tackled in a few theoretical studies, there has been no attempt to integrate

imaging data of the actin cytoskeleton and cellular transport. In particular, a network-based framework that

naturally captures the filamentous structure of the cytoskeleton and incorporates biological data is lacking

(Section 3.7). Therefore, the aim of this thesis is the development of an image- and network-based frame-

work for a systems perspective on actin-based transport (Section 3.9). Such a framework allows quantitative

analyses and interpretations of real-life cytoskeletal network structures. Thus, it provides a cornerstone to-

wards comprehension of cytoskeletal functions in its evolutionary context as well as its future technological

control and utilization.

3.1 Basics of the cytoskeleton

with a focus on its actin component

The concept “cytoskeleton” was hypothesized at the beginning of the 19th century [Dujardin, 1835], as a

necessary cellular structure for the positioning of organelles, although its name was only introduced around

a century later [Wintrebert, 1931]. Nowadays, it is known that the cytoskeleton is an essential component

of living cells that form a scaffold-like structure spanning the cytoplasm [Cooper, 2000; Liu, 2010]. In par-

ticular, the cytoskeleton serves a multitude of different functions including, indeed, organelle positioning

(cf. Section 3.3). Despite its name, the cytoskeleton is not a rigid and stable structure, but is composed

of different arrays of protein polymers that rearrange dynamically through (de-)polymerization processes.

The cytoskeleton in cells of most organisms comprises actin filaments, microtubules, and intermediate fila-

ments (Figs. 3.1A and B; [Cooper, 2000; Liu, 2010]). In this thesis, we focus on the actin cytoskeleton and its

specific role in cellular transport in plant cells.

The basic unit of the actin cytoskeleton are (globular) G-actin proteins (Fig. 3.2A, upper). G-actin is notable

by itself in at least three ways: It is one of the most abundant proteins in eukaryotes [Lodish et al., 2000],

its amino acid sequence is highly conserved across species [Gunning et al., 2015], and its structure enables

interaction with an exceptionally large range of other proteins [Dominguez, 2004].

The monomeric G-actin may further form (filamentous) F-actin, or actin filaments, which constitute the

6



3.1 Basics of the actin cytoskeleton 3 Introduction

Figure 3.1: Overview of the thesis’ focus on system-level transport by the actin cytoskeletal networks in
plant cells and related areas of research. The research presented in this thesis focuses on the path high-
lighted in dark green. (A) System of interest: Cytoskeleton. Confocal recording of actin cytoskeleton (light
green) and microtubules (magenta) of two hypocotyl Arabidopsis thaliana plant cells. (B) Components: Mi-
crotubules, intermediate filaments, and actin filaments. Schematics of different polymeric structures of the
cytoskeletal components. Actin filaments are flexible, linear polymer chains that may align and form stiff
bundles. (C) Organisms: Prokaryotes and eukaryotes such as animals and plants. Schematics of represen-
tative cells, whereby plant cells are distinguished among other things by a rigid cell wall and the presence
of multiple Golgi bodies. (D) Functions: Mechanics, signaling, transport, and others. Cellular transport
in plant cells relies on the actin cytoskeleton which serves as tracks for motor proteins that carry different
types of cargo such as Golgi bodies. (E) Descriptions: Due to the complexity of many biological systems,
such as the acto-myosin transport system in plant cells, a trade-off must be considered between the amount
of incorporated details of the systems and the scope of their description. (F) Models: Mechanistic models,
fluid-dynamical models, and networks. The network framework naturally captures the discrete filamentous
structure of the actin cytoskeleton, while enabling both intuitive and computationally efficient investigation
of its organizational principles as well as comparison to other types of biological and human-made trans-
portation networks.
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3 Introduction 3.2 Actin cytoskeleton in plants

network-like structure of the actin cytoskeleton (Fig. 3.2A, lower; [Staiger et al., 2000; Carlsson, 2010; Liu,

2010]). Filament formation involves adenosine triphosphate (ATP)-driven nucleation and elongation pro-

cesses that depend on G-actin concentrations and regulatory actin-binding proteins [Staiger and Blanchoin,

2006]. In the formed filaments, G-actin monomers establish filament polarity by aligning such that the ex-

posed ATP binding sites (called pointed or “-” end) and their opposite (called barbed or “+” end) point to-

ward either end of the filament. Actin filaments exhibit a helical, single-stranded structure of around 7nm

in diameter. Due to different (de-)polymerization rates at the “+” and “-” ends, actin filaments may grow,

shrink, or, in equilibrium, show treadmilling behavior.

Furthermore, multiple actin filaments may in turn form bundles via actin-binding, cross-linking proteins

[Bartles, 2000; Claessens et al., 2006; Thomas et al., 2009]. These actin bundles may contain filaments of

different polarity and can be up to 150nm in diameter [Haviv et al., 2008]. Actin bundles play a major role in

cellular transport (cf. Section 3.3; [Thomas et al., 2009; Akkerman et al., 2011]).

3.2 Comparison of actin cytoskeleton in plants

and other organisms

Many features of the cytoskeleton are conserved across Eukaryotes [van den Ent et al., 2001; Wickstead

and Gull, 2011]. For example, both actin filaments and microtubules are found in cells of most eukaryotes

[Cooper, 2000; Liu, 2010], and evidence suggests that also bacteria [Ausmees et al., 2003; Shih and Rothfield,

2006; Bagchi et al., 2008] and plant cells contain intermediate filament-like proteins [Hargreaves et al., 1989]

that were previously attributed only to animal cells. Moreover, as mentioned previously, the amino acid

sequence of actin is among the most highly conserved sequences [Gunning et al., 2015].

Nevertheless, beyond these basic similarities, there are substantial differences in actin cytoskeleton organi-

zation and dynamics, especially between plant and non-plant species (Fig. 3.1C; [Staiger and Lloyd, 1991;

Staiger et al., 2000; Liu, 2010]). These differences range from lower ratios of F-actin and G-actin in plant cells

(between 1−10% [Gibbon et al., 1999; Snowman et al., 2002] as compared to 30−70% in animal cells [Mc-

Grath et al., 1998, 2000]) to substantially higher growth rates of actin filaments (up to 10−100 times faster

than in many non-plant cells [Staiger et al., 2009]) to different functions (cf. Section 3.3). Moreover, in plants,

intracellular transport depends mainly on the actin cytoskeleton while in animals, it is largely microtubule-

based [Nebenführ et al., 1999; Vale, 2003; Liu, 2010].

The differences between plant and non-plant actin cytoskeletons can be attributed to three aspects

(Fig. 3.2B; [Wasteneys, 2000; Ehrhardt and Shaw, 2006]): The presence of a large, central vacuole in plant

cells restricts large parts of the actin cytoskeleton to the cell cortex and implies a largely two-dimensional,

cylindrical geometry that strongly differs from the pervasive, three-dimensional actin architecture in animal

cells [Kost and Chua, 2002]. The rigid cell wall of immobile plant cells renders the mechanical effect of the

actin cytoskeleton on cell stability less relevant as compared to flexible and mobile animal cells [Kost and

Chua, 2002]. Moreover, plants cells are often larger than animal cells, which affects the geometry of the actin

cytoskeleton and increases the necessity for long-range cellular transport (cf. Section 3.3; [Shimmen and

Yokota, 2004; Liu, 2010]).
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3.2 Actin cytoskeleton in plants 3 Introduction

Figure 3.2: Details of different components of the acto-myosin transport system in plant cells, and
schematics of the employed imaging and network approaches. (A) Molecular structure of (globular) G-
actin with bound ATP that prevents the G-actin’s loss of structural integrity (upper; CC BY-SA 3.0 Thomas
Splettstoesser), whereby the ATP-binding site and its opposite are referred to as pointed (or “-”) and barbed
(or “+”) end, respectively. G-actin monomers may polymerize and form a helical, (filamentous) F-actin
strand (lower). (B) Schematic of a typical plant cell with its rigid cell wall, the actin cytoskeleton, and sev-
eral Golgi bodies. (C) Molecular structure of myosin, i.e., a motor protein with a head domain that binds
filamentous actin, a neck domain, and a tail domain that binds cellular cargo (upper; CC BY-SA 3.0 Thomas
Splettstoesser). Through ATP hydrolysis at the catalytic region in the neck domain, the two myosin heads
propel the motor protein towards the barbed end of the actin filament. (D) Confocal recording of plant actin
cytoskeleton (green) and Golgi bodies (magenta). (E) Digital representation of image data. Intensities of
different channels (green and magenta) are stored separately as matrices where each entry corresponds to
a pixel, here in an 8-bit encoding. (F) Mathematical representation of cytoskeletal network structures as a
graph. The edges reflect the filament segments, their weights capture the average filament segment thick-
ness, and the nodes are the endpoints of filament segments. Example of a path, i.e., an ordered sequence of
adjacent edges that may be used to describe cytoskeletal filaments.
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3 Introduction 3.3 Actin-based transport in plant cells

The majority of research on the actin cytoskeleton has focused on animal, fungal, or prokaryotic cells

[Cooper, 2000]. However, the above-mentioned differences in the actin cytoskeleton between plant and

non-plant cells clearly demonstrate that focused studies are needed to unravel the specific organization and

function of the actin cytoskeleton in plant cells.

3.3 The plant actin cytoskeleton facilitates cellular transport

and various other tasks

The plant actin cytoskeleton is highly multi-functional, not least due to the diverse interaction opportu-

nities of actin proteins [Dominguez, 2004], and may perform many functions simultaneously (Fig. 3.1D,

[Volkmann and Baluska, 1999; Nick, 2007; Liu, 2010]). It enables anisotropic cell expansion [Cosgrove, 1996;

Smith and Oppenheimer, 2005], it is central for intracellular regulatory processes [Staiger, 2000] as well as

for signal transduction of external stimuli [Volkmann and Baluska, 1999; Shafrir and Forgacs, 2002]. More-

over, the actin cytoskeleton plays an important role in plant cell division and the formation alignment of

the cell plate [Staehelin and Hepler, 1996; Hussey et al., 2006]. As opposed to animal cells, the rigid cell wall

of plant cells renders actin cytoskeletal support against mechanical stress and strain less relevant [Kost and

Chua, 2002]. However, especially due to their larger sizes [Cooper, 2000; Liu, 2010], plant cells have a strong

need for long-range cellular transport which is also met by the actin cytoskeleton [Staiger and Lloyd, 1991;

Shimmen and Yokota, 2004; Prokhnevsky et al., 2008; Akkerman et al., 2011].

The basic requirement of cells for long-range transport systems is a consequence of the heterogeneous and

crowded cytoplasm that comprises a large range of molecules and organelles [Luby-Phelps, 2000; Ellis, 2001].

Since diffusion through this complex environment is not sufficient to match varying demands for cell main-

tenance and growth, intricate cellular transport schemes have evolved [Geisler et al., 2008; Goldstein et al.,

2008; Wightman and Turner, 2010; Goldstein and van de Meent, 2015; Wang and Hussey, 2015]. In plants,

this transport relies on the acto-myosin system, i.e., the movement of myosin along the actin cytoskele-

ton [Staiger and Lloyd, 1991; Shimmen and Yokota, 2004; Prokhnevsky et al., 2008; Akkerman et al., 2011].

Myosins are ATP-driven, actin-binding motor proteins that carry cargo (typically) towards the barbed end

of actin filaments (Fig. 3.2C; [Cooper, 2000; Shimmen et al., 2000; Cai et al., 2014]). The myosin family com-

prises a large number of different classes [Shimmen et al., 2000; Peremyslov et al., 2011], whereby myosin XI

has been shown to be the major driver of cellular transport in plants [Holweg and Nick, 2004; Avisar et al.,

2008b; Peremyslov et al., 2010, 2008; Cai et al., 2014].

The cellular cargo of the acto-myosin transport system is diverse. It comprises secretory vesicles for the

delivery of cellular material to growing parts of the cell [Mathur, 2004], vesicles for trafficking between en-

domembrane compartments [Wightman and Turner, 2008; Gutierrez et al., 2009; Wang and Hussey, 2015],

small cargo, like mRNAs [Bassell and Singer, 1997], and also large organelles such as mitochondria, chloro-

plasts, and Golgi (Fig. 3.2D; [Nebenführ et al., 1999; Staiger, 2000; Nebenführ and Staehelin, 2001; Avisar

et al., 2008b; Akkerman et al., 2011]). In contrast to animal cells with a single Golgi apparatus, plant cells

often comprise many separate, mobile Golgi bodies [Griffing, 1991; Nebenführ and Staehelin, 2001]. Golgi

bodies synthesize for example hemicelluloses and pectins, two of the main constituents of the plant cell wall
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3.4 Methods 1: Systems microscopy 3 Introduction

[Gibeaut and Carpita, 1994; Dupree and Sherrier, 1998; Somerville et al., 2004], that are subsequently incor-

porated into the cell wall via exocytosis [Geisler et al., 2008]. An impaired plant actin cytoskeleton leads to

Golgi aggregation and both reduced exo- and endocytosis [Nebenführ et al., 1999; Avisar et al., 2008a; Akker-

man et al., 2011; Sampathkumar et al., 2013]. Therefore, actin-based Golgi transport is crucial for cell growth,

especially in young hypocotyl cells which are a well-established model system for cell growth [Hussey et al.,

2006; Akkerman et al., 2011; Sampathkumar et al., 2011].

Another special feature of plant cells as compared to animal cells is the directed flow of cytosol and or-

ganelles called cytoplasmic streaming [Shimmen and Yokota, 2004; Shimmen, 2007; Goldstein and van de

Meent, 2015]. Beyond the direct movement of cargo by the acto-myosin system, the high velocities of plant

myosins [Peremyslov et al., 2008; Liu, 2010] and the fast (de-)polymerization dynamics of plant actin fila-

ments [Staiger et al., 2009], in combination with the viscous cytoplasmic environment [Luby-Phelps, 2000;

Ellis, 2001] may establish bulk flow streaming patterns at a cellular level. Interestingly, different cell type

exhibit different streaming patterns [Shimmen and Yokota, 2004; Goldstein and van de Meent, 2015]. The

best studied type of streaming is rotational streaming in large internodal cells of characean algae [Kachar

and Reese, 1988; Foissner, 2004; Woodhouse and Goldstein, 2013], which are closely related to higher plants.

Plant cells that exhibit longitudinal tip-growth, like root hairs or pollen tubes, typically show fountain-like

streaming where the flow along the central cell axis is opposite to the flow towards the cell membrane [Allen

and Allen, 1978; Goldstein and van de Meent, 2015]. However, the most common form of cytoplasmic

streaming involves a less organized, more erratic and saltatory form of cytoplasmic movement in which

cytoplasmic particles or organelles jump larger distances [Nebenführ et al., 1999; Goldstein and van de

Meent, 2015]. Thus, direct actin-based transport of cargo in plant cells may be substantially supported by

indirect bulk flow movement. Indeed, for certain organelles is it still under debate whether they move di-

rectly through binding to motor proteins or whether they are carried on indirectly via cytoplasmic streaming

[Buchnik et al., 2014; Cai and Cresti, 2012].

3.4 Methods 1: Systems microscopy and

quantitative image analysis

Many fields of biological research, and cell biology in particular, increasingly rely on microscopy data [Swed-

low and Eliceiri, 2009; Eliceiri et al., 2012]. Apart from the preference of humans for visual input, this increase

is due to three reasons: First, technical advances continue to increase the spatial and temporal resolution of

microscopes while keeping the damage to the organism low. Thus, these advances enable imaging of pro-

cesses at a molecular scale in living systems [Stephens and Allan, 2003; Sheahan et al., 2004; Li et al., 2015].

Second, imaging approaches capture the organization and dynamics of cellular components on a systems

level, enabling the investigation of global organizational and functional principles beyond local genetic and

biochemical interactions (cf. Section 3.5 below). Third, by providing digital data, microscopy studies al-

low fast, automated, quantitative, and unbiased analyses [Swedlow and Eliceiri, 2009; Eliceiri et al., 2012].

Therefore, in combination with advances in machine learning methods and decreasing costs for computing

power, imaging-based approaches provide a powerful means towards answering questions from cell biology.

Microscopy data are in the form of images that may capture different regions (e.g., z-layers that capture slices
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at varying depths in the sample) or time points of a given object as well as different channels (e.g., RGB in

color images or channels for different emission wavelengths of fluorescent markers in confocal microscopy

[Chalfie et al., 1994; Lippincott-Schwartz and Patterson, 2003]). In digital image analysis, each image con-

sists of discrete pixels, arranged on a rectangular grid, conveniently represented as table, or matrix, where

each entry denotes the intensity of the respective pixel (Fig. 3.2E; [Gonzalez and Woods, 2009]). Typically,

images are stored in an 8-bit (or 16-bit) encoding that keeps image memory requirements low, while provid-

ing sufficient intensity resolution. This digital representation is inherently quantitative and allows various

options for automated image processing and analysis.

In most classical bioimaging studies, scalar values are measured, such as absolute or relative intensities of

certain regions (e.g., in co-localization studies [Boevink et al., 1998; Gonzalez and Woods, 2009; Sampathku-

mar et al., 2011; North, 2006]) or sizes of specific structures (e.g., for determining organ or plant sizes [Gon-

zalez and Woods, 2009; Gonzalez et al., 2012; Ivakov and Persson, 2013; Apelt et al., 2015]). The cytoskeleton

and other complex structures, however, cannot be described using simple scalar values and more sophisti-

cated frameworks are required (cf. Section 3.6 below).

3.5 Understanding actin-based transport in plant cells:

Molecular details or systems perspective

Cells are the building blocks of terrestrial life [Ingber, 1998; Cooper, 2000]. At the same time, already cells by

themselves are complex, multi-scale systems: They comprise different and interlinked layers of molecular,

i.e., genetic, metabolic, and regulatory processes (on a nm−µm scale) and contain many interacting com-

partments (on a µm scale). Furthermore, they rely on diverse processes on a cellular level, such as cellular

trafficking and transport (on a µm−mm scale) which are in turn based on molecule-level processes. Due

to this multi-scale complexity of the cell, cell biology is faced with an inherent trade-off between a detailed

understanding of the molecular mechanisms and a comprehensive view of the system-level organizational

principles (Fig. 3.1E).

Most biological studies of actin-based transport in plant cells have previously focused on elucidating its

molecular features. Besides the accumulating knowledge about details of actin and actin filament forma-

tion, dynamic behavior of actin filaments defined as buckling and straightening have been reported in plant

interphase cells and severing is suggested to be a major control mechanism for actin cytoskeleton orga-

nization [Staiger et al., 2009]. Besides the molecular details of structure and function of individual motor

proteins, the interaction of multiple motor proteins [Badoual et al., 2002; Müller et al., 2008; Guérin et al.,

2010], their movement at junctions of cytoskeletal filaments [Bálint et al., 2013; Osunbayo et al., 2015], as

well as the local increases in transport velocities due to bundling of cytoskeletal filament are increasingly

well understood [Akkerman et al., 2011].

Contrary to this wealth of molecular details, a system-level perspective of cytoskeletal transport in general,

or actin-based transport in plants in particular, lags behind. So far, only a few imaging-based studies have

addressed cytoskeletal organization and transport at a systems level. These studies are discussed in Section

3.7 below.
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3.6 Methods 2: Networks, networks everywhere

Many biological and technical systems are complex systems, i.e., they are composed of units that exhibit

non-trivial interactions. Examples cover metabolic networks [Fell and Wagner, 2000; Jeong et al., 2000],

neural networks [Felleman and Van Essen, 1991; Koch and Laurent, 1999], and transportation systems like

road [Barthélemy and Flammini, 2008; Barthélemy, 2011], air transportation [Guimerà et al., 2005; Bianconi

et al., 2009], or leaf venation networks [West et al., 1999; Katifori et al., 2010] to name but a few.

An intuitive and flexible framework to capture such complex systems or networks is via graphs. A graph is

a mathematical structure in which nodes, representing the system’s units, are connected by edges, repre-

senting the units’ interactions (Fig. 3.2F; [West, 2001; Newman, 2009]). While often the terms network and

graph are used synonymously, we refer to “network” as a modeling framework for the underlying system and

to “graph” as its mathematical representation. Since nodes and edges of a graph may be assigned different

attributes, the graph flexibly captures various aspects of the underlying system. For example, in spatially em-

bedded systems, the nodes may be assigned coordinates (e.g., crossings or hubs in transportation networks).

Similarly, the edges may be assigned weights and directions (e.g., reflecting speed limits and directions of

travel in transportation networks). Thereby, the network framework and its graph-theoretical basis enable

mathematically powerful and quantitative analyses. Due to these benefits of the network framework, it has

found application in diverse fields of research, ranging from data mining [Han et al., 2011] and dynamical

systems theory [Boccaletti et al., 2006; Newman, 2009] to systems biology [Fell and Wagner, 2000; Barabási

and Oltvai, 2004; Tero et al., 2010] and even cultural studies [Schich et al., 2014].

3.7 State of the art in theoretical modeling

of actin-based transport

We distinguish three classes of approaches to model and understand cytoskeletal organization and trans-

port on a systems level, i.e., mechanistic, fluid-dynamical, and network-based models (Fig. 3.1F; [Vaziri and

Gopinath, 2008; Banerjee and Park, 2015]). As described in the previous section, any description of a given

complex system is subject to a trade-off between the level of details included in the description and its scope.

This trade-off is also reflected by the different classes of models, whereby mechanistic models typically in-

corporate the highest level of detail, while network models achieve the highest level of abstraction. While,

ultimately, multi-scale models spanning all these levels are desired, they face the challenges already present

at the respective levels and are computationally not yet feasible.

The models in the first class capture the different cytoskeletal molecular components as well as their

biophysicochemical interactions. While such mechanistic models have successfully reproduced the self-

organized formation of aligned microtubule arrays in plant cells [Hawkins et al., 2010; Tindemans et al.,

2010], the rapid and diverse dynamics of the actin cytoskeleton still impede such modeling approaches in

this setting. In particular, since microtubules in plant cells play a minor role in cellular transport, no mech-

anistic models for cytoskeletal transport are currently available. Generally, the high level of biological de-

tail renders mechanistic models of whole-cell cytoskeletal systems computationally expensive. Moreover,
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mechanistic simulations require many biological parameters whose experimental measurement is often

challenging.

The models in the second class capture both cytoplasmic streaming and cytoskeletal components as con-

tinuous, interacting flow fields [Woodhouse and Goldstein, 2013; Goldstein and van de Meent, 2015]. These

fluid dynamical models have been used to analyze the interplay between cytoplasmic streaming and actin

organization in algae cells, revealing the emergence of self-organized, rotational streaming patterns [Wood-

house and Goldstein, 2013; Goldstein and van de Meent, 2015]. Since this approach does not incorporate

molecular interactions, it is typically less parameter-intensive and the fluid-dynamical differential equations

can be solved using established and efficient solvers [Versteeg and Malalasekera, 2007]. However, fluid-

dynamical approaches neglect the discrete, filamentous structure of the cytoskeleton. Consequently, they

do not incorporate microscopy data of actual cytoskeletal structures. Moreover, while current fluid-dynamic

approaches assume a single flow field, the cytosol and different types of cargo may show very different pat-

terns of movement (cf. Section 3.3).

In the third class, a number of network-based models have been developed that take into account the dis-

crete, filamentous structure of the cytoskeleton (cf. Section 3.6). In a random network of filament segments,

different regimes of transport were found, depending on the contribution from diffusion or motor-protein

driven transport [Neri et al., 2013]. In a similar model, high transport rates of were shown to depend rather

on filament polarities than orientations [Ando et al., 2015]. Moreover, the impact of motor protein move-

ments on the surrounding cytoplasm was demonstrated in a model of two parallel lattices [Houtman et al.,

2007]. A major advantage of these network-based model is the low number of employed biological param-

eters. Furthermore, these abstract models typically consider the movement of motor-proteins only and it is

not clear whether their findings are transferable to real-life transport of cargo. This uncertainty arises from

incomplete knowledge about interactions of motor proteins and cargo [Cai and Cresti, 2012; Buchnik et al.,

2014], the non-trivial cooperation and competition of multiple motor proteins [Badoual et al., 2002; Müller

et al., 2008; Guérin et al., 2010], as well as the lack of accompanying experimental data of cellular transport.

Even more severely, the current network-based studies did not incorporate biological data of cytoskeletal

structures.

3.8 Methods 3: Extraction of system-level network representations

from image data

On the one hand, image analysis enables key insights in cell biology; however, capturing and understanding

how complex cellular features such as cytoskeletal organization emerge remains challenging (cf. Sections 11

and 12). On the other hand, networks provide suitable representations of the cytoskeleton; but so far, bio-

logical data about real-life cytoskeletal structures have not been incorporated in this modeling framework

(cf. Sections 13 and 13). Therefore, a combination of imaging data and network representations is needed

for an accurate and quantitative description of the cytoskeleton and its functions.

Currently there is a number of different approaches for the reconstruction of biological networks from image

data that may be divided into two classes: The first class of approaches relies on global image segmentation
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to find the center lines of the imaged network structure, and consequent extraction of the network edges

and nodes as center line segments and segment end points, respectively. The second class of approaches

employs local optimization schemes to connect given seed points on the imaged network structure via paths

that follow the underlying network filaments, and consequent connection of touching filaments. Generally,

the existing methods for image-based network extraction are designed for specific types of networks. For

example, methods from the first class have been developed for the extraction of tree-like networks from

plant root systems [Pound et al., 2013], fungal networks [Baumgarten and Hauser, 2012; Obara et al., 2012b],

or leaf venation networks [Dhondt et al., 2012]. Methods from the second class have been prominently

developed for the reconstruction of neuronal topologies, or the connectome [Mayerich and Keyser, 2008;

Meijering, 2010; Longair et al., 2011; Peng et al., 2015b], and a few studies have addressed extraction of

cytoskeletal networks [Smith et al., 2010; Xu et al., 2011, 2014, 2015].

However, many of these approaches require user input, rendering them unfeasible for fast and unbiased

large-scale analyses [Smith et al., 2010; Dhondt et al., 2012; Pound et al., 2013; Longair et al., 2011]. At the

same time, fully automated approaches are usually tailored to specific image sources and challenged by low

signal-to-noise ratios, as observed for the rapidly rearranging cytoskeleton in living plant cells (cf. Fig. 3.1A;

[Sheahan et al., 2004; Riedl et al., 2008; Staiger et al., 2009]), which may strongly affect the resulting networks.

Furthermore, some of the methods for extraction of cytoskeletal networks from image data are only feasible

for small networks [Smith et al., 2010; Xu et al., 2011] and all of them rely on local instead of global optimiza-

tion schemes [Smith et al., 2010; Xu et al., 2011, 2014, 2015]. As a result, the outcome of these approaches

may be biased with respect to the selection of seed points as well as the definitions of local filament prop-

erties that are used in the optimization procedure. In particular, the existing methods for the extraction of

networks from image data do not incorporate the underlying image intensity as an estimator of actin bundle

thickness that is otherwise concealed by the diffraction limit of light microscopy (cf. Fig. 3.1A; [Sampathku-

mar et al., 2011; Moseley, 2013; Li et al., 2015]).

3.9 Research aims

We conclude that, complementary to a better understanding of the molecular mechanisms underlying cy-

toskeletal architecture and functionality, there is need for a system-level approach to the cytoskeleton that

addresses the following five issues:

1. Description of the discrete filamentous structure of cytoskeletal networks in vivo on a system-wide,

cellular level.

2. Understanding of biological principles underlying the organization of the actin cytoskeleton.

3. Identification of individual actin filaments as the basic unit of the actin cytoskeleton.

4. Quantification of the actin-based cellular transport dynamics of organelles.

5. Investigation of the coordination of organelle transport by the actin cytoskeleton.

Resolving these issues will be an important step towards a complete understanding of cytoskeletal transport,

from its cellular coordination to its evolutionary context and its future technological control and utilization.
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4 Results

This chapter comprises five of our publications that address and resolve the issues described in the Introduc-

tion (cf. Chapter 3) in order to shed light on the plant cytoskeleton as a transportation network. To that end,

we developed and employed a robust image-based grid approximation of cytoskeleton networks, revealing

organizational principles of the cytoskeleton (Section 4.1, [Breuer et al., 2014]). To simplify the extraction

of networks from images, we presented an open-source software tool that implements the developed grid-

based method (Section 4.2, [Breuer and Nikoloski, 2014]). We used multi-objective optimization combined

with image data of different plant cell types and demonstrated that different cell types sustain cytoskele-

tal networks with cell-type specific organization (Section 4.3, [Breuer and Nikoloski, 2015a]). We devised a

method to accurately segment and represent the cytoskeleton as a network and used automated tracking

of organelles to show how the system-wide organization of the actin cytoskeleton drives cellular transport

(Section 4.4, [Breuer et al., 2015]). Moreover, for a given network representation of any filamentous system,

we developed an optimization-based approach to detect individual filaments, enabling non-invasive inves-

tigation of individual filament properties in their native network context (Section 4.5, [Breuer and Nikoloski,

2015b]). Overview of included publications:

4.1 Quantitative analyses of the plant cytoskeleton reveal underlying organizational principles

David Breuer, Alexander Ivakov, Arun Sampathkumar, Florian Hollandt, Staffan Persson, Zoran Nikoloski

J. R. Soc. Interface, 2014, 11(97):20140362

4.2 img2net: Automated network-based analysis of imaged phenotypes

David Breuer, Zoran Nikoloski

Bioinformatics, 2014, 30(22):3291-3292

4.3 Cell type-specific organization and optimality of the plant actin cytoskeleton

David Breuer, Yi Zhang, Staffan Persson, Zoran Nikoloski

in preparation

4.4 System-wide organization of the actin cytoskeleton drives organelle transport in plant cells

David Breuer, Alexander Ivakov, Jacqueline Nowak, Staffan Persson, Zoran Nikoloski

submitted

4.5 DeFiNe: an optimization-based method for robust disentangling of filamentous networks

David Breuer, Zoran Nikoloski

Sci. Rep., 2015, 5:18267
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4.1 Quantitative analyses of the plant cytoskeleton

reveal underlying organizational principles

Publication: J. R. Soc. Interface, 2014, 11(97):20140362

Authors: David Breuer1,2, Alexander Ivakov3, Arun Sampathkumar4, Florian Hollandt1, Staffan Persson3,5,

Zoran Nikoloski1,∗

Affiliations: 1Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant

Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany

2Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25,

14476 Potsdam, Germany

3Plant Cell Walls, Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1,

14476 Potsdam, Germany

4Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR,

United Kingdom

5ARC Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne,

Grattan Street, Parkville, Victoria 3010, Australia

Contact: ∗nikoloski@mpimp-golm.mpg.de

4.1.1 Abstract

The actin and microtubule cytoskeletons are vital structures for cell growth and development across all

species. While individual molecular mechanisms underpinning actin and microtubule dynamics have

been intensively studied, principles that govern the cytoskeleton organization remain largely unexplored.

Here, we captured biologically relevant characteristics of the plant cytoskeleton through a network-driven

imaging-based approach allowing to quantitatively assess dynamic features of the cytoskeleton. By intro-

ducing suitable null models, we demonstrate that the plant cytoskeletal networks exhibit properties required

for efficient transport, namely, short average path lengths and high robustness. We further show that these

advantageous features are maintained during temporal cytoskeletal re-arrangements. Interestingly, man-

made transportation networks exhibit similar properties, suggesting general laws of network organization

supporting diverse transport processes. The proposed network-driven analysis can be readily used to iden-

tify organizational principles of cytoskeletons in other organisms.

Keywords: cytoskeletal networks, cytoskeletal transport, plant cell walls, complex networks, organizational

principles
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4.1.2 Introduction

Complex systems can be represented by networks that capture the underlying components, as nodes, and

their interactions, as links. Network representations have provided insights into the organizational princi-

ples of a variety of systems, ranging from man-made to systems shaped by evolution, such as: metabolic

networks [Fell and Wagner, 2000; Jeong et al., 2000], neural networks [Felleman and Van Essen, 1991; Koch

and Laurent, 1999], food webs [Williams and Martinez, 2000; Jordano et al., 2003], and transportation sys-

tems, including: vascular [Gazit et al., 1995; West et al., 1997] and leaf venation networks [West et al., 1999;

Katifori et al., 2010].

The cytoskeleton represents yet another type of biological network. It is composed of actin filaments (AFs),

microtubules (MTs), and intermediate filaments that form intricate interconnected arrays. Plant cells lack

intermediate filaments, and their actin and microtubule cytoskeleton exhibits structural and functional dif-

ferences to that of animal and yeast cells. These differences may be due to the presence of a rigid cell wall, a

large central vacuole, the absence of discrete cytoskeleton organizing centers, or the general need of plants,

as sessile organisms, to cope with changing environmental conditions [Wasteneys, 2000; Ehrhardt and Shaw,

2006].

In plant interphase cells, AFs exhibit extraordinarily dynamic behaviors [Staiger et al., 2009]. A major func-

tion of the actin cytoskeleton is to support cytoplasmic streaming, the directed flow of cytosol and or-

ganelles, which is mainly powered by ATP-driven myosin movement of compartments along the actin cy-

toskeleton [Shimmen and Yokota, 2004; Szymanski, 2009]. Furthermore, recent studies have shown that

transportation of organelles depends on the micro-environment of the actin structures, where organelles are

rapidly transported along actin bundles and display reduced motility when surrounded by thin AFs [Akker-

man et al., 2011; Sampathkumar et al., 2013].

The behavior of single MTs, as well as MT arrays, has been described throughout the cell cycle and for differ-

ent cell types [Wasteneys and Ambrose, 2009; Buschmann et al., 2011; Jacques et al., 2013b]. Their dynamics

has been well-characterized [Hush et al., 1994; Ehrhardt and Shaw, 2006; Ehrhardt, 2008], and can lead to

the formation of self-organized patterns that largely explain the MTs’ orientation in growing cells [Zumdieck

et al., 2005; Allard et al., 2010; Tindemans and Mulder, 2010; Lindeboom et al., 2013]. While MTs sustain vesi-

cle motility in certain plant cells [Collings, 2008], they are typically located at the cell cortex and support the

synthesis of cellulose microfibrils in interphase cells [Paredez et al., 2006]. Nevertheless, there is emerging

evidence for transport along MTs also in these cell types, e.g., Golgi and small cellulose containing compart-

ments have been reported to track along cortical MTs [Crowell et al., 2009].

Several studies have investigated the mechanical properties of the cytoskeleton in yeast and animal cells

both experimentally [Wagner et al., 2006; Lieleg et al., 2007] and theoretically [MacKintosh et al., 1995; Wag-

ner et al., 2006; Benetatos and Zippelius, 2007]. Models of AFs as a system of stiff, spring-connected rods

have demonstrated a percolation-related transition in the viscoelastic properties [Ziemann et al., 1994; For-

gacs, 1995], similar to signal propagation in a cytoskeleton model of connected rods [Shafrir et al., 2000;

Shafrir and Forgacs, 2002].

The above studies employed a bottom-up approach in which the behavior of a system is explained based

on the dynamics of its components. However, the interconnected structure and the rapid dynamics of the
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cytoskeleton lend themselves to a top-down approach, which is independent of detailed molecular knowl-

edge and better suited for uncovering the principles underlying cytoskeletal organization. Two studies have

used such an approach in animal systems: AF arrays have been described as a superposition of different tes-

sellation models [Fleischer et al., 2007] and a theoretical investigation of cytoskeletal transport in a system

with passive diffusion and active transport along a random network of segments has demonstrated different

regimes of transport [Neri et al., 2013]. Therefore, there is need for a network-based representation of the

cytoskeleton that: (1) captures its complex network structure, (2) is based on biologically solid ground, (3)

can be used to describe dynamic network processes, and (4) may uncover organizational principles of the

cytoskeleton in plant and animal cells.

In this study, we propose a novel framework that captures the structure and dynamics of the actin and mi-

crotubule cytoskeleton as complex networks. We used this framework to quantify and compare the behavior

of AFs and MTs in plant interphase cells under different conditions. We tested the hypothesis that the cy-

toskeleton is well-suited to support transport processes. By developing suitable null models as references,

we show that the cytoskeleton indeed exhibits biologically desirable transport-related properties, such as

short average path lengths and high robustness against disruptions of the network. Finally, we demonstrate

that man-made transportation networks display similar properties. The developed framework is readily ap-

plicable to study the cytoskeleton of other organisms or under different conditions.

4.1.3 Results

Reconstruction of complex networks from cytoskeletal images

To investigate the networks of AFs and MTs, we grew Arabidopsis (A. thaliana) FABD:GFP and

TUA5:mCherry dual-labeled seedlings [Sampathkumar et al., 2011] in the dark and imaged elongating

hypocotyl cells. To capture rapid changes and to minimize bleaching, we used a spinning-disk confocal

microscope (Fig. 4.1.1A and B; cf. Appendix 6.1.1). To generate complex networks from the cytoskeleton im-

age series we followed a two-step procedure: We placed a grid over the cytoskeleton which covers the cell’s

cytoskeleton (e.g. Fig. 4.1.1C). From the grid, we constructed an edge-weighted network in which nodes rep-

resent the grid’s junctions, and edges represent the grid’s links. We assigned a weight to each edge by creating

convolution kernels with Gaussian profiles for each edge (Fig. 4.1.1D), thus projecting the cytoskeleton onto

the overlaid grid. This results in a weighted, undirected network (Fig. 4.1.1E) where the weights reflect the

intensity of the underlying filaments/bundles. Using confocal z-stack image series, these steps were also

used to construct three-dimensional cytoskeletal networks (Fig. 4.1.1G). The procedure was repeated for all

images of the recorded actin and microtubule time series, separately. As a result, each network captures

information of the time-dependent cytoskeletal component whose properties may be readily investigated.

To determine if the studied network properties carry a biological signal, we developed several null models

that randomize parts of the cytoskeletal structures while preserving the total amount of cytoskeleton in the

cell (cf. Appendix 6.1.2). If a given network property is significantly higher or lower than expected by chance

we conclude that the underlying cytoskeletal organization is non-random and, therefore, biological relevant.

This may suggest that the cytoskeleton is tuned to guarantee such values of the structural or functional

network property.
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Figure 4.1.1: From fluorescence image to reconstructed network, null model, and 3D extension. (A) Col-
ored overlay of unprocessed snapshots of the AFs (green) and MTs (magenta) of a dual-labeled, three-day-
old A. thaliana hypocotyl cell. (B) Single preprocessed image of one cytoskeletal component, here AFs. (C)
Grid used for network reconstruction (a uniform rectangular grid with 10pixels spacings is shown in blue).
(D) Using convolution kernels, the links of the grid are assigned scalar values by pixelwise multiplication of
the kernel with the cytoskeleton image and subsequent summation. (E) Weighted, undirected network with
edges given by the links of the chosen grid type and weights obtained via the kernel method (weights are
color-coded from blue to red). (F) To assess the biological relevance of various properties of the cytoskele-
tal network, a null model is introduced through an ensemble of networks with shuffled edge weights (one
exemplary realization is depicted). (G) From confocal z-stack recordings, a three-dimensional cytoskeletal
network is reconstructed (grid spacings are 20pixels; edges connecting different z-layers are set transparent
for better visibility of the full network).
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Figure 4.1.2: Network properties capture biologically relevant aspects of cytoskeletal organization for dif-
ferent scenarios. The first 20 frames of the image series are used for the analysis. ∗ ↓ and ∗ ↑ above a bar
denote a decrease or increase of the properties of the treated relative to those of the control plants (indepen-
dent two-sample t-test: p−value < 0.05). ∗ ↓ and ∗ ↑ above a box plot denote network properties that fall be-
low or exceed a reference value marked by a gray, dotted line (one-sample two-sided t-test: p−value < 0.05).
(A) The AF network of Latrunculin B-treated plants displays a smaller standard deviation of the network’s
degree distribution. (B) The connected patches of AFs are smaller after Latrunculin B treatment. (C) The
orientation of MTs is predominantly horizontal in dark-grown plants and vertical in light-exposed plants.
(D) Computing the change in MT orientation per unit time shows a difference between control and light-
treated plants. In dark-grown plants, a significant change towards a vertical orientation is observed, which
is absent for light-treated plants. (E) The (horizontal) orientation of AFs is not altered in plants exposed to
light. (F) Light induces a dispersion of AFs which yields a broader degree distribution.
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The reconstructed networks capture biologically relevant features of the actin and microtubule cy-

toskeletal components

To test whether the proposed network-based approach captures biologically meaningful features, we used

chemical treatments and environmental stimuli to alter the behavior of the cytoskeleton. First, we quan-

tified the effect of the actin-disrupting drug Latrunculin B on the actin cytoskeleton. This drug binds to

monomeric actin and, thereby, inhibits AF formation [Yarmola et al., 2000]. We reconstructed the AF net-

works for both the control and the treated plants for each frame of the image series. The structure of the AFs

and their drug-induced fragmentation was quantified by two network properties which can be related to the

biological phenomenon (see Appendix 6.1.3 for a mathematical description and detailed interpretation of

these quantities): The standard deviation of the degree distribution [West, 2001] captures the spatial hetero-

geneity of the distribution of actin structures, i.e., images with regions of low and high cytoskeletal intensi-

ties yield both small and large edge weights and consequently a broader degree distribution (cf. Fig. 4.1.1E).

Since the edge weights integrate intensities of possibly multiple filaments, our approach does not resolve

differences in thicknesses or numbers of individual filament but only a combination thereof. By compar-

ing the standard deviations of the degree distributions of control and treated plants, we found a statistically

significant reduction by Latrunculin B (Fig. 4.1.2A; independent two-sample t-test: p−value = 7.0 ·10−9; for

treated and non-treated plants, respectively, we pooled the standard deviations of the degree distributions

across the first 20 time points of the image series). We then determined the average number of nodes per

connected, non-trivial network component after thresholding the edge weights, providing an estimate for

the extent to which the cytoskeletal filaments form connected networks. By using the 50th percentile as

a threshold, we found that Latrunculin B reduces the average size of the resulting connected components

(Fig. 4.1.2B; independent two-sample t-test: p−value = 2.9 ·10−42). These findings are in agreement with vi-

sual reports on the fragmented actin structure of Latrunculin B-treated cytoskeletons [Yarmola et al., 2000].

By using the reconstructed MT network, we quantified the overall orientation of MTs in plants that had been

exposed to light several hours before imaging. Light is one of the environmental factors that determine plant

growth, and it is well established that the MT array rapidly changes from largely transverse to a generally lon-

gitudinal when seedlings are exposed to light [Wymer and Lloyd, 1996; Paradez et al., 2006; Sambade et al.,

2012]. As our method does not detect individual filaments, we inferred the MT orientation indirectly (see

Appendix 6.1.4 for a detailed derivation): By placing an imaginary rod of a specific length and orientation

over the grid we calculated its contributions to the weights of edges with different orientations by using our

kernel method (cf. Fig. 4.1.1D). Here, we solved the inverse problem to obtain the overall MT orientation α

from the weight distribution of edges with different orientations . Angles α ∈ [0◦,45◦) and α ∈ (45◦,90◦] in-

dicate overall vertical and horizontal orientations of the MTs, respectively. We estimated the MT orientation

for seedlings grown under dark and light conditions and found a significant difference (Fig. 4.1.2C; indepen-

dent two-sample t-test: p−value = 5.8 ·10−52) with a horizontal and longitudinal orientation, respectively

(one-sample two-sided t-tests: dark p−value = 6.3 ·10−8, light p−value = 4.7 ·10−45). These findings are in

agreement with known results [Granger and Cyr, 2001; Paradez et al., 2006; Sampathkumar et al., 2011; Sam-

bade et al., 2012]. They further revealed that despite the strong correlation between light exposure and lon-

gitudinal MT orientation, there are also deviants (cf. Fig. 4.1.2C): Under dark condition, a fraction of about

40% of the MT networks shows an, unexpected, overall vertical orientation while under light conditions,
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about 20% of the analyzed MT networks display an overall horizontal orientation, contrary to expectations.

. These deviations from the expected results may highlight the inherent variability of cytoskeletal responses

to external stimuli and support the view that hypocotyl cells may be in different stages of growth [Gendreau

et al., 1997; Le et al., 2005; Sambade et al., 2012].

We also studied the speed of MT reorientation under the microscope by computing the slope of the average

orientation time series via a linear regression. There was a significant difference between the two treat-

ments (Fig. 4.1.2D; independent two-sample t-test: p−value = 2.5 ·10−3), i.e., while the change in orienta-

tion is negative in dark, it does not significantly differ from zero in light (one-sample two-sided t-test: dark

p−value = 2.5 ·10−5, light p−value = 0.6). Therefore, we conclude that over the range of five minutes of the

experiment the confocal laser light does induce a reorientation of the MTs towards the longitudinal cell axis

in dark-grown plants; however, this is not the case in plants exposed to light before imaging as reorientation

of MTs has already progressed further in these cells.

Next, we employed our network-based framework to investigate the behavior of AFs in response to light in

growing hypocotyls. Like for MTs, we inferred the overall orientation of the AFs for dark-grown and light-

treated plants, respectively. We found no significant difference in actin orientation between the treatments

(Fig. 4.1.2E; independent two-sample t-test: p−value = 6.6 ·10−2), with a consistent major longitudinal ori-

entation (one-sample two-sided t-test: dark p−value = 3.8 ·10−7, light p−value = 4.4 ·10−2). To quantify the

heterogeneity of the actin distribution, we computed the standard deviation of the degree distributions for

both scenarios. In light-treated plants, the actin cytoskeleton displayed a more heterogeneous distribution

across the cell than in dark-grown plants (Fig. 4.1.2F; independent two-sample t-test: p−value = 1.5 ·10−4),

implying the prevalence of bundles. These findings agree with reports on the impact of light on the organi-

zation of AFs in maize coleoptiles [Waller and Nick, 1997]. However, they do not agree with the qualitative

findings in a different species, i.e., rice, where light was shown to promote a change in AF orientation from

transverse to longitudinal and to disperse actin bundles [Holweg and Nick, 2004]. Interestingly, the rear-

rangement of AFs under light has been linked to that of MTs [Sampathkumar et al., 2011]. Therefore, our

findings suggest that a change in environmental conditions would impose a need for rapid redistribution of

cellular material in the cell, which are known to be facilitated by actin bundles [Akkerman et al., 2011].

Accessibility and robustness of cytoskeletal networks

After demonstrating the inherent ability of our network approach to capture biologically relevant informa-

tion on cytoskeletal organization, we focused on identifying network properties that reflect the functions of

the cytoskeleton. To investigate the transport efficiency of the AF and MT networks (Fig. 4.1.3A), we com-

puted average path length (as a measure for the cellular accessibility of the cytoskeleton) and algebraic con-

nectivity (as a measure for the cytoskeletons’ robustness against disruptions) (see Appendix 6.1.3 for the

mathematical formulation and a detailed interpretation of the properties).

The average (shortest) path length (APL) [West, 2001] is the average of the minimum distances between all

pairs of nodes in a (edge-weighted) network. Here, the length of an edge is given by the inverse of its weight,

i.e., thick actin bundles or tubulin filaments yield small edge lengths. This is reasonable since cytoskele-

tal bundles typically facilitate faster transport compared to thinner filaments [Akkerman et al., 2011] which

may, in general, depend on the size of the cargo. The APL provides an estimate of how close any two nodes
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Figure 4.1.3: Time-resolved average path length and algebraic connectivity of cytoskeletal networks and
null model networks. In (B) and (C), the results for the observed networks (solid lines) of AFs (green) and
MTs (magenta) are compared to those of the null model (dashed lines: ensemble-mean; shaded regions:
ensemble-mean ± standard deviation). The box plots show the distribution of values of a network property
used in the statistical test. (A) Green- and magenta-colored images of AFs and MTs, respectively. (B) The
average path lengths of AF and MT networks (solid lines) fluctuate over time and stay well below the average
path lengths of the null model (dashed lines and shaded regions). (C) The algebraic connectivity is consis-
tently larger for both AFs and MTs in the observed cytoskeletal networks (solid lines) than in the null model
networks (dashed lines and shaded regions). (D) Comparing the ratios of average path lengths of the ob-
served networks and their null model networks for AFs and MTs yields no statistically significant difference
between dark and light conditions.
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are expected to be and, hence, the accessibility in the cytoskeleton. By computing the APLs for the sequence

of the AF and MT networks, we obtained two time series (Fig. 4.1.3B, green and magenta, solid lines). The

corresponding values largely reflect the overall intensity distribution of the images and, by themselves, carry

little information about the underlying network structure. As a reference, we calculated the APLs for ensem-

bles of AF or MT null model networks, i.e., networks obtained by shuffling edge weights (Fig. 4.1.3B, green

and magenta, dashed lines and shaded regions). We found that the observed networks exhibit significantly

smaller APLs than their respective null models (independent two-sample t-test: AF p−value = 7.8 ·10−273,

MT p−value < 2.2 ·10−308).

The algebraic connectivity (AC) [West, 2001] is the second smallest eigenvalue of the network’s graph Lapla-

cian, which is closely related to the weight matrix of the network, and reflects how well-knit the network is.

While a vanishing AC indicates the decomposition of the network into two or more disconnected compo-

nents, larger values correspond to a higher robustness of the network against disruptions. By comparing

the AC of the observed actin and microtubule networks (Fig. 4.1.3C, green and magenta, solid lines) to their

null model counterparts (Fig. 4.1.3C, green and red, dashed lines and shaded regions), we found that the ob-

served networks yield significantly larger algebraic connectivities than their respective null model networks

(independent two-sample t-test: AF p−value = 7.5 ·10−139, MT p−value = 2.9 ·10−278).

These findings may be graphically explained as follows: Networks of MTs, and even more so AFs, possess

filaments and bundles that stretch across large parts of the cell. These structures establish connected paths

in the networks with large weights and therefore small lengths. In the computation of shortest path lengths,

they act as “highways” that efficiently connect spatially distant regions. Furthermore, the AF and MT net-

works exhibit larger regions that are particularly strongly linked and result in a higher robustness of the net-

works against disruption. To support this interpretation, we computed the degree assortativity [Newman,

2009] given by the correlation between degrees of nodes and those of their neighbors. It quantifies the extent

to which nodes of (dis-)similar degree are connected to each other. Both the AF and MT networks exhibit sig-

nificantly higher assortativity than their corresponding null model networks and are hence more spatially

clustered (independent two-sample t-tests: AF p−value < 2.2 · 10−308, MT p−value < 2.2 · 10−308).We note

that both APL and AC are summary statistics that do not capture differences in local connectivity patterns

but reflect network properties that relate to the network’s overall transport capacity.

Interestingly, despite the differences in the network architecture of AFs and MTs under dark and light con-

ditions (cf. Fig. 4.1.2), there were no significant differences in the ratios of APLs of observed and null model

networks (Fig. 4.1.3D). Moreover, these ratios stay consistently below one throughout the time series (one-

sample two-sided t-tests: p−values < 0.05 for AF/MT dark/light), reflecting small effort for reaching any

part of the cytoskeletal networks. Thus, the cytoskeleton preserves its advantageous transport properties

over time and across conditions.

While the MT network can largely be captured at the cell cortex in interphase cells, the actin cytoskeleton

constitutes a three-dimensional structure that spans the expanding cell. To ensure that we captured the

volumetric behavior of the AFs, we also recorded confocal z-stack image series of such cells and used our

framework to reconstruct the AF network as a three-dimensional network (cf. Fig. 4.1.1G). To assess if the ad-

ditional information about AFs below the cortical plane changes the transport efficiency of the AF network,

we compared the APL and AC of the three-dimensional network to that of the two-dimensional network ob-
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tained by averaging the intensities of edges at the same x-y-position across all z-layers. In both cases, the

ratio of network properties of the observed network and the null model networks stays well below one (one-

sample two-sided t-test: p−values < 0.05 for 2D/3D APL/AC; see Appendix 6.1.2 for details). Analogously to

the bundle structures in the 2D networks, the actin structures that reach deeper into the cell provide strong

connections in the 3D reconstruction (see Fig. 4.1.1G) that naturally equip the network with shorter paths

and higher robustness.

Taken together, AF as well as MT networks display highly non-random features. In particular, short APL

(good accessibility) and large AC (high robustness) are preserved over time and across different environ-

mental conditions. These findings provide quantitative support for the idea that plants reliably establish

and maintain cytoskeletal structures that are optimized for transport processes throughout the cell [Shim-

men and Yokota, 2004; Paredez et al., 2006; Sampathkumar et al., 2013].

The cytoskeleton and the German autobahn exhibit similar network properties

We next asked whether the observed efficiency in network properties is unique to the cytoskeleton or if it

can also be observed in other transportation networks. As a prominent example, we generated images of the

German autobahn with color-coded speed limits (Fig. 4.1.4A; The maximum speed limit is set to 200km/h,

the speed limit outside of the autobahn is set to 50km/h. However, our findings are largely independent of

this choice, see Appendix 6.1.5). By using our established framework, we obtained a weighted network for

the autobahn (Fig. 4.1.4B) and corresponding null model networks by shuffling edge weights. For the APL

and the AC, we computed the ratios for the respective network properties of the autobahn and its null model

networks and we found that the autobahn network exhibits shorter APLs and higher algebraic connectivities

than expected by chance (Fig. 4.1.4I, black). These results are similar to what we found for the cytoskeleton

(Fig. 4.1.4I, green and magenta). Furthermore, we note that the degree distributions of the cytoskeletal net-

works and the autobahn are unimodal and peak around their means (Fig. 4.1.4E and F).

To differentiate these networks from networks with different structural and transport-related properties, we

further studied a contrived network with a stronger local structure and weaker long-ranged connections

(Fig. 4.1.4C). The contrived network displays a heavy-tailed degree distribution (Fig. 4.1.4G) as well as prop-

erties associated with poor transport efficiency, namely, longer APL and smaller AC than expected from the

null model (Fig. 4.1.4I, orange).

Another interesting comparison is that of the cytoskeleton and the autobahn to networks in which one or

several transport-related properties are optimized. The weight distribution of a network with a fixed sum of

edge weights and maximal AC may be computed efficiently by solving a semi-definite optimization prob-

lem whose solution is unique [Boyd, 2006; Sun et al., 2006] (Fig. 4.1.4D). Such an optimally robust network

outperforms the cytoskeletal and the autobahn networks by a factor of eight with respect to the ratio of

AC of observed and null model networks (Fig. 4.1.4I, blue). However, it is less efficient in terms of its APL,

which is higher than expected by chance, demonstrating a trade-off between different measures of network

optimality.

While there are certainly differences in the structure as well as the function of the cytoskeleton and the

autobahn, the network properties studied here are summary statistics and it is not possible to infer local
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Figure 4.1.4: Comparison of cytoskeleton, German autobahn, and other types of networks. (A) The auto-
bahn network of Germany with color-coded speed limits and national borders (orange) for guidance. (B)
Network reconstructed from the autobahn image. (C) Reconstructed network for a contrived underlying
structure with different structural and transport-related properties. (D) Network with maximal algebraic
connectivity for the given grid-topology and normalized sum of weights (here, the network is constructed
via an optimization procedure and not inferred from an underlying image intensity distribution; the black
background is for better visibility only). (E) The degree distributions of the AF (green) and MT (magenta)
networks are unimodal and peak around their means (excess kurtosis > 0; the resolution of the histograms
is higher as they include all networks of an image series, cf. Fig. 4.1.3). (F) The degree distribution of the au-
tobahn network is unimodal and peaks around its mean (excess kurtosis > 0). (G) For the contrived network,
the degree distribution is also peaked (excess kurtosis > 0) but shows a more heavy right tail compared to
(E) and (F). (H) The degree distribution of the optimally robust network is broader around the peak and has
thinner tails (kurtosis < 0). (I) The ratios of average path lengths of observed and null model networks are
below one for the cytoskeletal and the autobahn networks and above one for the contrived and the optimally
robust network. The algebraic connectivities are bigger than expected by chance for all studied networks,
except for the contrived networks that show a smaller algebraic connectivity. All deviations from the unit
ratio are statistically significant (one-sample two-sided t-tests: all p−values < 0.05).
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structural differences from them. In particular, we do not study their absolute values but the relative effi-

ciency of these networks with respect to their respective null model which may point to its organizational

principles.

To conclude, both the actin and microtubule cytoskeleton display characteristics typical of transportation

networks, such as the autobahn, and exhibit structures which may not be aimed at optimizing a single prop-

erty indicative of efficient transport. Our data therefore provide quantitative measures to support a view of

the plant interphase cytoskeleton as an efficient transportation network.

4.1.4 Discussion

Though many studies have analyzed the cytoskeleton, most of them have relied on qualitative observations

or manual tracking of up to some dozens of AFs and MTs. The rapid dynamics, as well as strong variability of

cytoskeletal organization across different cell types, stages of cell life, and environmental conditions, neces-

sitate a framework that allows for a fast and objective quantification of the cytoskeletal components in living

cells. This would then allow for biologically meaningful interpretations that go beyond strictly theoretical

studies to investigate the structure of the system. Here, we described one such framework that captures

biologically relevant variations.

Many studies have used a bottom-up approach to the cytoskeleton, in which the molecular principles are

presupposed and used to infer the behavior of the system. Instead, we pursued a top-down strategy to

represent the cytoskeletal organization without the need for detailed molecular knowledge. Hence, our ap-

proach hints at the underlying organizational principles of the cytoskeleton. More specifically, by choosing

a representation through complex networks, we could exploit the well-equipped toolkit from graph theory

to investigate the structure of the cytoskeleton and its relation to, e.g., efficient transport processes in the

cell.

For a careful interpretation of these findings, we need to bear in mind several points: (1) Our network recon-

struction method creates nodes at positions given by the chosen grid (cf. Fig. 4.1.1). Hence, not all nodes cor-

respond to crossings of the filaments. Moreover, despite our focus on the largely planar cortical cytoskeletal

even apparently crossing filament maybe separated by hundreds of nanometers in z-direction. Using our

current imaging techniques, such distances may not be resolved in the 3D reconstruction either (see out-

look below). In particular, such distances prohibit the switching of motor proteins (cf. e.g. [Bálint et al.,

2013] for MT). Yet, the edge weights in our method agglomerate local intensities that may originate from

multiple filaments in different depths. More importantly, typical cargo such as mitochondria, Golgi bodies,

or chloroplasts range from several 100nm to several µm in size and may thus easily bridge even larger dis-

tances between filaments, thereby justifying our assumption of transport along edges and via nodes. (2) In

our approach, all edges are undirected, i.e., they allow bi-directional transport. While bi-directional trans-

port may occur along single actin or microtubular filaments, e.g., due to different motor proteins or fluc-

tuations [Gross, 2004; Lee et al., 2004; Caviston and Holzbaur, 2006], bundles of filaments typically allow

uni-directional only. This uni-directionality is further amplified by the cytoplasmic bulk flow generated by

the coordinated movement of motor proteins [Shimmen and Yokota, 2004]. Yet again, our reconstruction

methods assigns edge weights by integrating local intensities of possibly multiple filaments with different

28



4.1 Organizational principles of the cytoskeleton 4 Results

orientations. Thus, fully bi-directional of transport is unlikely (but not excluded) and, since it can not be

inferred from the cytoskeletal images alone, we use it as an approximation of the potential transport capac-

ity. (3) This potential transport capacity is modeled to be higher in regions with many/thick cytoskeletal

filaments, as described by the edge weights. However, the edge weights do not quantify the speed/amount

of cargo that is really transported (and we do not measure it, see outlook below). (4) Finally, we note that AF

and MT networks generally transport different cargo (cf. [Shimmen and Yokota, 2004; Paredez et al., 2006]),

although there is evidence for transport of, e.g., small cellulose containing vesicle along both structures

[Goode et al., 2000; Gutierrez et al., 2009]. In addition, different types of cells may require different modes of

transportation [Hussey et al., 2006]. Here, we focused on the potential transport capacity of the cytoskeleton

in interphase hypocotyl cells, but our framework may readily be used to study other scenarios.

There is a rich literature on the comparison of structures of different networks. Many biological and man-

made networks show scale-free degree distributions, i.e., there are a few nodes with many neighbors [Born-

holdt and Röhl, 2003], e.g., airway networks [Guimerà et al., 2005]. However, nodes in other transportation

networks are restricted regarding the number of potential neighbors due to the physical limitations. Road

and railway networks display degree distributions that peak around their average values [Barthélemy, 2011],

which we also demonstrated for the cytoskeletal networks. Despite the apparently diverse principles un-

derlying man-made transportation networks, studies have revealed strong agreement in a number of their

properties, e.g., degree distribution. This agreement may be explained by costs associated with the estab-

lishment of new nodes and links [Barthélemy and Flammini, 2008; Courtat et al., 2011; Louf et al., 2013]. Our

findings suggest that comparable cost-related restrictions may play a role in the formation of the cytoskele-

ton, leading to similar structures and transport properties as in man-made networks.

In summary, our framework captures the complex network structure of filamentous cytoskeletal compo-

nents. We used this framework to derive organizational principles of the cytoskeleton. We further showed

that AF and MT networks display biologically desirable characteristics, such as short APLs and high robust-

ness, similar to characteristics found in non-biological transportation networks. In particular, these features

of efficient transportation networks are maintained over time and across conditions.

Possible directions of future efforts are manifold: (1) Our framework can be employed to quantify the com-

plex structures of AF and MT networks, and thus enables an automated and objective comparison of the

complex structures of cytoskeletal networks in other biological systems, e.g., focusing on the cytoskeleton

connecting the nucleus to other parts of the cell. (2) The resolution of the fine cytoskeletal structures may be

improved by using more advanced imaging techniques like total internal reflection fluorescence microscopy,

at least for the cortical cytoskeleton. (3) Another promising direction is the comparison of reconstructed

cytoskeletal networks to networks that optimize one or several seminal network properties. As different net-

work structures favor specific properties, the cytoskeleton may represent an evolutionarily shaped compro-

mise between them. While such a balance has been suggested, e.g., between the speed and the sensitivity

in the polarization of the cytoskeleton [Hawkins et al., 2010], quantitative evidence for a trade-off in the

cytoskeleton’s transport properties is lacking. We note that besides its vital role in cellular transport pro-

cesses the plant cytoskeleton strikingly determines the mechanical properties of the cell. (4) Finally, our

work paves the way for direct studies of the cytoskeleton as a transportation network. Employing actin and

organelle dual-labeled plants, it is appealing to correlate actual biological transport processes with flow-

related network measures. While several studies have investigated the transport of organelles and vesicles
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along the cytoskeleton [Goode et al., 2000; Rogers and Gelfand, 2000; Shimmen and Yokota, 2004; Bálint

et al., 2013], none have quantitatively linked it to the complex structure of the cytoskeletal network. Answer-

ing these questions may contribute to a better understanding of the organizing and dynamic principles of

the cytoskeleton.

4.1.5 Materials and Methods

The experiment setup includes dual-labeled Arabidopsis thaliana Columbia-0 seedlings to which different

treatments were applied prior to imaging in a spinning disk confocal microscope setup. For further details,

refer to Appendix 6.1.1. The computational network-based investigation of the image series, as illustrated

in Fig. 1, includes: (1) the preprocessing of the images in Fiji [Schindelin et al., 2012], (2) the creation and

quantification of the weighted cytoskeletal and null model networks, and (3) their statistical analyses in

Python [Van Rossum and Drake, 2011] (using SciPy [Olivier et al., 2002], NumPy [Oliphant, 2006], NetworkX

[Hagberg et al., 2008] and the Matplotlib [Hunter, 2007] libraries). The construction of an optimally robust

network was performed by solving a semi-definite optimization problem using the Cvxopt Python package

[Dahl and Vandenberghe, 2006]. Detailed descriptions of these steps are given in Appendix 6.1.2 and the

studied network properties are described in detail in Appendix 6.1.3. The overall orientation of cytoskeletal

components is inferred from the network’s weight distribution as described in Appendix 6.1.4. The data of

the German autobahn, as depicted in Fig. 4.1.4, are collected from OpenStreetMap and filtered as explained

in Appendix 6.1.5.
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4.2.1 Abstract

Summary: Automated analysis of imaged phenotypes enables fast and reproducible quantification of bio-

logically relevant features. Despite recent developments, recordings of complex, networked structures, such

as: leaf venation patterns, cytoskeletal structures, or traffic networks, remain challenging to analyze. Here

we illustrate the applicability of img2net to automatedly analyze such structures by reconstructing the un-

derlying network, computing relevant network properties, and statistically comparing networks of different

types or under different conditions. The software can be readily used for analyzing image data of arbitrary

2D and 3D network-like structures.

Availability and Implementation: img2net is open-source software under the GPL and can be downloaded

from http://mathbiol.mpimp-golm.mpg.de/img2net/, where supplementary information and data sets for

testing are provided.

Keywords: image processing, networks, phenotyping, cytoskeleton

4.2.2 Introduction

Biological and man-made systems, ranging from biochemical reactions to neural and social interactions,

can often be represented as networks, with nodes and edges representing the components and their inter-

actions, respectively. Network representations facilitate not only intuitive visualization, but also quantitative

studies of the systems’ structure and dynamics.
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Spatial networks constitute an import subclass which includes networks, such as: leaf venation [Dodds et al.,

2010], cellular cytoskeleton [Volkmann and Baluska, 1999], and city streets [Barthélemy, 2011]. While some

of these networks, like city infrastructure, have been well-characterized, others, like biological spatial net-

works, remain poorly understood.

Snapshots of spatial networks can be obtained by imaging technologies. The computational challenge is

that of extracting the the underlying networks from the gathered images in a fast and reliable fashion, and

of examining the reconstructions to reveal the underlying organizational principles.

The existing image-based methods for reconstruction of biological networks are typically designed for spe-

cific types of networks: Tree-like networks for plant root architectures [Pound et al., 2013]; fungal or leaf

venation networks [Obara et al., 2012a]; or neuronal topology of the human connectome [Meijering, 2010;

Longair et al., 2011]. While most of these approaches require user input, rendering them unfeasible for high-

throughput studies, fully automated algorithms are usually tailored to specific image sources and challenged

by low signal-to-noise ratios, which may strongly affect the resulting networks.

Here, we present a robust approach to reconstruct 2D and 3D (non-)biological spatial networks from gray-

scale image data. By constructing weighted networks and computing their seminal network properties,

img2net allows an extensive quantification and statistical comparison of network topologies.

4.2.3 Methods and Functionality

We extract the networks from image data in two steps: Starting from a gray-scale image, where high inten-

sities reflect strong links in the network, we place a (arbitrary) grid which covers the region of interest. For

each grid-edge, we determine a weight by convolving a Gaussian kernel with the original image to capture

the edge’s capacities to carry certain traffic, the speed of transportation, or combinations thereof (cf. Re-

sults).

To facilitate comparative analyses, different seminal properties of the resulting weighted network are com-

puted, including: degree distribution, path lengths, or random-walk-related properties. To evaluate the

biological importance of the calculated properties, we developed several null models which randomize the

network while preserving the distribution of edge weights. They provide the basis for revealing the principles

underlying the network organization [Breuer et al., 2014].

img2net is written in Python and provides a graphical user interface (GUI; Fig. 4.2.1A) for the selection of

the image input data and the parameters of the network reconstruction procedure. It operates on folders

of .png, .jpg, or .tiff files that display the networked structure of interest, with a gray-scale representation of

edge strengths. The directory tree divides the images into different treatments and experiments, e.g.:

root/treatment_003/experiment_005/image_z001_t001.tiff

The usage of rectangular, triangular, or hexagonal grids is supported; grid spacings, periodic boundary con-

ditions, the widths of the convolution kernel and the number of layers for 3D image data can be specified by

the user. Different null models are available and the number of null model realizations can be set. Finally,

img2net can be run on multiple cores.
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Figure 4.2.1: Img2net: graphical user interface and output visualizations. (A) GUI to set parameters for the
network reconstruction. (B) Actin network reconstructed with a hexagonal grid. (C) 3D reconstruction for
image data with four z-slices. (D) Time series of the assortativity for multiple untreated (blue) and treated
(red) plants. (E) Ratios of average path lengths and algebraic connectivities of observed and null model
networks.

An output folder is generated in the root directory of the chosen image directory tree: A human-readable

document is created which contains the values of the network properties for the analyzed networks and

their null models to allow further analyses and visualizations of the results. img2net generates standard

plots as .svg files: For each experiment, a reconstructed network overlaying the original image data is saved.

For all analyzed network properties, plots of the resulting time series are generated to facilitate network

comparisons.

4.2.4 Results

For testing, img2net was used to compare confocal recordings of the actin cytoskeleton (Fig. 4.2.1B and C)

of untreated plant cells and cells treated with an actin disrupting drug [Breuer et al., 2014]. We find that

the actin networks of treated cells display a consistently lower assortativity (Fig. 4.2.1D), indicating a drug-

related filament fragmentation. Further, for untreated cells, the observed networks display significantly

smaller average path lengths (“accessibility”) and significantly higher algebraic connectivities (“robustness”)

than expected by chance (p-values estimated from the null model via one-sample t-tests; Fig. 4.2.1E), sug-

gesting a biological basis for the maintenance of short and robust transportation routes.

We also used img2net to analyze the network structure of the German autobahn which was obtained from
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OpenStreetMap as an image by using a gray-scale coding of the speed limits [Breuer et al., 2014]. We find

that, similar to the actin cytoskeleton, the autobahn shows significantly smaller path lengths and a higher

algebraic connectivity than expected by chance.

4.2.5 Conclusion

Since networks provide an intuitively accessible as well as mathematically sound framework for the repre-

sentation of complex systems, the reconstruction of spatial networks from image data is useful in biological

and technical research. img2net implements an automated method for fast and robust reconstruction of

arbitrary 2D and 3D (non-)biological spatial networks.

As our approach relies on fixed grid topologies, img2net offers different types of grids to verify that the find-

ings are grid-independent. For small grid spacings, the grid typically approaches the “true” structure of the

underlying network. The main benefit of this approach is its robustness against noise and flaws in the input

images. For example, small ruptures in the underlying network do not disrupt the corresponding edges but

only weaken them. Hence, our approach does not require sophisticated error-correcting image processing

steps. Furthermore, img2net is directly applicable to a wide range of image data from different sources.

The analyses of the reconstructed networks implemented in img2net allow a quantification of structural

properties, comparisons of networks, e.g., under different conditions, and an assessment whether or not the

network properties reflect underlying organizational principles.
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4.3.1 Abstract

Cytoskeletal networks are essential cellular components that serve a multitude of functions, from shaping

cell mechanical properties to enabling cellular transport. From an evolutionary standpoint, the cytoskele-

ton may be optimized towards its, likely, cell-type specific functions, although quantitative evidence to this

end is largely missing. Here, we employ an image-based network representation of the cytoskeleton that

provides the basis for systematic, quantitative, and automated investigation of cytoskeletal organization.

Our comparative analysis of the actin cytoskeleton from four plant cell types supports the hypothesis of

cell-specific actin organization. We demonstrate that elongating hypocotyl and roots cells accommodate

dispersed actin cytoskeletal networks that facilitate fast cellular transport, while mature cells from these or-

gans exhibit stronger actin bundling that may restrain further cell elongation. We show that the performance

of the cytoskeletal networks follows a trade-off between three network properties that reflect the reachability

in the actin networks as well as their robustness against disruptions and cell coverage. Moreover, by employ-

ing multi-objective network optimization, we show that the cytoskeleton in elongating cells, in comparison
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to randomized networks, operates close to the Pareto frontier which represents the set of optimal compro-

mises between these different network properties. Thus, our findings provide quantitative insights into the

multi-faceted design principles of the plant actin cytoskeleton and its near-optimal organization.

Keywords: cytoskeleton, actin, multi-objective optimization, Pareto frontier, networks

4.3.2 Introduction

Most complex technical and biological systems perform different and often opposing tasks that lead to

inherent trade-offs. The presence of trade-offs results in deviations from optimality for single task. For

instance, transport systems, like road networks [Barthélemy and Flammini, 2008; Barthélemy, 2011; Louf

et al., 2013], exhibit trade-offs between construction costs, travel times between different locations, and

the robustness of the network against disruptions. Beyond these transport-related compromises, biological

transport systems, like leaf venation [Bohn et al., 2002; Dodds et al., 2010; Katifori et al., 2010; Onoda et al.,

2011; Sack and Scoffoni, 2013] or cytoskeletal networks [Staiger et al., 2000; Nick, 2007; Fletcher and Mullins,

2010; Breuer et al., 2014, 2015], often entail additional trade-offs with respect to mechanical objectives such

as leaf stability or cell mechanics.

For the cytoskeleton, consequently, it has been suggested that cell types with different functional require-

ments accommodate different cytoskeletal structures. For example, in plants, young elongating hypocotyl

cells have been suggested to harbor dynamic and diverse actin cytoskeletons that support efficient transport

processes [Staiger et al., 2009; Breuer et al., 2014]. In contrast, it has been suggested that the actin cytoskele-

ton in mature hypocotyl cells is more static, comprising few thick actin bundles that constrain further cell

elongation [Hussey et al., 2006; Sampathkumar et al., 2011]. However, while most of these studies relied on

visual inspection, a systematic, quantitative, and fully automated investigation of cell-specific organization

of the actin cytoskeletal remains elusive.

Moreover, considering the strong conservation of cytoskeletal proteins and functions throughout evolution

[Cooper, 2000; van den Ent et al., 2001; Gunning et al., 2015], it has been suggested that cytoskeletal networks

are optimized for their specific tasks [Breuer et al., 2014; Recho et al., 2014; Ando et al., 2015]. However,

most studies were only theoretical and did not incorporate real-life cytoskeletal architectures [Recho et al.,

2014; Ando et al., 2015]. Another study compared image-based network representations of the plant actin

cytoskeleton to randomized null model networks [Breuer et al., 2014], suggesting that different transport-

related properties of the actin cytoskeleton do not arise by chance but reflect underlying, yet unknown,

organizational principles. However, the challenge remains to identify the key tasks that these cytoskeletal

networks aim to optimize, and how close to optimality these networks may operate with respect to fulfilling

these tasks.

Here, we study trade-offs in cytoskeletal organization in different cell types and investigate their optimality

with respect to the multiple tasks the fulfill. To this end, we employ the image-based network representation

of the cytoskeleton developed in [Breuer et al., 2014; Breuer and Nikoloski, 2014] to quantify and analyze

cytoskeletal phenotypes in various cell types of Arabidopsis thaliana (Arabidopsis) plants. Moreover, by em-

ploying multi-objective optimization, we construct networks that optimize different seminal network prop-

erties (e.g., average path length or “reachability”, algebraic connectivity or “robustness”, Herfindahl index
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of edge weights or “homogeneity” of cell coverage). Our findings demonstrate that the studied cytoskele-

tal architectures are cell specific. In addition, we show that elongating cells exhibit near-optimality with

respect to some, but not all, studied network properties. Our approach is readily applicable to investigate

these questions in other types of spatial networks, given that their structure is known or they are accessible

to imaging efforts.

4.3.3 Results

Extracted actin cytoskeletal networks display cell-type specific organization

To study actin organization in various plant cell types, we imaged the cortical cytoskeleton of FABD2-GFP-

labeled Arabidopsis seedlings using confocal microscopy (Fig. 4.3.1A; cf. Materials and Methods). Next, to

robustly quantify the actin organization, we extracted grid-based weighted network representations of the

actin cytoskeleton from these image data as established and described in [Breuer et al., 2014; Breuer and

Nikoloski, 2014] (Fig. 4.3.1A; cf. Materials and Methods). Such network representations naturally capture the

filamentous structure of the cytoskeleton and enable quantitative analyses and linking of different network

properties to cellular functionality. We recorded at least six cells of four different cell types, i.e., elongating

and mature hypocotyl and root cells (Figs. 4.3.1B and C).

While certain differences in actin organization between the studied cell types seem visually apparent, we

computed several seminal network properties to quantify these differences in an automated and unbiased

way (Fig. 4.3.1D; cf. Materials and Methods). Namely, we focused on the average path length (measuring

the “reachability” of a network), the algebraic connectivity (measuring the “robustness” of a network against

disruptions), the Herfindahl index of the edge weights (measuring the “homogeneity” of the actin distribu-

tion), the degree assortativity (measuring the “bundling” of filaments in an actin network), and the average

size of the connected components after removal of edges with low weights (measuring the “connectedness”

of a network). In the following, vi , j ,k refers to network property k of the actin network in the j th studied cell

of cell type i . The studied network properties allow unequivocal identification of each of the four cell types.

For example, computing the algebraic connectivity and the Herfindahl index, we found that actin networks

in elongating cells showed larger values than in mature cells. These findings indicate stronger dispersal of

the actin cytoskeleton in elongating cells and stronger bundling in mature cells. Alternatively, computing the

average size of the connected components after removal of edges with low weights, we found consistently

smaller values for this property in actin networks of root cells than in hypocotyl cells. This distinction indi-

cates stronger fragmentation of the actin cytoskeleton in root cells as opposed to hypocotyl cells, which may

be explained by the more horizontal alignment of actin filaments and bundles in the former (cf. Figs. 4.3.1A

and C).

To study these differences more systematically, and for better comparability, we computed the rela-

tive average values ui ,k of our five network properties k in the studied cell types i (Fig. 4.3.1E; ui ,k =(
vi , j ,k −Ei , j

[
vi , j ,k

])
/SDi , j

[
vi , j ,k

]
, where Ei , j and SDi , j are averages and standard deviations across cell

types i and cells j , respectively). We found that the average path length, algebraic connectivity, and the

Herfindahl index reliably distinguished between different cell maturation states, while the average size of

the connected components allowed distinction of hypocotyl and root cells. The assortativity did not allow
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Figure 4.3.1: Extraction of actin cytoskeletal network from image data and cell-type specific actin organi-
zation in elongating and mature plant hypocotyls and roots. (A) Average over 10 slices of confocal z-stack
recording of cortical actin cytoskeleton in an elongating Arabidopsis hypocotyl cell (left panel). Overlay of
this actin image and extracted network representation with color-coded edge weights reflecting the under-
lying intensity (right panel). (B) Schematic of Arabidopsis seedling and studied cell types, i.e., elongating
and mature cells from plant hypocotyl and root. (C) Overlay of confocal recordings of actin cytoskeletons
and weighted network representation from mature hypocotyl cell (left panel), as well as elongating (middle
panel) and mature root cells (right panel). (D) Sections through space vi , j ,k of network properties k for actin
networks j from different cell types i (cf. (B)). Actin networks in elongating cells showed larger algebraic
connectivities (“robustness”) and Herfindahl indices (“homogeneity”) than in mature cells (upper). Actin
networks from hypocotyl cells showed larger average sizes of the connected components (“connectedness”)
than in root cells. (E) Relative average values ui ,k of different network properties, including assortativity
(“bundling”) and average path length (“reachability”), across the four studied cell types. Averages and stan-
dard deviations of a given network property across cell types were normalized to zero and one for better
comparability, respectively. (F) Bar plot of independent two-sample t-test p-values between elongating
and mature (left) and hypocotyl and root cells (right), respectively, whereby p-values< 0.05 were consid-
ered significant (cf. stars). While average path length, algebraic connectivity, and Herfindahl may be used
to distinguish elongating from mature cells, the average size of the connected components may be used to
distinguish hypocotyl from root cells.
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a conclusive distinction of different cell types. These findings were statistically confirmed by independent

two-sample t-tests between the different classes of cells (Fig. 4.3.1F). Thus, our findings imply that the stud-

ied network properties can be used for discriminant purposes, e.g., classification of different cell types by

the organization of their actin cytoskeleton.

Actin cytoskeletal networks are near-optimal in elongating, but not in mature cells

Beyond organizational differences of actin cytoskeletal networks in different plant cell types, we investigated

their optimality. Optimality was assessed with respect to the introduced network properties that reflect dif-

ferent potential cytoskeletal functions. We employed multi-objective optimization to construct networks

that optimize one or multiple network properties (Figs. 4.3.2A; cf. Materials and Methods). Generally, such

multi-objective optimization yields a set of networks that form a hyper-surface in the space of network prop-

erties called Pareto frontier (Fig. 4.3.2A, black surface; [Ehrgott, 2006; Handl et al., 2007; Shoval et al., 2012]).

For a fixed network property and value, the Pareto frontier is monotonically decreasing in all other proper-

ties, which reflects the trade-off between the different properties.

The proximity of the real-life actin networks to the Pareto frontier indicates their optimality with respect to

the trade-offs. For example, studying the average path length, Herfindahl index, and algebraic connectivity

of actin networks from different cell types, we found that elongating cells were closer to the Pareto frontier

than mature cells (Fig. 4.3.2A). Moreover, to assess the distance from the Pareto frontier, we computed the

network properties for an ensemble of randomized networks, demonstrating that the actin networks were

significantly closer to the Pareto frontier than expected by chance (Fig. 4.3.2A, gray dots; cf. Materials and

Methods; [Breuer et al., 2014; Breuer and Nikoloski, 2014]). Taken together, our findings suggest that the

actin cytoskeleton in elongating cells is optimized for cellular transport, as captured by the network proper-

ties studied here, while mature cells have a reduced need for efficient, uniform cellular transport. Moreover,

each of the studied real-life actin networks in elongating cells did not optimize a single network property,

but a combination thereof. This trade-off is supported by artificial, optimal networks which optimize only

a single network property and which differ visually from real-life actin networks. For instance, the network

optimizing algebraic connectivity shows a large region of strong edge weight in the center of the network

(Fig. 4.3.2B), the network optimizing average path length shows highway-like filamentous structures in the

center (Fig. 4.3.2C), and the network optimizing the Herfindahl index shows a uniform distribution of edges

weights (Fig. 4.3.2D). Moreover, all optimal networks exhibit vertical and horizontal symmetry in the distri-

bution of edge weights. The trade-off between various network properties, i.e., average path length, alge-

braic connectivity, and Herfindahl index, in elongating cells is further supported by their negative correla-

tions (Fig. 4.3.2E, cf. black dashed rectangle; Pearson correlation coefficients pk,k ′ between network prop-

erties k and k ′), suggesting that the networks operate close to the Pareto frontier where an increase in one

property implies a decrease in the other properties. In mature cells, in contrast, these correlations are pos-

itive which is only possible if some of the networks are further away from the Pareto frontier. The strongly

negative correlations between the assortativity and the remaining network properties for the mature cells

are due to the relatively strong actin bundling (cf. Fig. 4.3.1) which favors high assortativities but decreases

the other network properties.

To further quantify the optimality of the actin networks in different plant cell types i , we computed the
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Figure 4.3.2: Optimality and trade-offs in plant actin cytoskeletal organization. (A) Three-dimensional
section through the space of actin network properties and Pareto frontier (black surface) for average path
length, Herfindahl index, and algebraic connectivity. Actin network properties from elongating and mature
hypocotyl and root cells, respectively, and ensemble of network with edge weights drawn from a random and
uniform distribution (gray dots; cf. Materials and Methods). Centroids are given by open symbols and the
distance to the Pareto frontier for elongating hypocotyl cells is indicated by the blue dotted line. (B) Network
with color-coded edge weights and highest algebraic connectivity. (C) Network with smallest average path
length. (D) Network with smallest Herfindahl index. (E) Heat maps of Pearson correlation coefficients pk,k ′
between network properties k and k ′ for elongating (left panel) and mature hypocotyl cells (right panel).
(F) For each subset K of the five studied network properties, we computed the distance di ,K between
the Pareto frontier and the centroid of actin network properties for different cells types i , i.e., elongating
(left panel) and mature hypocotyl cells (right panel). The vertical layers of nodes represent the s-element
subsets of network properties, node colors reflect the Euclidean distance of the respective centroid to the
Pareto frontier, and edges indicate the hierarchical structure of the subsets. (G) Same graphs as in panel (E),
with node colors representing relative distances to the Pareto frontier ri ,K , i.e., the relative distance to the
Pareto frontier in comparison to that of the centroid of randomized networks. For actin networks in elon-
gating hypocotyl cells (left panel), only four subsets of network properties, all containing the average size
of the connected components, yielded larger distances from the Pareto frontier than expected by chance
(cf. green circles and black edges). In contrast, actin networks in mature hypocotyl cells (right panel) com-
monly showed distances from the Pareto frontier that are comparable to or larger than those of randomized
networks.
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Euclidean distances di ,K between the centroid ci ,K of the networks and the Pareto frontier for all possi-

ble subsets K of network properties (Fig. 4.3.2F; centroids are indicated by open symbols and given by

ci ,K = (
E j

[
vi , j ,k

])
k∈K

, where E j is the average across different cell j of a given cell type i ). We found that

the studied actin networks were close to the Pareto frontier with respect to the transport-related proper-

ties employed. In particular, the networks of elongating hypocotyls were closer to the Pareto frontier than

those of mature hypocotyl cells. The same trends like for the elongating and mature hypocotyl cells were

observed for the respective root cell types. We note that the Euclidean distance of a centroid to the Pareto

frontier with respect to a set of network properties is always as large as the minimum Euclidean distance of

the centroid with respect to a subset of the properties due to geometrical considerations (i.e., in the higher

dimensional space of the superset centroid, the Pareto frontier is still reachable along the lower dimen-

sional paths of its subset centroids). Therefore, to assess the distances of actin network centroids to the

Pareto frontier without this dimensionality bias for a subset of network properties K , we studied the the

relative distances ri ,K = (
di ,K −drandom,K

)
/drandom,K , where drandom,K is the distance of the centroid of

randomized networks to the Pareto frontier (Fig. 4.3.2G). We found that for the elongating hypocotyl cells,

the centroid of the actin networks was indeed closer to the Pareto frontier than expected by chance for all

subsets of network properties, except for four subsets of properties that contained the average size of the

connected components. This indicates that elongating hypocotyl cells to not optimize the average size of

the connected components, which is in agreement with its positive correlations with most of the other net-

work properties (cf. Fig. 4.3.2E). In contrast, for many subsets of network properties, the centroid for actin

networks from mature hypocotyl cells was farther from the Pareto frontier than expected by chance. This is

also compatible with the positive correlations between the average size of the connected components and

other network properties (cf. Fig. 4.3.2E) that suggest the absence of Pareto-optimality induced trade-offs

between these properties. Again, similar trends were observed for root cells. Overall, mature cells do not

seem to optimize multiple network properties, or, at least, not those associated to transport. However, elon-

gating cells in both hypocotyls and roots accommodate actin cytoskeletal networks that are multi-functional

and near-optimal with respect to various transport-related properties.

4.3.4 Discussion

The work presented here provides quantitative evidence for cell-type specific organization and optimality

of cytoskeletal networks, which have been previously hypothesized [Hussey et al., 2006; Staiger et al., 2009;

Breuer et al., 2014] or demonstrated for specific functions using only theoretical models [Recho et al., 2014;

Ando et al., 2015].

By employing an established and robust network representation of the cortical actin cytoskeleton in living

plant cells, we showed that elongating and mature cells as well as hypocotyl and root cells may be identi-

fied by their specific actin structures that differ in particular in their facilitation of transport processes and

their degree of fragmentation. Although the employed grid-based approach ignores details of actin fila-

ment distribution, it captures relevant features of actin organization and may be readily applied to two- and

three-dimensional image data [Breuer et al., 2014; Breuer and Nikoloski, 2014]. Another advantage of the

grid-based approach, as compared to segmentation-based methods [Baumgarten and Hauser, 2012; Obara

et al., 2012b; Breuer et al., 2015], is its full coverage of the cellular region of interest; this coverage yields net-
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works that are comparable across cells with different actin distributions, e.g., irrespective of regions without

actin. Moreover, it has been shown that the behavior of the studied network properties persists with differ-

ent grid types [Breuer et al., 2014; Breuer and Nikoloski, 2014]; hence, we expect that our current findings are

likewise independent of the grid type, although the validity of this claim remains to be shown in additional

analyses.

Moreover, we demonstrated that the actin network, at least in elongating cells, is near-optimal with respect

to various transport-related properties. An exception was the average size of the connected components,

which reflects the connectedness of the network and whose distance from the Pareto frontier was compara-

ble to that of randomized networks, suggesting that the actin cytoskeleton in vivo is readily fragmented into

several components. The deviations from optimality of the actin cytoskeleton in mature cells with respect

to the studied network properties may be due to three reasons: First, our studied network properties are

suitable to capture the transport functionality of the cytoskeleton, but they do not integrate mechanical as-

pects of cytoskeletal organization which may constitute major objectives in mature cells [Hussey et al., 2006;

Sampathkumar et al., 2011]. Second, the present image data focused on a part of the cortical cytoskeleton at

the front side of the cell. However, complete understanding of cytoskeletal functionality and optimality may

require incorporation of the cylindrical geometry of the cytoskeleton [Breuer et al., 2015]. Third, even the

strongly bundled actin cytoskeleton in mature plant cells is dynamic and rearranges on a minute time scale.

Such dynamic rearrangements may affect both the effective velocity of cargo transport as well as the cell

coverage. Therefore, a full understanding of cellular transport optimality needs to consider the dynamics of

cytoskeletal networks. However, to our knowledge, no such framework is available yet.

Finally, we employed sophisticated but heuristic algorithms for high-dimensional, non-linear, and multi-

objective optimization. Consequently, the obtained Pareto frontier may (partially) represent local instead of

global maxima. Yet, optimization of some of the studied network properties may be solved, or approximated,

via semidefinite programming [Jensen and Barnes, 1980; Schrijver, 1998; Sun et al., 2006; Boyd, 2006]. In a

continuation of this work, we will therefore solve these semidefinite programs that are convex and hence

guaranteed to yield global optima for the network properties or, at least, their approximations (cf. Appendix

6.2.1 for the semidefinite programs).

In conclusion, our work provides quantitative evidence for the common hypotheses of cell-type specific

and (near-)optimal organization of the actin cytoskeleton. Additionally, by complementing our combina-

tion of experimental microscopy data and theoretical network models by mechanical measurements, we

are confident that the established approach may yield comprehensive insights into cytoskeletal organiza-

tion organization.

4.3.5 Materials and Methods

Recordings of plant actin cytoskeletons from different cell types

We used Arabidopsis Columbia-0 35S:FABD2-GFP-labeled seedlings to study the actin cytoskeleton [Shea-

han et al., 2004; Sampathkumar et al., 2013]. To capture fine actin filaments and bundles and their dynamics,

as well as to minimize photo bleaching, we employed a spinning-disk confocal microscope with a spatial
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resolution of 0.133pixel−1µm [Sampathkumar et al., 2011]. Details of sample preparation and experimental

setup are given in [Sampathkumar et al., 2011; Breuer et al., 2015]. Images were taken as z-stacks with 100nm

steps over 10 slices that were averaged to capture the cortical actin cytoskeleton. Four types of cells were in-

vestigated, and for each type we imaged at least 6 cells from 6 different plants: In 4-day-old hypocotyls, we

imaged young, elongating cells and mature, non-elongating cells at the top (apical) and the bottom (basi-

cal) end of the hypocotyl, respectively. Similarly, in 5-day-old seedlings grown under 16h light / 8h dark

conditions, we imaged cells in the elongating and the mature region of the roots, respectively.

Extraction of weighted networks from cytoskeletal image data

To investigate the network structure of the plant actin cytoskeleton in different cell types, we employed a

robust method for the extraction of weighted networks from gray-scale image data established in [Breuer

et al., 2014; Breuer and Nikoloski, 2014]. First, for a given recording, we employed the Fiji-StackReg stack

registration algorithm to correct the potential drift of the seedlings under the microscope [Thévenaz et al.,

1998]. We normalized the mean intensity of each frame to compensate photobleaching. We applied the

Fiji-BackgroundSubtraction rolling ball filter with radius of 50pixels to improve the signal-to-noise ratio

[Sternberg, 1983]. We cropped a rectangular cellular region of interest. We then placed a rectangular grid of

30×15 nodes over the region of interest and, for each grid-edge, determined the edge weight by convolving

a two-dimensional Gaussian kernel with a standard deviation of 2pixels with the original image to capture

the underlying intensity [Breuer et al., 2014; Breuer and Nikoloski, 2014]. Thus, the actin cytoskeleton was

represented by a weighted, undirected network G = (N ,E ) of N = |N | nodes with positions rn ∈R2, n ∈N ,

and E = |E | edges with edge weights we , e = (n,m) ≡ (m,n) ∈ E . The sum of edge weights was normalized to

one
∑

e∈E we = 1.

Studied network properties

We studied various seminal network properties to quantify actin cytoskeletal organization in different cell

types [West, 2001; Bornholdt and Schuster, 2002; Newman, 2009]. To capture the heterogeneity of the actin

filament distribution across the cell, we computed the Herfindahl index of the edge weights,

vH = ∑
e∈E

w2
e , (4.3.1)

whereby values close to zero and one indicate homogeneous, uniform and heterogeneous, strongly bundled

distributions of actin filaments across the cell, respectively. As a related measure of actin filament clustering,

we computed the degree assortativity

v A = 1

2E

∑
n∈N

∑
m∈N

(
we=(n,m) −

dndm

2E

)
dndm , (4.3.2)

where dn :=∑
m∈N we=(n,m) is the node degree and positive values indicate preferential connection of nodes

of similar degrees. Next, as a measure for the reachability of nodes in a given network, we computed the
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average minimum path length,

vL = 1

2N (N −1)

∑
n∈N

∑
m ∈N

m > n

Ln,m , (4.3.3)

where Ln,m is the shortest path length between nodes n and m, the length of an edge e is given by its inverse

weight, le := w−1
e , and small average path lengths suggest efficient connections between all nodes. Similarly,

to quantify the connectedness of a given network, we computed the average maximum flow,

vF = 1

2N (N −1)

∑
n∈N

∑
m ∈N

m > n

Fn,m , (4.3.4)

where Fn,m is the maximum flow between nodes n and m and large values indicate strong connectedness of

the network. Moreover, we computed a related measure for the robustness of a network against disruptions,

given by the algebraic connectivity,

vC = λ2, (4.3.5)

which is the second smallest eigenvalue of the graph Laplacian L and reflects how well-knit the network is,

Ln,m =


dn , ifn = m

−we(=n,m) , ife ∈ E

0 , otherwise.

(4.3.6)

Finally, as a measure for the connectedness of a network, we computed the average size of the connected

components after removal of edges with weights below the 50th percentile,

vS = 1

F

∑
f ∈F

N f , (4.3.7)

where N f is the number of nodes in component f ∈F and F = |F | is the number of connected components.

Multi-objective optimization of weighted networks

Since the optimization of several of the studied network properties cannot be formulated, or conveniently

approximated, as a convex problem, we applied a heuristic approach for solving high-dimensional and non-

linear optimization problems. We used the well-established Broyden-Fletcher-Goldfarb-Shanno algorithm

with limited memory requirements and bound constraints on the variables (L-BFGS-B; [Byrd et al., 1995;

Zhu et al., 1997]) which is a modified Newton method that estimates the local inverse Hessian matrix to find
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local maxima, i.e.,

max cH · v
′
H + cL · v

′
L + cF · v

′
F + cC · v

′
C , (4.3.8)

subjectto
∑
e∈E

we = 1 (4.3.9)

where we realized different objective functions by varying the coefficients ci , i ∈ I = {H , A,L,F,C ,S}, in 11

equidistant steps in the unit interval, such that
∑

i∈I ci = 1. Moreover, the second line normalizes the sum

of edges weights to one. Since the values of the different network properties may differ by several orders of

magnitude, we rescaled them in the objective function via

v
′
i = v∗

i − vi ,5

vi ,95 − vi ,5
, (4.3.10)

where v∗
i is the original value of the network property. Moreover, vi ,5 and vi ,95 were given the 5th and 95th

percentile of network property i , respectively, when computed for an ensemble of 104 networks with edge

weights we drawn from a uniform distribution over the open standard (E −1)-simplex, guaranteeing that∑
e∈E we = 1. As initial edge weights, we drew we from the same uniform distribution, and repeated the

procedure 10 times for each objective. We manually selected a step size of 10−8 for the approximation of

the Hessian matrix and, for each multi-objective optimization problem, we ran the algorithm for up to 106

function evaluations or until convergence was achieved, i.e., the value of the objective function changed by

less than 10−6 percent. Results of the optimization procedure are shown in Fig. 4.3.2.
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4.4.1 Abstract

The actin cytoskeleton provides an essential intracellular filamentous structure in organisms from all king-

doms of life. In plant cells, the actin cytoskeleton constitutes a dynamic network that underpins myosin-

based vesicle trafficking and cytoplasmic streaming. Yet, the design principles and system-level properties

of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the

actin cytoskeleton. Here, we developed an automated image-based and network-driven framework to accu-

rately segment and quantify the actin cytoskeleton structure and Golgi transport flow. We show that the actin

cytoskeleton is optimized for efficient transport. Furthermore, we demonstrate that Golgi transport may be

accurately predicted from actin network properties alone. In particular, we show that Golgi transport is de-

termined not only by local distribution of actin filaments, but also by the global cellular architecture of the

actin cytoskeleton. Our data also suggest that the previously observed erratic movement of Golgi is a sta-

ble cellular phenomenon that may optimize distribution efficiency of cell material, analogous to movement

patterns of foraging animals. Our findings thus provide quantitative evidence for whole-cell coordination of

cellular transport in plant cells. Our framework can be readily applied to investigate cytoskeletal transport

in other scenarios, and paves the way for quantitative network-driven understanding of cellular transport.

Keywords: cellular transport, actin, cytoskeleton, Golgi, systems biology, image processing, networks
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4.4.2 Introduction

The cell interior is a heterogeneous and crowded space comprising a large range of molecules and or-

ganelles [Luby-Phelps, 2000; Ellis, 2001]. Since diffusion through this complex environment is not suffi-

cient to match varying demands for cell maintenance and growth, intricate cellular transport schemes have

evolved [Geisler et al., 2008; Goldstein et al., 2008; Wightman and Turner, 2010; Goldstein and van de Meent,

2015; Wang and Hussey, 2015]. Transport of cellular components across large distances relies substantially

on the cytoskeleton [Shafrir et al., 2000; Kim et al., 2005; Cheung and de Vries, 2008; Bálint et al., 2013; Wang

and Hussey, 2015]. Moreover, in plant cells, many organelles move rapidly due to actomyosin-based cyto-

plasmic streaming [Volkmann and Baluska, 1999; Akkerman et al., 2011; Peremyslov et al., 2013]. For in-

stance, Golgi transport relies on the acto-myosin system, and an impaired actin cytoskeleton leads to Golgi

aggregation and reduced secretion and endocytosis [Nebenführ et al., 1999; Avisar et al., 2008a; Akkerman

et al., 2011; Sampathkumar et al., 2013]. While many molecular features of actin-based transport in plant

cells have been elucidated (see [Staiger et al., 2000; Shimmen and Yokota, 2004] for reviews), quantitative

measures of the structure of the actin cytoskeleton, and how this structure relates to organelle transport,

remain elusive. This is largely due to the difficulties in accurately segmenting the actin cytoskeleton and

organelle movement, in particular in growing plant cells.

Theoretical models have been used to analyze the interplay between cytoplasmic streaming and actin or-

ganization, demonstrating the emergence of self-organized, rotational streaming patterns [Woodhouse and

Goldstein, 2013; Goldstein and van de Meent, 2015]. However, these studies neglected the discrete, filamen-

tous structure of the cytoskeleton. Investigations that have considered discrete cytoskeletal structures re-

vealed different regimes of transport depending on the contribution from diffusion or motor-protein driven

transport along random networks of segments [Neri et al., 2013], the impact of motor protein movements

on cytoplasm in lattice networks [Houtman et al., 2007], and the effect of length, orientation and polarity

of random filament segments on average transport rates [Ando et al., 2015]. Nevertheless, these studies did

not incorporate biological data of the cytoskeletal structures.

The three-dimensional structures and rapid dynamics of the actin cytoskeleton coupled with imaging limi-

tations in living plant cells have impeded accurate quantitative measures, which constitute the basis for un-

derstanding cytoskeletal transport. Recent reports highlight that plant cytoskeletal networks may support

efficient transport processes [Breuer et al., 2014]. However, this finding is based on a lattice approximation

of the actin structure that disregards details of actin filament (AF) distribution, and on the assumption that

bundled actin supports high transport rates. Moreover, it has been shown experimentally that organelle

movement depends on the local actin structures [Akkerman et al., 2011]. Nevertheless, these findings dis-

tinguish between only two regions, i.e. fine AFs and bundled actin, thus neglecting the discrete filamentous

nature and varying alignment of the local network of AFs. Furthermore, by limiting analyses to local AF

organization, the system-wide view of organelle transport remains elusive.

Here, we developed a network-based framework that accurately segments the actin cytoskeleton in growing

plant cells and combined it with an automated tracking of Golgi transport. This approach allows us to ana-

lyze the four aspects of the actin cytoskeletal transport system, including its structure, design principles, dy-

namics and control [Kitano, 2002]. By relating these aspects to cytoskeletal transport, we find that the actin

cytoskeleton maintains properties supporting efficient transport over time, despite rapid reorganization.
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We also show that Golgi wiggling behavior is reminiscent of optimized search strategies that may guarantee

efficient uptake and deposition of Golgi-related cell material. In addition, we demonstrate that features of

Golgi transport can be predicted by properties of the system-wide organization of the actin cytoskeleton.

Altogether, our framework opens up a systems perspective to dissect and understand the transport func-

tionality of the actin cytoskeleton.

4.4.3 Results

A pipeline to extract and represent the actin cytoskeleton as a network

Since the actin cytoskeleton is composed of discrete and interconnected filaments, it can be represented

in a network-based framework [Gardel et al., 2004; Breuer et al., 2014; Banerjee and Park, 2015]. In such a

framework, the nodes capture crossings or end points of AFs and network edges capture AF segments. The

AFs may align and form bundles of varying thickness [Bartles, 2000; Thomas et al., 2009], and the edges

can analogously be assigned weights which capture properties of the AF segments (e.g. length or average

thickness).

To investigate the organization of the plant actin cytoskeleton, we extracted weighted network representa-

tions from three-day-old Arabidopsis thaliana (Arabidopsis) hypocotyl cells that expressed FABD-GFP using

spinning-disc confocal microscopy data (cf. Fig. 4.4.1F for an overview of the pipeline; cf. Appendix 6.3.1 for

video of actin cytoskeleton). The images were corrected for drift and bleaching (Fig. 4.4.1A), cropped to the

cellular region of interest and filtered to enhance tube-like structures of the cytoskeleton with a parameter

vwidth (Fig. 4.4.1B; [Frangi et al., 1998]). AFs were segmented by applying an adaptive median threshold of

blocksize vthres (Fig. 4.4.1C). The binary images were skeletonized to obtain AF center lines and spurious

fragments below a pixelsize of vsize or below vint of the average fragment intensity in the original image were

removed (Fig. 4.4.1D). From the resultant images we extracted weighted networks (Fig. 4.4.1E) by identifying

the nodes, adding edges between pairs of nodes that were directly connected via the skeleton and assigning

different edge weights that reflect the average thickness of an AF segment.

To test if our network-based framework captured relevant biological features of the actin cytoskeleton, we

first compared our automated segmentation against contrived images of artificial cytoskeletons of known

structure (Fig. 4.4.1G), as well as manually segmented biological cytoskeleton images as a gold standard

(Fig. 4.4.1H). Since the accuracy of the network representation relies on four parameters (i.e. vwidth, vthres,

vsize and vint) we performed extensive gauging (cf. [Obara et al., 2012b; Xu et al., 2015]) by varying these

parameters in a wide range of values (Figs. 4.4.1I and J) and identified those ensuring best agreement be-

tween the center lines of manual and automated segmentations. The quality of the automated segmentation

was measured by the Haussdorf distance, i.e. the average minimum distance between pixels of automated

and manual segmentations, and parameter gauging yielded an optimal average of E[dHD] = 2.4±2.1pixels

(Figs. 4.4.1J and K; [Mayerich et al., 2012; Xu et al., 2015]), comparable to contending approaches (Appendix

6.3.2).

In comparison to similar methods for the extraction of networks from different image sources and systems

[Dhondt et al., 2012; Baumgarten and Hauser, 2012; Obara et al., 2012b; Xu et al., 2015] (Appendix 6.3.2),
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Figure 4.4.1: Extraction and validation of networks from actin cytoskeletal image data. (A) Grey-scale
confocal image of two Arabidopsis hypocotyl cells after registration and background subtraction (“original
+ preprocessing”). (B) Cytoskeleton image with improved signal-to-noise ratio after application of tube-
ness filter of width vwidth = 1.8 (“filtering”) and cropping of the largest cell . (C) Binary cytoskeleton image
after application of adaptive median threshold of blocksize vthres = 101 (“thresholding”). (D) Skeletonized
cytoskeletal structures after removal of spurious fragments of small size (i.e. below vsize = 27 pixels) or low
intensity (i.e. below vint = 0.5 of the average fragment intensity in the original image) (“skeletonization +
cleaning”). Positions of network nodes are marked by colored pixels (cf. enlarged section). (E) Overlay of
skeleton image and extracted cytoskeletal network with edges color-coded by their capacity, i.e. the aver-
age intensity of the corresponding actin filament per unit length, reflecting the average filament thickness
(“network extraction”). Enlarged section shows an edge (cf. star) with high capacity resulting from two con-
tributing filaments. Edges were added to connect the network (cf. dotted lines and triangles). (F) Overview of
automated pipeline (cf. Materials and Methods) for network-based representation of the actin cytoskeleton
incorporating image processing (cf. (A) to (D)), network extraction (cf. (E)) and parameter gauging (cf. (G) to
(K)). (G) Overlay of contrived filaments (blue) and automated segmentation (red) of an artificial cytoskeleton
image (gray). (H) Overlay of manual (blue) and automated segmentation (red) of a biological cytoskeleton
image (gray). (I) Four image processing parameters were varied to determine their optimal values for 20 and
20 images of artificial and biological cytoskeletons, respectively, which were segmented manually for com-
parison (“parameter gauging”). The quality of segmentation was measured by the average of the smallest
distance, dmanu→auto, from the pixels of the manual segmentation to those of the automated segmentation
(blue) and vice versa, dauto→manu (red). Sections of the parameter space, averaged over all 40 studied images
for fixed (vwidth, vint) = (1.8,101) and varying blocksize vthres and size threshold vsize. (J) Minimization of the
Haussdorf distance dHD = 1

2 (dmanu→auto +dauto→manu) (purple) to avoid both over- and undersegmentation,
averaged over all 40 studied images, yielded

(
v∗

width, v∗
thres, v∗

size, v∗
int

) = (1.8,101,27,0.50)± (0.2,8.0,8.9,0.06)
(cf. errorbars). (K) Distribution of average distances between manual and automated segmentations for
the optimal parameters with E[dmanu→auto] = 1.2±0.9pixels, E[dauto→manu] = 3.5±3.2pixels and E[dHD] =
2.4±2.1pixels , respectively.
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our approach is fully automated and copes with low signal-to-noise ratios while providing an intensity-

based weighted network representation necessary for studying cytoskeletal transport. We note that our cur-

rent extraction procedure captures only two-dimensional networks, despite the three-dimensional structure

of the cytoskeleton [Racine et al., 2007; Breuer et al., 2014; Xu et al., 2015]. However, our focus on two-

dimensional networks is justified by the cylindrical shell geometry of the cortical cytoskeleton [Clark et al.,

2013; Breuer et al., 2014] as well as the size of the transported Golgi, which may bridge gaps between cortical

AFs that are not resolved in two-dimensional confocal images [Boevink et al., 1998; Dupree and Sherrier,

1998; Nebenführ and Staehelin, 2001]. Nevertheless, our network framework can be directly extended to

three-dimensional image data, at the cost of more advanced techniques of image processing, lower tem-

poral resolution and/or lower signal-to-noise ratios towards the distant side of the cell. Thus, our approach

yields an accurate and mathematically powerful network representation of the cytoskeleton in growing plant

cells from image data.

The network representations capture biologically relevant features of the actin cytoskeleton

To assure that our framework captures known changes in the actin cytoskeleton, we determined differences

in cytoskeletal organization between cells treated with Latrunculin B (LatB; Fig. 4.4.2A), a drug that inhibits

actin polymerization [Yarmola et al., 2000; Wakatsuki et al., 2001], and control cells (Fig. 4.4.2B; seven cells

from seven different seedlings per treatment).

To quantify actin network phenotypes, we computed the average fraction of nodes per connected com-

ponent after removal of edges with capacities below the 50th percentile as a measure of connectedness

(Fig. 4.4.2D). The connectedness was higher in networks of control than of LatB-treated cells (Fig. 4.4.2E;

independent two-sample t-test p-value, denoted by pt , pt < 10−50), indicating that large connected patches

of AFs were absent in LatB-treated cells, consistent with visual inspection. Similarly, the average edge capac-

ity was higher in control than in LatB-treated cells (pt < 10−38), reflecting a reduction in actin bundling in the

LatB-treated cells. Finally, these findings were corroborated by the assortativity, which quantifies whether

two adjacent nodes are of similar degree and reflects the network heterogeneity. We again found stronger

heterogeneity for control than for LatB-treated cells (pt < 10−50), suggesting regions of bundled actin that

are surrounded by AFs in the control cells.

To further assess the filamentous structure of the actin cytoskeleton, we compared the arc length of filament

segments to their Euclidean length and found a strong correlation (Fig. 4.4.2F; Pearson correlation coeffi-

cient cP = 0.998 and p-value, denoted by pP , pP < 10−50). Consequently, filament bending, i.e. the ratio of

the two lengths [Staiger et al., 2009], was small, E[B ] = 1.2± 0.2, in particular for long filament segments

(Fig. 4.4.2F, inset). This limited bending of longer filament segments is plausible since actin bundles, typ-

ically resulting in longer filament segments, exhibit higher stiffness as compared to AFs [Claessens et al.,

2006]. Furthermore, we found that filament segments were preferentially oriented in parallel to the cell axis

in control cells, while such preferred orientation was absent in LatB-treated cells (Fig. 4.4.2G).

The changes in actin organization after treatment with the actin-disrupting drug LatB have been previously

only described qualitatively [Wakatsuki et al., 2001], or in an approximative grid-based representation of

the cytoskeleton [Breuer et al., 2014]. Here, we confirmed these findings and gained additional insights

into key aspects of cytoskeletal organization, i.e. filament bending and orientation. Therefore, our results
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Figure 4.4.2: Phenotyping of cytoskeletal structures using the extracted networks captures biological sig-
nals and reveals transport efficiency. Results for cells of plants treated with the actin-disrupting drug LatB
(orange), untreated control cells (green) and ensembles of 20 randomized networks (gray) employed as a
null model to assess the biological relevance of different network properties. (A) Cellular recording (left
panel; orange) and extracted actin network of a LatB-treated cell (right panel) with edge colors representing
edge capacities (cf. Fig. 4.4.1E). (B) Cellular recording (left panel; green) and extracted actin network of an
untreated control cell (right panel). (C) Artistic interpretation of the randomization procedure (left panel;
gray) and a randomized network (right panel) of the control cell shown in (B) with occasional edge crossings
(cf. e.g. triangles). (D) Caption continued on next page.
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(D) Time series and boxplots of the average fraction of nodes per connected component after removal of
edges with capacities below the 50th percentile (“connectedness”) for a control and a LatB-treated cell.
(E) Ratios of different properties of networks extracted from seven control and seven LatB-treated cells.
The average fraction of nodes per connected components (“connectedness”), the average edge capacity
(“bundling”) and the degree assortativity (“heterogeneity”) were significantly higher for control than for
LatB-treated cells (independent two-sample t-test p-values pt < 0.05 were considered significant). (F) Scat-
ter plot of the arc length ae,F of the filament segments versus the Euclidean length ae,E of the correspond-
ing edges e showed strong correlation for control and LatB-treated cells (Pearson correlation coefficient
cP = 0.998 and p-value pP < 10−50). Inset displays relative lengths B = a−1

e,E ae,F (“bending”) with an average
of E[B ] = 1.2±0.2. (G) Distribution of the edge angles relative to the cell axis showed a prevalence of AFs
parallel to the cell axis in the control cells but not in LatB-treated cells. (H) Time series and boxplots of the
average path length (“reachability”) for one control cell (green) and 20 randomized networks of the first null
model for each time step (gray; mean ± standard deviation). (I) The extracted actin networks of the seven
control cells showed significantly lower average path lengths (“reachability”), CV of the path lengths (“dis-
persal”) and CV of the edge angles (“contortion”) than their counterparts from the first null model. The al-
gebraic connectivities (“robustness”) and assortativities (“heterogeneity”) of the actin networks were higher
than expected from the first null model. Findings persist for the second null model (Appendix 6.3.4).

demonstrate that the extracted network representations of the actin cytoskeleton enable fully automated

and unbiased phenotyping of cytoskeletal structures.

The actin cytoskeleton supports efficient transport

A major function of the actin cytoskeleton is to mediate transport of a range of organelles and compart-

ments. To assess the efficiency of the actin networks in terms of transport, we computed a number of semi-

nal transport-related network properties and compared them against ensembles of two types of randomized

null model networks (cf. Fig. 4.4.2C for example network of first null model; cf. Appendix 6.3.4 for second

null model).

We computed the average path length [West, 2001], which reflects the reachability of a network, and com-

pared this against the ensemble of networks from the first null model (Fig. 4.4.2H). We found that the av-

erage path length of the extracted networks was smaller than that of the null model networks (Fig. 4.4.2I;

pt < 10−50). This difference indicates that the actin cytoskeleton is tuned towards short path lengths. Sim-

ilarly, the coefficients of variation (CVs) of the shortest path lengths in the extracted networks were smaller

than expected from the null model networks (pt < 10−50), indicating that also fluctuations in the path length

between any two nodes are maintained at a low level. Another classical transport-related network property is

the algebraic connectivity [West, 2001], which reflects the redundancy of paths between any two nodes and

thus captures the robustness of the transportation network against disruptions. The algebraic connectivity

of the extracted networks was higher than expected by chance (pt < 10−14). In contrast, the LatB-disrupted

actin cytoskeletons did not show any significant differences in their transport-related network properties

as compared to the null model networks (Appendix 6.3.4). This supports the hypothesis that transport effi-

ciency is a biological design principle of the actin cytoskeleton [Breuer et al., 2014].

To investigate the structural origin of this transport efficiency, we reconsidered the assortativity of the cy-

toskeleton and found that it was higher in the extracted networks than expected from the null model net-

works (pt < 10−50). Similarly, we found that the CV of the angles between AF segments and the major cell
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axis was smaller in the extracted networks than expected by chance (pt < 10−50). Together with the observed

transport efficiency, these findings suggest that the formation of connected patches of aligned actin bundles

is a functionally relevant feature of the cytoskeleton.

To assure that our results were robust, we used an additional and more restricted null model, which only

shuffles edge weights. While the first null model is more flexible and explores a larger space of random

networks, the second null model excludes potential artifacts in the first null model that could arise from an

increased number of edge crossings or a more homogeneous distribution of node positions as compared to

the extracted networks (Appendix 6.3.4). Our findings from the first model were consistently confirmed by

the second null model. Hence, differences in the studied network properties of extracted and null model

networks are not an artifact of the randomization procedures.

Another potential issue, shared by all current approaches that extract transport-related networks from image

data, is the unknown directionality of the edges. Our analyses of cytoskeletal transport capacity rely on the

assumption of bi-directional transport along edges. Although individual AFs usually allow uni-directional

movement of motor proteins only, bi-directional movement may occur due to fluctuations, different orien-

tations of filaments in actin bundles or cytoplasmic streaming [Langford, 1995; Badoual et al., 2002; Lee et al.,

2004]. Indeed, our data showed that only a small fraction of around 15% of actin edges showed predomi-

nantly uni-directional transport, irrespective of the actin bundle thickness (cf. Fig. 4.4.3 below and Appendix

6.3.6), justifying the assumption of bi-directional transport. Our analyses therefore indicate that transport

efficiency is a central design principle of the actin cytoskeleton in growing plant cells.

Automated quantification of Golgi movement

To quantitatively investigate actin-based cellular transport, we studied the flow of Golgi bodies along the

actin cytoskeleton in three-day-old FABD-GFP and tdTomato-CesA6 (tdT-CesA6) dual-labeled hypocotyl

cells (cf. Appendix 6.3.1 for video of Golgi flow). The tdT-CesA6 marker was used as proxy for Golgi move-

ment as the cellulose synthase labels Golgi bodies [Paredez et al., 2006; Luo et al., 2015]. We analyzed the

flow of Golgi through automated tracking (Fig. 4.4.3A; [Jaqaman et al., 2008; Schindelin et al., 2012]) in image

series from control and LatB-treated cells (Figs. 4.4.3B and C).

We found that average Golgi bodies moved with a velocity of E[v] = 0.36 ± 0.26s−1µm in control cells

(Fig. 4.4.3D), which is higher than E[v] = 0.04± 0.03s−1µm in LatB-treated cells, consistent with previous

studies [Nebenführ et al., 1999; Hawes and Satiat-Jeunemaitre, 2005; Akkerman et al., 2011]. The Golgi

movement was predominantly parallel to the major cell axis in control cells while such preferential ori-

entation was absent in LatB-treated cells (Fig. 4.4.3F). The preferred orientation of movement, therefore,

correlates with the orientation of long actin bundles (cf. Fig. 4.4.2). Thus, our automated tracking captures

known features of Golgi movement and may therefore be suitable for further, more detailed analyses of Golgi

behavior.

Golgi bodies exhibit wiggling, which does not change over time or with distance to the actin cytoskeleton

The movement of Golgi bodies is characterized as saltatory or stop-and-go [Nebenführ et al., 1999; Neben-

führ and Staehelin, 2001], whereby Golgi switch between periods of directed movement and undirected
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Figure 4.4.3: Quantification of Golgi flow and movement along individual actin filaments. Comparison of
Golgi dynamics in cells of plants treated with the actin-disrupting drug LatB (orange) and untreated control
plants (green). (A) Overlay of cellular recording of Golgi (green) and Golgi tracks throughout the recording
from a control cell (dark green). (B) Overlay of cellular recording of Golgi (orange) and Golgi tracks through-
out the recording from LatB-treated cell (dark orange). (C) Caption continued on next page.
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(C) Distributions of Golgi velocities showed lower average velocities in LatB-treated cells, E[v] = 0.04 ±
0.03s−1µm, than in untreated control cells, E[v] = 0.36± 0.26s−1µm. (D) Examples of Golgi tracks from
control and LatB-treated cells, with starting point shifted to the origin (cf. white dot) and rotated major
cell axis (cf. gray dashed line). (E) Schematic of different angles used to study movement of Golgi bodies:
The absolute angle measures the angle between a Golgi track segment and the major cell axis (cf. dashed
gray angle). The relative angle measures the angle between two consecutive segments of a given Golgi track
(cf. solid gray angle). The pairwise angle measures the angle between two segments of two different Golgi
tracks at a given time step (cf. dotted gray angle). (F) Distributions of absolute angles, i.e. angles of Golgi
track segments with respect to the major cell axis (cf. (A)), showed a preferential movement of Golgi parallel
to the cell axis in control cells while such preference was absent in LatB-treated cells. (G) Distributions of rel-
ative angles, i.e. angles between consecutive Golgi track segments, were broad with averages E[a] = 85±55◦
and E[a] = 104±55◦ for control and LatB-treated cells, respectively (cf. dashed lines). (H) Relative angles,
averaged over a given track, showed unimodal distributions with peaks around 85◦ and 104◦ for control and
LatB-treated cells, respectively (cf. dashed lines). (I) Time series of average relative angles, averaged over
a given time step, for each of the studied control and LatB-treated cells (left panels). All time series were
stationary, i.e. they showed no increasing or decreasing trend, as judged from augmented Dickey-Fuller unit
root test p-values pDF < 0.05 (upper right panel), except one (cf. triangle and cf. dotted black line in upper
left panel). The fluctuations of the time series were small, with E[CV[a]] = 0.10±0.03 (lower right panel). (J)
Distribution of relative angles in dependence of distance of the track segments from the cytoskeleton (upper;
circles show results for control cells). The average relative angles were largely independent of the distance
from the cytoskeleton (upper panel; solid lines and shaded areas show mean ± standard deviation). In par-
ticular, the average relative angles matched the overall average relative angles 85◦ and 104◦ for control and
LatB-treated cells, respectively (upper panel; dashed lines and cf. (G)). The frequency of Golgi at a given dis-
tance from the cytoskeleton showed an accumulation of Golgi at small distances up to 2µm for both control
and LatB-treated cells (lower panel; solid lines and cf. triangle) when compared to a null model in which
Golgi were randomly and uniformly distributed across the cell area (lower panel; dashed black line). (K)
Heat maps of the distributions of pairwise angles, i.e. angles between two segments of two different Golgi
tracks at a given time step, in dependence of the spatial separation of the two track segments (right panels).
Distributions of pairwise angles for small spatial separations below 1µm (left panels and cf. dashed black
lines in right panels). In the control cells, there was a tendency towards parallel or antiparallel movement
of Golgi (upper right panel) and for distances below 10µm, a large fraction of Golgi tracks showed paral-
lel alignment (cf. triangle). Nevertheless, even at small spatial separations below 1µm, a fraction of 45% of
Golgi pairs exhibited antiparallel movement with angles above 90◦ (upper left panel). In the LatB-treated
cells (lower panels), no preferred alignment was observed, irrespective of the spatial separation of the track
segments. (L) Scatter plot of actin bundling, measured by the average edge capacity, and the average Golgi
velocity showed positive correlations (Pearson correlation p-values pP < 0.05) for control (green) and LatB-
treated cells (orange) as well as the combined data (black). (M) Boxplots of the fractions of Golgi in control
and LatB-treated cells which stayed close to the same filament segment within one time step (referred to as
“stay”), those that likely moved to a different segment of the same filament (“move”), and those that moved
to a different, non-adjacent filament (“jump”). Fraction of stationary Golgi was higher for LatB-treated than
for control cells (independent two-sample t-test p-values pt < 0.05 were considered significant).
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“wiggling” behavior (Fig 4.4.3E). While it has been suggested that Golgi wiggling is not specific to individual

Golgi bodies [Akkerman et al., 2011], it is yet unclear whether Golgi wiggling changes over time or depends

on the distance of the Golgi from the actin cytoskeleton. To quantify these characteristics, we computed

the angles between consecutive Golgi track segments (referred to as “relative angles”; cf. 4.4.3E) and refer to

movement with relative angles above 90◦ as wiggling behavior.

The observed distributions of relative angles across the studied cells were broad, demonstrating that both

largely uni-directional movement and wiggling behavior were present (Fig. 4.4.3G). For LatB-treated cells,

the average relative angle E[a] = 104±55◦ was larger than for control cells with E[a] = 85±55◦ and wiggling

was thus more common. To confirm that wiggling is not simply a feature of individual Golgi [Akkerman et al.,

2011], we computed the relative angles averaged across a given track (Fig. 4.4.3H). The resulting distributions

of angles peaked at around 90◦ for both untreated and LatB-treated cells, showing that the majority of Golgi

tracks contained both periods of directed movement and wiggling behavior. Hence, our findings confirm

that wiggling behavior is not specific to individual Golgi.

To test whether the prevalence of Golgi wiggling changes over time, we calculated the distribution of average

relative angles over time (Fig. 4.4.3I, left). We found that Golgi motility did not change during the course

of the time series, (Fig. 4.4.3I, upper right; only one of the studied cells showed a slight increase in Golgi

wiggling over time). Moreover, the prevalence of Golgi wiggling showed only very minor fluctuations within

and across time series (Fig. 4.4.3I, lower right; E[CV] = 0.10± 0.03), indicating that a constant fraction of

Golgi exhibited wiggling behavior over time. Our data therefore suggest that Golgi wiggling is a common

and stable cellular phenomenon.

To study the effect of the distance between the actin cytoskeleton and Golgi in the context of Golgi wig-

gling, we computed the relative angles between consecutive track segments at a given distance from the

cytoskeletal center line (Fig. 4.4.3J, upper). The frequency of Golgi was dependent on the distance to the

AFs (Fig. 4.4.3J, lower), and we found that the Golgi density was highest within 2µm from the AF center

lines. Surprisingly, the prevalence of Golgi wiggling did not depend on the distance from the AFs. Further-

more, when considering our weighted network representation of the actin cytoskeleton, we found that Golgi

wiggling in the vicinity of a given edge did not depend on the edge thickness (Appendix 6.3.5).

We note that the Golgi wiggling resembles the searching behavior of foraging animals [Edwards et al., 2007;

Benhamou, 2007] or microbial motion [Matthäus et al., 2009] that has been suggested to optimize search ef-

ficiency [Viswanathan et al., 1999; Humphries et al., 2012; Humphries and Sims, 2014]. It is plausible that the

Golgi, and the loosely associated trans-Golgi network/early endosomes, might scan the plasma membrane,

endoplasmatic reticulum (ER) or other compartments for areas that need to exchange material. Assuming

that these sites are not globally coordinated by the cell, the switching of Golgi between directed movement

and wiggling behavior may therefore provide an efficient search strategy in this setting. This is compati-

ble with proposed models of Golgi movement [Nebenführ and Staehelin, 2001; Hawes, 2004], such as the

“vacuum cleaner” model (Golgi move through the cell and pick up products from the ER) or the “recruit-

ment” model (Golgi pause in vicinity of active ER sites to facilitate trafficking). Our findings thus suggest a

connection between Golgi wiggling and the optimization of uptake and delivery of Golgi-related material

throughout the cell.
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Golgi movement is largely dependent on direct, motor-based transport along actin bundles

Despite recent studies, it remains unclear whether Golgi bodies are transported through the cell by direct in-

teractions with motor proteins or indirectly via cytoplasmic streaming [Buchnik et al., 2014; Cai et al., 2015].

The two scenarios are reflected in the behavior of neighboring Golgi tracks. Movement of close-by Golgi

tracks in the same direction is indicative of indirect bulk flow. In contrast, movement in opposite direc-

tions suggests direct actomyosin-based transport of Golgi. To distinguish these two cases, we measured the

angles between any two segments of different Golgi tracks within the same time step (referred to as “pair-

wise angles”) in dependence of their spatial separation. For the LatB-treated cells, the frequency of a given

pairwise angle of Golgi movement correlated with neither the angle nor the spatial separation of the two

Golgi track segments (Fig. 4.4.3K, lower right). In contrast, the Golgi movement displayed mainly parallel or

antiparallel trajectories in control cells (Fig. 4.4.3K, upper right), consistent with Golgi movement occurring

preferentially along the major cell axis (cf. Fig. 4.4.3F). Even for small distances below 1µm between different

Golgi, a substantial fraction of Golgi trajectories showed antiparallel movement at a given time (Fig. 4.4.3K,

left; 45% of n ≈ 5000 pairwise angles across the studied cells and imaging periods). As the low Reynolds

numbers of the cytoplasm favor laminar streaming [Luby-Phelps, 2000; Lew, 2005], this antiparallel move-

ment of close-by Golgi contradicts the assumption of indirect, cytoplasmic-streaming induced movement

and instead supports myosin-based transport of a substantial fraction of Golgi bodies.

Regions of bundled actin may lead to higher average velocities of Golgi movement in root epidermal cells

[Akkerman et al., 2011]. To test if our network-based framework supports these findings in hypocotyl cells,

we computed the average Golgi velocity and compared it to the overall actin bundling in the cell (Fig. 4.4.3L)

as measured by the average edge capacity (cf. Fig. 4.4.2E). Indeed, actin bundling showed a high correlation

with Golgi velocities for both control and LatB-treated cells (Pearson correlation coefficients cP ? 0.4 and

p-values pP < 0.05).

Reasons for this correlation are manifold: Thick bundles are typically surrounded by fewer AFs that might

slow down the Golgi (cf. Figs. 4.4.1 and 4.4.2I). The high rigidity of bundles increases the run length of motor

proteins [Berger et al., 2015], which may be further extended through binding of multiple motor proteins

[Klumpp and Lipowsky, 2005]. Furthermore, the varying orientations in an array of fine AFs are suggested

to counteract cooperative movement of cargo [Akkerman et al., 2011]. Thus, the average velocity of Golgi in

hypocotyl cells is determined by the prevalence of actin bundles. However, studying overall actin bundling

and average Golgi velocities does not consider the identity of individual AFs and the potential movement of

Golgi along and between filaments.

The rate of cytoplasmic streaming controls Golgi redistribution among actin bundles

To assess Golgi behavior in the context of the detailed AF structure, we divided Golgi movement into three

classes (Fig. 4.4.3M; Appendix 6.3.5): 1. Golgi that maintained positions along an edge in the actin network

between consecutive time steps (around 80% and 90% of n ≈ 40000 and n ≈ 25000 Golgi track segments for

control and LatB-treated cells, respectively). 2. Golgi that moved to a different edge along a path with angles

smaller than 90◦ (around 10% and 5% for control and LatB-treated cells, respectively). Since individual AFs,

and especially bundles, rarely exhibit strong bending [Claessens et al., 2006; Staiger et al., 2009], the Golgi in
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this class likely moved along the same AF between the given time steps. 3. Golgi that moved to an altogether

different AF (around 10% and 5% for control and LatB-treated cells, respectively). For the LatB-treated cells,

the fraction of Golgi in the first class was higher than for the control cells (pt < 10−50). This increase is

compatible with the general reduction of Golgi movement in LatB-treated cells (cf. Fig. 4.4.3D). As expected,

also within a given control or LatB-treated cell, faster Golgi were more likely to reach different AFs (Appendix

6.3.5). Our data thus suggest that switching of Golgi to adjacent AFs is myosin-dependent, while switching

to non-adjacent AFs is due to cytoplasmic streaming that may carry the Golgi over large distances.

Switching of cargo between different, intersecting filaments has been previously shown for organelles track-

ing along microtubules in animal cells [Ross et al., 2008; Bálint et al., 2013; Osunbayo et al., 2015]. However,

these studies focused on movement and switching of cargo at filament intersections and did not investigate

switching of cargo to non-adjacent filaments.

Local and global actin network architecture may be used to predict direction and velocity of Golgi move-

ment

Our previous analyses assumed that the capacity of a given actin network edge, i.e. its average thickness,

reflects its potential to transport cellular cargo (cf. Fig. 4.4.2). To test this hypothesis, we studied the Golgi

flow on two levels: First, we computed pairwise correlations between the properties of Golgi flow and actin

structures, as modeled by our extracted networks. Second, we combined different edge properties of the

actin networks to predict features of Golgi flow (e.g. direction and velocity) using a multiple linear regression

approach [Freedman, 2009].

We first extracted the capacity-weighted actin networks from FABD-GFP and tdT-CesA6 dual-labeled

seedlings (Figs. 4.4.4A and B). We determined the local edge capacities and global edge properties that incor-

porated information about the importance of any given edge in the network context, i.e. edge degree, edge

page rank as well as edge path and flow betweenness (Appendix 6.3.3). Edge path and flow betweenness

measure the number of shortest paths and the total amount of flow that traverse a given edge when solv-

ing the short path and the maximum flow problem, respectively [Freeman, 1977; Brandes, 2008; Newman,

2009]. The edge page rank (Fig. 4.4.4C; [Brin and Page, 1998; Newman, 2009]; hereafter referred to as edge

rank) quantifies the expected frequency of cargo at a given edge when the cargo is assumed to randomly

switch between edges. The edge degree is given by the sum of adjacent edge capacities.

In parallel, we used the tdT-CesA6 image data to automatically track Golgi movement (Fig. 4.4.4E). From the

resulting track segments at each time step, we constructed an auxiliary network that we refer to as Golgi flow

network: We copied the structure of the actin network at the given time step and assigned new edge weights

in the Golgi flow network according to various features of Golgi movement in the vicinity of the respective

edge. To this end, we weighted the Golgi flow network edges by the number of Golgi track segments in the

vicinity (Fig. 4.4.4F), by the average intensity (Fig. 4.4.4G) or by the direction and velocity of close-by Golgi

(Fig. 4.4.4H).

To investigate the relationship between actin structure and Golgi dynamics, we first computed the corre-

lation between the determined edge properties of actin and Golgi flow networks. For instance, we studied

the dependence of the Golgi direction and velocity on the actin edge rank. The correlation between the two
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Figure 4.4.4: Coordination and prediction of Golgi dynamics by whole-cell organization of actin cy-
toskeleton. (A) Overlay of cellular recording of actin cytoskeleton (green) and extracted actin network (dark
green). (B) Extracted actin network with edge colors representing their capacities, i.e. average thicknesses.
(C) Extracted actin network with edge colors representing their edge ranks. (D) Caption continued on next
page.
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(D) Extracted actin network with cylindrical periodic boundary conditions. Edge colors represent their edge
rank and gray edges indicate network edges added to implement periodic boundary conditions. Edge ranks
in the periodic and non-periodic networks generally differ (cf. (C) and triangles). (E) Overlay of cellular
recording of Golgi (green) and Golgi tracks throughout the recording (dark green). (F) Golgi flow network
with edge colors representing the numbers of close-by Golgi track segments, i.e. track segments with start-
ing points within 20pixels from a given edge. (G) Golgi flow network with edge colors representing average
intensity of close-by Golgi track segments. (H) Golgi flow network with edge colors representing the di-
rection and velocity of close-by Golgi track segments. (I) Time series of Pearson correlation coefficients cP

between Golgi track segment direction and velocity and actin edge rank (upper panel) and exemplary scat-
ter plots for one time point for a control and a LatB-treated cell, respectively (lower panel; white dots in
upper panels indicate cells and time steps used for illustration of correlations). Across the studied control
cells, the average correlation coefficient was cP = 0.354 while for the studied LatB-treated cells, no signifi-
cant correlation was observed with cP = 0.008. (J) Heat maps of Pearson correlation coefficients cP between
different edge properties of original, non-periodic actin and Golgi flow networks for control (left panel) and
LatB-treated cells (right panel). For control cells and LatB-treated cells, there was a significant correlation
between the actin edge capacity and the Golgi number (cf. also (L)). The significant correlations between the
actin edge rank and several direction- and velocity-related Golgi properties for the control cells were absent
for the LatB-treated cells (cf. e.g. (I)). (K) Heat map of coefficients of determination R2 for multiple linear
regressions of the Golgi flow network edge properties (first column) and the respective predictive power p-
values pt ′ of the original, non-periodic actin edge properties that were used as predictors (last five columns;
one-sample two-sided t-tests p-values pt ′ measure whether inclusion of the respective predictors improves
the prediction and pt ′ < 0.05 were considered significant) for the control cells. As for the correlation coef-
ficients (cf. (J)), the interdependence between actin edge properties and the direction- and velocity-related
Golgi properties was highest (R2 > 0.7). In the multiple linear regressions, the actin capacity, degree and
rank were more reliable predictors (pt ′ < 0.05) than edge flow and path betweenness (pt ′ ≥ 0.05). (L) Scatter
plots of the number of Golgi less than 20pixels from a given edge in dependence of the edge capacity showed
positive correlations with cP = 0.447 for control and cP = 0.355 for LatB-treated cells. The slope of a linear
regression for the combined data was s = 391. (M) Heat maps of Pearson correlation coefficients cP between
different edge properties of periodic actin and Golgi flow networks for control (left panel) and LatB-treated
cells (right panel). In particular, some correlations involving the direction and velocity of Golgi were higher
for the periodic than for the non-periodic networks (cf. (O)). (N) Heat map of coefficients of determination
R2 for multiple linear regressions of the Golgi flow network edge properties (first column) and the respective
predictive power p-values pt ′ of the periodic actin edge properties used as predictors (last five columns) for
the control cells. Analogue to the correlation-based analyses, the coefficients of determination especially of
the direction- and velocity-related Golgi properties were higher for the periodic than for the non-periodic
networks (cf. (O)). (O) Boxplot of Pearson correlation coefficients between Golgi direction and velocity and
actin edge rank without and with periodic boundary conditions, respectively (left panel; independent two-
sample t-tests p-values pt < 0.05 were considered significant). Boxplot of coefficients of determination
for predictions of Golgi direction and velocity without and with periodic boundary conditions, respectively
(right panel). The correlation as well as the prediction quality for actin networks incorporating periodic
boundary conditions were significantly higher than for networks without periodic boundary conditions for
the control cells (pt < 10−50), but not for the LatB-treated cells (pt ≥ 0.05).
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properties varied over time and across cells (Fig. 4.4.4I, upper). It was typically significant for control cells,

while no significant correlation was found for the LatB-treated cells (Fig. 4.4.4I, lower; average Pearson cor-

relation coefficients across all studied cells were cP = 0.354 and cP = 0.008 for control and LatB-treated cells,

respectively, cf. Fig. 4.4.4J). These findings are compatible with the severely reduced flow (cf. Fig. 4.4.3D) and

increased wiggling behavior of Golgi (cf. Fig. 4.4.3G) in LatB-treated cells.

In a more systematic approach, we evaluated the correlations between all pairs of edge properties, averaged

across the studied cells and time points (Fig. 4.4.4J). Some pairs of properties, such as Golgi direction and

velocity and actin edge rank discussed above, were correlated for the control cells (
∣∣cp

∣∣ > 0.2) but not for

the LatB-treated cells (
∣∣cp

∣∣ ≤ 0.2; cf. Fig. 4.4.4I). Only the number of Golgi close to a given edge was corre-

lated with the respective edge capacity and edge degree for both control and LatB-treated cells (Fig. 4.4.4L).

These findings show that although the flow of Golgi is severely altered by the LatB treatment, Golgi may still

agglomerate in the vicinity of the actin stubs (cf. Fig. 4.4.3J, lower). However, for most pairs of actin and

Golgi flow network edges properties, there was no or only weak correlation (Pearson correlation coefficients∣∣cp
∣∣≤ 0.2). Hence, while in particular edge flow and path betweenness have been suggested to predict trans-

port in real-world networks [Borgatti, 2005; Kurant and Thiran, 2006; Jiang et al., 2008; Kazerani and Winter,

2009], they are not predictive of Golgi transport along the actin cytoskeleton in plant cells. The latter may be

due to different transport requirements in particular regions of the cell, especially during hypocotyl elonga-

tion growth [Gendreau et al., 1997; Geisler et al., 2008].

Since pairwise correlations were only of moderate value, we secondly used multiple linear regression to see

if certain aspects of Golgi flow could be predicted from a combination of actin edge properties. Indeed, the

number of Golgi close to an actin edge (Fig. 4.4.4K; coefficient of determination R2 = 0.74) and the Golgi

direction and velocity (R2 = 0.79) were accurately predicted from the edges properties of the underlying

actin cytoskeletal network. Moreover, edge capacity, edge degree and edge rank of the actin network had

higher predictive power (one-sample two-sided t-tests p-values, denoted by pt ′ , pt ′ < 0.05 for most Golgi

flow properties) than the edge path and flow betweenness (pt ′ ≥ 0.05).

As edge capacity and edge degree reflect (semi-)local actin bundling, their observed high predictive power

supports the finding that actin bundling is correlated with Golgi density and velocity (cf. Figs. 4.4.3J and L;

[Akkerman et al., 2011]). As indicated above, the edge rank measures the (global) importance of an edge in

the network context, and corresponds to the probability that an agent that randomly traverses the network

is found at the given edge [Pinski and Narin, 1976; Brin and Page, 1998]. In our actin cytoskeletal transporta-

tion network, the edge rank thus models cargo that randomly switches between adjacent filament segments

whereby thicker filaments are frequented with higher probabilities. Therefore, the system-wide organization

of the actin cytoskeleton shapes, and may be used to predict, the dynamic flow of Golgi.

Incorporation of cylindrical geometry of the actin network enhances Golgi flow predictions

The two-dimensional rendering of images captures only a part of the epidermal actin cytoskeleton. This

restriction introduces boundaries and, hence, bias in the extracted network as the cortical actin cytoskele-

ton follows the near-cylindrical shape of the growing hypocotyl cells. Since imaging three-dimensional time

series of the actin cytoskeleton is intrinsically challenging, we modeled the cylindrical geometry of the cor-
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tical cytoskeleton by periodically extending the original, two-dimensional extracted network (Fig. 4.4.4D).

We refer to these networks as periodic, and the ones with boundaries as non-periodic.

We recomputed the edge betweenness, and repeated both our correlation-based (Fig. 4.4.4M) and

regression-based analyses, for the periodic networks (Fig. 4.4.4N). For the control cells, Golgi velocity and di-

rection showed highest correlation with, and were most accurately predicted by, the global edge rank rather

than other local and global edge measures of the actin network. These data are in agreement with the non-

periodic networks above. Intriguingly, the correlation between actin edge rank and Golgi direction and ve-

locity, as well as the prediction of the latter, was improved for the periodic networks as compared to the non-

periodic ones (Fig. 4.4.4O; independent two-sample t-test p-values pt < 0.05). For the LatB-treated cells, no

differences in the correlation coefficients (pt = 0.318), nor in the coefficients of determination (pt = 0.063),

were observed between the periodic and non-periodic networks.

Our periodic boundary conditions conform to parsimony by assuming identical actin structures at the two

sides. Although it is possible that the actin cytoskeleton at the distant periclinal side of the cell may dif-

fer from the epidermal periclinal side, e.g. due to different mechanical forces inside the hypocotyl, three-

dimensional imaging will be necessary to resolve such differences. However, imaging with sufficient spatio-

temporal resolution, and without substantial photobleaching, to accurately capture the fast dynamics of

actin rearrangement and Golgi movement in distant parts of the cell introduces major limitations. In addi-

tion, absorption and scattering of light by plant cell features will result in images of reduced quality and may

not resolve fine AFs. Therefore, our implementation of periodic boundary conditions appears reasonable

until high-quality data of the complete cortical actin cytoskeleton become available. Taken together, Golgi

transport is not merely determined by the local structure of the cortical cytoskeleton, but depends on larger

architectural contexts, as well as the cylindrical geometry of the hypocotyl cell.

4.4.4 Concluding remarks

Advances in determining the genetic and molecular basis of cytoskeletal transport have not yet been

matched by a systems perspective. To address this gap, we introduced an accurate image-based network

representation of the actin cytoskeleton to facilitate automated and unbiased quantification of cytoskeletal

phenotypes. We used this framework to investigate the relation between the properties of the actin cy-

toskeleton and features of Golgi transport in Arabidopsis hypocotyl cells.

We found that the actin cytoskeleton supports efficient transport processes. Through automated tracking

of Golgi bodies, we quantified contributions of myosin- and cytoplasmic-streaming based transport. We

demonstrated that Golgi wiggling is a prominent biological phenomenon that is reminiscent of optimized

search strategies that may guarantee efficient uptake and/or delivery of Golgi-related cell material. Further-

more, we found that Golgi dynamics, in particular velocity and directionality of movement, can be predicted

from the structure of the actin network. These data highlight the importance of objectively quantifying the

actin cytoskeleton organization and its cylindrical geometry to obtain a systems view of cellular transport.

Despite the diversity of cellular transport processes, our approach of integrating cytoskeletal network struc-

tures with tracking data of organelles is directly transferable to various biological systems and functions: In
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plants, transport of mitochondria [Akkerman et al., 2011; Wang and Hussey, 2015] or photodamage avoid-

ance movement of chloroplasts [Kasahara et al., 2002] represent interesting test grounds. In animals, it has

been shown that cytoplasmic streaming in Drosophila melanogaster oocytes is related to structural features

of microtubules [Ganguly et al., 2012], and that transport of lysosomes in monkey kidney cells depends on

microtubules and microtubule cross-overs [Bálint et al., 2013]. While these are interesting local correlations

of cytoskeletal features and organelle transport, we expect broader, system-level understanding of these

processes by the application of approaches such as ours.

Our automated framework paves the way for quantitative descriptions of changes in the actin cytoskeleton

and trafficking characteristics in, for example, large-scale chemical and genetic screens. This should cer-

tainly improve our understanding of how the actin cytoskeleton impacts on organelle transport. Moreover,

our prediction of organelle transport from properties of the actin network indicates that network-based

models may be used to reverse-engineer or predict potential uptake or deposition sites of Golgi-related ma-

terial across the cell. With advances in imaging technologies, our framework can also be readily used to

investigate how differences in cellular transport efficiency between cell types relate to mechanical prop-

erties or growth phenotypes. Altogether, the presented combination of experimental imaging techniques

and theoretical network-based analyses provides an important step towards a systems understanding of

cytoskeletal organization and transport dynamics and, ultimately, control of cytoskeleton-based transport.

4.4.5 Materials and Methods

Plant material and experimental setup

We used Arabidopsis Columbia-0 35S:FABD-GFP and pCesA6:tdT-CesA6 dual-labeled seedlings [Sheahan

et al., 2004; Sampathkumar et al., 2013] to study actin cytoskeleton and Golgi bodies. The seedlings were

surface sterilized (ethanol), stratified for 2days at 4◦C and germinated on MS agar plates (1X Murashige and

Skoog salts, 8L−1g agar, 1X B5 vitamins, and 10.8g 8L−1g sugar). All plants were grown in the dark on vertical

plates at 21.8◦C for 3days. For drug treatment, seedlings were floated on distilled water containing 150µM

LatB, and a set of control seedlings on pure water in 6-well plates. The seedlings were incubated in the dark

with gentle shaking for 4hours before imaging. To immobilize the seedlings and to avoid mechanical dam-

age, they were mounted between a cover glass and a 1mm thick 1% agar pad affixed on a circular cover slip.

A spinning-disk confocal microscope was used to capture rapid changes and to minimize bleaching, yield-

ing images with a spatial resolution of 0.133pixel−1µm [Sampathkumar et al., 2011]. Exposure times were

400ms for FABD-GFP and 300ms for tdT-CesA6 with a time interval of 2s between subsequent actin and

Golgi images, respectively. The cells were recorded for at least 100 frames, i.e. about 3min. Only seedlings

expressing both fluorescent markers were used for further analyses. Here, seven recordings of different con-

trol and LatB-treated cells were analyzed, respectively.

Image preprocessing of actin and Golgi recordings

We preprocessed the confocal recordings using the image processing package Fiji [Schindelin et al., 2012]

(cf. Fig. 4.4.1A): We corrected the potential drift of the seedlings under the microscope by applying the
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Fiji-StackReg stack registration algorithm to the image series [Thévenaz et al., 1998]. To enable simulta-

neous registration of the dual-labeled plant recordings, we merged actin and Golgi recordings from one

cell as different color channels and split the channels after registration. We compensated photobleach-

ing by normalizing the mean intensity of each frame. We improved the signal-to-noise ratio by using the

Fiji-BackgroundSubtraction rolling ball filter with radius of 50pixels [Sternberg, 1983]. To automatically de-

termine the cellular region of interest for each cell, we performed a maximum projection of the registered

actin recordings, applied a Gaussian filter with a standard deviation of 20pixels, thresholded the image with

a global Otsu threshold [Otsu, 1975] and selected the largest connected component as the region of interest

for both actin and Golgi images. Moreover, to identify the cell axis, we skeletonized the binary representa-

tion of the cellular region of interest and selected the pixels along 20% and 80% of the length of the resulting

center line to compute the angle γ of rotation of the cell (cf. Fig. 4.4.2G).

Extraction of actin networks from image data

From the preprocessed image data, we represented the actin cytoskeleton as a network through a custom

procedure which has been developed and implemented using Python [Van Rossum and Drake, 2011], SciPy

[Olivier et al., 2002], the SciKit image processing toolbox [van der Walt et al., 2014] and NetworkX [Hag-

berg et al., 2008] (cf. Fig. 4.4.1 for illustration and http://mathbiol.mpimp-golm.mpg.de/CytoSeg/ for the

open-source code of the implemented network extraction procedure): First, to obtain the filamentous actin

skeleton, we applied a two-dimensional tubeness filter to each frame of the preprocessed actin images to

enhance the signal of the filamentous structures of width vwidth [Sato et al., 1998] (cf. Fig. 4.4.1B). Next,

we obtained binary images by applying an adaptive median threshold with blocksize vthres (cf. Fig. 4.4.1C).

We determined the center lines of the actin structures by skeletonizing the thresholded image [Haralick

et al., 1987], i.e. the skeleton and the background are given in a binary representation by 1- and 0-pixels,

respectively. Then, we removed all spurious connected components of less than vsize pixels in size as well

as those whose average intensity in the original actin image was below vint of the average component in-

tensity (cf. Fig. 4.4.1D). The image processing parameters vwidth, vthres, vsize and vint were determined in a

gauging step by comparison of automated segmentation to manually obtained gold standard segmentations

(cf. Fig. 4.4.1J and below).

Second, for each skeletonized, binary actin image, we identified the nodes of the network as crossings or

endpoints of filaments by checking the 3×3pixels2 neighborhood for each pixel and assigning a node if the

center pixel was 1 and the outer ring of the neighborhood contained exactly one or more than two connected

1-pixels. By ignoring potential nodes with zero or two connected 1-pixels in the outer neighborhood we

excluded disconnected pixels and pixels in the middle of a filament, respectively. In cases where several

nodes touched, we removed all except for the one whose position coincided with the center of mass of

the touching node pixels. Then, we labeled the node pixels and created an auxiliary image for which the

background was set to −1, the filaments were set to 0 and the N nodes were labeled sequentially from 1 to

N (cf. Fig. 4.4.1E).

Third, we constructed a weighted network by starting from an empty multigraph G = (N ,E ) with N = |N |
nodes at positions xn ∈ R2, n ∈N , and initially E = |E | = 0 edges. We iteratively propagated the node labels

to the eight neighboring pixels, given that these pixels were part of a filament, and aborted the iteration when
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no filament pixels were left. Then, for each two neighboring pixels with different labels, n 6= m, n,m ∈N , we

added an edge e = (n,m) to the multigraph G . To obtain further information about the edges, we computed

different properties parallel to the propagation of node labels: We defined the arc length ae,F of an edge

e as the arc length of the corresponding filament segment. We computed it by creating another auxiliary

image of zeros and, when propagating a node label, setting the value at the new position to the value of

the old position of that array and adding
p

2 or 1 depending on whether the propagation step was diagonal

or not. The arc length ae,F of an edge e was then given by the sum of values of the two neighboring pixels

which were used to create the edge. Similarly, we measured the weight ae,w of an edge by using another

auxiliary image and propagating the intensity of the original actin image, filtered with a Gaussian kernel

with a standard deviation of 2pixels, along the filaments. Again, ae,w was given by the sum of the values of

the two different neighboring, propagated node pixels. Due to the Gaussian filtering, ae,w is a measure for

the summed intensity in the neighborhood of the filament and, by construction, increases with the length

of the filament. We therefore derived the capacity ae,c of an edge as the ratio of its weight and arc length,

ae,c = a−1
e,F ae,w , ae,F ≥ 1 by construction. The edge capacity reflects the average thickness of the filament

segment and was used as a measure for the average potential amount of cargo that may traverse the edge

(cf. Fig. 4.4.2). For the computation of shortest paths in the network, we further defined the length ae,l

of an edge as the inverse of the capacity, ae,l = a−1
e,c . We normalized the edge capacities and lengths of a

given network to one for better comparability. Additionally, we calculated the Euclidean edge length ae,E

directly from the node positions and the bending of a filament segment was measured by the ratio of arc

and Euclidean length, ae,B ≡ B = a−1
e,E ae,F .

In general, the extracted network is a multigraph (e.g. two curved filaments may cross twice, leading to two

edges between the same pair of nodes; cf. Fig. 4.4.1E). For simplicity, we projected the multigraph onto a

simple graph by summing the multiple edge capacities ae,c and taking the minimum of the remaining mul-

tiple edge properties. This is justified by our assumption of current-like flow along the filaments which is

additive in ae,c , and our calculation of shortest paths which favor the minimum ae,l in the case of multi-

ple edges. Since the network is not guaranteed to be connected, we simplified analyses by adding edges

of minimum total Euclidean length to obtain a connected network. Their edge weights were given by the

average intensity of the Gaussian filtered image along a connecting line of pixels between its two respective

nodes, similar to the original edges above (cf. Fig. 4.4.1E). Network extraction procedures similar to ours are

reviewed in Appendix 6.3.2.

Last, we derived several higher-level edge properties which do not reflect only the local structure of the

cytoskeleton but capture global features of its organization (Appendix 6.3.3). As a simple measure of the

importance of an edge e in the network context, we computed its degree ae,deg in the line graph LG , i.e. the

summed capacity of its adjacent edges. The line graph LG of a graph G has a node for each edge in G and an

edge between two nodes if the corresponding edges are adjacent in G . Moreover, we derived the edge page

rank ae,rank of an edge e in the line graph LG [Brin and Page, 1998; Langville and Meyer, 2005]. To capture the

importance of an edge e with respect to shortest paths in the network context, we further derived the edge

path betweenness ae,path, given by the number of shortest paths between all pairs of nodes which traverse

e [Freeman, 1977; Newman, 2009]. Finally, the edge current flow betweenness ae,flow was computed as the

sum of maximum flows through e between all pairs of nodes [Harris and Ross, 1955; Newman, 2009].
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Gauging of network extraction parameters

To ensure an accurate network representation of the actin cytoskeleton, we performed extensive gauging of

the four imaging parameters vwidth, vthres, vsize and vint. To this end, we generated 20 contrived images of

known, cytoskeleton-like structures and created manual segmentation of 20 biological cytoskeleton images

as a gold standard for comparison against the automated segmentation results (Appendix 6.3.2). We note

that the extraction of networks from the segmented center lines is deterministic, i.e. identical segmentations

result in identical networks, and we therefore focused on comparing the segmented center lines.

We then varied all four parameter in a wide range with ten linear steps each, vwidth ∈ {0.4, . . . ,2.2}, vthres ∈
{21, . . . ,111}, vsize ∈ {2, . . . ,47} and vint ∈ {0.1, . . . ,1.9} (cf. Figs. 4.4.1I and J) for all 40 gauging images. As a

measure of agreement between the segmentations, we used the average minimum Euclidean distance be-

tween two pixels from the manual to the automated segmentation, dmanu→auto, and vice versa, dauto→manu.

Small values for dmanu→auto typically favor parameters that detect only thick actin bundles (cf. Fig. 4.4.1I,

left), while small values for dauto→manu typically yield parameters that overestimate the prevalence of fil-

amentous actin in the cell (cf. Fig. 4.4.1I, right). Therefore, we minimized the Haussdorf distance dHD =
1
2 (dmanu→auto +dauto→manu) to obtain a compromise between over- and undersegmentation (cf. Fig. 4.4.1J).

The optimal parameters and their confidence intervals were determined as follows: We randomly selected

40 of the 40 images, allowing duplicates, stored the parameters that minimized the average dHD, repeated

the procedure 500 times, and computed mean and standard deviation for each of the stored parameters

(cf. Fig. 4.4.1K). Employing these optimized parameters guaranteed small average distances between the

pixels of manual and automated segmentations and, hence, accurate network representations of the cy-

toskeleton.

Construction of Golgi flow networks from tracking data

To automatically track the movement of Golgi through the cell, we used Fiji-TrackMate to detect the Golgi

as particles of 5pixels in radius and discarded those with quality values below the 80th percentile [Jaqaman

et al., 2008; Schindelin et al., 2012]. We then linked the Golgi in different frames using the linear assignment

problem tracker with a maximum linkage distance of 24pixels, a maximum gap-closing distance of 24pixels

and a maximum frame gap number of 4. The detection and tracking parameters were determined manually

and while changes in the tracking parameters may alter the full Golgi tracks, the majority of our analyses

focused on individual track segments which are more robust against changes in parameters. The tracking

results enable detailed analysis of Golgi dynamics, e.g. over time or under different conditions (cf. Fig. 4.4.3).

Next, we constructed networks from the tracking data, referred to as “Golgi flow networks”, for comparison

with their actin cytoskeleton counterparts (cf. Fig. 4.4.4). For a given time step, we copied the nodes and

edges of the actin network and computed the minimum distance dt ,e between the edges e and the center

points xt of the tracking segments which originate in the respective time step. Each edge e of the Golgi flow

network was then assigned different weighting factors (Appendix 6.3.3): the number ge,n of track segments

which are closer to the considered edge than a cut-off distance of 20pixels; the average intensity ge,i of close-

by Golgi; the average velocity ge,v of close-by Golgi; the average angle ge,d between the edge and the close-by

Golgi track segments, and combinations thereof.
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A crucial step in the computation of several edge properties of the Golgi flow network involves the scalar

product between a segment vector of a Golgi track and an actin network edge vector (i.e. the vector con-

necting the two edge’s nodes). Although the actin filaments may be curved, we showed that the bending of

a filament segment is typically very small with E[B ] = 1.2±0.2 (cf. Fig. 4.4.2E), justifying the assumption of

straight edge vectors.

Randomization and null models of actin networks

We investigated the structure of the actin networks using a number of seminal and biologically relevant

properties, such as assortativity and average path length (Appendix 6.3.3). While some of these properties

may be interpreted by themselves (like the sign of the assortativity which provides information about about

whether thick actin bundles are grouped together or whether they are intermingled with filaments), a suit-

able reference is needed to interpret others (like the average path length whose value depends, e.g. on the

size of the network and the sum of edge weights).

Therefore, for any given actin network, we introduced two types of null models that randomize certain

properties of the network while preserving relevant others (Appendix 6.3.4 and http://mathbiol.mpimp-

golm.mpg.de/CytoSeg/ for the open-source code of the implemented randomization procedure). From

both null models we generated an ensemble of R = 20 randomized networks for comparison with a given

extracted network. For the first null model, the actin network was copied, its edges were divided into 10 bins

according to their Euclidean length ae,E (bins were given by [0,10,20,30,40,50,60,70,80,90,∞] pixels), saved

in a temporary list (their other properties, like the capacity ae,c , remained unchanged) and removed from

the network. All nodes were distributed randomly and uniformly across the cell. Then, the longest edge in

the temporary list was inserted between two random nodes whose discretized Euclidean distance matched

the length bin of the edge. For each edge, 50 pairs of matching nodes were tested and the edge was inserted

such that the number of crossings with already placed edges was minimized. We repeated the procedure

until all edges were added to the network. Since the randomized network may be disconnected, we con-

nected it by adding edges of minimum total Euclidean length, as discussed for the original networks above.

Although this procedure increased the number of edges by a factor of E[r ] = 1.12±0.07 with respect to the

original extracted networks, the increase is small, (Appendix 6.3.4). While the randomized networks are not

guaranteed to be planar, the fraction of crossing edges is typically small, around E[X ] = 0.14±0.11 (Appendix

6.3.4). The obtained null model networks share several important features with the extracted cytoskeletal

networks: Because the distribution of edge capacities is not changed, also their sum is preserved, reflecting

the amount of filamentous actin in the cell. In addition, the distribution of edge lengths is identical to that

of the actin cytoskeletal network.

We further employed a second, more restricted model which does not increase the number of edges and

edge crossings and does not randomize the node positions (Appendix 6.3.4). These null model networks

were generated by only shuffling the edge properties of the original network [Breuer et al., 2014; Breuer and

Nikoloski, 2014]. The second null model, too, leaves the distribution of edge capacities unchanged.
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Periodic boundary conditions for actin networks

To correlate the flow of Golgi with the actin network structures, we employed edge betweenness measures

which assess the edges’ relevance in their network context (cf. Fig. 4.4.4 and Appendix 6.3.3). Yet, due to the

finite imaging domain, these properties are biased because, e.g. edges at the border of the cell will typically

participate in fewer shortest paths than those in the center. In a plant cell, however, such bias is absent as

the cortical cytoskeleton envelops the cell, forming a network on a cylindrical domain.

Therefore, we modeled the cylindrical geometry of the cortical cytoskeleton by introducing periodic bound-

ary conditions, i.e. we assumed that the cytoskeleton at the back of the cell is identical to its imaged coun-

terpart at the front. We implemented the boundary conditions for arbitrary cell shapes by augmenting the

original network (cf. Fig. 4.4.4D and http://mathbiol.mpimp-golm.mpg.de/CytoSeg/ for the open-source

code of the implementation of periodic boundary conditions): We started from the cellular region of inter-

est and created an empty graph JG , termed jump network, with nodes and node positions given by the pixels

bounding this region. We computed the angle γ of the cell axis as described above. Next, we rotated the node

positions by an angle of −γ and rounded the new coordinates to integer numbers. We added an edge to JG

for each pair of nodes with the same x- or y-coordinates given that the connecting line was fully contained

within the region of the cell. These links allow jumps parallel and perpendicular to the cell axis and were

therefore assigned edge attributes ae,J = 1 ≡ ae,∥ for parallel and ae,J = 10−5 ≡ ae,⊥ for perpendicular jumps.

Furthermore, we added edges between all neighboring boundary nodes to the jump network JG . We then

coupled the nodes of the original actin network G to the nodes of jump network JG if their Euclidean dis-

tance ae,E was smaller than a threshold value of 10pixels. Finally, we recomputed the shortest path lengths

for all pairs of nodes of the original network using a modified Dijkstra’s algorithm [Dijkstra, 1959] which in-

creases the auxiliary path lengths by an arbitrarily large number if more than one parallel or perpendicular

jump has been executed. Finally, we connected all nodes of the original actin network which were connected

by a shortest path of less than 10pixels in length and involved one parallel and/or perpendicular jump. Thus,

the augmented network displays periodic, cylindrical boundary conditions. The properties of the new edges

that were needed to assess the organization of the cytoskeletal network were computed as follows: The Eu-

clidean and the filament arc lengths ae,E and ae,F were given by the sums of edge lengths for the respective

shortest path, whereby jumps were excluded. The edge weight ae,w was given by the total intensity of the

Gaussian filtered actin image, summed along the connecting lines of the path, again excluding jumps. The

edge capacity ae,c and length ae,l were derived from these properties as before. For the augmented network

with periodic boundary conditions, we recomputed the edge betweenness properties ae,deg, ae,rank, ae,path

and ae,flow. The procedure can be readily applied to realize periodic, cylindrical boundary conditions for

cellular networks of arbitrary shapes.
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4.5.1 Abstract

Thread-like structures are pervasive across scales, from polymeric proteins to root systems to galaxy fila-

ments, and their characteristics can be readily investigated in the network formalism. Yet, network links

usually represent only parts of filaments, which, when neglected, may lead to erroneous conclusions from

network-based analyses. The existing alternatives to detect filaments in network representations require

tuning of parameters over a large range of values and treat all filaments equally, thus, precluding automated

analysis of diverse filamentous systems. Here, we propose a fully automated and robust optimization-based

approach to detect filaments of consistent intensities and angles in a given network. We test and demon-

strate the accuracy of our solution with contrived, biological, and cosmic filamentous structures. In partic-

ular, we show that the proposed approach provides powerful automated means to study properties of indi-

vidual actin filaments in their network context. Our solution is made publicly available as an open-source

tool, “DeFiNe”, facilitating decomposition of any given network into individual filaments.

Keywords: polymers, cytoskeleton, networks, path cover, computational complexity

4.5.2 Introduction

Many network-like structures in nature are composed of filaments forming intricate interconnected arrays

across different scales of organization. For instance, filamentous structures can be observed in networks of

cellulose polymers in the primary cell wall of plants and algae [Stamm, 1964; Klemm et al., 2005], cytoskeletal

networks of actin filaments or microtubules in cells across all domains of life [Shih and Rothfield, 2006; Liu,

2010; Wickstead and Gull, 2011], networks of neurons [Braitenberg and Schüz, 1998; Lichtman et al., 2008],

root systems [Zhu et al., 2011; Galkovskyi et al., 2012; Lobet et al., 2015], as well as solar prominences [Gibson

and Fan, 2006; Mackay et al., 2010] and galaxy clusters [Bond et al., 1996; Stoica et al., 2005; Bond et al., 2010;
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Input Method Features References

curved filament intensity automated parsi

filaments -specific -based -monious

image

texture filter − − + + + [Boudaoud et al.,

2014]

linear programming − − + + + [Wood et al.,

2013]

rotating grid − + + + + [Jacques et al.,

2013a]

filament tracing + + + # # [Cohen et al.,

1994; Meijering,

2010; Peng et al.,

2015a]

filament tracking + + + + # [Mayerich and

Keyser, 2008]

open contours + + + + # [Smith et al.,

2010; Xu et al.,

2015]

network
rule-based decomp. + + − # #/− [Leandro et al.,

2009; Qiu and Li,

2014]

filament cover + + + + #/+ current work

Table 4.5.1: Overview of different approaches for disentangling filamentous networks. Two main classes
of approaches to analyze the filamentous structure of networks can be distinguished, based on whether they
operate on image data or on extracted networks. Irrespective of the class, the existing approaches vary in
their capacity (+) or inability (−) to detect curved filaments, identify individual filaments, and to include
information about the intensity/thickness of filaments. Further, the amount of manual user input as well as
the number of parameters required by the algorithms can be feasible (+), laborious (−), or depends on the
specific variant of the algorithm (#). For the network-based approaches, the number of required parameters
may be different for the extraction of the network from image data and the consequent decomposition of
the network into filaments (separated here by /).

Tully et al., 2014]. Network-based studies of these structures have already elucidated important aspects such

as the mechanics of cellulose networks [Stamm, 1964; Moon et al., 2011], transport on cytoskeletal actin net-

works [Akkerman et al., 2011; Bálint et al., 2013], and connectivity patterns in the brain [Kandel et al., 2000;

Sporns et al., 2005; Lichtman et al., 2008]. However, the network links usually correspond to segments of

the filaments; therefore, the classical network-based analysis neglects the identities of individual filaments.

A few powerful exceptions have recently started to emerge [Xu et al., 2014, 2015] which may identify mul-

tiple segments that belong to the same filament; yet, since these studies do not capture filament overlaps,

filaments are still broken into potentially multiple fragments. Characterization of the mechanical- [Kumar

et al., 2006; Bausch and Kroy, 2006; Lu et al., 2008], transport- [Bálint et al., 2013; Osunbayo et al., 2015],

and information-transmission related properties [Eccles, 1982; Bennett, 1977] in such network representa-

tions may hence lead to erroneous conclusions due to their differences within and between filaments. Thus,

analysis of filamentous structures rests upon accurate identification of individual filaments.

Since most of the filamentous structures in natural and man-made systems are studied by using imaging

technologies, filaments are identified either directly from the imaging data or from networks extracted from
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these data (see Tab. 4.5.1 for succinct review). In the first class of approaches, a texture-based method is em-

ployed to infer the overall orientation of objects in an image section [Boudaoud et al., 2014]. However, this

method cannot be employed to pinpoint individual filaments. Another method decomposes entire images

of filamentous structures into linear segments based on a linear programming formulation [Wood et al.,

2013]. While this method utilizes few parameters (e.g., number of filaments), it only models and extracts

a representative set of linear filaments. Moreover, filaments have been modeled as linear segments, de-

tected by co-localization with a parallel grid at different orientations and by using manually chosen inten-

sity thresholds along a filament [Jacques et al., 2013a]. While this method is fast and useful for extracting

linear filaments (e.g., microtubules), it does not capture bent or tangled filaments and necessitates manual

parameter selection. Alternatively, tracing- and tracking-based methods which start from one or multiple

image points and predict neighboring points on a putative filament through optimization of an energy func-

tion are powerful methods for filament identification. Although these algorithms have led to great insights,

especially into the connectome, they typically require user input and do not capture overlapping filaments

[Cohen et al., 1994; Mayerich and Keyser, 2008; Meijering, 2010; Peng et al., 2015a]. Using a similar ap-

proach, open contour-based methods employ deformable curve models that elongate and align according

to an energy functional to match the target filaments. Recent advances in open contour-based approaches

enable fully automated filament detection [Xu et al., 2014, 2015], but can account for the overlap of only few

filaments at the expense of parameter tuning [Smith et al., 2010].

The second class of approaches for disentangling filamentous structures employs a two-step procedure:

First, weighted networks are extracted from image data from different systems and imaging sources. There

is a large variety of algorithms for this task [Cohen et al., 1994; Baumgarten and Hauser, 2012; Obara et al.,

2012b; Qiu and Li, 2014] which vary, in particular, in the number of parameters. Some of the methods from

the first class, presented above, may also be used to obtain such network representations (e.g. [Mayerich

and Keyser, 2008; Xu et al., 2015]). Second, the given, weighted networks are decomposed into filaments.

The two existing methods for this task [Leandro et al., 2009; Qiu and Li, 2014] define specific junctions for

bifurcations and crossings of filaments, depending on the distances between nodes, and assign filament

identities according to manually chosen angle thresholds between incoming and outgoing edges. In par-

ticular, they strongly restrict the potential overlap of filaments and, due to the angle constraints, allow only

crossing but no touching filaments. Most importantly, these methods require manual parameter selection

and do not take into account filament intensity/thickness. We note that the step of decomposing a given

network may also be beneficially applied to networks obtained, e.g., by open contour-based approaches in

which filaments have been fragmented due to omission of filament overlaps [Xu et al., 2014, 2015].

Here, we propose a robust approach to decompose a weighted network into an optimal set of individual

filaments. Therefore, our approach addresses the second step in the second class of approaches, presented

above. The decomposition is based on a computationally difficult problem, referred to as filament cover

problem (FCP), for which we propose suitable approximation algorithms. We test and demonstrate the ac-

curacy of the findings from the approximation algorithms on artificial as well as biological and cosmic fila-

mentous networks by comparison to manually obtained filament covers. In addition, we demonstrate that

the proposed, fully automated solution allows facile characterization of well-studied properties of individual

filaments, for which alternative approaches require parameter tuning or time-consuming manual tracing.

The proposed approach is implemented in a publicly available open-source tool, “DeFiNe” (Decomposing
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Filamentous Networks), which can be used to decompose any given weighted network into a set of individ-

ual filaments for further analyses (http://mathbiol.mpimp-golm.mpg.de/DeFiNe/).

4.5.3 Methods

In this section we introduce the mathematical formulation of our optimization-based approach to decom-

pose filamentous networks, demonstrate its computational intractability, and formulate a suitable approx-

imation scheme. Moreover, we introduce new quality measures which take into account the underlying

network structures for the comparison of the obtained filament decompositions with manual assignments

used as a gold standard. Finally, we provide a brief overview of the studied data from different biological and

physical systems. While we believe that these more technical explanations may promote a deeper under-

standing of our and related approaches, we encourage readers familiar with the aforementioned topics to

proceed directly to the Results.

Mathematical formulation of the filament cover problem

Any filamentous structure may be represented as weighted geometric graph G = (N ,E ) with N = |N | nodes

and E = |E | undirected, weighted edges. Edges represent filament segments and their intensities or thick-

nesses are reflected by their weights we , e := (n0,n1) ∈ E and n0,n1 ∈ N . Nodes represent endpoints of

filament segments and their positions are denoted by vn , n ∈ N , whereby, typically, vn ∈ R2 or vn ∈ R3 for

networks extracted from image data.

We naturally represent a filament by an edge-path, p = (
ep,1, . . . ,ep,P

)
, e ∈ E , i.e., by an ordered sequence of

P = ∣∣p∣∣ adjacent edges, where ep,i denotes the i -th edge of filament p. The quality of a given filament p is

assessed by the pairwise filament roughness

rp,pair =
(P −1)−1 ∑P−1

i=1

∣∣∣wep,i+1 −wep,i

∣∣∣ , P > 1

wep,1 , P = 1
, (4.5.1)

where wep,i denotes the weight of the i -th edge in filament p. The pairwise filament roughness is small if

the edge weights along a filament vary smoothly, as expected for natural filaments (but cf. Discussion). For

filaments that consist of one edge only, their roughness is given by their edge weight to increase the flexi-

bility of our approach (cf. Appendix 6.4.1). Other roughness measures may be readily introduced that take

into account filament thicknesses or alignments. As an additional example, we study the all-to-all filament

roughness

rp,all =


(P −1)−1 max

i , j∈{1,...,P }

∣∣∣wep,i −wep, j

∣∣∣ , P > 1

wep,1 , P = 1
, (4.5.2)

which is the average maximal difference between any two edge weights in a filament p, and again the original

weight of the edge is used for a filament of length one. Taking into account that most filaments are only

moderately bent, we further consider the maximal filament deflection angle between adjacent edges of a
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path p,

rp,angle = max
i∈{1,...,P−1}

(4.5.3)

angle

(
vep,i+1,1 − vep,i+1,0 , vep,i ,1 − vep,i ,0

)
where vep,i ,0 and vep,i ,1 denote the positions of the start and end nodes of the i -th edge of filament p, re-

spectively. Moreover, angle
(
v, v

′)
:= arccos

(
v ·v ′

p
v ·v

p
v ′ ·v ′

)
is the Euclidean angle of two vectors v and v

′
and

rp,angle = 0◦ corresponds to perfectly straight alignment.

The optimal decomposition of a network into individual, smooth filaments then corresponds to solving our

filament cover problem (FCP; cf. Appendix 6.4.1 for an overview of related cover problems):

Given a graph G = (N ,E ) and the set P of all edge-paths in G with roughnesses rp , p ∈P :

Find a subset Pfil ⊆P with minimal total (or average) roughness R such that each element in E

is covered (at least) once.

Here, edges that are covered by more than one path naturally correspond to filament overlaps. Minimiz-

ing the average instead of the total roughness yields shorter filaments, as appropriate for some networks

(cf. Appendix 6.4.1).

Computational intractability of the filament cover problem and approximation algorithm

The FCP is computationally intractable on general and even planar graphs (cf. Appendix 6.4.2 for motivation

and proof). Graphs generated from two-dimensional image data are planar by construction [Baumgarten

and Hauser, 2012; Obara et al., 2012b]. The proof is by reduction from the well-studied Hamiltonian path

problem which asks, for a given network, whether there is a sequence of adjacent nodes that includes each

node exactly once, and which is known to be intractable on planar graphs [Garey et al., 1976]. Moreover, we

outline an algorithm for solving the FCP in polynomial time on trees (cf. Appendix 6.4.3).

Since the FCP is computationally intractable on general and even planar graphs, we devise an approximation

scheme by formulating the FCP as a fractional integer linear program (cf. Appendix 6.4.4 for motivation and

details). For a given set P
′ ⊆P of input paths with pairwise filament roughnesses rp , p ∈P

′
, we solve:

minimize

∑
p∈P

′ rp xp(∑
p∈P

′ xp

)A
(4.5.4)

subjectto
∑

p:e∈p
xp ≥ 1foralle ∈ E

xp ∈ {0,1} forall p ∈P
′
,

where we use rp ∈ {
rp,pair,rp,all

}
(Eqs. 4.5.1 or 4.5.2; referred to as pair and all). In the first line, A ∈ {0,1}

determines whether the total or the average roughness is minimized (total/avg). The inequality in the sec-

ond line allows overlapping filaments and equality holds for an exact cover (over/exact). For A = 0, Eq. 4.5.4
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is a binary linear program and for A = 1, the fractional problem Eq. 4.5.4 may be rewritten as a binary lin-

ear program (cf. Appendix 6.4.4). Binary linear programs may be solved using well-established and efficient

algorithms [Schrijver, 1998; Linderoth and Ralphs, 2005].

To solve the FCP for a given network, we further need to collect a set of input paths P
′ ⊆ P . Since for

a general graph it is not feasible to collect all paths P (cf. Appendix 6.4.2), we propose two approaches

(referred to as RMST and BFS): (1) We create T = 100 random minimal spanning trees (RMST) of G whose

N (N −1)/2 non-trivial, undirected paths are added to our set P
′
. To obtain a RMST, each edge is assigned a

randomly and uniformly distributed weight and the minimum spanning tree with respect to these weights

is computed. (2) We perform a modified breadth-first search (BFS) on the nodes, stop the search for a path p

when it violates the straightness criterion rp,angle < 60◦ (cf. Eq. 4.5.3), and add all permitted paths to P
′
. We

note that for real-world filamentous graphs, the number of nodes and their degrees are constrained by the

filament thickness, while the number of considered loops is further restricted by the straightness criterion,

so that our heuristically modified BFS yields a representative set P
′

of paths in reasonable time. Moreover,

we note that the 60◦-criterion is introduced for computational reasons and provides a tolerant estimate for

maximal bending of the studied real-world filaments which are typically less bent.

Quality assessment of filament covers via structure-aware partition similarity measures

The accuracy of the filaments covers obtained by solving the FCP is assessed by comparison to manual

filament assignments (cf. Fig. 4.5.1B). We quantify the similarity of the two partitions of the set of edges into

(potentially overlapping) filaments using the variation of information,VI, the Jaccard index, JI, and the Rand

index, RI,

VI
(
C ,C

′) = 1+ (
U logU

)−1 · (4.5.5)

·∑
i , j

gi , j

(
log

(
gi , j

g ·, j

)
+ log

(
gi , j

gi ,·

))
,

RI
(
C ,C

′) = h=,=+h 6=,6=
h=,=+h=,6=+h 6=,=+h 6=,6=

, (4.5.6)

JI
(
C ,C

′) = h=,=
h=,=+h=,6=+h 6=,=

, (4.5.7)

where U = ∑C
i=1 |Ci | = ∑C

′
j=1

∣∣∣C ′
j

∣∣∣, gi , j =
∣∣∣Ci ∩C

′
j

∣∣∣, g ·, j = ∑C
i=1 gi , j , and gi ,· = ∑C

′
j=1 gi , j [Saporta and Youness,

2002; Meilă, 2005; Denœud and Guénoche, 2006]. The contingency tables h×,×′ , ×,×′ ∈ {=, 6=}, provide the

numbers of edge pairs which are in the same or different sets in the two partitions, respectively. While

these classical measures are widely used [Meilă, 2005; Lancichinetti and Fortunato, 2009b], they may gen-

erally yield opposing results and VI is not well-defined for overlapping partitions (cf. Appendix 6.4.6). More

severely, these measures do not take into account the structure of the graph underlying the partitions. To

remedy this shortcoming, we introduce a suite of measures, the structure-aware Rand and Jaccard indices

(cf. Eqs. 4.5.6 and 4.5.7),
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RId
(
C ,C

′) =
hd=,=+hd

6=,6=
hd=,=+hd

=,6=+hd
6=,=+hd

6=,6=
, (4.5.8)

JId
(
C ,C

′) = hd=,=
hd=,=+hd

=,6=+hd
6=,=

. (4.5.9)

Here hd
×,×′ , ×,×′ ∈ {=, 6=}, d ∈N>0, count the number of edge pairs which are in the same or different sets in

the two partitions and which are separated by at most d nodes in G (cf. Appendix 6.4.6 for details). Thus, RI1

and JI1 yield structure-aware measures of partition similarity that consider only the partition memberships

of adjacent edges (local perspective), while RI∞ ≡ RI and JI∞ ≡ JI do no not take into account the positions

of edges in the graph and reproduce the original measures (global perspective; cf. Appendix 6.4.6 for an

extensive comparison of similarity measures and intermediates between local and global perspective).

Extraction of weighted networks from image data

We test our method to disentangle filamentous networks on various weighted, geometric networks ex-

tracted from image data. The network extraction procedure is similar to those proposed in [Baumgarten

and Hauser, 2012; Obara et al., 2012b] (cf. Appendix 6.4.5 for details). We analyze (1) two artificial networks

extracted from drawn filamentous patterns, (2) two cytoskeletal networks from confocal microscope images

of Arabidopsis thaliana hypocotyl actin cytoskeletons [Breuer et al., 2014], (3) 100 additional cytoskeletal

networks from a movie over 200s from the same experimental setup, (4) two neural networks from a fluores-

cence microscopy image of a branching rat hippocampal neuron in vitro [Brandner and Withers, 2014] and a

schematic of a cat retinal ganglion cell [Masland, 2001], respectively, and (5) two cosmic networks obtained

from images of simulated galaxy clusters [Stoica et al., 2005] (see Tab. 4.5.2 for an overview).

4.5.4 Results

Decomposing filamentous networks is a hard optimization problem

A filamentous network is naturally represented as a weighted graph, whereby the links (i.e., edges) denote

segments of filaments and the nodes represent the ends of the segments. The edge weights typically capture

the intensity or thickness of the filament segments. In this network representation, a filament corresponds

to a path given by an ordered sequence of adjacent edges. To identify individual filaments, we seek a decom-

position of the set of edges into paths so that each edge is covered (i.e., belongs to at least one path). Edges

belonging to more than one path naturally model filament overlaps. We will refer to such a decomposition as

a filament cover. Since a filament cover is non-unique, we introduce a quality measure, called roughness, to

assess the quality of each path and the cover itself. Here we mainly consider the pairwise filament roughness

given by the average absolute value of weight differences between adjacent edges. This roughness measure

quantifies how strongly the thickness varies along a filament and is typically small for biological filaments.

Disentangling the filamentous network amounts to solving the filament cover problem (FCP): Find a set of

paths of minimum sum of roughness values that covers the network (cf. Methods and Appendix 6.4.1 for
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the mathematical formulation). The FCP formulation is quite versatile: For instance, instead of minimiz-

ing the total roughness of the filament cover, we may minimize the average roughness. This optimization

objective favors shorter filaments and may be more appropriate for specific types of networks. Other rough-

ness measures (e.g., considering the spatial alignment of edges to penalize filaments with strong curvature)

are readily introduced and can be considered in a multi-objective optimization approach (cf. Methods and

Appendix 6.4.1 for different measures).

While providing a well-defined approach towards disentangling filamentous networks, solving the FCP is

computationally prohibitive. Indeed, we show that the FCP is intractable even on planar graphs (cf. Meth-

ods and Appendix 6.4.2) which are used to represent filamentous structures extracted from 2D image data

[Baumgarten and Hauser, 2012; Obara et al., 2012b]. While the FCP is solvable in polynomial time on trees

(cf. Appendix 6.4.3), most biological filamentous structures are not tree-like as they contain loops [Katifori

and Magnasco, 2012; Obara et al., 2012b; Breuer et al., 2014]. Therefore, we propose suitable approximation

schemes to the FCP for the considered networks (cf. Methods and Appendix 6.4.4 for details and the math-

ematical formulation). The approximation schemes rely on collecting a large sample of paths in a given

graph, followed by the computation of the roughness of each path. The paths are collected by perform-

ing a modified breadth-first search (BFS) or by sampling from random minimum spanning trees (RMST).

Next, we write the FCP as classical set cover problem [Karp, 1972] which aims at covering the set of edges

with a subset of the collected paths of minimum total or average roughness. The set cover approximation

of FCP can be formulated and solved as a (fractional) binary linear program for which well-established al-

gorithms exist [Schrijver, 1998]. The output of the program is a set of paths which correspond to the indi-

vidual filaments of the studied network. Summarizing, the FCP may be solved with different options: The

initial set of paths is obtained from a modified BFS (denoted by BFS) or sampling of RMSTs (RMST), the

filaments may overlap (over) or not (exact), a pairwise (pair) or all-to-all filament roughness measure (all)

is used, and the total (total) or average (avg) roughness is minimized. Since all these options are categor-

ical, all possible 24 = 16 combinations may be readily checked and no data-specific and computationally

demanding gauging of continuous parameters is necessary, as is the case for related approaches [Lean-

dro et al., 2009; Qiu and Li, 2014]. We provide an open-source implementation of our approach, termed

“DeFiNe” (Decomposing Filamentous Networks), with a simple and user-friendly graphical user interface

available at http://mathbiol.mpimp-golm.mpg.de/DeFiNe/. DeFiNe takes as input a weighted graph in the

standard .gml file format [Himsolt, 1997] and outputs a .gml graph with filament identities stored as edge

colors as well as a standard, human-readable .csv-table of various individual filament measures for custom

analyses.

Disentangling artificial filamentous structures

To test the accuracy of our approach, we investigate an artificial network (Fig. 4.5.1A) of pre-specified fil-

amentous structure (Fig. 4.5.1B; cf. Methods and Appendix 6.4.4 for the extraction of the network; cf. Ap-

pendix 6.4.9 for an overview of the different stages of our approach, from an images to a network to fila-

ments). The network contains crossing and overlapping filaments as well as a loop (Fig. 4.5.1B, ⊗, =©, and

}, respectively). First, we automatically decompose the weighted filamentous network by solving the FCP

for a set of input paths from a modified BFS, allowing for overlaps, using the pairwise roughness measure,
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Figure 4.5.1: Filament covers of artificial network with crossings, overlaps, and a loop. (A) Weighted, arti-
ficial network extracted from the underlying drawing, with color-coded edge weights representing the local
image intensity. (B) Manual decomposition of the network into filaments with color-coded indices. The
filaments display crossings (⊗), overlaps ( =©), and a loop (}). (C) Filament cover obtained by solving the
FCP using the set of input paths generated by a modified breadth-first-search (BFS), allowing overlapping
filaments (over), employing the pairwise roughness measure (pair), and by minimizing the total roughness
of the cover (total). The automatically obtained filament cover correctly captures crossings, overlaps, and
loops, and agrees excellently with the manual assignment (similarity of the two filament covers is measured
by the global Jaccard index, JI, and our modified, structure-aware Jaccard index, JI1, which reflect the fraction
of pairs of all or only adjacent edges that are assigned to the same filament, respectively; here JI = JI1 = 1).
The filament identities and colors are matched by solving an assignment problem whereby the total num-
ber of edges shared by two filaments, from the manual and automated partitioning, is maximized; the same
assignment procedure is used for the remaining panels. (D) When using paths obtained from sampling ran-
dom minimum spanning trees (RMST) for the FCP, the closed filament loop is not correctly detected and is
over-segmented (⊕). (E) When solving the exact FCP (exact), the loop is correctly detected. However, over-
laps are neglected so that no two filaments share an edge, leading to over- and under-segmentation (ª). (F)
When minimizing the all-to-all filament roughness (all), two half-filaments are interchanged because the
maximum weight difference is smaller along the altered filaments.
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and minimizing the total roughness of the cover (Fig. 4.5.1C, cf. Eq. 4.5.4). The filament identities and colors

are matched by solving an assignment problem (cf. [Kuhn, 1955; Wolsey and Nemhauser, 1999]) such that

the total number of edges shared by two filaments, from the manual assignment and the automated cover,

is maximized. The agreement between the automated cover and the manual assignment may be measured

by classical partition similarity measures such as the Jaccard index JI which counts the fraction of edge pairs

which are part of same filament [Meilă, 2005; Denœud and Guénoche, 2006]. However, JI does not take

into account the structure of the underlying network. Hence, we introduced a new similarity measure, JI1,

that considers only pairs of adjacent edges in each filament and thus incorporates the network structure

(cf. Methods and and Appendix 6.4.6 for details, a generalization to JId that considers only pairs of edges

which are separated by at most d nodes, and a comparison of various similarity measures). For our artificial

network, solving the above FCP yields a decomposition which agrees excellently with the manual assign-

ment (JI = JI1 = 1) as all filaments are correctly detected. Second, we choose a different set of input paths

obtained from sampling RMSTs for solving th FCP (Fig. 4.5.1D). While most filaments are correctly detected,

the loop (cf. Fig. 4.5.1B) is over-segmented (⊕) because it is not contained in the set of input paths in its

entirety (due to looplessness of trees). Third, we solve the exact FCP which does not allow overlapping fil-

aments (Fig. 4.5.1E). Expectedly, the agreement with the manual assignments is lower because filaments

are over-segmented into disjoint segments and the supposedly overlapping parts are under-segmented (ª),

i.e., the respective edges are assigned to a single filament instead of multiple filaments. Finally, we employ

the all-to-all roughness measure to assess the quality of the filaments (Fig. 4.5.1F, cf. Eq. 4.5.2). Filament

crossings, overlaps, and the loop are again correctly detected but parts of two filaments are interchanged

(cf. ⊕). This is due to the intensity/thickness of the underlying filaments which is consistently higher for the

new detected filaments which are therefore favored by the all-to-all roughness measure. These test cases

demonstrate the versatility and the accuracy of the proposed approach to decompose a given network into

filaments.

In the analysis of many real-world filamentous structures, the knowledge of the underlying network struc-

ture is incomplete or the image data impede filament detection due to low signal-to-noise ratios. To inves-

tigate the effect of these obstacles on robust filament detection, we study two scenarios (Appendix 6.4.7):

In the first scenario, we remove a single edge from the network, recompute the optimal filament cover, and

calculate its agreement with the manual filament assignment as measured by the structure-aware Jaccard

index JI1. We repeat the procedure for all E edges and then proceed with the removal of E randomly chosen

doubles of edges, triplets, up to subsets of 50 edges. As expected, the accuracy of the filament cover typically

decreases with the number of removed edges, although removal of some specific edges even leads to an in-

crease in accuracy. However, JI1 decreases very moderately by less than 0.001 per removed edge on average

(cf. Appendix 6.4.7). In the second scenario, we assess the robustness of our filament detection approach

against noise by adding centered Gaussian noise of increasing standard deviation to the edge weights of

the original network. For a given standard deviation, we obtain the optimal filament covers for 100 noisy

network instances and compute their similarity, JI1, to the manual assignment. Again, as expected, the ac-

curacy of the filament cover decreases with increasing noise, but only slightly. On average, increasing the

noise by 1% of the original edge weights only decreases JI1 by less than 0.001. Moreover, we note that with

increasing edge noise the accuracy of the filament cover approaches a constant, non-zero JI1 which reflects

that some information about the filament structure maybe obtained from the topology of the network alone,
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irrespective of the edge weights (cf. Appendix 6.4.7).

Disentangling biological and cosmic filamentous structures

Since we demonstrated the power of the FCP-based approach on contrived filamentous structures, we next

proceed with investigating real biological and cosmic filamentous structures (cf. Methods and Appendix

6.4.5 for the extraction of the networks; cf. Appendix 6.4.9 for an overview of the different stages of our ap-

proach). As a first illustrative example of a biological filamentous structure, we extract a weighted network

from an image of a hippocampal neuron (Fig. 4.5.2A) and manually obtain a filament assignment with sev-

eral crossings and loops (Fig. 4.5.2B, ⊗ and }, respectively). Solving the FCP (same options as in Fig. 4.5.1E)

yields an automated decomposition which captures well the manual assignment, in particular the two loops

(Fig. 4.5.2C, JI1 = 0.937). This is further supported by the distributions of filament lengths (measured by

the numbers of edges) as well as the distributions of maximal filament angles (measured between adjacent

edges), which are statistically indistinguishable between the manual assignment and the automated de-

composition (Fig. 4.5.2D, black and red; Kolmogorov-Smirnov test p-value pKS ≥ 0.05). A detailed analysis

of the similarity of manual and automated decompositions shows that the classical Rand index RI [Hubert

and Arabie, 1985] overestimates the similarity, while the variation of information VI [Meilă, 2003] and the

Jaccard index JI severely underestimate the similarity between the manual and automated decomposition

when compared to the values of the here-proposed RI1 and JI1(Fig. 4.5.2E, dotted blue, green, and yellow).

The latter measures take into consideration the network structure when comparing two network decompo-

sitions (Fig. 4.5.2E, solid blue and yellow). We would like to emphasize that the disparities in the estimations

of RI and JI result from the consideration of distant, non-adjacent edges which are excluded in RI1 and JI1.

In addition, we observe that RId and JId show a non-trivial dependence on the distance, d , between the con-

sidered edges, and coincide with the classical similarity measure for large enough distances, i.e., RI∞ ≡ RI

and JI∞ ≡ JI (cf. Appendix 6.4.6 for a detailed discussion).

Finally, different flavors of the FCP may be solved , as mentioned above, to obtain decompositions of varying

similarity in comparison to the manual assignment (Fig. 4.5.2F). Solving the FCP with paths from the modi-

fied BFS, instead of RMSTs, yields consistently higher RI1- and JI1-values for the agreement with the manual

assignment. This is due to the higher flexibility with respect to the treatment of loops. For the studied net-

works, a decomposition based on the minimization of the total roughness yields higher RI1- and JI1-values

in comparison to the minimization of the average roughness. In addition, in terms of RI1 and JI1, covers

allowing for overlaps yield better agreement with the manual assignment, in comparison to those in which

each edge is covered by a single path. However, these expected trends are absent or even reversed for the

classical similarity measures VI, RI, and JI (cf. Appendix 6.4.6), which further justifies the usage of the here-

proposed RI1 and JI1 for comparing decompositions of networks arising in other network-based analyses

(cf. e.g. [Newman, 2012]).

As a second biological example, we investigate the filamentous structure of a plant actin cytoskeleton

(Fig. 4.5.3A). We create seven manual assignments (one of which is shown in Fig. 4.5.3B) for a quantita-

tive comparison with the automated decomposition (Fig. 4.5.3C, JI1 = 0.655; same options of the FCP as in

Fig. 4.5.1E). The agreement of the automated decomposition with the manual assignment is good, despite

several over- or under-segmented filaments (Fig. 4.5.3C, cf. ⊕ and ª). For a comprehensive assessment of
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Figure 4.5.2: Filament covers and analyses of neuronal network. The weighted hippocampal neuronal
network is automatically decomposed into filaments by solving the exact FCP (exact) for paths from a mod-
ified breadth-first search (BFS) and by minimizing the total (total) pairwise filament roughness (pair). (A)
Overlay of fluorescence microscopy image of hippocampal neurons and extracted network with color-coded
edge weights. (B) Manual decomposition of the neuronal network into filaments with color-coded indices
and crossings (⊗) and loops (}). (C) Automated partitioning of the network obtained by solving the FCP dis-
plays good agreement with the manually obtained partitioning (JI1 close to 1, see panel (E) for details) with
marked illustrative sites of over- (⊕) and under-segmentation (ª). (D) Distributions of numbers of edges
per filament (upper panel) as well as distributions of maximum filament angles (lower panel) are similar
for manual (black) and automated decomposition (red; Kolmogorov-Smirnov test pKS ≥ 0.05). (E) Different
measures of similarity of manual and automated decompositions. The variation of information VI (dashed
green) indicates moderate similarity but is not well-defined for general, overlapping decompositions. While
the classical Jaccard index JI (dashed yellow) is of small value, the proposed structure-aware extension JId

increases with decreasing d , i.e., when only edges are considered that are separated by at most d nodes (solid
yellow). Moreover, while the classical Rand index RI (dashed blue) is of large value, the proposed structure-
aware extension RId displays a non-monotonic dependence on d (solid blue). (F) Heat map of partition
similarities for different similarity measures and options of the FCP, cf. Fig. 4.5.1 for a demonstration of the
different options. The FCP options which yield the partition shown in (C) are marked by a black rectangle.
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Figure 4.5.3: Filament covers and analyses of cytoskeletal network. The weighted cytoskeletal network is
decomposed automatically by solving the exact FCP (exact) for paths from a modified breadth-first search
(BFS) and by minimizing the total (total) pairwise filament roughness (pair). (A) Overlay of confocal mi-
croscopy image of an actin cytoskeleton and extracted network with color-coded edge weights. (B) Manual
decomposition of the actin cytoskeleton into filaments with color-coded indices. (C) The automated de-
composition according to the FCP correctly assigns many of the filaments (JI1 = 0.655). Some occurrences
of over- (⊕) and under-segmentation (ª) are marked. (D) Heat map of similarity between automated (cf. (C))
and seven manual decompositions (cf. e.g. (B); upper panel). The similarities between automated and man-
ual decompositions (red, denoted by a-m) do not differ from similarities among the different manual de-
compositions (black, m-m; lower panel; cf. independent two-sample Student’s t-test p-value pt ≥ 0.05).
(E) Distribution of filament lengths for the manual (black) and automated solution (red) are similar (up-
per panel; cf. Kolmogorov-Smirnov test p-value pKS ≥ 0.05). Maximum likelihood fits of gamma functions
are shown as dashed lines. The distributions of pairwise filament roughnesses are similar (lower panel;
cf. pKS ≥ 0.05), while the total roughness is smaller (cf. summed R-values) for the automated decomposition
since it is minimized by the FCP. (F) Caption continued on next page.
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(F) Scatter plot of pairwise filament roughness versus filament length displays three regions, with represen-
tative examples f1 − f3 (solid dots): (f1) For long filaments (≥ 15µm), the roughness is moderate (< 0.2), as
expected for actin bundles; (f2) The majority of filaments is short (< 15µm) and of moderate roughness; (f3)
Some typically short filaments show a high roughness (≥ 0.2), namely those which are composed of one net-
work edge only so that their roughness is given by the edge weight itself (cf. Eq. 4.5.1). (G) The distribution of
median filament angles shows that the majority of filaments is aligned parallel to the cell axis (gray dashed
line). (H) The filament length correlates with the filament weight (cf. linear regression and Pearson corre-
lation coefficient cP > 0 and p-value pP < 0.05) (I) Scatter plot of filament convolutedness versus filament
length shows a negative but non-significant correlation (cf. red squares, cP,conv < 0, and pP,conv ≥ 0.05) with
an average convolutedness of E[C ] = 1.16± 0.13. The maximum filament angle correlates negatively and
significantly with the filament length (cf. gray circles, cP,angle < 0, and pP,angle < 0.05), indicating that longer
(and thicker, cf. (G)) filaments are less curved.

this agreement, we compute the pairwise similarities between the automated and all seven manual filament

decompositions (Fig. 4.5.3D, upper panel). By comparing the similarities between automated and manual

decompositions to the similarities among the different manual decompositions, we find reassuringly that

our automated solution is as good as any manual decomposition (Fig. 4.5.3D, lower panel, red and black,

respectively; cf. independent two-sample Student’s t-test p-value pt ≥ 0.05). The agreement between the

automated decomposition and the reference manual assignment (cf. Fig. 4.5.3B) is further confirmed by

statistical tests which demonstrate that the two distributions of filament lengths from manual assignment

and automated decomposition do not statistically differ (Fig. 4.5.3E, upper panel, black and red histograms;

cf. pKS ≥ 0.05). In addition, our results indicate that the filament lengths may be described by a gamma

distribution (Fig. 4.5.3E, upper panel, dashed lines; maximal likelihood fits of normal, Weibull, and Rayleigh

distributions yield higher values for the Akaike information criterion [Akaike, 1974]), in agreement with the-

oretical and experimental studies [Burlacu et al., 1992; Ermentrout and Edelstein-Keshet, 1998]. Moreover,

the distributions of average pairwise filament roughnesses do not differ between manual assignment and

automated decomposition (Fig. 4.5.3E, lower panel; cf. pKS ≥ 0.05). We note that the sum of filament rough-

nesses, R, is larger for the manual assignment of filaments than in the automated decomposition, as ex-

pected, as R is the objective function of the minimization in the FCP-based formulation.

By investigating the relationship between filament length and pairwise roughness, we can distinguish three

regions (Fig. 4.5.3F): Long filaments typically correspond to actin bundles and exhibit small roughnesses

(Fig. 4.5.3f1), the majority of filaments is shorter with comparable roughnesses (Fig. 4.5.3f2), and some typ-

ically short filaments consist of only one edge with roughness given by the edge weight itself (Fig. 4.5.3f3;

cf. Eq. 4.5.1). The angular distribution of filaments indicates that the majority of filaments is aligned par-

allel to the cell axis (Fig. 4.5.3F, dashed gray line) which has been suggested to support longitudinal cell

growth [Waller and Nick, 1997; Sampathkumar et al., 2011]. While these reports of longitudinal alignment

of the actin cytoskeleton were based on manual or qualitative measurements, our approach facilitates fully

automated quantification of the alignment of individual filaments. Our findings show that the length of a

filament correlates with its average weight (Fig. 4.5.3G; Pearson correlation coefficient cP > 0 and p-value

pP < 0.05), i.e., thicker actin bundles stretch across the cell while individual thinner actin filaments are more

locally confined, as expected [Staiger et al., 2009; Akkerman et al., 2011].

Finally, we study filament convolutedness, given by the ratio of the length of a filament and the largest side

of a bounding box enclosing the filament, used as a measure for the curvedness of a filament [Staiger et al.,
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2009]. We find that the convolutedness is slightly negatively correlated with the filament length (Fig. 4.5.3I,

red; cP,conv < 0 and pP,conv ≥ 0.05), in agreement with previous findings in Arabidopsis thaliana pollen grain

[Staiger et al., 2009] and other plant species [Henty-Ridilla et al., 2013]. In contrast to the automated ap-

proach used here, the existing studies of filament convolutedness required manual segmentation which

may be biased by the user. Generally, and more severely, using a bounding rectangle to compute the con-

volutedness of a filament is biased by the orientation of the filament with respect to the x- and y-axis of

the image. Therefore, we use the maximal filament angle as a non-biased measure for the maximal, local

curvedness of a filament. By investigating the relation between the maximal filament angle and filament

length, we find a significant negative correlation (Fig. 4.5.3I, gray; cP,angle < 0 and pP,angle < 0.05). This neg-

ative correlation reflects the known increase in stiffness of actin bundles with increasing bundledness and

length [Gardel et al., 2004; Claessens et al., 2006]. Thus, our approach provides a fast means to investigate

this property for individual filaments in a cellular context without laborious manual filament identification.

To further extend these findings, we extract the cytoskeletal networks from 100 frames of a movie of a plant

actin cytoskeleton (cf. Methods). For each frame, we compute the optimal filament covers and analyze the

filaments. The additional data support our reported findings (Appendix 6.4.8).

Moreover, we repeat our analyses of the robustness of our approach against incomplete knowledge of the

underlying network structure or noisy edge weights for the cytoskeletal network (cf. discussion of Fig. 4.5.1;

Appendix 6.4.7). In our first scenario, the removal of increasing numbers of edges typically moderately de-

creases the accuracy of the obtained filament covers, i.e., their agreement with the manual assignment as

measured by JI1. While the removal of some critical edges leads to a more severe decrease in accuracy,

there exist edges whose removal leads to an increase in accuracy. On average, the removal of one addi-

tional edge decreases JI1 by around 0.002. Consequently, a loss of 10% of the cytoskeletal network’s E = 179

edges still yields JI1 ≈ 0.6 which is comparable to similarity values between different manual assignments

(cf. Fig. 4.5.3D; cf. Appendix 6.4.7). In our second scenario, the adding of Gaussian noise of increasing stan-

dard deviation to the edge weights similarly, as expected, decreases the accuracy of the obtained filament

covers. However, this effect is moderate, i.e, increasing the standard deviation by 1% of the original edge

weight decreases JI1 by less than 0.001. Adding noise with a standard deviation of 20% of the original edges

weights still yields JI1 ≈ 0.6. As for the robustness analyses of the contrived network, for strong noise, JI1

tends to a constant, non-zero value which suggests that some information about the filament structure may

be obtained solely from the network topology, irrespective of the edge weights (cf. discussion of Fig. 4.5.1;

cf. Appendix 6.4.7).

As a final example, we decompose the network of a simulated galaxy cluster (Fig. 4.5.4A) into individual

galaxy filaments (Fig. 4.5.4B). The quantification of galaxy filaments may help to elucidate the acceleration of

the universe [Sousbie et al., 2008b] and improve our understanding of large-scale structure formation [Sous-

bie et al., 2008a]. Moreover, studies have revealed gravitational motion of galaxies along individual filaments

[Faltenbacher et al., 2002; Aubert et al., 2004]. Yet, previous studies focused on connected components of the

cosmic web, and sought robust methods to identify individual filaments [Stoica et al., 2005; Sousbie et al.,

2008a]. Our approach confirms the expected discrepancy between the lengths of the components (i.e., the

sum of their edge lengths; Fig. 4.5.4C, upper panel, gray) and the length of individual filaments (Fig. 4.5.4C,

upper panel, red; cf. average L-values). Moreover, the decomposition of the cosmic structures enables anal-

yses of individual filament shapes. For example, the convolutedness which measures the curvedness of a
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Figure 4.5.4: Filament covers and analyses of cosmic web. Image data from: Stoica et al., A&A, 434, 423-432,
2005, reproduced with permission c© ESO [Stoica et al., 2005]. The cosmic web is decomposed automatically
by solving the exact FCP (exact) for paths from a modified breadth-first search (BFS) and by minimizing
the total (total) pairwise filament roughness (pair). Distances are given in h−1Mpc, where currently h ≈
0.7 is the dimensionless Hubble parameter [Croton, 2013]. (A) Overlay of simulated galaxy clusters and
extracted network with color-coded edge weights. (B) Automated decomposition of the cosmic web into
galaxy filaments with color-coded indices. (C) The length distribution of galaxy filaments exhibits a peak
around 20h−1Mpc and levels off for larger lengths (upper panel, red). As a comparison, the distribution of
the total lengths of the connected components levels off more slowly and overestimates the average filament
length by a factor of 1.45 (upper panel, gray; cf. average L-values). The distribution of the convolutedness of
galaxy filaments suggests a prevalence of straight filaments and its average is comparable to that of the actin
network (cf. 4.5.3i; cf. E[C ] = 1.20±0.13).

filament shows small values (Fig. 4.5.4, lower panel), which are interestingly comparable to those found in

the actin cytoskeleton (cf. Fig. 4.5.3I; cf. average C -values), indicating the prevalence of straight galaxy fila-

ments.

In Tab. 4.5.2, we summarize the quality of the investigated decompositions of different filamentous networks

and the options of the underlying FCP (cf. Appendix 6.4.8 and 6.4.9 for analyses of additional filamentous

networks that are not shown in the main text).

4.5.5 Discussion

The decomposition of complex networks into meaningful substructures has facilitated network-based anal-

yses of systems found in nature or designed by humans [Milo et al., 2002; Shen-Orr et al., 2002; Sporns and

Kötter, 2004]. These natural and technical networks often embed filaments as basic building units. To enable

deeper understanding of network systems with filamentous structure, it is therefore paramount to develop

methods for accurate and feasible identification of the underlying filaments. In particular, the distinction

between intra- and inter-filament connections enables a more detailed analysis of filamentous structures,

including length statistics, spatial alignment, and bending of individual filaments. Such statistics may offer

new insights, e.g., into the role of single actin or galaxy filaments in their cellular or cosmic network context,

respectively (cf. Figs. 4.5.3E-I and 4.5.4c).

Here, we proposed a robust optimization approach to decompose any given weighted network into a set
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Figure Options Similarity

VI RI
(≡ RI∞

)
JI

(≡ JI∞
)

RI1 JI1

artificial
overlaps + loop 4.5.1 BFS/over/pair/tot 0.792 1.000 1.000 1.000 1.000

grid-like 6.4.9B BFS/exact/pair/tot 0.889 0.962 0.742 0.941 0.872

neural
hippocampus 4.5.2 BFS/exact/pair/tot 0.848 0.906 0.427 0.954 0.937

retina 6.4.9D BFS/exact/pair/tot 0.792 0.963 0.397 0.905 0.883

cytoskeletal
actin (FABD-labeled) 4.5.3 BFS/exact/pair/tot 0.829 0.976 0.366 0.854 0.655

actin (Lifeact-labeled) 6.4.9F BFS/exact/pair/tot 0.530 0.929 0.193 0.838 0.701

cosmic
galaxy cluster (sparse) 4.5.4 BFS/exact/pair/tot no manual assignment

galaxy cluster (dense) 6.4.9H BFS/exact/pair/tot for comparison

Table 4.5.2: Quality of filament covers of artificial, biological, and cosmic networks in comparison to man-
ual decompositions. A given network is decomposed into filaments by solving the FCP with different op-
tions: The initial set of paths is obtained from a modified breadth-first search (BFS) or sampling of random
minimum spanning trees (RMST), the filaments may overlap (over) or not (exact), a pairwise (pair) or all-to-
all filament roughness measure (all) is used, and the total (total) or average (avg) roughness is minimized.
The table displays the investigated filament covers with high similarity to the manual assignments.

of smooth filaments comprising a filament cover. Since we demonstrated that the filament cover problem

is intractable on general networks, we proposed, tested, and validated several alternative approximation

schemes. The proposed approximation schemes are gauged at applications from different scientific fields

in which filamentous structures naturally arise. We applied our optimization-based approach on contrived

test cases as well as biological and cosmic networks, and showed that it reliably identifies crossing, (non-)

overlapping, and looped filaments in agreement with expert-based manual assignments.

Our approach offers a number of advantages over the existing alternatives: (1) The proposed optimization

approach can be applied to any weighted network. In particular, the approach can be readily applied to any

network generated from two- or three-dimensional experimental image data typically gathered in biological

studies and analyses of man-made systems (e.g. [Masland, 2001; Paredez et al., 2006; Riedl et al., 2008; Tero

et al., 2010]), irrespective of the image source (e.g., light microscopy- or MRI-based). Thus, it may be used

to study a variety of natural and technical filamentous structures in search for universal properties which go

beyond the characterization of geometric networks [Barthélemy, 2011].

(2) Our approach facilitates the establishment of a link between the dynamics of individual filaments and the

dynamics of the whole network. While the dynamics of individual filaments is guided by typically molecular,

local processes, the behavior of the entire filamentous structure incorporates and responds to stimuli across

different scales. Therefore, the proposed approach provides the starting point towards network-oriented

analysis of filaments. More specifically, the filament covers may even be used to track mobile filaments, as

has been proposed for images of a few filaments using open contours [Smith et al., 2010], providing a venue

for fruitful applications of the method.

(3) The different options of our approach, e.g., different measures of the filament roughness, enable flexible

and intuitive customization for different types of networks. For example, the filament roughness measure

may include a penalty for filament bending in networks of straight, stiff filaments (such as microtubules

[Gittes et al., 1993; van Mameren et al., 2009]), or a penalty for length deviations in networks of filaments

of mostly uniform length (such as synthetic polymers that are used, e.g., in drug delivery systems [Ali and

Brocchini, 2006; Hartmann and Börner, 2009]).
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(4) At the same time, our approach to disentangle a given network is parsimonious, i.e., it has a strictly

limited number of categorical options which allow testing of all possible combinations (42 = 16 in total).

In contrast, approaches which rely on multiple continuous parameters require data-specific and computa-

tionally expensive gauging of the parameters [Leandro et al., 2009; Qiu and Li, 2014]. When compared to

approaches which detect filaments directly from image data, however, the parsimony of our approach is

counterbalanced by the parameter requirements of the preceding network extraction procedure.

(5) Nevertheless, approaches that detect filaments directly from image data typically rely on local optimiza-

tion schemes and thus, e.g., on the order of filament initializations and definitions of local filament proper-

ties [Mayerich and Keyser, 2008; Meijering, 2010; Peng et al., 2015a; Xu et al., 2015]. In contrast, our approach

offer the advantage that the decomposition into filaments is performed in a single optimization step which

holistically considers the global structure of both filaments and network.

(6) Finally, since our approach replies on a general network representation, it may be applied also to net-

works obtained from other, e.g., open contour-based methods which often do not capture filament overlaps

and result in fragmented filaments [Xu et al., 2014, 2015]. In a post-processing step, these fragments may be

conveniently merged using our network-based approach (cf. Appendix 6.4.10).

Yet, some caution is warranted: (1) The available options of the FCP yield different decompositions. We

showed that paths sampled from a modified BFS enable more flexible and more accurate decompositions in

comparison to paths sampled from RMSTs (cf. Fig. 4.5.1); in contrast to minimizing the the average rough-

ness, the minimization of the total roughness favors longer filaments in better accordance with the manual

assignments (cf. Fig. 4.5.1); moreover, since filament overlaps in biological systems may lead to an abrupt

increase in apparent filament thickness, the proposed all-to-all filament roughness may be more suitable to

study such situations than the pairwise filament roughness which favors filaments of slowly varying thick-

ness. Therefore, the suitable choice of feasible and suitable options has to be further investigated. For ex-

ample, for the actin cytoskeletal networks, it is not obvious if overlapping filaments should be preferred over

non-overlapping filaments and if the pairwise roughness is a better measure of filament quality than the

all-to-all roughness. Yet, such decision problems are innate not only to all automated decomposition algo-

rithms, but also to the manual assignment based on which the performance is assessed. Thus, exploring

different decomposition options by an expert in the field may hint at the right choice.

(2) The quality of the filament cover clearly depends on the quality of the input network. To this end, several

algorithms have been proposed for the extraction of various types of networks from image data with low

error rates [Cohen et al., 1994; Baumgarten and Hauser, 2012; Meijering, 2010; Obara et al., 2012b; Qiu and

Li, 2014; Xu et al., 2015]. Moreover, we investigated different scenarios to test the robustness of our approach

against incomplete knowledge of the underlying network structure as well as low signal-to-noise ratios and

found that the accuracy of the filament cover is only moderately affected by these obstacles (cf. Appendix

6.4.7).

(3) Another issue are the computational requirements of the FCP. Although our proposed approximation

scheme employs a modified BFS and a binary linear program which run fast on the tested networks, it may

become infeasible for larger networks comprising more edges or nodes of larger degrees. Therefore, future

efforts may focus on devising algorithms which approximate the FCP by employing local searches, i.e., with-

out sampling a large number of paths for the proposed set cover-based approximation scheme.
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(4) Finally, we note that many polymers are not simple linear chains but branched tree-like structures [In-

oue, 2000; Tomalia and Frechet, 2001]. Also many neurons may be naturally described as tree-like structures

[Verwer and van Pelt, 1983; Ascoli et al., 2007]. Our approach can be extended to account for these cases,

thus, opening a new field of research. To this end, covering networks with more complex structures, such as

stars [Tarsi, 1981; Cohen and Tarsi, 1991; Lin and Shyu, 1996] or, more generally, trees [Even et al., 2004; Horak

and McAvaney, 2008] may be employed. Due to intractability of these problems, investigation of approxi-

mation schemes like our set cover formulation will be needed. A central question will be the development

of measures for the quality of a given star or tree cover.

In conclusion, by decomposing technically and biologically relevant filamentous structures into their con-

stitutive filaments, our approach allows to see both the wood and the trees.
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In this closing chapter, we briefly summarize our main findings (Section 5.1). Detailed discussions of our

specific findings are given in the respective sections in the Results (cf. Chapter 4). Therefore, in the fol-

lowing, we focus on embedding our findings in a broader biological context and propose applications and

extensions of our work (Sections 5.2-5.5).

5.1 Summary

Despite the biological and technical relevance of cellular transport by the actin cytoskeleton in plants, pre-

vious efforts have focused on one of two extremes (cf. Section 3.5): Either they elucidated molecular details

of the underlying biological mechanisms, or they developed abstract system-level models with little or no

connection to real-life cells.

Therefore, we set out to a develop and exploit a viable systems perspective that allows incorporation of bio-

logical data of cytoskeletal architecture and transport. To this end, we addressed and resolved five key issues

stated in the Introduction (cf. Section 3.9): Namely, we proposed two image-based methods for representing

experimentally observed cytoskeletal components as networks at a cellular level (cf. Sections 4.1 and 4.4).

These representations enabled quantitative and unbiased phenotyping of the cytoskeleton beyond statis-

tics for (a limited number of) manually tracked filaments (cf. Sections 4.1-4.5). Moreover, by comparing the

extracted cytoskeletal networks to suitable null models, we showed that the cytoskeletal networks displayed

properties that support efficient transport (cf. Sections 4.1 and 4.4). By studying transport of Golgi bodies in

plant cells, we offered quantitative evidence that organelle transport is shaped not only by local actin fila-

ments but also by the system-wide organization as well as the cylindrical geometry of the actin cytoskeleton

as a whole (cf. Section 4.4). Finally, we devised and employed a method to identify individual actin fila-

ments from a given network representation of the cytoskeleton, which allowed automated investigation of

single filament properties in the native cellular context (cf. Section 4.5). Implementations of the developed

methods were made available as open-source tools to researcher from different fields.

Altogether, our findings and our proposed frameworks provided quantitative, system-level insights into cel-

lular transport in living cells.

5.2 Application of image-based network representations

to super-resolution image data and in large-scale screens

The image-based network representations established in this thesis provide powerful means for quantifica-

tion or phenotyping of cytoskeletal structures. Our first network framework (cf. Sections 4.1 and 4.2) em-

ploys a weighted grid-approximation that captures fewer details of the underlying structure, but is more

robust to image noise and potential segmentation error than previous methods. In particular, while other

approaches are typically tailored to a specific image source [Baumgarten and Hauser, 2012; Dhondt et al.,
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Figure 5.1.5: Perspectives for future research, from direct applications and extensions of our work to
multi-scale models. (A) Starting point: Image-based, network-driven framework of the cytoskeleton as es-
tablished in this thesis. (B) Applications: Chemical and genetic screens may be used to uncover the basis
of complex traits of cytoskeletal organization as given by our network phenotypes. (C) Extensions: The es-
tablished weighted but undirected network representation may be further augmented by including directed
edges, based on image data of cargo transport. Beyond analyses of (static) cytoskeletal networks at a given
point in time, their dynamic rearrangements must be considered (cf. two networks at time points t1 and
t2) and may be modeled in a geometric network framework which takes into account addition (cf. +) and
removal (cf. -) of nodes and edges. (D) Molecular level: Plant cell wall material, such as pectin and hemi-
cellulose, are central metabolic products that are synthesized in the Golgi apparatus and deposited in the
cell wall via cytoskeleton-based transport and exocytosis, linking the molecular and cytoskeletal level. (E)
Organismic level: The cytoskeleton plays an important role also at an organismic level, e.g., due to its close
functional relation to cell growth and division. (F) Trade-off between level of detail and scope of a model
(cf. Fig. 3.1) and examples of processes at different levels.
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2012; Obara et al., 2012b; Peng et al., 2015a], this framework is applicable to any gray-scale image data

from any imaging system and network-like system of interest. Our second network framework (cf. Section

4.4; Fig. 5.1.5A) captures subtle cytoskeletal structures and consequently relies on image data with higher

signal-to-noise ratios. Similar approaches for extraction of networks from image data have been proposed,

but they required laborious manual user input [Longair et al., 2011; Dhondt et al., 2012] or did not cap-

ture intensity-based edge weights that are required as a measure for thickness of cytoskeletal filaments and

bundles [Baumgarten and Hauser, 2012; Obara et al., 2012b; Xu et al., 2015]. We demonstrated that our

frameworks capture known as well as relevant novel features of cytoskeletal organization in different cell

types and under different conditions (cf. Sections 4.1 - 4.3).

While we focused on confocal microscopy data, recent progress in so-called super resolution microscopy

has enabled imaging below the diffraction limit [Hell and Wichmann, 1994; Betzig et al., 2006; Li et al., 2015].

In particular, while previous super-resolution techniques suffered from low temporal resolution, current de-

velopments achieve increasingly good trade-offs between the spatio-temporal resolution and invasiveness

due to high laser intensities, enabling imaging of fast cytoskeletal rearrangements in vivo [Li et al., 2015].

While these methods have been applied for imaging of cytoskeletal structures of animal cells [Bálint et al.,

2013; Li et al., 2015], the image-based, network-driven framework established for plant cells in this thesis is

readily applicable to such super resolution image data.

Moreover, by providing fast, fully automated, and unbiased quantification of cytoskeletal phenotypes, our

framework is readily applicable in chemical or genetic screens (Fig. 5.1.5B). Previously, manual examinations

of cytoskeletal structures were used in chemical screens to identify potential interaction partners that affect

actin cytoskeletal organization and functionality [Baluška et al., 2001; Mathur, 2004; Kim et al., 2005]. Addi-

tionally, the increasing wealth of genetic data and bioinformatics approaches available, such as quantitative

trait locus (QTL) mapping or genome-wide association studies (GWAS), may be combined with our pheno-

typing approaches to study the genetic basis of cytoskeletal organization as a complex trait [Steinmetz et al.,

2002; McCarthy et al., 2008; Mitchell-Olds, 2010]. Such a combination of approaches may pinpoint spe-

cific genes that are associated with a quantitative cytoskeletal phenotype, e.g., network properties reflecting

cytoskeletal organization or transport characteristics. Considering the large number of proteins and other

gene products that interact with the actin cytoskeleton and modify its dynamics and structure (cf. Section

3.1), these studies may establish a connection between molecular processes underlying the cytoskeleton and

its system-level organization that are required for establishing multi-scale models. Generally, the strength

of automated imaging approaches such as ours is comparable to other high-throughput technologies, like

sequencing approaches or metabolomics [Swedlow et al., 2009; Eliceiri et al., 2012; Schneider et al., 2012].

5.3 Transferability of our findings to system-level coordination

of cytoskeletal transport in other cellular settings

Despite differences in the role of the cytoskeleton in long-ranged intracellular transport across cells types

and organisms (cf. Sections 3.1 and 3.2; [Cooper, 2000; van den Ent et al., 2001; Liu, 2010]), our developed

frameworks may be readily used to study cytoskeletal transport in other scenarios. While we focused on

actin-based transport of Golgi in plant cells, we expect similar findings and system-level coordination of

91



5 Conclusion 5.4 Extensions to directed and dynamic actin networks

transport for other plant organelles. For example, movement of mitochondria relies on the acto-myosin

system [Akkerman et al., 2011; Wang and Hussey, 2015] and there is evidence that mitochondria movement

is affected by local actin bundles [Avisar et al., 2008b; Akkerman et al., 2011]. Therefore, we expect that by

using a systems-level approach, such as the one described here, the effects of cellular coordination that go

beyond local correlations can be revealed and further investigated. In contrast, photodamage avoidance

movement of chloroplasts is a more directed type of movement that supposedly requires less coordination

[Kasahara et al., 2002]. While the actin cytoskeleton transports many different types of cargo, transport along

microtubules has been shown only for few types of cargo in plant cells, such as small cellulose synthase con-

taining vesicles (SmaCCs) [Gutierrez et al., 2009; Wightman and Turner, 2010; Bringmann et al., 2012]. This

is in accordance with the hypothesis that microtubules predominantly shape the mechanical properties of

the cell and guide cell wall material to its depositioning sites, where it is delivered via actin-based transport

[Geisler et al., 2008; Gutierrez et al., 2009; Sampathkumar et al., 2013].

In animal cells, microtubules instead of actin filaments are the main driver of long-range transport [Akker-

man et al., 2011; Bálint et al., 2013], likely due to difference in cell sizes and organization (cf. Section 3.2). It

has been shown that cytoplasmic streaming in Drosophila melanogaster oocytes is related to structural fea-

tures of microtubules [Ganguly et al., 2012], and that transport of lysosomes in monkey kidney cells depends

on microtubules and microtubule cross-overs [Bálint et al., 2013]. Another prominent example are neurode-

generative diseases that may be caused by defects in the axonal cytoskeleton-based transport machinery of

neurons [Chevalier-Larsen and Holzbaur, 2006; Kapitein and Hoogenraad, 2011]. Considering the cell’s dire

need of well-orchestrated delivery and removal of proteins and lipids, effects of cellular coordination that go

beyond local correlations of cytoskeletal filaments and transport are likely to be found. We therefore believe

that our findings on the coordination of Golgi transport in plant cells are transferable to a range of other

scenarios of cellular transport, and can be readily investigated using our established methods.

5.4 Extension of the image-based cytoskeletal network representations

by edge directionality and dynamics

Besides direct applications of the established network representations and analyses of the cytoskeleton,

there are a number of promising extensions to incorporate additional biological features of the cytoskele-

ton. In particular, our and any other framework for the extraction of transportation networks from image

data captures undirected edges only, assuming bi-directional transport of cargo [Baumgarten and Hauser,

2012; Dhondt et al., 2012; Obara et al., 2012b; Rigort et al., 2012]. However, many networks allow only uni-

directional or biased transport (Fig. 5.1.5C, upper), such as venous blood vessels [Marieb and Hoehn, 2007]

and fungal networks [Tero et al., 2010; Heaton et al., 2012]. Due to their polarity, also cytoskeletal filaments

typically enable only unidirectional movement of motor proteins. This bias may, however, be attenuated

by fluctuations in motor-protein movement, by different types of motor proteins, or by bundling of fila-

ments with opposing polarity [Shimmen et al., 2000; Thomas et al., 2009; Akkerman et al., 2011]. Therefore,

incorporation of edge directionality into the network framework is central for detailed investigations of cy-

toskeletal structure and transport. Since imaging techniques that allow inference of single-filament polarity

are not in sight, utilization of cargo tracking data, as presented in this thesis, provides a promising route for
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the inference of edge directionality (cf. Section 4.4).

Furthermore, current analyses of networks extracted from image data typically focus on static networks

[Baumgarten and Hauser, 2012; Dhondt et al., 2012; Obara et al., 2012b; Rigort et al., 2012]. Here, we also

showed that the actin network in growing plant cells exhibits properties that support efficient transport, at

a given point in time (cf. Sections 4.1-4.4). However, the plant actin cytoskeleton is highly dynamic, and this

dynamics has been suggested as a basis of different cytoskeletal functions [Staiger et al., 2009; Henty-Ridilla

et al., 2013]. One the one hand, it has been shown that the mutual interaction of cytoskeletal rearrangements

and cytoplasmic streaming may lead to the emergence of self-organized streaming patterns [Woodhouse

and Goldstein, 2013; Goldstein and van de Meent, 2015]. On the other hand, we hypothesize that rearrange-

ments of the actin cytoskeleton in growing (plant) cells provide an additional level of optimized transport

efficiency. Namely, rearrangements of the cortical actin cytoskeleton increase both the effective speed of

transported cargo and the area of the plasma membrane that is within reach of cytoskeletal cargo. Our net-

work framework enables accurate incorporation and analysis of such rearrangements by modeling changes

in nodes and edges over times (Fig. 5.1.5C, lower; [Dorogovtsev et al., 2000; Pastor-Satorras et al., 2001; Reg-

giani and Nijkamp, 2009]). Moreover, our proposed method for the identification of filaments from a given

network representation may provide a promising link between the filament dynamics, which are guided by

local, molecular processes, and the network dynamics on the global, cellular level (cf. Section 4.5).

5.5 Establishing a multi-scale perspective: From molecular processes

to cytoskeleton to organismic phenotypes

A major benefit of the employed image-based network approach to plant cytoskeletal structure and trans-

port is its top-down perspective. This perspective captures the system at an organizational level without

the need for detailed knowledge of its molecular basis (cf. Section 3.5). At the same time, by focusing

on the cytoskeleton at a cellular level, we disregarded the organismic context. While the distinctions be-

tween these levels are practical and partly justified by different time scales (typically, molecular processes:

nanoseconds− seconds, cellular processes: seconds−hours, organismic processes: hours−years), a com-

plete understanding of living systems requires a multi-scale perspective [Ingber, 1998; Kitano, 2002; Vaziri

and Gopinath, 2008].

Regarding the molecular scale (Fig. 5.1.5D), all components of the cellular transport system, cytoskeletal and

motor proteins as well as cargo, must eventually be synthesized. Hence, cellular transport is both directly

based on and constitutive for translational and metabolic processes [Allan, 1995; Samaj et al., 2004; Kim and

Coulombe, 2010]. Future studies may develop in the direction of correlating cytoskeletal transport activ-

ity with tissue- or even cell-specific translational or metabolic activity (cf. Section 5.2). In particular, our

network-based framework of organelle transport may be used to infer sites of cell material depositioning

and uptake (cf. Section 4.4). These predictions may then be verified using confocal imaging data from cells

expressing fluorescent exo- and endocytosis markers [Samaj et al., 2004; Chen et al., 2011; Gadeyne et al.,

2014; Luo et al., 2015].

At an organismic level (Fig. 5.1.5E), cytoskeletal structures and cytoskeleton-based transport are essential

for cell growth, tissue formation, and organismic development. For example, plants with defects in actin
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cytoskeletal organization show abnormal cell shapes [Fu et al., 2005; Smith and Oppenheimer, 2005; Ivakov

and Persson, 2013] and reduced growth [Gibbon et al., 1999; Baluška et al., 2001]. Another striking exam-

ple is the twisting of the plant hypocotyl due to impaired guidance of cellulose synthase complexes by the

microtubule cytoskeleton [Landrein et al., 2013]. Here again, automated image-based phenotyping of the

cytoskeletal networks may speed up analyses, may reduce bias from manual investigations, and enables

establishment of quantitative associations between cytoskeletal organization and cellular output.

To conclude, our findings as well as our combination of experimental and theoretical methods offer sig-

nificant contributions towards a system-level understanding of cytoskeletal transport in living organisms.

Moreover, while our network-based top-down approach to the cytoskeleton is inherently independent of

knowledge about molecular details and parameters, its future applications can be used to reveal such de-

tails. Thus, the work presented here provides quantitative means towards understanding the molecular basis

of cytoskeletal transport functionality, as well as its future technological control and utilization.
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6 Appendices

6.1 Appendix: Quantitative analyses of the plant cytoskeleton

reveal underlying organizational principles

6.1.1 Experimental setup

Here, we describe the experimental setup for recording the cytoskeleton of growing plant cells. Dual-labeled

Arabidopsis thaliana Columbia-0 seedlings were were previously described in [Sampathkumar et al., 2011].

The seedlings were surface sterilized (ethanol), stratified for 2days at 4◦C and germinated on MS agar plates

(1X Murashige and Skoog salts, 8g/L agar, 1X B5 vitamins, and 10.8g 8g/L sugar). All plants were grown

in the dark on vertical plates at 21.8◦C for 3days. For treatment with Latrunculin B, seedlings were floated

on distilled water containing 150µM Latrunculin B and a set of control seedlings on pure water in 6-well

plates. The seedlings were incubated in the dark with gentle shaking for 4hours before imaging. For light

treatments, a plate of dark-grown seedlings was exposed to light (150µE m-2 s-1 PAR) for 4hours while a

control plate was kept in the dark, both plates being maintained in a vertical orientation. To study the effect

of Latrunculin B, 5 control and 5 treated cells were imaged. For the analysis of the effect of light on the

cytoskeleton, 35 control and 26 treated cells were imaged. To fix the seedlings and to avoid mechanical

damage, they were mounted between a cover glass and a 1mm thick 1% agar pad affixed on a circular cover

slip. A detailed description of the microscopy setup is given in [Sampathkumar et al., 2011]. Typical exposure

times were 400ms for GFP and 300ms for mCherry with a time interval of 2s between subsequent actin and

microtubule images, respectively. The cells were recorded for at least 4min. Only seedlings expressing both

fluorescent markers were used for further analyses.

6.1.2 Network reconstruction procedure, different grid topologies and null models

We now explain our method for reconstructing a (edge-weighted, undirected) network from the confocal

image series of actin filaments or microtubules and present various extensions and null models. We

preprocessed the recorded image series using Fiji [Schindelin et al., 2012]: First, the drift of the seedlings

under the microscope was corrected using a stack registration algorithm [Arganda-Carreras et al., 2006].

Here, the microtubule images were registered first because they are less dynamic and easier for the

program to align. The more dynamic actin filaments were then subjected imagewise to the same

transformations. Second, the image series were rotated so that the shoot apical direction of the cell pointed

upwards. The region of interest, i.e., the interior of the cell, was cropped manually and identically for the

corresponding actin and microtubule frames. Third, the background noise was reduced by applying a

rolling ball background subtraction [Sternberg, 1983], with a ball radius of 50pixels. The noisy background

signal arises largely from fluorescent monomeric actin/tubulin in the cytosol which is not incorporated in
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Figure 6.1.1: Extensions of the network reconstruction framework and different null models. (A) Recon-
structions of the actin cytoskeleton of the same cell using different sizes (grid spacings of 10 and 20pixels)
of triangular, rectangular, and hexagonal grids, and a three-dimensional grid with 20pixel-spacings. (B) All
studied grid types exhibit smaller average path lengths than their respective null model networks. (C) Dif-
ferent null models for the reconstructed network were obtained by shuffling all edge weights, by shuffling
connected vertical and horizontal lines, and by rearranging blocks of varying size and shuffling the remain-
ing edge weights, respectively. White rectangles exemplify sections of the cytoskeletal network that were
shuffled. (D) All proposed null models yield values below one for ratio of the average path lengths of ob-
served and null model networks, suggesting a non-random and efficient organization of the cytoskeletal
network.
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filaments and, hence, was filtered out in the present study. Finally, photobleaching was compensated by

rescaling all images’ mean intensities to one.

From these preprocessed images we obtained the cytoskeletal components as complex networks through a

two-step procedure as described in the Results in Section 4.1. These steps and all statistical analyses were

performed using Python [Van Rossum and Drake, 2011]. We chose an equidistant rectangular grid with

a spacing of 10pixels and the standard deviation of the Gaussian convolutions kernels was 4pixels in x-

and y-direction, unless stated otherwise. An extension of our framework is the three-dimensional network

that may be easily reconstructed from three-dimensional confocal microscope image series (Fig. 4.1.1G).

First, a network was reconstructed for each z-slice as for the two-dimensional case. Then, for a rectangu-

lar grid, the networks of neighboring z-slices were connected by creating a link between nodes with the

same x-y-coordinates. The weights of these links were computed by creating Gaussian convolution kernels

(pointsymmetric, with the same width as for the edges, i.e., 4pixels) for its nodes, multiplying them with the

two respective z-slices and averaging over the sum of the resultant images. The three-dimensional network

reconstruction captures cytoskeletal filaments which leave the cortical plane and may be analyzed using the

same network-based methods as for the two-dimensional networks.

To ensure that our findings (e.g., on the transport efficiency of the cytoskeletal network architecture that

displays short APLs; see Results in Section 4.1), are valid not only for rectangular grids, we tested other

grid types. We reconstructed the cytoskeletal actin network of the same cell based on two-dimensional

rectangular, triangular, and hexagonal grids with spacings of 10 and 20pixels and a three-dimensional grid

with a uniform spacing of 20pixels (Fig. 6.1.1A). For these networks, we compared the APLs to an ensemble

of null model networks obtained by edge-shuffling. In all chosen grid types, the APL of the observed network

is significantly shorter than expected from the respective null model (Fig. 6.1.1B; one-sample two-sided t-

test: all p−values < 0.05). Hence, the short APLs of the cytoskeleton are a non-random and biologically

relevant feature which does not arise as an artifact of the imposed grid type. As network properties are

often dependent on each other, the findings from the comparative analysis suggest that a significant change

of other network properties compared to their null model values is largely independent of the underlying

grid type, as long as the grid is not too dense, covers the cell too inhomogeneously (e.g., random geometric

graphs), or has non-local, long-range links (e.g., scale-free graphs).

Judging the biological relevance of a network property’s value requires a meaningful comparison since its

value depends on the normalization of the image and is therefore arbitrary. The simplest reference is given

by the values of the respective network property which are obtained for null model networks with shuffled

edge weights (Fig. 6.1.1C, “edges”). Such networks preserve both the node positions and the distribution

of edge weights and thus the total amount of cytoskeletal components in the cell. By comparing the value

of a given network property of a reconstructed cytoskeletal network against those of an ensemble of edge-

shuffled null model networks, we were able to assess whether a random distribution of cytoskeletal material

in the cell results in the same cytoskeletal properties as realized in the observed cell, see Results in Sec-

tion 4.1. For example, for the APL, the ratio of observed and null model values falls significantly below one

(Fig. 6.1.1D, “edges”; one-sample two-sided t-test: p−value < 0.05).

We also investigated two alternative null models to strengthen the assessment of the biological relevance

of different network properties. Like the first null model, these, too, preserve the positions of the nodes of
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the network and the distribution of edge weights in the network. In addition, they leave more of the local

cytoskeletal structure intact. While in the first null model, edge weights were shuffled irrespective of the

edges to which they were assigned, we now cut all edges forming connected horizontal or vertical lines into

several equal sections, respectively, which were in turn shuffled (Fig. 6.1.1C, “lines”; here, horizontal lines

are divided into three and vertical lines in four sections). This method better preserves potential strongly

weighted paths and hence the filamentous structures of the cytoskeleton. As for the “edge” null model,

this “line” null model exhibits longer APLs than the observed network (Fig. 6.1.1D, “lines”; one-sample two-

sided t-test: p−value < 0.05). Clearly, the focus on horizontal or vertical lines imposes a restriction to the

orientation of potential filaments. To circumvent this limitation, we analyzed a third null model in which

connected, non-overlapping blocks of nodes were chosen. The subgraphs formed by these blocks were shuf-

fled as well as the remaining edge weights that were not part of any subgraph (Fig. 6.1.1C, “blocks”; here, the

network is composed into three times four blocks). This “block” null model also exhibits longer APLs than

its biological counterpart (Fig. 6.1.1D, “blocks”; one-sample two-sided t-test: p−value < 0.05). More sophis-

ticated null models may be proposed. However, the investigation of three different null models that capture

the amount of cytoskeletal components in the cell and their filamentous structure provided consistent re-

sults on the non-randomness of various cytoskeletal network properties. Using the simple null model was,

therefore, considered reliable for assessing the biological relevance of the studied network properties (see

Results in Section 4.1).

6.1.3 Network properties used for quantifying the cytoskeletal organization

We represent the cytoskeleton as a weighted, undirected network and quantify its structure via a number of

seminal network properties. Here, we explain the employed properties in more detail and provide careful

interpretations of how they relate to the structural (and potentially: functional) features of the cytoskeleton.

In the following, we consider a weighted, undirected network G = (N ,E ) with a set N of N = |N | nodes, a

set E of E = |E | undirected edges e = (n,m) ≡ (m,n) ∈ E and m,n ∈N with weights we .

Degree distribution: The degree dn of a node n ∈N is given by the sum of its edge weights we , i.e.,

dn = ∑
e ∈ E

n ∈ e

we (6.1.1)

(cf. Fig. 6.1.2A for the degree of a node of the network in panel E; color-coded node degrees in Figs. 6.1.2E-H).

Since the edge weights reflect the intensity of cytoskeletal structures close to the respective edges, the node

degrees reflect the cytoskeletal intensities in the vicinity of the respective nodes. Therefore, the standard

deviation of the degree distribution (SDD) captures the spatial heterogeneity of the distribution of intensities

in the underlying cytoskeleton images,

SDD =
((

N−1
N∑

n=1
d 2

n

)
−

(
N−1

N∑
n=1

dn

)2)−1/2

. (6.1.2)

In particular, the SDD does not measure the heterogeneity in filament thicknesses or numbers but a com-
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Figure 6.1.2: Explanations of different network properties and exemplary networks with different struc-
tural and functional characteristics. Panels (A)-(D) display schematic illustrations of different network
properties. Panels (E)-(H) show typical paradigmatic networks with color-coded edge weights and node
degrees. (A) The degree of a node is given by the sum of its edge weights, cf. color-coding in panel (E). (B)
When removing edges with weights below the 50th percentile from the network in panel (F), the network
decomposes into trivial components with just a single node (black circles) and several bigger, non-trivial
components (white circles). (C) The shortest path length between two nodes is given by a sequence of edges
whose sum of inverse weights is minimal, cf. network in panel (G). (D) The algebraic connectivity relates to
the minimum sum of the weights of edges that need to be removed to disconnect the network, cf. network in
panel (H). (E) The network exhibits a small standard deviation of the degree distribution (SDD), has a large
average size of the connected components (ASC) after thresholding, and a small assortativity (AS). (F) The
network has a small ASC, its overall angle (OA) indicates a horizontal orientation (OA > 45◦), it displays a
large average path length (APL), a small algebraic connectivity (AC), and a large assortativity. (G) The net-
work has a high SDD, displays a vertical OA (OA < 45◦), and a small APL. (H) The network was obtained by
maximizing the AC for a fixed sum of weights (cf. discussion of Fig. 4.1.4) and, accordingly, displays a high
AC.
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bination thereof. Comparing Figs. 6.1.2E and G, we find that the SDD of the former network is smaller,

indicating a more homogeneous spatial distribution of the cytoskeleton in agreement with the visual im-

pression.

Connected components: By construction, all edges in the reconstructed networks are strictly positive (be-

cause the Gaussian convolution kernels are strictly positive and have infinite support and the image inten-

sity is greater than zero somewhere in the image) and, hence, all their nodes are connected. However, when

removing edges, e.g., with small weights by arguing that they do not permit transport of cargo, the network

may disconnect and split into several connected components (cf. Fig. 6.1.2B for the thresholded version of

the network in panel F). The components are called trivial if they consist of a single node only, and non-

trivial otherwise. For simplicity, we use the 50th percentile when thresholding the edge weights throughout

the manuscript but our findings remain qualitatively unchanged when different, reasonable thresholds are

chosen. The average number of nodes, or size, per non-trivial connected component (ASC) is a measure for

the fragmentation of the network.

ASC = C−1
C∑

c=1
Nc , (6.1.3)

where C is the set of C = |C | non-trivial components and Nc is the number of nodes in component c ∈ C .

Comparing Figs. 6.1.2E and F, we find that the ASC is smaller in the latter which clearly exhibits several small,

densely connected fragments separated by weak connections.

Overall angle: As our network representation does not resolve individual filaments, we can not evaluate their

orientations individually. However, our approach allows to infer an overall angle (OA) for the orientation of

the cytoskeletal structures as a whole. The OA is given by Eq. (6.1.12) and its derivation is explained in

ESM4. Two networks with different OA are shown in Figs. 6.1.2F and G with overall horizontal (OA > 45◦)

and vertical (OA < 45◦) orientations, respectively, as confirmed visually.

Average path length: A path P between two nodes is a sequence of edges connecting the nodes. A shortest

path is a path that minimizes its sum of edge lengths (cf. Fig. 6.1.2C for a shortest path in the network in panel

G). Here, for simplicity, we take the length of an edge to be the inverse of its weight. This choice takes into

account that parts of the cytoskeleton that yield strong edge weights potentially allow faster/more transport

as reflected by small edge lengths.

APL = 2−1N−1 (N −1)−1
N∑

n=1

N∑
m = 1

m > n

min
P ∈Pn,m

∑
e∈P

w−1
e , (6.1.4)

where Pn,m is the set of all paths from node n to m and w−1
e is the length of the edge e ∈ P ∈ Pn,m . As

explained in the discussion of Fig. 4.1.3 in the main text, highway-like structures may yield small average

path lengths (APL) as they act as short cuts between distant parts of the network. Such a highway-like struc-

ture is given by the network in Fig. 6.1.2G which, accordingly, displays a smaller APL than, e.g., the easily-

fragmented network in panel F.
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Algebraic connectivity: The algebraic connectivity is the second smallest eigenvalue

AC ≡ λ2 (6.1.5)

of the graph Laplacian L,

Ln,m =


dn ifn = m

−w(n,m) if (m,n) ∈ E

0 otherwise,

, (6.1.6)

with n,m ∈ N . By construction of L, its smallest eigenvalue λ1 = 0 and the number of zero eigenvalues

provides the number of connected components in the graph (cf. e.g. [Newman, 2009]). As our reconstructed

networks are always connected (see the discussion of the connected components above) they yield λ2 ≡
AC > 0. The magnitude of the AC is commonly interpreted as a measure for how well-knit the network is,

which is related to the minimum sum of the weights of edges that need to be removed in order to disconnect

the network (cf. Fig. 6.1.2D). We solved a semi-definite optimization problem described in the discussion of

Fig. 4.1.4 to construct a network with a fixed sum of edge weights that maximizes the AC. This network is

shown in Fig. 6.1.2H and its AC is larger than, e.g., that of the easily-fragmented network in panel F.

We note that small APL and large AC favor different types of networks (cf. Figs. 6.1.2G and H). This may be

explained as follows: In the computation of the APL for each shortest path only one edge may be used at

a time. In contrast, the AC is related to cuts (i.e., the removal of sets of edges) that disconnect the network

and hence affect multiple edges. Thus, the APL and the AC are independent network properties that provide

insights into different potential, transport-related functions of the cytoskeleton.

Assortativity: The assortativity denotes the correlation of the degrees of neighboring nodes

AS = 1

2E

N∑
n=1

N∑
m=1

(
w(n,m) −

dndm

2E

)
dndm . (6.1.7)

Similar to the SDD (see above) the AS captures the spatial heterogeneity of the cytoskeletal components but

contains additional information about its spatial distribution: The AS is high if nodes with high (low) degrees

are also connected to nodes with similar degrees, hence detecting regions of spatially clustered cytoskeletal

structures. For instance, Fig. 6.1.2E displays a network with low AS because the are no regions of nodes of

high or low degree clustered together, while the network in panel F shows high AS values that reflect regions

of high and low node degrees, respectively.

6.1.4 Method for determining angles and filament orientations from network struc-

ture

We now present a method to evaluate the orientation of AFs and MTs by exploiting their network structures.

Starting from a given grid (Fig. 6.1.3A), we placed a stiff rod of length L that is rotated by an angle α and
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Figure 6.1.3: Inferring orientation of filament from network structure. (A) Schematic filament of length
L at an angle α, placed on a rectangular grid with spacing ∆, vertical (0◦, black), and horizontal edges (90◦,
gray). The shape of the edges’ convolution kernels determines the contribution of the filament to each
edge, with the two extremes m∥ and m⊥ for parallel and perpendicular orientation of the filament with
respect to the edge. (B) Contribution of filaments (L = 1000, solid lines; L = 10, dotted lines) to edges of
different orientation (0◦, black; 90◦, gray) for varying anglesα. By including that filaments cross only integer
numbers of edges, we obtain curves that are strongly discontinuous for short filaments and become less
discontinuous for longer filaments. (C) The ratio of filament overlaps r with 0◦- and 90◦-edges determines
the filament angle (L = 1000, solid line; L = 10, dotted line), with r < 1 and r > 1 corresponding to a vertical
and horizontal orientation, respectively.

computed its contribution to the weight of edges with an orientation of angle γ. Assuming a regular grid in

which edges with angle γ are distributed with uniform distances ∆, we calculated the number nγ of crossed

γ-edges,

nγ = ∆−1L
∣∣sin

(
α−γ)∣∣ . (6.1.8)

The overlap m of the rod and a γ-edge was computed via the convolution kernel of that edge (see Appendix

6.1.2) and was approximated as

mγ = m⊥+ (
m∥−m⊥

)∣∣cos
(
α−γ)∣∣ , (6.1.9)

where m⊥ and m∥ are the contributions of the rod to the edge when they are perpendicular or parallel to

each other. The total contribution of the rod to all γ-edges is (Eqs. (6.1.8) and (6.1.9))

wγ = nγmγ =∆−1L
∣∣sin

(
α−γ)∣∣[m⊥+ (

m∥−m⊥
)∣∣cos

(
α−γ)∣∣] . (6.1.10)

Furthermore, we may include that only integer numbers of edges may be crossed by a filament. Then, L sin

in Eq. (6.1.10) is replaced by bL sinc and the contribution of a filament of finite length becomes discontin-
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Figure 6.1.4: The efficiency of the autobahn network is pertained for different choices of speed limits. (A)
Reconstructed autobahn networks with different maximum high speed limits (140, 180, and 200km/h) and
different off-highway speed limits (30 and 50km/h). (B) The degree distributions of the autobahn networks
with the different speed limits given in (A) (from light gray to black) are unimodal and centered around their
means (excess kurtosis > 0). (C) The ratios of average path lengths and algebraic connectivities of observed
and null model networks are well below and above one, respectively, for all autobahn networks with speed
limits described in (A).

uous and approaches the continuous curve for long filaments (Fig. 6.1.3B). For simplicity, we considered

small grid spacings or long filaments and work with Eq. (6.1.10) directly. Each cytoskeleton fluorescence

image contains many filaments and their lengths and orientations can not be inferred uniquely from the

distribution of edge weights. Because m⊥ and m∥ are determined by the convolution kernels, the ratio of

the weights of two edge types with different orientations γ and γ
′

yields an equation for α,

wγ

w
γ
′

=
∣∣sin

(
α−γ)∣∣[m⊥+ (

m∥−m⊥
)∣∣cos

(
α−γ)∣∣]∣∣sin

(
α−γ′)∣∣[m⊥+ (

m∥−m⊥
)∣∣cos

(
α−γ′)∣∣] =: r, (6.1.11)

where α may be interpreted as the overall orientation of the cytoskeletal filaments (Fig. 6.1.3C). For γ = 0◦

and γ
′ = 90◦, Eq. (6.1.11) yields

α = arctan

(
m⊥+ r

(
m∥−m⊥

)
m⊥r + (

m∥−m⊥
) )

. (6.1.12)

In our analysis, we refer to α ∈ [0◦,45◦) and α ∈ (45◦,90◦] as an overall vertical and horizontal orientation,

respectively. See Results in Section 4.1 for results on the orientation of the cytoskeletal components under

different conditions.

6.1.5 Reconstruction and analysis of the German autobahn network

Here, we describe the data and the procedure used for reconstructing the German autobahn as a network

for a comparison with the plant cytoskeleton. Further, we present two examples of networks with different
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structural and transport-related properties.

An OpenStreetMap ( c© OpenStreetMap contributors; map data available un-

der the Open Database License (ODbL)) data set of Germany was downloaded

(http://download.geofabrik.de/europe/germany.html; c© Geofabrik GmbH Karlsruhe), converted to .o5m

for faster filtering (http://wiki.openstreetmap.org/wiki/Osmconvert), and filtered for objects of type

“highway=motorway” (http://wiki.openstreetmap.org/wiki/Osmfilter). The remaining motorways were

parsed in Python. Speed limits were take into account for better analogy with the cytoskeleton that exhibits

thinner and thicker bundles that were argued in the main text to allow different net transportation speeds.

Because some sections of the autobahn were assigned no speed limits (either because of lacking data or

the absence of a speed limit) and to incorporate transportation outside of the autobahn, we chose different

settings to ensure the robustness of our findings: Missing autobahn speed limits were set to 140, 180, and

200km/h and the speed limit in the rest of Germany was set to 30 and 50km/h, respectively (Fig. 6.1.4A).

The results for speed limits of 200km/h and 50km/h (Fig. 4.1.4; section “The cytoskeleton and the German

autobahn exhibit similar network properties”) demonstrate that the autobahn network displays a unimodal

degree distribution that peaks around its mean and that it exhibits significantly shorter path length and a

significantly higher AC than the null model networks. The same holds true for all considered speed limits

(Fig. 6.1.4B and C; one-sample two-sided t-test: all p−values < 0.05). Hence, the findings on the efficiency

of the autobahn networks are robust against moderate changes of the speed limits.
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6.2 Appendix: Cell-specific organization and optimality

of the plant actin cytoskeleton

6.2.1 Multi-objective optimization of weighted networks using semidefinite program-

ming

Optimality of cytoskeletal network organization and trade-offs between different network properties in var-

ious cell types was studied using multi-objective optimization via semidefinite programming [Boyd, 2006;

Wolkowicz et al., 2012]. Since the assortativity and the average size of the connected components cannot

be expressed, or conveniently approximated, via a semidefinite program, we focus here on the Herfindahl

index, the average path length, the average maximum flow, and the algebraic connectivity. The studied

multi-objective function is a linear combination of our network properties of interest (cf. Eqs. 4.3.1, 4.3.3,

4.3.4, and 4.3.5),

max cH · v
′
H + cL · v

′
L + cF · v

′
F + cC · v

′
C (6.2.1)

subjectto
∑
e∈E

we = 1 (6.2.2)

pH , pL , pF , pC , (6.2.3)

where the first two lines are explained in the Materials and Methods and the third line indicates the con-

straints that are explained below. The first set of constraints for the minimization of the Herfindahl index is

given by

pH : v∗
H = − ∑

e∈E

he , (6.2.4)

he = w2
e ,

0 ≤ he , we , v∗
H ≤ 1 ∀e ∈ E ,

where the first two quadratic equations may readily be expressed as a semidefinite constraint,

v∗
H ≥ wT 1T 1w ⇔

(
v∗

H w

wT 1

)
º 0. (6.2.5)

While the minimization of the average path length for a given network with fixed edge weights can be written

as a linear program, simultaneous optimization of the edge weights leads to a mixed-integer, or mixed-

binary, linear program [Jensen and Barnes, 1980; Schrijver, 1998]. Despite efficient solvers [Linderoth and

Ralphs, 2005; Achterberg, 2009], such problems are not feasible for networks of the size studied here (for

N =O
(
103

)
nodes there are P =O

(
106

)
paths between all pairs of nodes and together with E =O

(
103

)
edges

this implies P · E = O
(
109

)
binary variables). Therefore, we used a linear relaxation of the mixed-binary
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problem so that the second set of constraints for the minimization of the average path length is given by

pL : v∗
L = − (2EP )−1

∑
p∈P

∑
e∈E

b+
p,e +b−

p,e , (6.2.6)

le a+
p,e = b+

p,e ∀p ∈P ,e ∈ E ,

le a−
p,e = b−

p,e ,

le = w−1
e ∀e ∈ E ,

∑
m∈N

a+
p,e=(n,m) −a−

p,e=(m,n) =


1 if n = psource

−1 if n = psink

0 otherwise

, ∀p ∈P ,

0 ≤ a+
p,e , a−

p,e , v∗
L ≤ 1 ∀p ∈P ,e ∈ E ,

0 ≤ b+
p,e ,b−

p,e ≤∞,

1 ≤ le ≤∞,

where P = {(
psource, psink

) | psource, psink ∈N
}

is the set of all P = |P | pairs of nodes. Moreover, we employed

the length le = w−1
e of an edge, given by its inverse weight. While this constraint is quadratic and non-convex,

its relaxation le we ≥ 1 may be approximated using a semidefinite programming relaxation,

1

2
(w, l)

(
0 1

1 0

)
(w, l)T ≥ 1 ⇔ 1

2
Trace

(
V

(
0 1

1 0

))
≤ 1 (6.2.7)

V = (w, l) (w, l)T ,

relaxation : ⇒ 1

2
Trace

(
V

(
0 1

1 0

))
≤ 1

V º (w, l) (w, l)T .

The third set of constraints for the maximization of the average maximum flow is given by a linear program

[Jensen and Barnes, 1980],

pF : v∗
F = P−1

∑
p∈P

yp , (6.2.8)

0 ≤ x+
p,e ≤ we ∀p ∈P ,e ∈ E ,

0 ≤ x−
p,e ≤ we

∑
m∈N

x+
p,e=(n,m) −x−

p,e=(n,m) =


yp if n = psource

−yp if n = psink

0 otherwise

∀p ∈P ,

0 ≤ x+
p,e , x−

p,e , yp , v∗
F ≤ 1 ∀p ∈P ,e ∈ E .
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Finally, the fourth set of constraints for the maximization of the algebraic connectivity is given by a semidef-

inite program [Boyd, 2006; Sun et al., 2006]

pC : v∗
C = γ, (6.2.9)

γ1−β11T −L ¹ 0,

0 ≤ v∗
C ,γ,β ≤ 1 ∀p ∈P ,e ∈ E ,

where L is the graph Laplacian (cf. Eq. 4.3.6).
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6.3 Appendix: System-wide organization of the actin cytoskeleton

drives organelle transport in plant cells

6.3.1 Confocal recording of actin cytoskeleton and Golgi bodies in hypocotyl cell of

FABD-GFP and tdT-CesA6 dual-labeled Arabidopsis thaliana seedlings

Confocal recording of actin cytoskeleton and Golgi bodies in hypocotyl cell of FABD-GFP and

tdT-CesA6 dual-labeled Arabidopsis thaliana seedlings (cf. digital version or http://mathbiol.mpimp-

golm.mpg.de/CytoSeg/Data/CytoSeg_movie.avi).

6.3.2 Generation of artificial cytoskeleton images, manual segmentation of actin im-

ages, and comparison of network extraction procedures

The network extraction procedure employed four parameters vwidth, vthres, vsize and vint. The parameters

reflect the width of the detected filaments, the intensity threshold that separates actin foreground from cel-

lular background and the minimal size and minimal average intensity of the segmented filament center lines

(cf. Figs. 4.4.1A-D). Their optimal values were determined in a gauging step employing contrived images of

known, cytoskeleton-like structures and manual segmentations of biological cytoskeleton images as a gold

standard for comparison against the automated segmentation results.

First, for the manual segmentations, we randomly chose 20 of the investigated actin cytoskeleton images.

For these images, we performed the preprocessing steps described in Materials and Methods in Section 4.4

and manually segmented the center lines of the filaments (cf. 4.4.1H).

Second, we created 20 empty images of 100× 500pixels in size, comparable to the typical cellular region

of interest. For each image, we created ten auxiliary images by drawing two random points uniformly dis-

tributed over the image area, adding a line of unit intensity between these points, blurring the line with

a Gaussian filter of random standard deviation uniformly drawn from the interval [0.5,1.5] and rescaling

the average image intensity to one. We superimposed all ten auxiliary image to obtain a cytoskeleton-like

structure of filaments of different thicknesses. Finally, we added gamma distributed noise such that both

mean and standard deviation of the contrived image intensity were similar to those of the biological images

(cf. 4.4.1G). While noise in digital camera images is typically a combination of Gaussian-distributed sensor

noise, gamma-distributed speckle noise and Poisson-distributed shot noise, we adhered to simple gamma

distributed noise for simplicity here, which was similar to that in the biological cytoskeleton images.

Finally, we briefly review other, existing methods for the extraction of networks from different image sources

and systems of interest. The first class of approaches typically relies on two-dimensional image data and

employs classical image segmentation for network extraction: From high contrast dark-field microscopy

images of leaves, venation networks were extracted in a supervised procedure [Dhondt et al., 2012]. How-

ever, due to the high signal-to-noise ratio (SNR), no filters to enhance the signal of the curvilinear veins

were applied, as necessary for the cytoskeletal images. Edge weights capturing the thickness of the under-

lying structures were not computed, but are essential for understanding the cytoskeleton. Moreover, only
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the largest connected component of the venation network was kept, which removes smaller, disconnected

parts of the network that commonly occur in the cytoskeleton. Finally, while the supervised adjustment of

extraction parameters increases flexibility, it requires manual input, thereby also introducing user bias.

Using a fully automated extraction procedure, photographic image series were used to extract networks

formed by slime moulds [Baumgarten and Hauser, 2012]. Again, the high SNR did not necessitate enhance-

ment of curvilinear structures. A background subtraction was performed by subtracting the first frame of

the image series before the growth of the slime mould which is not applicable to the cytoskeletal image data.

The thickness of the veins was measured by counting the average number of pixels per vein length which is

reasonable for slime mould images. Yet, this measure ignores the underlying image intensity which is a bet-

ter estimator of thickness for cytoskeletal filaments and bundles whose diameter is typically well below the

resolution limit of confocal microscopes [Cooper, 2000]. The parameters of the procedure were determined

manually without gauging or comparison to a known gold standard.

Our network extraction procedure was inspired by another, more sophisticated method for the extraction

of fungal networks from photographs [Obara et al., 2012b]. While there the curvilinear vein structures were

enhanced using a contrast-independent phase-congruency filter [Obara et al., 2012a], we employed a faster

and widely used tubeness filter for simplicity [Sato et al., 1998]. As for the slime mould network above, the

vein thickness was only determined based on the average pixel numbers per vein length and we extended

the thickness computation by taking into account pixel intensities. Moreover, we adopted the gauging of

the free image analysis parameters by computing the average smallest distances between the center lines of

manually segmented gold standard images and automated segmentations. However, [Obara et al., 2012a]

considered only one direction, dmanu→auto, which clearly favors undersegmentation, i.e. an excess of pixels

in the automated segmentation (cf. Fig. 4.4.1I). Instead, we included the opposite direction and minimized

the Haussdorf distance dHD = 1
2 (dmanu→auto +dauto→manu) in the gauging step to avoid both under- and

oversegmentation (cf. Fig. 4.4.1J; [Mayerich et al., 2012; Xu et al., 2015]). Thus, although the average smallest

distance dmanu→auto . 1pixel in [Obara et al., 2012a,b] was smaller than our dHD > 3pixels, this is due to the

poorer SNR of the original cytoskeletal images as well as the trade-off between under- and oversegmentation

incorporated in dHD.

Another class of approaches for the detection of networks from image data does not rely on segmentation

but encompasses tracing-, tracking- or open contour-based approaches [Mayerich and Keyser, 2008; Mei-

jering, 2010; Xu et al., 2014; Peng et al., 2015a; Xu et al., 2015]. Instead of (global) image segmentation, these

approaches typically identify two or more points on the network and find a connecting path through the

network by optimization of an (usually local) energy function. Since many of these approaches have been

originally developed for the reconstruction of neural networks, they are directly suitable for the extraction of

three-dimensional network structures. However, since most existing approaches in this class require manual

user input, we focus our discussion on a recent, fully automated open contour-based approach, called SOAX

[Xu et al., 2014, 2015], whose strengths and limits are large representative for the related approaches: Espe-

cially for large sets of three-dimensional image data, SOAX is faster than segmentation-based approaches.

Furthermore, we note that SOAX incorporates resampling of the three-dimensional image data to compen-

sate the decrease in SNR towards to distant side of the cell (cf. discussion of periodic boundary conditions

in the main text). However, while our highly time-resolved recordings of the cytoskeleton displayed low

SNR ≈ 1, the image data studied in [Xu et al., 2015] displayed high SNR ≈ 3 which rendered filters for the
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(A) actin network edge e (B) actin network
property symbol Eq. property symbol Eq.
Euclidean edge length ae,E - avg. frac. nodes / conn. comp. S 6.3.5
filament edge length ae,F - avg. edge capacity E[ac ] 6.3.6
filament edge length ae,B 6.3.1 assortativity A 6.3.7
edge weight ae,w - rel. crossing number X 6.3.8
edge capacity ae,c 6.3.2 avg. shortest path length E[L] 6.3.9
edge length ae,l 6.3.3 CV of shortest path lengths CV[L] 6.3.10
edge angle ae,a 6.3.4 algebraic connectivity C 6.3.11
edge degree ae,deg 6.3.13 edge angles CV[aa] 6.3.12
edge rank ae,rank 6.3.14 (C) Golgi flow network edge e
edge path betweenness ae,path 6.3.15 property symbol Eq.
edge flow betweenness ae,flow 6.3.16 number ge,n 6.3.18

wiggling ge,w 6.3.19
intensity ge,i 6.3.20
direction ge,d 6.3.21
velocity ge,v 6.3.22
combinations e.g. ge,d+v -

Table 6.3.3: List of studied (edge) properties of actin and Golgi flow networks. (A) Edge properties of actin
networks that were used to compare networks across conditions and time and edge properties used to pre-
dict organelle flow (cf. (C)). Some edge properties are local (ae,E to ae,a) while some consider the role of the
edge in the network context (ae,deg to ae,flow). (B) Properties of actin network that were used for quantifi-
cation of cytoskeletal phenotypes and assessment of transport efficiency. (C) Edge properties of Golgi flow
network derived from Golgi tracking data, taking into account numbers, intensities, velocities and directions
of Golgi as well as combinations of these properties.

enhancement of curvilinear structures unnecessary. Nevertheless, such filters [Sato et al., 1998; Obara et al.,

2012a] may be readily applied in open contour-based approaches as well. Moreover, [Xu et al., 2015] em-

ployed manual segmentations and careful parameter gauging to optimize the network extraction quality

and found dHD > 1pixels which outperforms our approach, but benefited from higher SNR. Finally, while

our presented approach, including the image preprocessing, involves only 6 parameters, SOAX employs

more than 20 parameters in total.

Despite the differences in the image segmentation procedures, which have been designed for different im-

age sources and systems of interest, systematic gauging (cf. Fig. 4.4.1) provides a means to adjust the free pa-

rameters of any of the above segmentation procedures. While automated segmentation methods are steadily

improving, a quantitative comparison with manual, expert-driven segmentations remains crucial.

6.3.3 List of studied (edge) properties of actin and Golgi flow networks

After extracting the actin cytoskeletal networks from image data, we computed various seminal properties to

quantify cytoskeletal phenotypes and evaluate transport efficiency (cf. Fig. 4.4.2). The actin cytoskeleton at

a given time is represented by a weighted, undirected network G = (N ,E ) of N = |N | nodes with positions

xn ∈ R2, n ∈ N , and E = |E | edges with weightings ae , e = (n,m) ≡ (m,n) ∈ E . We considered different

weightings of the actin edges (Tab. 6.3.3A): The Euclidean length ae,E of an edge e is the Euclidean distance

between its two nodes and its filament length ae,F is given by the arc length of the curvilinear filament
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segment (cf. Materials and Methods in Section 4.4). In addition, we derived the filament bending as the

ratio of filament and Euclidean length,

ae,B ≡ B = a−1
e,E ae,F , (6.3.1)

which is close to one for straight filaments (cf. definition of convolutedness in [Staiger et al., 2009]). The

edge weight ae,w is the intensity of the image summed along the filament segment. The edge capacity,

ae,c = a−1
e,F ae,w , (6.3.2)

captures the average weight per unit length of the filament segment and reflects the average thickness of a

filament segment. The edge length,

ae,l = a−1
e,c , (6.3.3)

is given by the inverse capacity. Moreover, we quantified the alignment of filament segments by the angle

between the respective edge and the cell axis unit vector xcell,

ae≡(n,m),a = arccos

(
(xn −xm) xcell

‖xn −xm‖‖xcell‖
)

. (6.3.4)

The organization of the extracted networks was quantified by various seminal network properties

(Tab. 6.3.3B): To study the connectedness of a given network, we removed all edges with capacities below

the 50th percentile and computed the average fraction of nodes per connected components,

S = (N I )−1
I∑

i=1
Ni , (6.3.5)

where I is the number of connected components and Ni , i ∈ {1, . . . , I }, is the number of nodes in component

i . As a measure of actin bundling across the cell, we computed the average edge capacity,

E[ac ] = E−1
E∑

e=1
ae,c . (6.3.6)

As a measure of heterogeneity of the actin distribution, we calculated the assortativity,

A = 1

2E

N∑
n=1

N∑
m=1

(
w(n,m) −

dndm

2E

)
dndm , (6.3.7)

which is positive if nodes are preferentially connected to nodes of similar degrees, hence detecting regions

of spatially clustered bundling of the actin cytoskeletal.

The assessment of the actin networks’ transport efficiency employed ensembles of randomized null model

networks. The null model as well as the extracted networks may exhibit crossing edges (cf. Materials and
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Methods in Section 4.4) and the frequency of such crossings was measured by the relative crossing number,

X = E−1
∑

e, f ∈ E

e 6= f

e × f , (6.3.8)

where e × f = 1 if edges e and f cross and 0 otherwise. Moreover, the average shortest path length was

computed as a standard measure of transport efficiency,

E[L] = 1

2N (N −1)

N∑
n=1

N∑
m = 1

m > n

Ln,m , (6.3.9)

where Ln,m = minP ∈Pn,m

∑
e∈P a−1

e,c and Pn,m is the set of all paths from node n to m [West, 2001]. The

dispersal of the transport efficiency was measured by the CV of the shortest path lengths,

CV[L] = SD[L]

E[L]
, (6.3.10)

where SD denotes the standard deviation. The robustness of the transportation network against disruptions

was evaluated by the algebraic connectivity,

C = λ2, (6.3.11)

which is the second smallest eigenvalue of the graph Laplacian LG = DG −AG and is zero for a disconnected

network [West, 2001]. Here, DG is the diagonal matrix of the capacity-weighted node degrees and AG is

the capacity-weighted connectivity matrix of G . Finally, the alignment of filament segments in the cell was

measured using the CV of edge angles,

CV[aa] = SD[aa]

E[aa]
. (6.3.12)

To correlate the flow of organelles with the structure of the actin network, we derived two networks with

identical structure and different edge weightings that we referred to as actin and Golgi flow networks, re-

spectively (cf. Fig. 4.4.4; Tabs. 6.3.3A and C). The studied (local) edge properties of the actin network were

given by the edge weight ae,w and capacity ae,c . Moreover, we investigated the (global) importance of a given

edge in the actin network context using several betweenness measures. First, we introduced the edge degree

as a semi-local measure of actin organization,

ae,deg = ∑
f ∈ E

e ∼ f

a f ,c , (6.3.13)

where e ∼ f indicates adjacent edges. This measure may be conveniently computed in the line graph LG of
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G , whereby each node in LG represents an edge in G and two nodes in LG are adjacent if the corresponding

edge share a node in G [West, 2001]. In the line graph LG , the edge degree ae,deg simply corresponds to the

capacity-weighted degree of the node e. Analogously, we computed another famous property of an edge e

in the line graph LG with capacity-weighted connectivity matrix ALG , i.e. its page rank

ae,rank = α
∑
f ∈E

ALG ,e, f D−1
LG ,e, f a f ,rank, (6.3.14)

where DLG is the diagonal matrix of capacity-weighted node degrees of the line graph and classicallyα= 0.85

[Brin and Page, 1998; Langville and Meyer, 2005]. Moreover, we computed the shortest path edge between-

ness which counts the number of shortest path between any two nodes in the network that pass through a

given edge,

ae,path = ∑
n,m ∈N

n 6= m

1 , ife ∈P shortest
n,m

0 , otherwise,
(6.3.15)

where P shortest
n,m = argminP ∈Pn,m

∑
e∈P a−1

e,c . Similarly, we computed the maximum current flow edge be-

tweenness which is the maximum flow across an edge summed over all pairs of nodes that are treated as

unit sinks and sources of the flow, respectively,

ae,flow = ∑
n,m ∈N

n 6= m

Fn,m,e , (6.3.16)

where Fn,m,e is the maximum flow between nodes n and m across edge e.

The studied edge properties of the introduced Golgi flow network considered the movement of Golgi close

to an edge (Tab. 6.3.3C). At a given time, the center points Golgi track segments are given by yt≡(u,v) =
2−1 (xu +xv ), t ∈ {1, . . . ,T }, where yu and yv denote the endpoints of the track segment t ≡ (u, v). The mini-

mum distance between the track segments center point yt and an edge e was computed as

dt ,e≡(n,m) = min
λ∈[0,1]

∥∥yt − (xn +λ (xm −xn))
∥∥ . (6.3.17)

Then, as a first simple measure of Golgi flow, we computed the number of close-by Golgi,

ge,n =
T∑

t=1
Θ

(
dthres −dt ,e

)
, (6.3.18)

where dthres = 20pixels throughout the manuscript. To measure the wiggling behavior of Golgi, we com-
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puted the angle between consecutive track segments,

ge,w =
T∑

t=1
Θ

(
dthres −dt ,e

)
ωt , (6.3.19)

where ωt≡(u,v) = arccos

(
(yu−yv )

(
y

u
′−y

v
′
)

‖yu−yv‖
∥∥∥y

u
′−y

v
′
∥∥∥
)

and yu′ and yv ′ are the endpoint of the track segment in the next

time step. If there was no next track segment in the track, we setωt≡(u,v) = 0. Moreover, the average intensity

ιt of the Golgi was used a measure for their size (Appendix 6.3.5),

ge,i = g−1
e,n

T∑
t=1
Θ

(
dthres −dt ,e

)
ιt . (6.3.20)

The direction of the Golgi track segments with respect to the respective actin edges was computed as

ge,d = g−1
e,n

T∑
t=1
Θ

(
dthres −dt ,e

)
δt ,e , (6.3.21)

where δt≡(u,v),e≡(n,m) = (xn−xm )(yu−yv )
‖xn−xm‖‖yu−yv‖ . Finally, the average Golgi velocity in the vicinity of an edge was

calculated as

ge,v = g−1
e,n

T∑
t=1
Θ

(
dthres −dt ,e

)
νt , (6.3.22)

where νt =
∥∥yt

∥∥.

6.3.4 Inference of network design principles using two different null models and neg-

ative controls

We demonstrated that the actin cytoskeleton displays network properties supportive of efficient transport

processes (cf. Fig. 4.4.2). In particular, by proposing suitable null models, we showed that this transport

efficiency arises from the specific organization of the cytoskeleton in biological cells, hence indicating an

evolutionary basis. Here, we discuss and justify our proposed null models in more detail.

The first null model randomly and uniformly distributes the node positions across the cell and assigns the

edges to new, randomly chosen pairs of nodes whose distance matches the Euclidean length of the respec-

tive edge, while keeping the number of edges crossings low (cf. Figs. 4.4.2H-J and Materials and Methods

in Section 4.4). This procedure is a modified version of the Erdős–Rényi model with hidden variables that

has been used to identify structural features of various real world networks [Caldarelli et al., 2002; Hayashi,

2006]. In our version, the hidden node variables are given by their positions and the probability of adding

an edge between two nodes depends on their Euclidean distance and the fraction of edges from the original

network of identical (binned) length that have not already been added to the null model network. Moreover,

as an extension to the hidden variable model, for each added edge, we tried 50 possible pairs of nodes and

assigned the edge such that the number of intersections with already added edges was smallest.
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Figure 6.3.3: Assessment of biological significance of actin network properties using two null models.
Differences between cytoskeletal networks from control cells (green), cells treated with LatB (orange) and
randomized null model networks (gray). (A) Boxplot of the number of crossings per edge in the original
actin networks with E[X ] = 0.04±0.02 and network derived from the first null model with E[X ] = 0.14±0.11.
(B) Boxplot of the ratio r of the number of edges in the extracted actin networks and the corresponding first
null model networks. By construction, the ratio is larger than 1 and the number of edges in the first null
model networks was increased by E[r ] = 1.12±0.07 on average. (C) Boxplot of the nearest neighbor index
NNI which captures the spatial distribution of node positions in the extracted actin networks. Values be-
low 1 indicate a stronger spatial clustering than expected from a random and uniform distribution of node
positions and the observed nearest neighbor index was E[NNI] = 0.83± 0.09 on average for the extracted
networks. (D) Example of an original extracted actin network with edge colors reflecting the edge capaci-
ties. (E) Example of network obtained from our second null model, i.e. by shuffling of the edge properties
(cf. (C)). The structure of the randomized network is identical to that of the original network. (F) Boxplot of
the ratios of various network properties of the extracted networks and an ensemble of networks obtained
from the second null model. Again, the significance of the differences when considering the second null
model remained unchanged when compared to the differences found from employing the first null model
(independent two-sample t-tests p-values pt < 0.05 were considered significant; cf. 4.4.2I). (G) Analysis of
biological significance of various network properties of the reconstructed actin network for LatB-treated
cells using the first null model. In contrast to the cytoskeletal networks of the untreated control cells, no sig-
nificant differences were observed (all pt ≥ 0.05; cf. 4.4.2I). (H) Analysis of various network properties using
the second null model showed no biological significance of cytoskeletal network properties in LatB-treated
cells (all pt ≥ 0.05; cf. also 4.4.2I).
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This null model preserves the distribution of edge capacities, whose sum reflects the amount of filamentous

actin in the cell. The null model further maintains the length distribution of filament segments. Although

the generated null model networks are in general not planar, their average relative crossing number is small,

with E[X ] = 0.14± 0.11 crossings per edge (Fig. 6.3.3A). We note that while the extracted actin skeleton is

planar by construction (all filament crossing are nodes; cf. Fig. 4.4.1D), the reconstructed actin network may

exhibit crossing edges since the edges are modeled as straight lines between the nodes, so that E[X ] = 0.04±
0.02 already for the original networks. Moreover, since the null model networks are generally not connected

we added edges of minimum total Euclidean length to connect the network. Yet, across all generated null

model networks, the number of edges Enull of the null model networks exceeds the number of edges Ebio.

of the corresponding extracted networks only by a factor E[r ] = 1.12± 0.07 (Fig. 6.3.3B; cf. Materials and

Methods in Section 4.4), where

r = Enull

Ebio.
. (6.3.23)

Furthermore, in contrast to the nodes in the null model networks, the nodes of the extracted actin networks

were typically not randomly and uniformly distributed across the cell. We quantified the spatial distribution

of node positions using the nearest neighbor index (NNI; [Cover and Hart, 1967]),

NNI =
1

N 2(N−1)

∑N
n,m=1 dn,m

1
2

(
Acell

N

)1/2
, (6.3.24)

where dn,m = ‖xn −mm‖ is the Euclidean distance between nodes n and m, n,m ∈ N , N = |N |, and Acell

is the area of the cellular region of interest. Averaged across all extracted networks, we found E[NNI] =
0.83± 0.09 (Fig. 6.3.3C). This NNI below 1 indicates a stronger spatial clustering of nodes than expected

by chance. This clustering is consistent with the visible actin-free regions in the cells (cf. Fig. 4.4.2A). In

addition, the extraction procedure does not allow nodes at neighboring pixels, violating the assumption of

a uniform distribution of nodes (cf. Fig. 4.4.1 and Materials and Methods in Section 4.4).

To overcome these shortcomings, we introduced a second, more restricted null model in which all node

positions of the original extracted network (Fig. 6.3.3D) were kept and only edge properties were shuffled

(Fig. 6.3.3D). This procedure has been previously used in [Breuer et al., 2014; Breuer and Nikoloski, 2014]

with a similar purpose, i.e. to study the biological relevance of properties of a grid-approximation of the

cytoskeleton. The null model preserves the total amount of filamentous actin and further leaves the con-

nectedness and planarity of the original network unchanged. All investigated properties of the extracted net-

works showed the same significant differences to the second null model as to the first null model (Fig. 6.3.3F;

cf. Fig. 4.4.2I; independent two-sample t-tests p-values pt < 0.05 were considered significant). Namely, the

average path length and the CV of the path lengths were smaller than expected by chance, while the algebraic

connectivity and the assortativity were larger then expected by chance. By construction, the distribution of

edge angles in the second null model networks was identical to that of the original networks, yielding a unit

ratio of the CV of edge angles. In conclusion, our two different null models yielded consistent results and

were able to capture biologically relevant signals.

Moreover, as a negative control, we assessed the biological relevance of transport-related properties of cy-
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Figure 6.3.4: Additional analyses of Golgi movement and wiggling in dependence of actin cytoskeleton.
Results for cells of untreated control plants (green), cells of plants treated with the actin-disrupting drug LatB
(orange) and the combined data (black). (A) Overlay of cellular recording of Golgi and Golgi flow network
with edge colors representing the relative angle of close-by Golgi tracks, capturing the wiggling behavior of
Golgi. (B) Caption continued on next page.

toskeletal networks extracted from recordings of LatB-treated cells (Figs. 6.3.3G and H; cf. Fig. 4.4.2). Indeed,

none of the studied properties of the cytoskeletal networks of the LatB-treated cells showed significant dif-

ferences for either of the two null models (all pt ≥ 0.05). This absence of deviations from transport-related

properties of randomized networks in chemically perturbed cells further supports our claim that the em-

ployed null models are suitable to uncover biological design principles.

6.3.5 Golgi wiggling in dependence of actin cytoskeleton and frequencies of Golgi

switching between filaments

In our quantitative analysis of cellular transport dynamics, we combined automated tracking data of Golgi

with automated extraction of actin cytoskeletal networks (cf. Fig. 4.4.3). Here, we discuss two of these anal-

yses in more detail, the investigation of Golgi wiggling in dependence of actin structures and the movement

of Golgi along and between filaments.
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(B) Distributions of average relative angles of close-by Golgi tracks per edge in dependence of capacity of the
respective edge for control and LatB-treated cells. The average relative angles approached 90◦ with increas-
ing edge capacities (right panel; dashed lines indicate averages and dotted lines are discussed below). The
distributions of average relative angles exhibited peaks close to 85◦ and 104◦ for control and LatB-treated
cells, respectively (left panel; dashed lines, cf. Fig. 4.4.3G). For the control cells, 10% of the edges showed av-
erage relative angles below 45◦, reflecting predominant directed movement of close-by Golgi and 4% showed
average relative angles above 135◦, reflecting predominant wiggling behavior of close-by Golgi. For LatB-
treated cells, these fractions were roughly reversed with 4% and 13%, respectively. (C) Scatter plot of Golgi
diameters and average intensities estimated from the Golgi detection step (cf. Materials and Methods in
Section 4.4) showed a strong positive correlation (Pearson correlation coefficients cP ≈ 0.9 and all p-values
pP < 0.05). (D) Overlay of cellular recording of actin cytoskeleton from control cell (green) and extracted
actin network (dark green). (E) Section of overlay of an extracted actin network (dark green; cf. (D)) and its
line graph (gray) which has a node for each edge in the original network and a link between nodes that rep-
resent adjacent edges. (F) Scatter plots of the length of the shortest path connecting the two edges which are
closest to a given track segment’s start- and end-points and the associated maximal angle along the shortest
path. Golgi bodies that did not move to a different edge were assigned to the “stay” class. Track segments
were assigned to the “move” or “jump” class if they moved to a different edge while the corresponding short-
est path between the two edges was below or above 90◦, respectively. (G) Scatter plot of the length of the
shortest path connecting the two edges which are closest to a given track segment’s start- and end-points
and the associated Golgi velocity shows positive correlations for control and LatB-treated cells as well as the
combined data (cP ≈ 0.3 and all pP < 0.05). (H) Scatter plot of the maximal angle along the shortest path
connecting the two edges which are closest to a given track segment’s start- and end-points and the associ-
ated Golgi velocity shows moderate correlations for control and LatB-treated cells as well as the combined
data (cP > 0.2 and all pP < 0.05).

We confirmed that the Golgi wiggling behavior is not Golgi-specific [Akkerman et al., 2011] and showed

further that the prevalence of Golgi wiggling behavior is stationary over the course of the recording period

and does not depend on the distance from the actin cytoskeleton (cf. Figs. 4.4.3H-J). However, the actin cy-

toskeleton is composed of filaments and bundles of varying thickness and it has been suggested that arrays

of fine actin filaments promote wiggling [Akkerman et al., 2011]. To test this hypothesis in detail, we em-

ployed our extracted, weighted network representation of the actin cytoskeleton. We constructed a Golgi

flow network in which the edges of the actin network were assigned a measure of Golgi wiggling (Fig. 6.3.4A,

cf. Materials and Methods in Section 4.4). To this end, for each edge, we considered all Golgi in a vicinity

of 20pixels of the edge and computed their average relative angle of movement (cf. e.g. Fig. 4.4.3H), where

angles above 90◦ were considered as wiggling behavior. For both control and LatB-treated cells, this aver-

age relative angle showed no significant correlation with the capacities of the actin edges, i.e. their average

thickness (Fig. 6.3.4B). In particular, the average relative angles approached 90◦ for larger edge capacities

which may be explained by the larger number of Golgi close to thick edges (cf. Fig. 4.4.4L; linear regression

yielded a slope of s = 391). Therefore, assuming that the relative angle were distributed randomly across

Golgi tracks, the standard deviation of average relative angle decreased and the expected average relative

angle approached 90◦ (cf. dotted black lines). These findings suggest that the thickness of close-by actin

bundles does not influence the Golgi wiggling behavior. However, this is still compatible the observation

that arrays of fine actin filament increase Golgi wiggling [Akkerman et al., 2011] since the thickness of indi-

vidual filaments studied here does not capture the surrounding actin environment. We note that Golgi size

is strongly correlated with the average Golgi intensity (Fig. 6.3.4C; Pearson correlation coefficients cP ≈ 0.9

and p-values pP < 0.05) so that Golgi intensity may be used as an estimator of Golgi size (cf. Fig. 4.4.4).
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We further quantified the movement of Golgi along and between filaments and distinguished three classes

(cf. Fig. 4.4.3M). To this end, we assigned the start- and end-points of each track segment to their near-

est edge in the actin network that we refer to as start- and end-edge, respectively. From the original actin

network (cf. Fig. 6.3.4D, green), we constructed the line graph (cf. Fig. 6.3.4E, gray), i.e. a graph which has a

node for each edge in the original network and a link between nodes that represent adjacent edges (cf. [Hem-

minger and Beineke, 1978; West, 2001] and Appendix 6.3.3). We computed the shortest paths from the start-

to the end-edges through the line graph of the actin network. For a given shortest path, we calculated the

path length and the maximal angle between any two adjacent edges along the path. We then classified

different types of Golgi movement (Fig. 6.3.4F; the classes are referred to as “stay”, “move” and “jump”),

depending on the minimum number of edges traversed by the Golgi and the associated maximal angle be-

tween traversed edges of the cytoskeletal network. The frequencies of Golgi in these different classes showed

stationary Golgi, Golgi likely moving along a given filament, as well as Golgi switching between different,

non-adjacent filaments (cf. Fig. 4.4.3M). A closer inspection further showed that less than 1% of Golgi track

segments in the “move”-class traversed more than 10 edges of the actin network. This supports the assump-

tion that the most Golgi in this class did not switch to a different filament but moved along a single filament.

Next, we investigated the relationship between Golgi velocity and redistribution across AFs (cf. Fig. 6.3.4F).

Both, the maximal angle along the shortest path from the start- to the end-edge and its path length were

moderately correlated with the velocity of the respective Golgi (Figs. 6.3.4G and H; cP ≈ 0.3 and cP > 0.2,

respectively, and all pP < 0.05). This indicates that faster Golgi are more likely to move to a different AF.

6.3.6 Directionality of actin edges and correlations of actin edge properties

Our analyses of the transport capacity of the actin cytoskeleton rely on the assumption of undirected edges,

i.e. edges that allow bi-directional transport (cf. Fig. 4.4.2). To elucidate the biological plausibility of this

assumption, were constructed an additional type of Golgi flow networks (cf. Fig. 4.4.4) by weighting the

edges according to the average angle between the respective edge and the close-by Golgi track segments

(Fig. 6.3.5A). For an edge that allows predominantly uni-directional transport, this average angle is expected

to be below 45◦ or above 135◦. However, only around 15% of the edges showed such predominantly uni-

directional transport (Fig. 6.3.5B, left) and we found no correlation between the uni-directionality of trans-

port of an edge and its capacity, i.e. its thickness (Fig. 6.3.5B, right).

When investigating the flow of Golgi along the actin cytoskeleton, we considered several local and global

edge properties of the actin network as regressors or predictors of the Golgi flow (cf. Fig. 4.4.4 and Appendix

6.3.3). Across the studied networks, there were on average E = 218±52 edges (dependent variables) whose

flow properties were predicted using sets of 5 different actin edge properties (predictors). Since the number

of predictors was much smaller than the number of dependent variables, overfitting was not an issue. More-

over, the reliability of the multiple linear regression results might be affected by colinearity of the predictors

which may be quantified by the condition number n. Across the studied network, the median of the con-

dition number Md[n] = 16.93±4.36 was below 20, suggesting that our findings were not severely affected

by colinearities [Belsley, 2006]. Here, the median was used to exclude the effect of outliers and the confi-

dence interval was accordingly determined by the median absolute deviation Mad[n] = Md[|n −Md[n]|].
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Figure 6.3.5: Directionality of Golgi movement along edges in actin networks and correlations of actin
edge properties. Results for cells of untreated control plants (green), cells of plants treated with the actin-
disrupting drug LatB (orange) and the combined data (black). (A) Overlay of cellular recording of Golgi
and Golgi flow network with edge colors representing edge directionality, capturing the average angle be-
tween network edge and close-by Golgi track segments. (B) Distribution of edge directionality in depen-
dence of capacity of the respective edge for control (upper panels) and LatB-treated cells (lower panels).
The edge directionality was not correlated with the edge capacity, i.e. thicker edges did not imply stronger
uni-directionality of transport. For the control cells, 16% of the edges showed predominantly uni-directional
transport with angles below 45◦ or above 135◦. For the LatB-treated cells, 14% of the edges showed predom-
inantly uni-directional transport. Refer to Fig. 6.3.4B for detailed explanation of the panels. (C) Heat maps
of the colinearity between the studied actin edge properties for the original, non-periodic networks (upper
panels) and the periodic networks (lower panels). The colinearities were averaged across all time points of
all control cells (left panels) or the minimum value was taken (right panels). In all cases, the edge path and
flow betweenness were strongly correlated. The edge capacity, degree and rank were mutually correlated
on average but the minimum colinearity revealed lower colinearity, especially for the periodic networks.
(D) Scatter plot of edge flow betweenness versus edge path betweenness showed strong correlations with
Pearson correlation coefficients cP = 0.97 and cP = 0.98 for control and LatB-treated cells, respectively. (E)
Boxplot of the ratio t of the number of edges in the extracted actin networks and the corresponding span-
ning trees (the spanning tree has, by definition, N−1 edges). Since the original actin networks are connected
by construction, the ratio is larger than 1 and there were on average E[t ] = 1.03±0.02 times more edges in
the actin networks than in the corresponding spanning trees.
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Analyzing the colinearity of the predictors in more detail, we computed the colinearity of any two actin edge

properties x and x
′

(Fig. 6.3.5C), via

Cx,x′ =
∑E

e=1 ae,x ae,x′(∑E
e=1 ae,x ae,x

) 1
2
(∑E

e=1 ae,x′ ae,x′
) 1

2

. (6.3.25)

Some of the studied actin edge properties were strongly correlated, such as the edge path betweenness and

the edge flow betweenness (Fig. 6.3.5D). Although these two properties generally measure different aspects

of the importance of an edge in the network context, they are identical for tree-like networks of unit edge

capacities and lengths [Brandes and Fleischer, 2005]. We therefore quantified how tree-like our studied

actin networks were by computing the ratio of their number of edges E and the number of edges N −1 in the

corresponding spanning trees (Fig. 6.3.5E),

t = E

N −1
. (6.3.26)

Indeed, there were on average only E[t ] = 1.03± 0.02 times more edges in the actin networks than in the

corresponding spanning trees, thus explaining the strong correlation between the edge path and flow be-

tweennesses.
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6.4 Appendix: DeFiNe: an optimization-based method for

robust disentangling of filamentous networks

6.4.1 Mathematical formulation of the filament cover problem

The structure of a filamentous network is described by a weighted geometric graph G = (N ,E ) with N = |N |
nodes and E = |E | undirected, weighted edges. Edges represent filament segments and nodes represent their

endpoints. The positions of the nodes are vn , n ∈ N , whereby, typically, vn ∈ R2 or vn ∈ R3 for networks

extracted from image data. We focus on geometric networks because filaments are embedded in space, but

our approach is readily applicable to non-geometric graphs. The edge weights are we , e := (n0,n1) ∈ E and

n0,n1 ∈N .

To decompose the graph G into individual filaments it is natural to decompose it into paths, i.e., to solve

a path cover problem (PCP). The PCP has been intensively studied on different types of graphs and with

various restrictions (e.g. [Rao and C., 1990; Andreatta and Mason, 1995; Lin et al., 1995; Pak-Ken, 1999; Lin

et al., 2006; Brešar et al., 2011]). There are several potential routes (cf. [Andreatta and Mason, 1995] for an

overview of the PCP for testing printed circuits): (1) We may either use node- or edge-paths, where a path

p = (
ap,1, . . . , ap,P

)
is an ordered sequence of P = ∣∣p∣∣ pairwise adjacent nodes (a ∈ N ) or edges (a ∈ E ),

respectively, and ap,i denotes the i -th node or edge of filament p. (2) The paths may be either node-disjoint,

edge-disjoint, or unrestricted. (3) The objective of the PCP may be either to obtain a cover of minimum

cardinality or minimum weight.

For our purpose, the decomposition of a filamentous network into individual smooth filaments, it seems

reasonable to look for an edge-path cover where each edge is covered by (at least) one path and the total

(or average) roughness is minimized. Edges that are covered by more than one path naturally correspond

to filament overlaps. The minimization of the average instead of the total roughness favors shorter paths

which may be appropriate for some networks.

To define our filament cover problem (FCP) more rigorously, we introduce the roughness rp of path p and

the set P of all paths in G :

Given a set E of edges and a set P of paths with roughnesses rp , p ∈P :

Find a subset Pfil ⊆P with minimal total (or average) roughness R such that each element in E

is covered (at least) once.

The roughness measure rp of a path p can be chosen arbitrarily and may involve, e.g., the edge weights or

the edge alignments. An intuitive choice is the pairwise filament roughness of p (cf. Eq. 4.5.1),

rp,pair =
(P −1)−1 ∑P−1

i=1

∣∣∣wep,i+1 −wep,i

∣∣∣ , P > 1

wep,1 , P = 1
, (6.4.1)

where wep,i denotes the weight of the i -th edge in filament p. The pairwise filament roughness is the average

absolute value of the difference between weights of adjacent edges. It reflects the consistency of the edge
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Figure 6.4.1: Proof of NP-hardness of the filament cover problem. (A) Optimal filament cover of an exem-
plary (edge-weighted) graph. Table with cover roughnesses R for minimization of total or average roughness
and pairwise or all-to-all filament roughness measure, respectively. (B) Corresponding (node-weighted) line
graph with equivalent path cover and the same roughness results as for the (edge-weighted) graph in (A). (C)
Extension of an arbitrary graph with node weights 1 by a node of weight E . Here, finding a (node-weighted)
path cover of roughness R = (0+0+·· ·+ (E −1))/(E −1) = 1 or less is equivalent to finding a Hamiltonian
path. This equivalence holds for covers minimizing the total or average roughness of the cover and using
the pairwise or all-to-all filament roughness measure (Eqs. 6.4.1 and 6.4.2), see table.

weights along a filament which is typically smaller within than across filaments (but cf. Discussion). More-

over, if the path consists of a single edge we take its weight as a roughness measure. This choice increases

the flexibility of the obtainable filament covers and is necessary to avoid a cover by only individual edges

which contribute zero weight when weighted only according the first line in Eq. 6.4.1. Another measures for

the quality of a filament is the all-to-all filament roughness (cf. Eq. 4.5.2)

rp,all =


(P −1)−1 max

i , j∈{1,...,P }

∣∣∣wep,i −wep, j

∣∣∣ , P > 1

wep,1 , P = 1
, (6.4.2)

which is the average maximal difference between any edge weights in a path p, and again the original weight

of the edge is used for a path of length one. Taking into account that most filaments are only moderately

bent, we may further wish to minimize the maximal filament deflection angle between adjacent edges of a

path p (cf. Eq. 4.5.3),

rp,angle = max
i∈{1,...,P−1}

(6.4.3)

angle

(
vep,i+1,1 − vep,i+1,0 , vep,i ,1 − vep,i ,0

)
where vep,i ,0 and vep,i ,1 denote the positions of the start and end nodes of the i -th edge of filament p, re-

spectively. Moreover, angle
(
v, v

′)
:= arccos

(
v ·v ′

p
v ·v

p
v ′ ·v ′

)
is the Euclidean angle of two vectors v and v

′
and

rp,angle = 0◦ corresponds to perfectly straight alignment.
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6.4.2 Computational intractability of the filament cover problem

The FCP is difficult to solve. This is intuitively clear as the number of paths (let alone the number of path

covers) increases rapidly with the number of nodes N . Even in planar graphs, the number of closed paths

visiting each node once was shown to increase at least exponentially with N [Buchin et al., 2007; Biswas

et al., 2012]. We show now that the FCP is NP-hard, even for planar, cubic graphs. Planar graphs can be

drawn on a plane without crossing edges. They are of particular relevance since graphs that are generated

from two-dimensional image data are planar by construction [Baumgarten and Hauser, 2012; Obara et al.,

2012b]. Cubic graphs have only nodes of degree three. A proof of NP-hardness of a problem for planar, cubic

graphs directly implies its NP-hardness on general graphs. The basic idea of a typical proof of computational

complexity is as follows [Garey and Johnson, 1979]: A problem of known complexity is selected. By providing

a constructive transformation or reduction, a bijection between the known problem and the problem in

question is established, i.e., any yes-instance of the decision-version of the known problem is mapped to a

yes-instance of the decision-version of the problem of interest and analogously for the no-instances. This

reduction proves that the two problems fall into the same class of computational complexity. Our proof is

by reduction from the Hamiltonian path problem (HPP) on planar, cubic graphs which is known to be NP-

complete [Garey et al., 1976]. The HPP asks, for a given graph, whether there is a node-path which visits

each node exactly once.

First, we note that finding a filament cover on an edge-weighted graph G is equivalent to finding a node-path

cover on its node-weighted line graph L (G) (Fig. 6.4.1A and B). The line graph L (G) of a graph G has a node

of weight we for each edge e in G and edges connecting two nodes if the corresponding edges share a node

in G .

Second, for a given line graph L (G), we construct a graph such that finding a node-path cover of weight 1 or

less is equivalent to solving the HPP. To that end, we add one edge with a terminal node to the line graph and

set all original node-weights to 1 and the new node-weight to E (Fig. 6.4.1C). Then, only a Hamiltonian path

ensures a minimal weight of R = C−A ∑C
i=1 rpi = 1

1
(0+···+(E−1))

(E−1) = 1, for both pairwise and all-to-all filament

roughness rp = {
rp,pair,rp,all

}
(cf. Eqs. 6.4.1 and 6.4.2) and both minimization of total and average filament

roughness, i.e., A ∈ {0,1}.

Finally, we show that finding a Hamiltonian path on a line graph of a planar, cubic graph is NP-complete. It

was shown that the HPP is NP-complete on general line graphs via a reduction from the HPP in cubic graphs

[Bertossi, 1981]. This reduction remains valid when planar, cubic graphs are used instead of cubic graphs,

for which NP-completeness of HPP is known [Garey et al., 1976]. Therefore, the decision version of the FCP

is NP-complete and the FCP is NP-hard, as claimed. Since the FCP is NP-hard on planar, cubic graphs, it is

(at least) NP-hard on general graphs.

6.4.3 The filament cover problem on trees is solvable in polynomial time

While we showed that the FCP is NP-hard on general and even planar, cubic graphs, it is solvable in poly-

nomial time on trees. The polynomial algorithm outlined here is similar to those proposed to find an unre-

stricted node-path cover where each vertex may be included in multiple paths of minimum cardinality or

minimum weight [Lin et al., 2006].
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The basic idea is to assume that a certain path covering a certain edge is in the cover (in a tree, there are at

most N (N −1)/2 = O
(
N 2

)
paths to choose from). Upon removal, the tree is split into potentially multiple

forests (at most O (N )), each tree of which is decomposed in the same way. The procedure is repeated for

each edge (clearly O (N ) in a tree). Thus, this results in a dynamic programming algorithm which has an

overall polynomial time complexity of O
(
N 4

)
.

The above procedure assumes non-overlapping paths and may be extended to limitedly overlapping paths.

For the completely unrestricted case, there would be O
(
2#paths

)=O
(
2N 2

)
combinations for covering a given

edge to chose from in the first step, and the time complexity of the algorithm would be exponential. How-

ever, the problem remains polynomial if we allow only k-fold overlaps, k = O (1), i.e., each edge may be

covered by at most k paths. In the first step of the above algorithm, a given edge may then be covered by

at most O

((
N (N −1)/2

k

))
=O

(
N 2k

)
edges and consequently the time complexity of the full algorithm is

O
(
N 2k+2

)
.

6.4.4 Approximation algorithm for the filament cover problem

Since the FCP is NP-hard even on planar, cubic graphs, we need suitable approximation algorithms. In

particular, the approximation algorithms should allow overlapping filaments as well as looped filaments. A

natural choice seems to be the formulation of the FCP as a set cover problem (SCP) [Karp, 1972]:

Given an object set U , called universe, and a set S of sets with costs cs , s ∈S :

Find a subset Sset ⊆ S with minimal total (or average) cost such that each element in U is

covered (at least) once.

In our case, the universe corresponds to the set of edges of the given graph (U =̂E ), a set corresponds to a

path (s=̂p), the cost of a set corresponds to the roughness of a path (cs=̂rp ), and the set cover corresponds

to the desired filament cover (Sset=̂Pfil). We note, that this formulation of the SCP allows overlapping sets,

s ∩ s
′ 6= ;, s, s

′ ∈ S , which directly translates into overlapping filaments in our FCP. By requiring that each

element in U is contained in Sset exactly once, we may exclude filament overlaps.

An open task is then the generation of a suitable set of paths (S =̂P ). Since for a general graph it is not

feasible to find all paths P (cf. the motivation of the NP-hardness proof of the FCP above), we need to find a

representative subset ,P
′
, of paths. We propose two approaches: (1) We sample paths from T = 100 random

minimal spanning trees (RMST) of G . To obtain a RMST, each edge is assigned a uniformly distributed

random weight and the minimum spanning tree with respect to these weights is computed. Each tree has

N (N −1)/2 non-trivial, undirected paths that we add to our set P
′
. However, the paths in a tree cannot

contain loops. (2) We perform a modified breadth-first search (BFS) on the nodes, store the generated paths,

and stop the search for a path p when it violates a straightness criterion, e.g., rp,angle < 60◦ (cf. Eq. 6.4.3)

which is used throughout the paper. We add all permitted paths to P
′
. We note that for all real-world

filamentous graphs, due to filament thickness, there are spatial constraints on the number of nodes of a

graph as well as on the node degrees. Moreover, for the filamentous networks considered here, the radius

of curvature of a filament is typically not much smaller than the region of interest. The number of loops
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is further reduced by the straightness criterion which eliminates paths with a small radius of curvature.

Hence, the number of loops in the network is restricted and our heuristically modified BFS allows for loops

and yields a representative set P
′

in reasonable time.

The SCP may be expressed as a binary fractional linear program [Vazirani, 2001], and we analogously write

the FCP as

minimize

∑
p∈P rp,pairxp(∑

p∈P xp
)A

(6.4.4)

subjectto
∑

p:e∈p
xp ≥ 1foralle ∈ E

xp ∈ {0,1} forall p ∈P
′
,

where in the first line A ∈ {0,1} determines whether the total or the average roughness is minimized. In the

second line, equality holds for an exact cover. For A = 0, Eq. 6.4.4 is a binary linear program that may be

solved using well-established and efficient algorithms [Schrijver, 1998; Linderoth and Ralphs, 2005].

For A = 1, the fractional problem may be rewritten as a binary linear program as well [Wu, 1997; Yue et al.,

2013]. To that end, we introduce new variables y = (∑
p∈P xp

)−1 and zp = xp y , p ∈P
′
. The latter expression

is non-linear but may be replaced by a set of binary linear equations, yielding

minimize
∑

p∈P

rp zp (6.4.5)

subjectto
∑

p:e∈p
zp ≥ y foralle ∈ E∑

p∈P

zp = 1

y ≥ 0

y − zp ≤ M −M xp

zp ≤ y

zp ≤ M xp

zp ≥ 0

xp ∈ {0,1} forall p ∈P .

Here, M is a sufficiently large constant that needs to exceed any y (cf. the Big M method [Griva et al., 2009]).

Since y =
(∑

p∈P
′ xp

)−1 ≤ 1 for the cover of any non-empty graph, we choose M = 2.

Thus, there are a number of options in our FCP: The input set of paths may be obtained by using a mod-

ified BFS or from sampling RMSTs or (denoted by either BFS or RMST). The filaments may overlap or not

(over/exact). The objective of the FCP may be the minimization of the total or the average roughness (to-

tal/avg). The roughness of a filament may be measured by the pairwise or the all-to-all filament roughness

(pair/all). Solutions of the FCP with different options are compared in the Results.

An implementation of the presented approximation schemes to the FCP with the described options

is supplied as an open-source tool, “DeFiNe” (Decomposing Filamentous Networks), under GLP3 at

http://mathbiol.mpimp-golm.mpg.de/DeFiNe/. DeFiNe is programmed in Python [Van Rossum and Drake,
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2011] and employs the packages SciPy [Olivier et al., 2002], NetworkX [Hagberg et al., 2008], and Cvxopt

[Dahl and Vandenberghe, 2006] and PyGTK [Finlay, 2005] for a simple and user-friendly graphical user in-

terface. DeFiNe takes as input a weighted graph in the standard .gml file format [Himsolt, 1997] and outputs

a standard .gml graph with filament identities stored as edge colors. Node coordinates may be included

in the input file to enable the modified BFS that takes into account edge alignments. Furthermore, manual

filament assignments may be included in the input file and the similarity with the automatically obtained fil-

ament cover is assessed as described below. In addition, DeFiNe generates a standard, human-readable .csv-

table of various individual filament measures for custom analyses. The filamentous structure as well as the

manual filament assignments shown in Fig. 4.5.1 are available as a .gml file under the above internet address

for demonstration purposes.

6.4.5 Extraction of weighted networks from images

The procedure used to extract weighted networks from image data is similar to those proposed in [Baum-

garten and Hauser, 2012; Obara et al., 2012b]: (1) The original gray-scale image are pre-processed to enhance

the filamentous structures. Here, a vesselness filter with kernel width of 2pixels was used for simplicity

[Frangi et al., 1998]. (2) In the filtered image, the filamentous structures are separated from the background

by applying an adaptive median threshold with a block size of 49pixels, whereby moderate variations of this

size leave our findings largely unchanged. (3) The resultant binary image is skeletonized to obtain the fila-

ment center lines [Haralick et al., 1987]. (4) Then, the nodes of the network under construction are extracted

as terminal points, branching points, or crossings of skeleton branches. (5) An edge is inserted between two

nodes if they are directly connected via the skeleton. (6) Finally, the edges are weighted by integrating the

intensity of the underlying original gray-scale image smoothed with a Gaussian filter with a standard devia-

tion of 5pixels along the filament and taking its average per unit length of the filament. For the images of the

simulated galaxy clusters, the structures obtained by a model-based filter from [Stoica et al., 2005], Figure 6

left middle and bottom rows, are directly employed as binary images and the networks representations are

obtained as described above.

6.4.6 Quality assessment of filament covers via structure-aware partition similarity

measures

The extraction of the filamentous networks from image data enables comparison of the automated filament

cover with manual filament assignments. Both, automated cover and manual assignment may be regarded

as partitions (where we allow overlapping subsets as well). As measures for the similarity of the automated

and manual partitions we use the variation of information,VI, the Jaccard index, JI, and the Rand index, RI,

which are commonly used and were shown to estimate similarity reliably for distant and close partitions

alike [Saporta and Youness, 2002; Meilă, 2005; Denœud and Guénoche, 2006]. For given partitions C =
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Figure 6.4.5: Comparison of classical and extended partition similarity measures. Analysis of 100×2 ran-
dom partitions of sets of 100 numbers plus 10 duplicate ones into 5−10 partitions (A-B). Analysis of a 100×2
path covers of Euclidean minimum spanning trees with 100 nodes distributed uniformly in the unit square,
where the paths are drawn randomly and added if the overall overlap of paths is below 10 edges (C-F). Anal-
ysis of the similarities between the manual and automated decompositions of the networks studied in the
paper (G). (A) Color-representation of two exemplary random partitions as explained above. (B) The clas-
sical partition similarity measures VI, RI, and JI are not correlated (cf. Kendall rank correlation coefficients
τ < 0.9) and may lead to opposing conclusions for the similarity of different partitions. (C) Two exemplary
random tree path covers with overlaps ( =©). (D) The classical partition similarity measures VI, RI, and JI
show no correlation among themselves (except for the pairing of RI and JI), nor with the structure-aware
RI1 and JI1. In contrast, RI1 and JI1 are very strongly correlated (cf. τ > 0.9) and yield consistent results for
the similarity of different partitions. (E) Similarity of the partitions shown in (C) in dependence on maxi-
mal distance d between considered pairs of edges (cf. Fig. 4.5.3 for a detailed discussion). The RId shows a
non-monotonous dependency on d (triangle). (F) This non-monotonicity of RId may be explained by the
entries of the contingency table h×,×′ , ×,×′ ∈ {=, 6=}. For small distances d , the fraction of true positives (solid
black, h=,=) drops slower than the fraction of true negatives (dotted black, h 6=,6=) and for larger d , this trend
is reversed. Hence, their sum (dashed blue) shows a minimum at intermediate distances d (triangle). In
contrast, when summed up (solid yellow), the fast drop in the fraction of true positives dominates over the
slightly non-monotony of the false positives and negatives. (G) For the investigated artificial and biological
networks, the classical measures VI, RI, and JI yield partially opposing results on the similarity of the manual
assignment and the automated decomposition (cf. τ< 0). The structure-aware similarity measures RI1 and
JI1 are strongly correlated and yield consistent results (cf. τ= 0.952).
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{C1, . . . ,CC } and C
′ =

{
C

′
1, . . . ,C

′
C ′

}
, they are computed via

VI
(
C ,C

′) = 1+ (
U logU

)−1 · (6.4.6)

·∑
i , j

gi , j

(
log

(
gi , j

g ·, j

)
+ log

(
gi , j

gi ,·

))
,

RI
(
C ,C

′) = h=,=+h 6=,6=
h=,=+h=,6=+h 6=,=+h 6=,6=

, (6.4.7)

JI
(
C ,C

′) = h=,=
h=,=+h=,6=+h 6=,=

, (6.4.8)

where U =∑C
i=1 |Ci | =∑C

′
j=1

∣∣∣C ′
j

∣∣∣, gi , j =
∣∣∣Ci ∩C

′
j

∣∣∣, g ·, j =∑C
i=1 gi , j , and gi ,· =∑C

′
j=1 gi , j . The contingency tables

h×,×′ , ×,×′ ∈ {=, 6=}, provide the numbers of edge pairs which are in the same or different sets in the two par-

titions, respectively, and is related to gi , j as shown in [Hubert and Arabie, 1985]. All measures are restricted

to the unit interval with larger values reflecting higher similarity [Meilă, 2003].

While these measures of partition similarity are widely used [Meilă, 2005; Lancichinetti and Fortunato,

2009b], they pose some difficulties. The variation of information, VI, is only well-defined for disjoint par-

titions, which occur for non-overlapping filaments. While the Jaccard index, JI, and the Rand index, RI,

cover intersecting partitions they may generally yield opposing results. We demonstrate this inconsistency

by investigating two types of random partitionings: First, for 100 repetitions, we randomly partitioned 2 sets

of 100 numbers and up to 10 duplicates (to simulate overlapping filaments) into 5−10 random partitions

(Fig. 6.4.5A). While VI and JI were correlated (Fig. 6.4.5B; cf. Kendall rank correlation coefficient τ > 0), the

other two combinations showed a strong negative correlation (cf. τ < 0). Second, to study filament covers

that resemble the decomposition of real filamentous networks more closely, we constructed a relative neigh-

borhood graph [Toussaint, 1980; Supowit, 1983] with 100 nodes uniformly distributed in the unit square and

computed a random minimum spanning tree (Fig. 6.4.5C). For 100 repetitions of this procedure, we parti-

tioned the resultant tree into filaments by choosing a path at random and adding it to the decomposition if

the total overlap of any two paths already in the decomposition is below 10 edges (cf. =© for overlaps). Again,

the correlation among the classical similarity measures was poor or negative (Fig. 6.4.5D; except for the cor-

relation between RI and JI; |τ| < 0.6). Although other measure for the similarity of intersecting partitions

have been proposed [Goldberg et al., 2010; Lancichinetti and Fortunato, 2009a; Lancichinetti et al., 2009],

we adhere to RI and JI for simplicity.

More severely, however, the above similarity measures do not take into account the structure of the graph

G underlying the (edge-)partitions induced by the obtained filament covers. To date, we are only aware

of structure-aware similarity measures for the comparison of partitions whose items are distributed in Eu-

clidean space [Zhou et al., 2005; Bae et al., 2010; Coen et al., 2010]. Yet, these approaches do not take into

account the explicit graph structure of the partitions. To remedy this shortcoming, we introduce a suite of

measures, the structure-aware Rand and Jaccard index, RId and JId , respectively. To that end, the contin-
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gency tables h×,×′ in Eqs. 6.4.7 and 6.4.8 are replace by distance dependent hd
×,×′ ,

RId
(
C ,C

′) =
hd=,=+hd

6=,6=
hd=,=+hd

=,6=+hd
6=,=+hd

6=,6=
, (6.4.9)

JId
(
C ,C

′) = hd=,=
hd=,=+hd

=,6=+hd
6=,=

(6.4.10)

where hd
×,×′ , ×,×′ ∈ {=, 6=}, d ∈N>0, count the number of edge pairs which are in the same or different sets in

the two partitions, respectively, and which are separated by at most d nodes in G . More precisely, we define

hd
×,×′ =

{
#(e0,e1) | e0 ∈Ci ∩C

′
i ′

, e1 ∈C j ∩C
′
j ′

, (6.4.11)

with i × j and i
′ ×′

j
′
andDL(G) (e0,e1) ≤ d

}
,

where #(e0,e1) is the number of edges (e0,e1) and DL(G) (e0,e1) is the length of the shortest path between

nodes in the line graph L (G) of G corresponding to the edges e0 and e1. For example, h0=,= counts the the

number of adjacent edges which are in the same set in both partitions (local perspective). In contrast, h∞
×,×′ ≡

h×,×′ reproduce the original measures which do not take into account the positions of edges in the graph

(global perspective).

To investigate the performance of our extended, structure-aware partition similarity measures, RId and JId ,

we apply them to the artificial graph-based random partitions described above (cf. Fig. 6.4.5C). Indeed, when

considering the partition membership of neighboring edges only, i.e., RI1 and JI1, the similarity measures

yield very consistent results (Fig. 6.4.5D; cf. τ = 0.999) in contrast to the lower correlation with the classi-

cal similarity measures (cf. τ < 0.9). Investigating the dependency of RId and JId on the distance d for the

tree filament covers shown in Fig. 6.4.5D, we find that RI and JI (Fig. 6.4.5E; dotted blue and yellow) over-

and underestimate the partition similarity with respect to RI1 and JI1 (Fig. 6.4.5E; solid blue and yellow).

Furthermore, we find that RId is non-monotonic in d (Fig. 6.4.5E; cf. the black triangle). These errors in es-

timation are explained by the large fraction of false negatives (h 6=,6=) and the small fraction of true positives

(h=,=), respectively, which dominate for large distances d , i.e., the limit in which the graph structure is ig-

nored (Fig. 6.4.5F; dotted black and solid black). Due to the differential increase/decrease of h 6=,6=/h=,=, their

combination and therefore RI1 is non-monotonic (Fig. 6.4.5F; dashed blue). Finally, we observe opposing

results of the classical partition similarity measures also for the filament covers of artificial and biological

filamentous networks investigated in the main text, while our extended, structure-aware measures RI1 and

JI1 provide consistent similarity results (Fig. 6.4.5G).

6.4.7 Robustness of filament covers against incomplete knowledge of underlying net-

work structure and image noise

Our approach enables accurate decomposition of a given filamentous network into its constitutive filaments

(cf. Results). However, the preceding extraction of the network from image data is often non-trivial (cf. Meth-

ods). Therefore, to assess the robustness of our approach, we test how the accuracy of our filament de-
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Figure 6.4.6: Analyses of robustness of filament covers against incomplete knowledge of network and im-
age noise. A cytoskeletal and a contrived network are decomposed automatically by solving the FCP with
options given in Fig. 4.5.3C and Fig. 4.5.1C, respectively. (A) Overlay of extracted actin network structure and
original image data (left panel). Sections of cytoskeletal network with edge colors representing the manual
assignment, the optimal filament cover obtained for the full, non-disrupted network, and the optimal fil-
ament cover after removal of two edges which are shown in white (right panels). (B) Similarity of manual
filament assignment and automated filament covers after removal of increasing numbers of edges, mea-
sured by structure-aware Jaccard index JI1. On average, JI1 decreases with the number of removed edges as
shown by a linear fit with slope s = −0.0021 (solid gray line). Occasionally, the removal of edges increases
the accuracy of the filament cover above the accuracy of the original solution (dotted gray line and triangle;
cf. panel (A)). (C) Sections of cytoskeletal network with edge colors representing the original edge weights
and the edge weights after adding Gaussian noise (left panels). Sections of cytoskeletal network with edge
colors representing the manual assignment, the optimal filament cover obtained for the full, non-disrupted
network, and the optimal filament cover after adding Gaussian noise (right panels). (D) Similarity JI1 of
manual filament assignment and automated filament covers after adding Gaussian noise. On average, JI1

decreases with increasing noise factor as shown by a linear fit with slope s = −0.0009 (solid gray line). Oc-
casionally, the noisy edge weights lead to an increase in accuracy of the filament cover above the accuracy
of the original solution (dotted gray line and triangle; cf. panel (C)). The decrease levels off for large noise
factors and JI1 approaches a constant value (dashed gray line). (E) Overlay of extracted contrived network
structure and original image data. (F) Results for the contrived network analogue to those presented for the
cytoskeletal network in panel (B). The average change in JI1 per removed edge is captured by a linear fit with
slope s = −0.0009. (G) Results for the contrived network analogue to those presented for the cytoskeletal
network in panel (f). The average change in JI1 per unit increase in the noise factor is captured by a linear fit
with slope s =−0.0005.
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composition is affected (1) by incomplete knowledge of the true underlying network structure and (2) by

image noise which affects the edge weights of the extracted network. We perform these analyses for the

actin cytoskeleton shown in Fig. 4.5.3 (Fig. 6.4.6A, left panel) and the contrived network shown in Fig. 4.5.1

(Fig. 6.4.6E).

(1) First, we start from the original, weighted network and randomly remove one of the E edges to model er-

roneous segmentation. For the disrupted network, we recompute the optimal filament cover (with the same

options as in Figs. 4.5.1C and 4.5.3C, respectively) and calculate its agreement with the original manual

segmentation (measured by the structure-aware Jaccard index JI1; the removed edge is assigned a dummy

label). We repeat the procedure for E networks from which a single, randomly chosen edge has been re-

moved. Next, we repeat the procedure for E networks from which a randomly chosen double of edges has

been removed. We then proceed with triplets, quartets, and so on up to subsets of 50 randomly chosen

edges.

As expected, the removal of increasing numbers of edges typically decreases the agreement of the automated

filament cover with the manual assignment for the cytoskeletal as well as the contrived network (Fig. 6.4.6B

and F). For both networks, however, the decrease is slow and JI1 increases only by around 0.002 per removed

edge (cf. Fig. 6.4.6B and F, solid gray line indicates linear fit). Interestingly, for the actin cytoskeleton, the

removal of certain edges may even increase the accuracy of the filament cover (Fig. 6.4.6A, right panels show

manual filament assignment and automated filament cover the original network, and an exemplary filament

cover obtained after the removal of two edges, colored white here, which improves the agreement with the

manual assignment; cf. Fig. 6.4.6B, dotted gray line and triangle).

(2) Second, we simulate image noise by adding centered Gaussian noise ∆w to the edge weights of the orig-

inal network with

E[∆w] = 0, (6.4.12)

Sd[∆w] =
(
1+ f

100

)
w. (6.4.13)

We normalize the standard deviation of the added noise by the original edge weights to avoid extreme fluc-

tuations, and f is referred to as noise factor. For each noise factor, we construct 100 networks, recompute

the optimal filament covers, and measure their agreement with the manual filament assignment, as in the

first scenario above.

For both the contrived and the cytoskeletal network, the accuracy of the filament cover decreases with in-

creasing noise, as expected (Fig. 6.4.6D and G). However, this decrease in accuracy is slow and JI1 decreases

by less than 0.001 when increasing the standard deviation of the noise by 1% of the original edge weights,

i.e., when increasing the noise factor by one (cf. Fig. 6.4.6D and G, solid gray lines indicate linear fits). We

note that with increasing edge noise the accuracy of the filament cover approaches a constant, non-zero JI1

which reflects that some information about the filament structure maybe obtained from the topology of the

network alone, irrespective of the edge weights (cf. Fig. 6.4.6D and G, dashed gray lines).
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Figure 6.4.7: Filament analyses of 100 cytoskeletal networks. Results from filament decompositions of
100 cytoskeletal networks extracted from a movie of a plant cytoskeleton over 200s. The cytoskeletal net-
works are decomposed automatically by solving the exact FCP (exact) for paths from a modified breadth-
first search (BFS) and by minimizing the total (total) pairwise filament roughness (pair; cf. Fig. 4.5.3). (A)
The distribution of median filament angles shows that the majority of filaments is aligned parallel to the cell
axis (gray dashed line). (B) Filament lengths (bars) follows a gamma distribution (line shows maximum like-
lihood fit). (C) Filament length correlates with filament weight (cf. linear regression and Pearson correlation
coefficient cP > 0 and p-value pP < 0.05) (D) Scatter plot of filament convolutedness versus filament length
shows a negative correlation (cf. red squares, cP,conv < 0, and pP,conv < 0.05) with an average convolutedness
of E[C ] = 1.23±0.17. The maximum filament angle correlates negatively with the filament length (cf. gray
circles, cP,angle < 0, and pP,angle < 0.05), indicating that longer (and thicker, cf. (C)) filaments are less curved.
(E) Time series of average filament weight over 200s shows large fluctuations and is non-stationary (cf. aug-
mented Dickey-Fuller test p-value pADF ≥ 0.05). (F) Time series of filament length and convolutedness are
stationary over the recording period (cf. pADF,length < 0.05 and pADF,conv < 0.05).
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6.4.8 Filament analysis for networks extracted from movie of plant actin cytoskeleton

To further strengthen our statistical analyses of cytoskeletal actin filaments (cf. Fig. 4.5.3), we investigate a

complete movie of a plant cytoskeleton of 100 frames over 200s (cf. Methods for details). For each frame, we

extract a weighted network representation of the cytoskeleton as described above (cf. Methods for details)

and solve the FCP with options described in Fig. 4.5.3, i.e., we solve the exact FCP (exact) for paths from a

modified breadth-first search (BFS) and by minimizing the total (total) pairwise filament roughness (pair).

Analysis of various properties of the automatically obtained filaments confirms our findings in Fig. 4.5.3:

The filaments show a preferential alignment parallel to the cell axis throughout the movie (Fig. 6.4.7A). The

distribution of filament lengths, pooled across the duration of the movie, confirms the reported gamma dis-

tribution (Fig. 6.4.7B; maximal likelihood fits of normal, Weibull, and Rayleigh distributions yield higher val-

ues for the Akaike information criterion [Akaike, 1974]). Filament length is correlated with filament weight,

i.e., longer filaments are typically thicker (Fig. 6.4.7C; Pearson correlation p-value pP < 0.05). Moreover, the

correlation between different measures of filament curvedness, i.e., the filament bending and the maximal

filament angle, are consistently negatively correlated with the filament length (Fig. 6.4.7D; pP < 0.05).

In addition to these previously analyzed features of filamental organization, we study the course of different

filament properties over time: The average filament weight shows large fluctuations and is non-stationary

over the recording period (Fig. 6.4.7E; cf. augmented Dickey-Fuller test p-value pADF ≥ 0.05). This non-

stationarity suggests substantial changes in the prevalence of fine actin filament and thick bundles, respec-

tively, and prompts further investigations. However, we found that the average filament length as well as

the average filament bending remain stationary over the course of 200s (Fig. 6.4.7E; cf. pADF,length < 0.05 and

pADF,conv < 0.05). Since the length distribution of filaments tunes the mechanical properties of filamentous

networks [Kasza et al., 2010; Bai et al., 2011], this stationarity of the average filament length may be of imme-

diate biological relevance. The stationarity of the average filament bending may be a direct consequence of

the roughly constant filament length distribution (cf. Fig. 6.4.7D) in combination with the resultant physical

constraints of actin filament length on filament bending.

6.4.9 Overview of different stages of filament decomposition of artificial, biological,

and cosmic networks

We test our method of decomposing a given weighted network into filaments by solving the FCP for different

filamentous networks. In addition to the four networks presented in the main text and the 100 frames ana-

lyzed in Appendix 6.4.8, we investigate four more networks of different types and show the different stages

of our analysis. Starting from gray-scale image data of contrived, neural, cytoskeletal and cosmic network

structures (Fig. 6.4.9, 1st column), we pre-process the images to obtain a binary representation of the fila-

ment center lines (Fig. 6.4.9, 2nd column), and extract a weighted network representation as described in

the Methods (Fig. 6.4.9, 3rd column). For the contrived and biological and the cosmic networks, we manu-

ally assign filament identities and compute the connected components, respectively (Fig. 6.4.9, 4th column).

Finally, we decompose the networks into filaments by solving the FCP with different options (Fig. 6.4.9, 5th

column). For the first contrived network, we allow overlapping filaments (Fig. 6.4.9A) while for the second,

grid-like contrived network (Fig. 6.4.9B), the neural networks (Fig. 6.4.9C and D), the cytoskeletal networks
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(Fig. 6.4.9E and F), and the cosmic webs (Fig. 6.4.9G and H), we obtain exact filament covers with options

described in Fig. 4.5.1E. The agreement of manual assignments and automated filament decompositions

of the studied networks is measured by the classical and the structure-aware Jaccard indices JI and JI1 and

shows good agreement (JI1 close to 1, and cf. discussion of Fig. 4.5.3D) despite occasional over- (cf. ⊕) or

under-segmentation (cf. ª) of filaments.

6.4.10 Open contour-based filament decomposition and filament cover-based post-

processing

Finally, we demonstrate how our filament cover-based approach may be used to post-process and improve

filament decompositions obtained from other, e.g., open contour-based approaches. For the demonstra-

tion, we select SOAX [Xu et al., 2015], a fully automated, stretching open active contour-based approach

which is available as an open-source software tool to extract a network-like representation (i.e., coordi-

nates of filament center lines as well as junctions are provided) from image data. As a test case, we study

the contrived filamentous structure investigated in Fig. 4.5.1. For a fair comparison of our and the open

contour-based approach, we apply SOAX to the pre-processed and segmented image data (cf. Methods and

Fig. 6.4.10A, second panel) to which we further apply a Gaussian filter of unit standard deviation to obtain

smooth intensity gradients required by the algorithm. SOAX is run using the default parameters and the

resulting filament identities are manually assigned to match those of the manual solution (Fig. 6.4.10B). To

quantify the quality of the decomposition, we manually assign filament identities in our original network

representation (cf. Fig. 6.4.10A, third panel) according to the open contour-based result (cf. Fig. 6.4.10B) and

compare the result to the manual assignment (cf. Fig. 6.4.10A, fourth panel). The structure-aware Jaccard

index JI1 = 0.938 is close to 1 and indicates good agreement between open-contour based decomposition

and manual filament assignment. We note that some junctions/nodes obtained from SOAX are split in two

in comparison to our extracted networks (cf. intersecting #).

Moreover severely, some filaments are over-segmented and thus fragmented (cf. ⊕), especially overlapping

filaments which are not captured in the open contour-based approach (cf. ª). To remedy this shortcom-

ing, we apply our filament cover-based approach to post-process the open contour-based decomposition

and merge over-segmented filament fragments. To this end, we convert the open contour-based filament

representation into a weighted network, where edge weights represent average filament segment intensities

as before (cf. Methods and Fig. 6.4.10C). As before, a collection of paths P
′

is sampled using a breadth-first

search (BFS) and their pairwise roughness values rp , p ∈ P
′
, are computed according to Eq. 6.4.1 (pair).

Then, to take into account the initial open contour-based filament decomposition F as a starting point, in

which certain edges have already been assigned to the a given filament, we modify the roughness values of

the sampled paths: For each initial filament or fragment that is fully contained within a sampled path, the

roughness of that path is decreased by a large value, Rfilament = 104, which is larger than any rp to favor the

inclusion of these filaments or fragments in the optimal filament cover. Since the subtraction of Rfilament

yields negative roughness values which would lead to the inclusion of all these paths, we add another, even
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Figure 6.4.9: Overview of studied networks, manual assignments, and filament covers obtained from solv-
ing the FCP. Original gray-scale image data (1st column), binary images of filament center lines (2nd col-
umn), extracted networks with color-coded edge weights (3rd column), manual filament assignments of
contrived and biological networks and connected connected components of cosmic networks, respectively
(4th column), and automatically obtained filament covers (5th column). Agreement between manual de-
compositions and automated filament cover is quantified by a number of measures (cf., e.g., Methods and
Fig. 4.5.2), here the classical and the structure-aware Jaccard indices JI and JI1 are shown. (A) Contrived
network with crossing and overlapping filaments and a loop (cf. Fig. 4.5.1). (B) For a contrived, grid-like net-
work, the automated decomposition correctly detects most of the filaments (JI1 close to 1). Only the filament
in the bottom right corner with a kink is over-segmented (⊕) because the curvature restriction of the initial
paths does not allow such large angles (about 90◦ here, cf. Eq. 6.4.3). (E) Neural network of hippocamal neu-
ron (cf. Fig. 4.5.2). (D) The decomposition of the network of a retinal ganglion cell shows good agreement
with the manual results (JI1 close to 1). A few filaments are over-segmented (⊕), e.g., due to kinks in the
filaments that are not captured by the initial set of paths (cf. the center ⊕). (E) Cytoskeletal network of actin
filaments (cf. Fig. 4.5.3). (F) For the actin network extracted from the confocal recording of a Lifeact-labeled
cytoskeleton, the automated partitions agrees well with the manual results (JI1 close to 1, and cf. discussion
of Fig. 4.5.3D). A few examples of over- and under-segmentation (ª) are marked. (G) Cosmic web of galaxies
(cf. Fig. 4.5.4). (H) The dense web of simulated galaxies consists of many connected components that are
further decomposed into filaments (cf. Fig. 4.5.4 for a discussion). Image data for panels (G) and (H) from:
Stoica et al., A&A, 434, 423-432, 2005, reproduced with permission c© ESO.

larger constant Roffset = 108 > Rfilament to all roughness values, i.e.,

r
′
p = rp − ∑

f ∈F

f ⊂ p

Rfilament +Roffset. (6.4.14)

For these modified roughness values r
′
p , we solve the FCP by minimizing the total roughness (total) and

allowing for overlaps (over; Fig. 6.4.10D). The resulting post-processed filament decomposition merges sev-

eral filament fragments which were over-segmented by the open-contour based approach and shows very

good agreement of JI = 0.776 and JI1 = 1.000 with the manual filament assignment. Interestingly, in this

decomposition, parts of two filaments are interchanged (cf. ⊕) as in Fig. 4.5.1F for different FCP options.

In conclusion, for any approach that detects filaments from image data and yields a weighted network rep-

resentation, our filament cover-based approach may provide a helpful means to further post-process and

enhance the accuracy of the obtained filament decomposition.
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Figure 6.4.10: Open contour-based filament detection and filament cover-based post-processing. (A) Dif-
ferent stages of our filament cover problem (FCP)-based analysis for a contrived filament structure, from
original image to segmented filament center lines and weighted network representation, manual filament
assignment and automated solution (cf. Fig. 6.4.9A for further explanations). (B) Filaments and junctions
(cf. circles) identified from the segmented filament center line image using SOAX, an stretching open active
contour-based approach [Xu et al., 2015]. Color-coded filament identities were manually assigned to match
those of the manual solution in (A) and excess filament fragments were colored black. While the agree-
ment with the manual solution is good (JI1 close to 1), some filaments are over-segmented (cf. ⊕) and thus
fragmented, especially at locations of filament overlaps (cf. ª). (C) Weighted network representation of the
contrived filamentous structure obtained from SOAX. (D) Using the filament assignments from SOAX in (B)
as a starting point, our filament cover-based approach is used to post-process the filament decomposition,
which merges broken filament fragments and improves the agreement with the manual solution (JI1 = 1).
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