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ABSTRACT 

We demonstrate the improvement of fluorescence immunoassay (FIA) diagnostics in deploying a newly developed 
compact diode-pumped solid state (DPSS) laser with emission at 315 nm. The laser is based on the quasi-three-level 
transition in Nd:YAG at 946 nm. The pulsed operation is either realized by an active Q-switch using an electro-optical 
device or by introduction of a Cr4+:YAG saturable absorber as passive Q-switch element. By extra-cavity second 
harmonic generation in different nonlinear crystal media we obtained blue light at 473 nm. Subsequent mixing of the 
fundamental and the second harmonic in a β-barium-borate crystal provided pulsed emission at 315 nm with up to 20 µJ 
maximum pulse energy and 17 ns pulse duration. Substitution of a nitrogen laser in a FIA diagnostics system by the 
DPSS laser succeeded in considerable improvement of the detection limit. Despite significantly lower pulse energies 
(7 µJ DPSS laser versus 150 µJ nitrogen laser), in preliminary investigations the limit of detection was reduced by a 
factor of three for a typical FIA. 

Keywords: Fluorescence immunoassay, FIA, FRET, Nd:YAG, 946 nm, 473 nm, 315 nm, pulsed DPSS laser, saturable 
absorber 
 

1. INTRODUCTION 
The demand for fast reliable medical diagnostic techniques increased dramatically over the past years. For most of the 
30,000 identified diseases there is no possibility for an early and proper diagnosis. Fluorescence immunoassays (FIA) are 
of growing interest for medical applications as they can detect the cause of diseases on the molecular level. There are 
several assays for blood diagnostics ranging from prenatal diagnostics to cancer precaution in clinical application.1 

The homogeneous FIA scheme under consideration here (Figure 1) is based on the coupling of an antigen to two labelled 
antibodies, which act as donor and acceptor in a fluorescence (or Förster) resonance energy transfer (FRET). The donor 
reagent is excited by UV light and transfers its energy radiationless to the acceptor if they are near to each other. This is 
the case when an antigen is present and the donor- and acceptor-antibody both are bound to it. The acceptor returns to the 
ground state by emitting visible light. Typical donor-reagents for FIA applications are lanthanide chelates, such as 
europium cryptate. The advantage of the donor is the long excited state lifetime (in the sub-ms-regime) allowing a better 
discrimination of the acceptor signal against autofluorescence in time-resolved measurements 2. 

Common light sources for excitation in FIA reader systems are xenon lamps combined with filters or a monochromator 
for wavelength selection. Compact lasers are found only in few systems and to date only nitrogen lasers with emission at 
337 nm seem to be utilized (e.g. KRYPTOR® Cezanne SA, France). Beside the advantages in improvement of detection 
limits and reduction of the expensive reagents, there is a big drawback of applying this laser: for typical FIA donor 
reagents, the 337 nm emission is located on the red-spectral wing of the absorption band ranging from ca. 300 to 320 nm 
(Figure 2). Furthermore, the nitrogen laser possesses the typical disadvantages of pulsed gas lasers, like usually 
significant pulse-to-pulse energy fluctuations, limited gas reservoir lifetime and repetition rate, as well as relatively poor 
beam characteristics, resulting in an ineffective light delivery.  

                                                 
1 Copyright 2006 Society of Photo-Optical Instrumentation Engineers. 
This paper was published in Proceedings of SPIE Vol. 6380 (2006) 63800M and is made available as an electronic 
reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple 
reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for 
a fee or for commercial purposes, or modification of the content of the paper are prohibited. 
2 Correspondence: e-mail: mniederk@llg.gwdg.de; phone: +49 551 5035-52, fax: + 49 551 5035-99, www.llg.gwdg.de 

 



 
 

 
 

Compact pulsed DPSS lasers, as they are currently used in many analytical applications, seem to be perfect light sources 
for FIA systems. They are small, reliable, almost maintenance-free and provide nearly perfect beam characteristics. But 
up to now, compact, commercial pulsed DPSS lasers are only available with Nd3+ as active material and emission 
wavelengths (e.g., 355 and 266 nm for Nd:YAG) not suitable for current FIA readers. Here we demonstrate two 
approaches towards pulsed DPSS laser with emission at 315 nm and first results in combination with a FIA reader 
system. 
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Fig. 1. Principle of the homogeneous lifetime immunoassay TRACE® 

 

Fig. 2. Absorption spectra of FIA-donor europium cryptate and test FIA (Alpha-Fetoprotein Assay, AFP) with emission 
wavelength of used nitrogen laser. 

2. MATERIAL AND METHODS 
2.1 Fluorescence immunoassay 

2.1.1 FIA principle with TRACE® 

Our FIA reader system is designed for immunoassays based on the TRACE® (time-resolved amplified cryptate emission) 
method, a further development of investigations by the Nobel prize-winner Jean-Marie Lehn. Among his studies of 
supramolecular chemistry, he investigated molecular devices that perform Absorption - Energy-Transfer - Emission 
processes (A-ET-E) in which light absorption by a receptor molecule is followed by intramolecular energy transfer to a 
bound substrate which then emits light again. This process can be found in lanthanide-cryptates of europium(III)- and 
terbium(III)-cations with a macrobicyclic ligand containing three bipyridine groups.2-4 In our experiments, the energy of 
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the UV light absorbed by the bipyridine is transferred to the Eu3+-ion bound in the molecular cavity and is emitted by the 
lanthanide ion with its typical long-time luminescence. 

In the TRACE® technology, an antibody is labelled with an Eu3+-trisbipyridinediamine (Eu3+-TBP)-cryptate acting as the 
FIA-donor. For the FIA-acceptor, another fraction of the antibodies is labelled with cross-linked allophycocyanin (APC). 
The FIA-donor is excited with UV light at 337 nm. An energy transfer to the FIA-acceptor can happen if donor and 
acceptor both are linked by the antigen. The acceptor APC then emits around 665 nm. Otherwise, the unlinked donor 
emits light around 620 nm. The ratio of the observed light at 620 nm and 665 nm is a parameter for the amount of 
antigen in the serum. 

2.1.2 FIA reader KRYPTOR® and data evaluation 

We used a modified FIA reader system KRYPTOR® (Cezanne SA, France) with the schematic setup displayed in 
Figure 3. The laser emission is guided by a quartz fiber (diameter 1000 µm) into the reader. There it is directed by an UV 
high reflecting dichroic mirror and focused by a lens into a cylindrical well of a movable reader plate. The non-reflected 
light strikes a photodiode and causes the start signal for the detection electronics. The emission from the 150 µl assay is 
collected by a lens, passes the first mirror and is separated by a second dichroic mirror and two line filters (10 nm 
bandwidth) into the channels for the APC emission at 665 nm and that of Eu3+-TBP at 620 nm. The detection light is 
focused on photomultipliers operating in single-photon counting mode. The FIA reader works at a repetition rate of 
20 Hz, the optimal repetition rate of the implemented nitrogen laser. For other light sources, the maximum repetitions 
rate would be limited to ca. 200 Hz as the lifetime of the excited Eu3+-TBP lies in the lower millisecond regime. The 
conventional laser used with the FIA reader is a nitrogen laser (150 µJ pulse energy and 3.5 ns pulse duration (FWHM)). 

 
Fig. 3. Scheme of the FIA-Reader KRYPTOR ®  

For evaluation of the FIA system with different lasers, two commercial immunoassays were used: one for prenatal 
diagnostic (Alpha-1-Fetoprotein; AFP) and one for prostate cancer diagnostic (total Prostate Specific Antigen; tPSA). 
Each set of samples consisted of three samples with a certain concentration of antigen and ten reference samples without 
antigen. The ratio of energy transfer APC emission at 665 nm is normalized by the Eu3+-TBP emission at 620 nm to 
eliminate fluctuations. This normalized signal is proportional to the antigen concentration. The limit of detection (LOD) 
was obtained from the threefold standard deviation from the reference samples divided by the normalized signal of the 
antigen containing samples. The LOD is given in relative values for comparison of different laser combinations with the 
FIA-reader. 



 
 

 
 

2.2 Pulsed DPSS Nd:YAG-lasers at 315 nm 

2.2.1 Introduction and objectives of laser development 

As explained above, a pulsed solid state laser with emission in the spectral range of 300 to 320 nm seems to be perfect 
for the FIA-application. But up to now there are no commercial lasers with the necessary parameters. A promising 
approach seems to be the frequency up-conversion of the fundamental laser transition in Nd:YAG between the energy 
levels 4F3/2―4I9/2 with emission in the near infrared at 946 nm, subsequent second harmonic generation (SHG) to blue 
light at 473 nm and third harmonic generation (THG) to UV light at 315 nm by mixing of the fundamental with the 
second harmonic. 

In contrast to the well known and widespread application of the 4F3/2 - 4I11/2 transition in Nd:YAG at 1064 nm, the 
4F3/2―4I9/2 transition at 946 nm is rarely used due to several fundamental problems based on the behavior as quasi-three-
level laser transition. Firstly, the lower laser level is located in the ground state manifold that is 0.7% occupied at 293 K. 
Consequently, significant reabsorption losses are the result of the thermal population in the 4I9/2 laser level. Secondly, the 
stimulated emission cross section is about an order of magnitude lower in comparison to the 4F3/2 - 4I11/2 transition. This 
may lead to parasitic lasing or amplified spontaneous emission at 1064 nm. Detailed theoretical investigations on the 
4F3/2―4I9/2 transition are reported by Fan et al.5 and Risk et al.6  

In spite of these problems, DPSS lasers at 946 nm and 473 nm emission are known and have been applied in the last 
decade for several interesting applications like data storage, optical display technology, underwater optical applications, 
remote-sensing of atmospheric water vapor and various kinds of biological and medical applications.7-9 Most of these 
applications need continuous wave (cw) or quasi-continuous wave (q-cw) emission at the fundamental or at the second 
harmonic frequency. For efficient intra-cavity SHG, a more or less complex resonator design 10, 11 and/or a saturable 
absorber as Q-switch, generating multi-kilohertz repetition rates,12, 13 were applied. THG to 315 nm by frequency mixing 
was of minor interest, as it is indicated by only few publications in this field, and only reported for flashlamp-pumped 
lasers with subsequent oscillator amplifier.14, 15 

Our approach to produce 315 nm radiation was the generation of a pulsed emission at 946 nm from a compact diode 
pumped Nd:YAG laser with subsequent extra-cavity second and third harmonic generation. The desired parameters for 
the 315 nm radiation usable in the FIA-reader were more than 10 µJ pulse energy, less than 10 ns pulse duration 
(FWHM) and 200 Hz maximum repetition rate. The laser emission should be easily coupled into a quartz fiber of 
1000 µm in diameter with negligible losses. Another important aspect was a compact cost efficient laser setup with the 
economical potential to compete with the nitrogen laser. 

To apply extra-cavity SHG and THG processes the generation of short pulses with high energy is essential as the overall 
conversion efficiency depends quadratic on the power density of the initial beam. We followed two different approaches 
for Q-switching: utilizing an active, electro-optical Q-switch (β-barium-borate (BBO) Pockels-cell) or a passive one by 
utilizing a Cr4+:YAG saturable absorber. 

2.2.2 Pulsed DPSS-Nd:YAG-laser at 315 nm applying active Q-switching 

The setup of the active Q-switched DPSS laser is depicted in Figure 4. The hemispherical laser resonator is 85 mm long 
and consists of a Nd:YAG rod (1.0 % Nd3+, Ø 2 mm x 4 mm) with anti-reflection coating at the pump wavelength, a 
concave pump mirror (PM) with high transmission coatings at 808 nm (HT@808 > 95%) and high reflectivity at 946 nm 
(HR@946 >99,9 %), and a plan output coupler (OC) with partial reflectivity of 95 % at 946 nm. To avoid parasitic lasing 
at the 4F3/2 - 4I11/2 transition, the coating of the PM was designed for high transmission at 1064 nm 
(PR@1064 nm > 95%). The gain media is mounted with indium foil in a copper block and kept at 19.5°C by use of a 
thermoelectric cooler. A high-power, high-brightness pulsed laser diode (LD; CryLaS GmbH, Germany), operating at a 
central wavelength of 807.8 nm with a maximum repetition rate of 100 Hz, pump-pulse duration of 600 µs and a 
maximum optical output of 40 W, is deployed as pump source. The light of the LD bars was coupled into a fiber with 
core diameter of 600 µm to generate a homogenous pump intensity distribution and focused into the laser gain material 
(spot size of 400 µm diameter) by use of an optical telescope (f1=30 mm; f2=20 mm). Pumping the plain resonator with 
11.6 mJ optical pulse energy and 600 µs pulse duration (pulse power 19.8 W at pump fiber exit) at 10 Hz repetition rate, 
we achieved emission at 946 nm with pulse energies up to 1.6 mJ (2.7 W). The pump threshold for this setup was 2.5 mJ 
(4.2 W pulse power). It was not possible to generate favorable smaller pump spot diameters in the active media as they 
were presented elsewhere 10, 11 due to the high losses and damages in coupling the pump light in fibers with diameter 
below 600 µm. 



 
 

 
 

 
Fig. 4. Scheme of the actively Q-switched DPSS laser at 315 nm. 

For short pulse generation we introduced a combination of BBO-Pockels-cell, a quarter-wave plate and a thin film 
polarizer at Brewster angle into the resonator. Since YAG is an isotropic material, the polarizer is necessary to fix the 
laser polarization, as it is necessary for phase matching in the subsequent nonlinear conversion steps, too. All 
components are anti-reflection coated at 946 nm. Driving the Pockels-cell with a short high-voltage pulse (5 ns; 3.3 kV) 
and pumping the resonator at maximum optical output of the LD, we obtained pulses at 946 nm with 450 µJ pulse energy 
and 22 ns pulse duration (FWHM).  

Furthermore we carried out investigations with a diffusion bonded composite Nd:YAG rod (ONYX Optics Inc., USA) as 
gain medium (length 8.5 mm; diameter 2 mm) consisting of a 3 mm inner section with a 1.0 % Nd3+- doping and two 
YAG caps (each 2.75 mm long). This kind of rod more easily removes the heat, minimizing thermal lensing effects like 
birefringence and bending of the crystal faces,16 as was demonstrated with good results for cw-laser setups.10, 11, 17 In our 
experiments, the use of a composite rod did not improve the output parameters significantly. Obviously, this is due to a 
small thermal load of the rod from the pulsed operation at relative low repetition rates.  

The frequency conversion was realized in an extra-cavity design. There are several media which allow phase matching 
for SHG of 946 nm to 473 nm light at room temperature. Important parameters are the effective nonlinear optical 
coefficient (deff), the damage threshold and, keeping the subsequent THG process in mind, the walk-off angle between 
the fundamental and second harmonic beam. Suitable common crystals for SHG are potassium niobate (KNbO3, FEE 
GmbH, Germany) and lithium borate (LBO, Castech Crystals Inc, China), as well as relatively new media like 
periodically-poled potassium titanyl phosphate (pp-KTP; Raicol Crystal Ltd., Israel) or bismuth borate (BiBO, Castech 
Crystals Inc, China). As each crystal has assets and drawbacks, we decided to investigate all these nonlinear media in our 
setup. With the software SNLO v36 18 (except pp-KTP), the cut of the crystals for optimal phase matching was estimated 
and the crystals with anti-reflection coating were ordered from different suppliers. For polarization plane adjustment to 
the crystal orientation, a half-wave plate at 946 nm was inserted between the resonator and the SHG crystal, as depicted 
in Figure 4.  

THG is only possible in β-barium-borate (BBO, Castech Crystals Inc, China) by mixing of 946 nm with 473 nm light, as 
this media allows phase matching and is transparent at the objective wavelength of 315 nm. As all investigated SHG 
processes base on type I phase matching as well as the THG in BBO, an additional phase retardation plate is required at 
473 nm in front of the THG crystal. In Table 1 the parameters and results for the combination of this nonlinear media are 
listed for maximum LD pump power at 10 Hz repetition rate. 

As expected,17 SHG with pp-KTP yields the best conversion efficiency of 38 % and delivers outstanding pulse energies 
of 170 µJ at 473 nm. Surprisingly the following THG process results in poor conversion efficiency of 6.8 % and 
relatively low pulse energy of 10.7 µJ. The reason for this is not clearly understood to date. SHG with KNbO3 and BiBO 
works relatively well and delivers moderate pulse energies. The small conversion efficiencies for the THG reflect the 
relative big walk-off angle in the SHG and the reduced interaction area of the frequency mixing beams in BBO. 
Nevertheless, the combination of KNbO3 and BBO yields the highest laser pulse energy of 20 µJ at 315 nm for the active 
Q-switched Nd:YAG and was used for further investigations.  

The frequency up-conversion process is followed by a four mirror configuration (HR@315 nm, 45° >99.9 %) in the 
setup that works as a beam splitter for efficient separation of the existing laser wavelengths. The remaining 315 nm 
emission is coupled into a fiber of 1000 µm diameter that is connected to the FIA-reader. 



 
 

 
 

 

Table 1. Laser results for different combinations of SHG and THG media 

Wavelength NLO Media 
(effective length [mm]) 

Pulse Energy  
[µJ] 

Pulse Duration 
[ns] 

Conversion Efficiency 
SHG /THG [%] 

946 nm -- 445 22 -- 

473/ 315 nm 
 

LBO/ BBO 
(12/ 7) 

6/ -- 
 

20/ -- 
 

1.3/ -- 
 

473/ 315 nm 
 

KNbO3/ BBO 
(5/ 7) 

140/ 20.0 
 

17/ 17 
 

31.5/ 14.3 
 

473/ 315 nm 
 

BiBO/ BBO 
(6/ 7) 

107/ 11.4 
 

15/ 14 
 

24.0/ 10.7 
 

473/ 315 nm 
 

pp-KTP/ BBO 
(10/ 7) 

170/ 10.3 
 

<20/ <20 
 

38.0/ 6.1 
 

 

2.2.3 Miniaturized passively Q-switched DPSS-Nd:YAG-laser at 315 nm 

One objective of our investigations was to set up a compact and economical laser capable of competing with the nitrogen 
laser in the FIA-application. Therefore we built a second laser variation applying Cr4+:YAG as saturable absorber for 
passive Q-switching and further miniaturization. In preliminary investigations with the plain resonator described above, 
we combined saturable absorbers of different initial transmissions (88 %, 90 %, 92 %, 94 %, 96 %, 98 %), output mirrors 
of different reflectivity at 946 nm (HR@946 nm= 70 %, 80 %, 90 %, 95 %, 98 %) and different focal lengths with a 
longitudinal pumped Nd:YAG rod. We defined the optimal configuration as it is shown in Figure 5 and described as 
follows: we built up a 30 mm long resonator with a composite Nd:YAG/ Cr:YAG crystal. Its Nd:YAG section (doping 
1.0 % Nd3+) is 4 mm long and 2 mm in diameter. The Cr4+:YAG crystal with a initial transmission of 90 % is diffusion 
bonded to the Nd:YAG. The plan pump-side of the gain media is coated for high reflection at 946 nm (HR@946 nm 
>99.9 %) and high transmission at the pump wavelength. Again, to avoid parasitic lasing at 1064 nm, the transmission of 
the coating for this wavelength is above 85 %. The concave (f= -5000 mm) OC is partial reflective at 946 nm (90 %). 
The gain medium is pumped via a so called refocusing unit (RU; LIMO, Germany) which efficiently focuses the pump 
light from the fiber into the crystal. To obtain a stable and a highly polarized output from the resonator, a polarizer as 
described above is inserted. To maintain single pulse output per LD pump cycle, the current and pump-pulse duration of 
the LD had to be adapted. With this setup, the resonator delivers 946 nm p-polarized pulses (ratio 130:1) with 295 µJ 
pulse energy and 10 ns pulse duration. The pulse-to-pulse fluctuation was estimated to be below 0.6 %. The frequency 
up-conversion was carried out like in the active laser setup. At 315 nm, laser emission with 12 µJ pulse energy and 6.6 ns 
pulse duration was observed. The pulse-to-pulse fluctuation was below 1 %. 

 
Fig. 5. Scheme of the passively Q-switched DPSS laser at 315 nm. 



 
 

 
 

3. RESULTS AND DISCUSSION 
3.1 FIA with actively Q-switched DPSS laser 

The combination of the FIA reader KRYPTOR® with the actively Q-switched DPSS laser replacing the nitrogen laser 
was evaluated on the basis of the LOD for tPSA-antigen and yield remarkable results: despite significant lower pulse 
energy (8 µJ) for the DPSS laser versus the nitrogen laser (150 µJ), we obtained similar LOD in the standard measuring 
mode as demonstrated in Figure 6.  

Furthermore, we found that in deploying the DPSS laser the LOD can be decreased by enhancing the number of 
accumulated pulses per measurement. Increasing the number of pulses from 20 to 90, the LOD decreases by a factor of 
two at average pulse energy of 8 µJ; increasing the number further to 180, the LOD achieved with the DPSS laser at 1 µJ 
was similar as with the nitrogen laser at 150 µJ. This resulted obviously from averaging over the strong pulse-to-pulse 
intensity fluctuations of about 15 %. These fluctuations stem from the fact that under the current soft- and hardware 
environment the laser is switched off between measurements of different samples. This interval operation caused 
instabilities due to a coarse temperature regulation of the sensitive KNbO3 crystal. Among others the energy fluctuation 
is regarded as the main cause for the observed high variations in LOD. A demand for further laser development is 
therefore to minimize this fluctuation. But even in this status the DPSS laser can work at higher repetition rates as the 
nitrogen laser and therefore the enhancement of the collected pulses would not increase the overall FIA acquisition time. 
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Fig. 6. Relative LOD for tPSA-FIA with actively Q-switched DPSS laser at 8 and 1 µJ for different number of pulses per 

measurement in comparison to nitrogen laser at fixed pulse energy (150 µJ). 

 

3.2 FIA with passively Q-switched DPSS laser 

The evaluation of the passively Q-switched DPSS laser in combination with the FIA-reader KRYPTOR® was performed 
in the same way as described above (Figure 7). At 7 µJ pulse energy the DPSS laser yields the same LOD as with the 
nitrogen laser at 150 µJ under standard measurement conditions. As demonstrated with the actively Q-switched DPSS 
laser, the LOD can be further decreased by increasing the number of pulses per measurement. Collecting 200 pulses per 
measurement increased the LOD for tPSA by a factor of 2.7 for the DPSS laser at 7 µJ compared to the setup with the 
nitrogen laser. At the same number of pulses the DPSS laser at 1 µJ pulse energy reaches the LOD as the nitrogen laser. 
With better temperature control the pulse fluctuation of the passive DPSS laser is below 1 %, and is below that of the 
actively Q-switched DPSS laser, there are still remarkable variations in the determination of the LOD. As these high 
variations were not observable in the measurements with the nitrogen laser, it is possible that there might be still some 
problems of adjustment or synchronization between DPSS laser and FIA reader. This will be the focus of further 
investigations and improvements. 
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Fig. 7. Relative LOD for tPSA-FIA with passively Q-switched DPSS laser at pulse energies of 1 and 7 µJ in comparison 

to nitrogen laser at fixed energy and repetition rate.  

4. CONCLUSION/ OUTLOOK 
We demonstrate a considerable improvement of a FIA system by substituting a nitrogen laser by a DPSS laser with 
315 nm emission. Despite significantly lower pulse energies (e. g. 7 µJ DPSS laser versus 150 µJ nitrogen laser), in 
preliminary investigations the relative limit of detection was reduced by a factor of two to three for a typical FIA. The 
application of DPSS laser in FIA systems is an innovative step on the way to smaller and faster medical diagnostic 
instruments with the future objective directed to point-of-care systems. 

Furthermore, the developed pulsed DPSS laser with 315 nm emission represents a versatile compact UV-light source for 
biochemical and chemical analysis, like laser induced fluorescence spectroscopy. With an emission wavelength of 
315 nm the laser fits well in the gap between the standard 355 nm and 266 nm laser lines of Nd:YAG and may be an 
interesting alternative to an excimer laser. Further investigations are in progress to increase the power of the DPSS laser.  
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