Extending a Dynamic
Programming
Language and Runtime
Environment with
Access Control

Philipp Tessenow, Tim Felgentreff, Gilad Bracha,
Robert Hirschfeld

Technische Berichte Nr. 107

des Hasso-Plattner-Instituts fur
Softwaresystemtechnik
an der Universitat Potsdam

\B,O'W €rs J.Z‘é-
. ‘ Hasso
@ﬁ@ Plattner
"T Kemp Institut
Ry

° dam IT Systems Engineering | Universitat Potsdam
° []

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitdt Potsdam

Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitdat Potsdam | 107

Philipp Tessenow | Tim Felgentreff | Gilad Bracha | Robert Hirschfeld

Extending a Dynamic Programming Language and
Runtime Environment with Access Control

Universitidtsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet tiber http://dnb.dnb.de/ abrufbar.

Universitidtsverlag Potsdam 2016
http:/ /verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts fiir
Softwaresystemtechnik an der Universitiat Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts fiir Softwaresystemtechnik
an der Universitdt Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschiitzt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-373-2
Zugleich online veroffentlicht auf dem Publikationsserver der Universitiat Potsdam:

URN urn:nbn:de:kobv:517-opus4-92560
http:/ /nbn-resolving.de/urn:nbn:de:kobv:517-opus4-92560

mailto:verlag@uni-potsdam.de

Complexity in software systems is a major factor driving development and main-
tenance costs. To master this complexity, software is divided into modules that can
be developed and tested separately. In order to support this separation of modules,
each module should provide a clean and concise public interface. Therefore, the
ability to selectively hide functionality using access control is an important feature
in a programming language intended for complex software systems.

Software systems are increasingly distributed, adding not only to their inherent
complexity, but also presenting security challenges. The object-capability approach
addresses these challenges by defining language properties providing only mini-
mal capabilities to objects. One programming language that is based on the object-
capability approach is Newspeak, a dynamic programming language designed for
modularity and security. The Newspeak specification describes access control as
one of Newspeak’s properties, because it is a requirement for the object-capability
approach. However, access control, as defined in the Newspeak specification, is cur-
rently not enforced in its implementation.

This work introduces an access control implementation for Newspeak, enabling the
security of object-capabilities and enhancing modularity. We describe our imple-
mentation of access control for Newspeak. We adapted the runtime environment,
the reflective system, the compiler toolchain, and the virtual machine. Finally, we
describe a migration strategy for the existing Newspeak code base, so that our access
control implementation can be integrated with minimal effort.

Contents

1 Introduction| 12
[1.1 Access Modifiers as an Instrument to Structure Programs| 12
[1.2 The Object-Capability Modell 13
[1.3 Access Control: A Key Feature of the Newspeak Programming Language| 14
[1.4 Contributions| 15
................................... 16

[2 The Design of the Newspeak Language with Emphasis on Access [

17
[2.1 A Brief Introduction to Newspeak’s Syntax] 18
[2.2 The Newspeak Metamodel|. 21
[2.3 Newspeak Message Send Types and Access Modifier Semantics| . . . 27
[2.4 The Newspeak Compiler Architecture| 31

[3 An Access Modifier Design for Newspeak 34
[3.1 Encoding the Access Moditier Information| 34
[3.2 Enforcing Access Modifiers|, 37
[3.3 IDE support of Access Modifiers in Newspeak| 39
[3.4 Migration to an Environment with Enforced Access Modifiers| 40

[4 Implementation| 42
[4.1 Encoding the Access Modifier Information| 42
[4.2 Enforcing Access Modifiers|, 43
[4.3 Reflecting on Access Modifiers at Runtime|. 46
[4.4 Migration to an Environment with Enforced Access Modifiers| 48

[5 Evaluation| 51
[5.1 PerformanceImpact{. L. 51
[5.2 Analysis of Access Violations| 54
5.3 Known Limitations| o 000 55

[6 Related Work| 57
[6.1 The Access Modifier Implementation of Ruby|. 58
[6.2 The Access Modifier Implementationof Java| 60

[7 Summary and Conclusions| 63

A" Newspeak’s Mirror Landscape| 68

Contents

(B The Implementation of the Method Lookup in the Virtual Machine|

|C Possible Simplifications of the Newspeak Grammar

[D Performance Benchmarks|
[D.1 Benchmark Results|
[D.2 Benchmark ResultDataf.

List of Figures

[2.1 A screenshot of the Hopscotch development environment.| 20
[2.2 Object inheritance in Newspeak is done via Mixin application.|. . . . 22
[2.3 An overview of the Newspeak metamodel | 23
[2.4 The Newspeak mirror landscape with focus on the Squeak base system.| 26
[2.5 The Newspeak method lookup for an implicit receiver send.| 30
[3.1 The modified code editor with our proposed access modifier extensions.| 40
[5.1 The results of the SlotWrite benchmark.| 52
[5.2 The results of the ParserCombinators benchmark.| 53
[A.1 The Newspeak mirror landscape| 69
[D.1 The results of the ClosureDetFibonacci benchmark.| 75
[D.2 The results of the ClosureFibonacci benchmark. 75
[D.3 The results of the DeltaBlue benchmark. 76
[D.4 The results of the MethodFibonacci benchmark, 76
[D.5 The results of the NLRImmediate benchmark.,| 77
[D.6 The results of the NLRLoop benchmark.|. 77
[D.7 The results of the Richards benchmark.| 78
[D.8 The results of the SlotRead benchmark.| 79
[D.9 The results of the Splay benchmark.] 79

List of Tables

[3.1 The purpose of each bit in the method header.| 36
[3.2 The proposed access modifier encoding.|. 36

.1 Benchmark results for the unmodifi irtual machine and the un-

| modified Newspeakimage.| 80
D Benchmark resu or the unmodified virtual machine with disal

| just-in-time compiler and the unmodified Newspeak image.| 81
[D.3 Benchmark results for the modified virtual machine with disabled |

| just-in-time compiler and the unmodified Newspeak image.| 82
[D.4 Benchmark results for the modified virtual machine with disabled |

| just-in-time compiler and the modified Newspeak image.|. 83

10

List of Listings

[2.1 A "hello world” program in Newspeak.| 19
[2.2 An example of sending messages in Newspeak|. 29
[2.3 An excerpt of the Newspeak3 grammar defining Newspeak’s method |
| declarationsyntax.| o o L L 32
[3.1 The implementation of a proxyclass,|. 38
[4.1 The implementation of the setter method for the access modifier of a |
| CompiledMethod.. oo oo oo 43
[4.2 The implementation of the getter method for the access modifier of a |
[CompiledMethod in the virtual machine (vm).| 44
[4.3 A method containing an ordinary send, a self send and an outer send.| 45
[4.4 The method listed in|Listing 4.3/compiled with the unmoditied New- |
| speak compiler.| o oo oo oo 45
[4.5 The method listed in |[Listing 4.3/ compiled with the moditied New- |
| speak compiler| o oo oo 45
[4.6 The part of the migration program that calculates the new source code |
| of a method when migratingitf 49
[s.1 The error log of the modified Newspeak image and vm before upgrad- |
| ing the access modifiers.| 000 54
[5.2 Theerror log of the modified Newspeak image and vm after upgrading |
[the access modifier of the blackMarket method of the Platformclass,| 55
[6.1 An example Person class writteninRuby,| 59
[6.2 Part of the STX:LIBJAVA code which resolves references to methods |
[orfieldsofaclass]. L o 61
[B.1 The lookupMethodInClass:StartLookupFrom: method implemented |
[inthevm.,|. 70
[B.2 Theimplementation of currentClassUnlessAccessRestrictedin the |
...................................... 71
[C.1 An excerpt of the Newspeak grammar featuring class definitions.| . . 73

[C.2 A possible refactoring of the Newspeak grammar shown in|Listing C.1}| 73

11

1 Introduction

Complex problems require complex software solutions. Building such complex high-
quality software is expensive in time, money, and its demand in experienced software
engineers.

To handle the increasing complexity of software, programming approaches, such
as object-orientation, aspects [24]], or context-oriented programming [18] have been
invented. Other programming patterns strive to enhance the overall architecture of
programs. Such patterns reduce complexity by splitting the program code into mod-
ules that can be understood independently. Ideally, each module should serve one
purpose, so that programs can be constructed by combining individually developed
and tested modules.

1.1 Access Modifiers as an Instrument to Structure Programs

It is easier to implement, test, understand, and maintain modules that have clean
and concise interfaces. The principle of information hiding [37] states that modules
should be able to hide access to internal information, encouraging construction of
clean and concise interfaces.

Modularization as a technique is used in many levels of the software and hardware
stack: When looking at system architecture, a single computer or even groups of
computers can act as modules. On a single computer, programs can be understood
as modules. Within a program, another set of modules, namely functions, methods,
aspects, layers, and many more, depending on the programming language, can be
found.

To hide internal information of a module, different approaches are used in differ-
ent levels of the software and hardware stack. For example, access to other computers
can be controlled by physical wiring or by threat mitigation techniques on the var-
ious communication protocol layers [17]. On the layer of communication between
programs, other ways of interaction, for example file and memory access, can be
observed. Operating systems usually take care of the inter-program information
restrictions, for example through address space separation [47], access right man-
agement on the file system [26], or Software Isolated Processes [10].

Within a program, access control — the ability to define access rights on classes,
methods, or attributes—is one technique for separating the public interface of a
module and its internals. Access control ensures that a module’s private internals
remain private by restricting access to it on a language level. It is one of the core
properties of a programming language, aiding the programmer to better modularize
programs. It has been shown that access control supports architectural goals like de-

12

1.2 The Object-Capability Model

coupling, ensuring invariants, and offering concise interfaces [32,37]. Conventions
have been developed for programming languages without access control — for ex-
ample prefixing private methods with underscores [44]. However, such conventions
can be circumvented. Access control, which is enforced at a language level, provides
better modularization as it cannot be circumvented.

1.2 The Object-Capability Model

Access control not only facilitates modular software, but it is also an integral part of
security. Security related goals, like confidentiality, are important in many domains.
A program cannot necessarily trust its modules: A module might be a plug-in pro-
vided by an untrusted third party. Alternatively, it can be compromised by an attacker
who used a security hole in that module. Either way, it is desirable that no module
can extract secret information—accidentally or intentionally— from other modules.

Mark Miller proposed the object-capability model [32], offering a set of design
rules that allow secure computation. In this model, an object is a combination of
behavior and state, where object state consists of references to other objects. Thus,
objects form a reference graph. This graph can only be altered by three operations:

* A new object is instantiated: This creates a new object reference. The newly cre-
ated reference is only available to the object which initiated the object creation.

* An object sends a message to another object: To be able to do this, the message
sender must hold a reference to the receiver. The receiver may get new object
references from the arguments of the message send.

* An object reference is destroyed: This happens, for example, when the variable
holding an object reference is overwritten by another reference.

In a language following the object-capability model, it is not possible to obtain
object references in any other way. This implies that it must not be allowed to forge
object references. For example, casting an arbitrary number to a pointer — typical
for programming languages like C—violates the object-capability model. Addition-
ally, the programming language must not allow mutable global state because object
references can be shared that way.

If those preconditions are fulfilled, we can define each object to be a capability in
the system. Every entity holding a capability is trusted to use the capability with-
out further security checks, like access control lists [41]. This requires the program
developer to carefully decide which object references are passed around.

One important pattern to develop such systems effectively is the proxy pattern [42]:
For example, a programmer might want to give another module the capability to
append information to a certain log file. By default, the file object handling the log file
provides read and write access to any position of that file. In this case, a proxy object
of the original file object, which only implements methods to append characters,
would be created. The proxy holds a reference to the original file object to perform

13

1 Introduction

log writes, which must not be leaked. If access to that proxy object is restricted using
access control, it is ensured that only the accessible interface is used. This way, the
programmer can safely pass the proxy object to an untrusted module, giving only
the capability to append information to that particular log file and nothing more.

To summarize, the object-capability model requires a number of features that need
to be supported by the underlying programming language:

¢ Program execution happens solely via message sends between objects, where
each object is a capability. Any entity holding a capability may make use of it
without further security checks.

* Objects (capabilities) can be obtained only through creation or message passing.
This implies that there is no mutable global state or reference forgery.

* Objects are able to restrict access to their interfaces. The accessible part of an
object’s interface may be used by anyone holding a reference to that object
without further checks.

Consequently, access control is one of the core features a programming language
must provide to support the object-capability model.

1.3 Access Control: A Key Feature of the Newspeak
Programming Language

Newspeak[|is a dynamic programming language in the tradition of Self [46] and
Smalltalk [15]. Its security model is based on the object-capability model [4]. Conse-
quently, Newspeak—by design—meets all object-capability requirements.

Newspeak is truly object-oriented. Everything, down to numbers, methods, or
classes, is an ordinary object. Objects communicate solely via message sends—even
when accessing their own structure [2].

Arbitrarily deeply nested classes are supported by Newspeak. Each class defines
a separate namespace, which has access to methods defined in outer classes. Top-
level classes, which we also refer to as modules, do not, by themselves, have access
to any object references. Because of this design, there is no global namespace and,
therefore, no global state. If a class needs object references it cannot obtain (e.g.
access to other system libraries and modules), those references have to be given as
parameters during the class initialization.

Newspeak’s specification [4] defines access modifiers for classes, their attributes
(slots), and methods. However, current implementations of the Newspeak program-
ming language do not support them. This leads to some disadvantages when pro-
gramming in Newspeak: The positive effects of access modifiers in a program’s
architecture are attenuated, because access modifiers are currently not enforced by

Thttp://www.newspeaklanguage.org/, last accessed June 18, 2015.

14

http://www.newspeaklanguage.org/

1.4 Contributions

any Newspeak implementation. At the moment, programmers are encouraged to
design class interfaces hiding their internal methods by defining them to be private.
However, external classes can still access them. This allows programmers to violate
well known principles, like the law of Demeter [27] and the principle of information
hiding. Newspeak’s security concept, the object-capability model, cannot be enforced
without properly working access modifiers. The goal of this work, is to provide a
working access control implementation for Newspeak.

In this work we show how to extend Newspeak’s implementation to support access
modifiers, enabling Newspeak to fully support the object-capability model. We study
access modifier implementations of different languages and compare them with our
implementation based on the findings. Additionally, we provide a way to convert
the existing Newspeak source base and runtime to work with those access modifiers.
This is important, because Newspeak is a self-supporting development environment:
Newspeak’s implementation, like its Compiler, Parser, or Code Editor, are written in
Newspeak partially using wrong access modifiers.

1.4 Contributions

In this work, we propose an extension to the Newspeak implementation to enable
access control for classes, methods, and slots. We present a way to migrate the existing
Newspeak source base, which already contains some non-functioning access control
statements, to facilitate the now enforced access modifiers.

There is a huge variety of prior work on access control implementations in several
programming languages. Due to their partial similarity with Newspeak, we discuss
the role of access modifiers in the language design of Java and Ruby. We compare
access control implementations of Java and Ruby to our implementation.

The main contributions of our work are:

* a summary of access control semantics and implementations in selected lan-
guages,

* an application of access modifiers to the Newspeak virtual machine’s com-
piled methods including a modified method lookup depending on the access
modifier of compiled methods,

* an extension to the Newspeak implementation to fully support and reflect on
access modifiers as originally stated in the Newspeak specification, and

* adesign to migrate a self-supporting development environment like Newspeak
to use access modifiers.

15

1 Introduction

1.5 Structure

The remainder of this work is structured as follows: In we describe the
Newspeak language design with special focus on Newspeak’s access modifiers. We
investigate the architecture of the Squeak-based implementation of Newspeak to
show the changes necessary for supporting access modifiers.

We present our access control implementation in [chapter 3} The implementation
provides a way to store and enforce access modifiers in Newspeak without causing
a severe performance impact. We enable the Newspeak runtime to reflect on access
modifiers and discuss a way to migrate the Newspeak code base to support enforced
access modifiers.

The actual implementation of access modifiers for Newspeak is presented in[chap}
In that chapter, we show details of the changes to the Squeak virtual machine,
details of how Newspeak stores and reflects on access modifiers, and how we mi-
grated Newspeak environments to facilitate the new feature.

In|chapter 5, we evaluate our implementation with a qualitative analysis. We follow
the error propagation of access violations and verify the resulting system behavior.
Furthermore, we analyze the performance impact of our implementation by running
multiple benchmarks.

We have a look at related work in by comparing the access modifier-
related language design of Java and Ruby to Newspeak’s design. Furthermore, we
discuss the differences of our implementation to two Java and Ruby implementations.

Finally, we conclude our work in|chapter 7|and present potential future work.

16

2 The Design of the Newspeak Language
with Emphasis on Access Modifiers

To study possible ways to implement access control for the Newspeak programming
language, we provide some background on the current design and implementation of
the Newspeak language and programming environment. We give a brief overview of
general language concepts and offer deeper insights to access-control-related features
of Newspeak.

Distinguishing properties of Newspeak are its object-orientation, module system,
reflection application programming interface (ar1), and, most important for this work,
security [2].

Security Newspeak strives to be secure by implementing the foundations of the
object-capability model [32], which we introduced in Therefore, New-
speak fulfills the necessary language properties:

¢ It does not have any mutable global state. In particular there is no global name-
space which could provide mutable state or ambient authority.

* All references, even references to classes, are solely obtained via message sends
or object creation.

* Access to an object’s interface can be restricted by defining accessor methods
as private or protected.

Because of the first two language properties, it is not possible that objects can
interact outside of the reference graph. The last property allows to partially restrict
access to the reference graph. Especially the methods defined in Object, need to be
handled carefully, because they can be a source of ambient authority.

Jan Sinschek’s Crimestop project [43] is a capability system for Newspeak. A func-
tioning access control implementation, as defined in this work, is an integral part of
the success of such a system.

Object-Orientation Newspeak is truly object-oriented and message-based in the
sense that all operations, even an object’s access to its own structure, are performed
by sending messages to objects [4]. Thus, direct access of an object’s state, as in Java
or Smalltalk, is not possible. Direct references to objects, also known as “instance
variables” or “fields”, are called “slots” in Newspeak. Because direct access to slots
is not possible, not even from the object itself, accessor-methods are automatically
created for slots.

17

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

Modularity Newspeak class definitions span an independent, immutable, and pa-
rameterizable namespace. A class definition is independent because it can be compiled,
loaded, and deployed without the need of external dependencies. This makes it pos-
sible to compile Newspeak classes in any order. Class definitions themselves are
stateless and, thus, inherently immutable. However, classes can have state, which is
provided by arguments of their default initializer. This makes classes parametric and
self-sustained. Furthermore, classes can be arbitrarily deeply nested and can contain
three types of definitions (slots, methods, nested classes).

Top-level classes are often referred to as modules. A module can be instantiated
multiple times without affecting other instances of the module in any way. This
means that it is possible to instantiate a library with a given set of parameters and,
later, instantiate and use the same library with a different set of parameters.

Reflection The reflection capabilities of Newspeak are provided by a system based
on mirrors [6]. Newspeak’s mirrors offer reflective capabilities for an object’s intro-
spection, the ability to reflect on its own structure, and self-modification, the ability
to change its own program code or structure. Because reflection can be done using
mirrors, regular objects only provide base functionality. Through the mirror system
it is possible to separate meta-level functionality from base level functionality and
thus provide reflection as a capability in the object-capability sense.

2.1 A Brief Introduction to Newspeak’s Syntax

We briefly introduce those parts of the Newspeak syntax that are essential for un-
derstanding the access control implementation presented in this work using the
example class in[Listing 2.1} An extensive introduction to Newspeak’s whole syntax
can be found in the Newspeak specification [2]. The listing shows the definition of a
top-level class HelloWor1ld, which provides the functionality to print a string to the
standard output of the Newspeak process. A class definition consists of three parts:
a class header which spans from line 1 to 8, an instance side declaration spanning
from line 8 to line 15, and a class side declaration given on line 15.

The method header optionally starts with the access modifier of the class. Because
the HelloWorld class is a top-level class, the access modifier is inherently set to
public and must be omitted. Apart from the class keyword, which follows the
omitted access modifier, and the class name, the most prominent part of a class
header is the default initializer. Each class definition can specify a default initializer,
which will be added as a class side method and is called to initialize the instances of
that class. The initializer is split into two parts in the class definition: The signature
of the initializer is given after the class name. Its body is given after the super class
definition— the first pair of parenthesis in the listing.

Following the equals sign, a super class and the initializer to use on the super class
can be specified optionally. In no super class has been specified, which
means that the implicitly defined super class will be object and the message new
will be sent to initiate it.

18

2.1 A Brief Introduction to Newspeak’s Syntax

Listing 2.1: A “hello world” program in Newspeak. The Helloworld is a top-level
class which takes a platform object as a parameter to its default initializer. One
method, hello is defined, which prints the string “Hello world (x)” (where x is the
number of times the method was called) to the standard output of the Newspeak
process.

class HelloWorld usingPlatform: platform = (
(* Outputs a friendly greeting to stdout. #*)

OSProcess = platform squeak OSProcess.
private timesCalled ::= 0.

I
) (output’
public hello = (
timesCalled:: timesCalled + 1.
OSProcess thisOSProcess stdOut
nextPutAll: ’Hello world (’, timesCalled, ’)’;
nextPut: Character 1f.

)+ 0O

The default initializer is a special method. It is the entry point into a class and
declares and initializes any state an instance of the class may have. The class can
only access those objects which are given as arguments to the initializer or which
are defined in an outer scope. For top-level classes, like our HelloWor1d class, it is
common to take a platform object as an argument to get references to objects of
the Newspeak environment. Conceptually, the platform object is a map of module
names to actual instantiated modules provided by the Newspeak environment.

Two slots are defined in the initializer in[Listing 2.1} 0SProcess and timesCalled.
In the 0SProcess slot, the 0SProcess Smalltalk class is stored. That Smalltalk class is
provided by the Squeak class. The Squeak class, which is obtained via the platform
object like any other external dependency, provides an interface to classes of the
underlying Squeak{| system. Because Newspeak does not provide functionality to
print a string to the standard output of the Newspeak process, the program relies
on the 0SProcess class of Squeak for that purpose. No access modifier is given for
the 0sProcess slot, which implicitly defines the slot as protected. The timesCalled
slot is a private mutable slot used to count how often the “Hello world” message
was printed. A mutable slot is declared with the : : = assignment operator and an
immutable slot is initialized once with the = assighment operator.

The side declaration contains definitions of nested classes and methods. Nested
classes are not demonstrated in this example, because the syntax gets confusing
easily when they are involved. Hopscotch, the development framework of Newspeak,
solves this problem in an elegant way [7]. As seen in it displays nested
classes as a separate class view nested in the view of the outer class.

'Squeak is a Smalltalk environment, on which a Newspeak implementation is based.

19

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

AccessModifierTesting = top level class W (z
Categary : docessModifierTests Package: dccessModifier Tests

Description Source

AccessModifierTesting usingPlatfarm: platform =Platform= testFramewark: utf =Minitest=

(no comment) =

hide full cornrment

Slots +
TestContext .
ClazssMirror .
MessageNotUnderstood s
Classzes & O
rwyY - . . -
ClassAccessingTests = in AccessModifierTesting v (g
Category : (uncategorized) Package: Accesstodifier Tests @

Description Source

ClassaccessingTests = TestContext

Try to access classes with different access modifiers, but only via public send. [...] o

show full comment

Slots +

testSubjects -

Claszes &+ O

Methods + O (=) (4
= testPrivateClassAccess as yet unclassified v
=testProtectedClassAccess as yet unclassified v
testPublicClassaAccess 2z yet unclazzified v (=

Class Methods &) () (4
= TEST_CONTERT as yet unclazzified Wy

= MethodaccessingTests
F SlotaccessingTests
» TestSubjects

Methods &) () (4
Class Methads + Q) (=) (4

Figure 2.1: A screenshot of the Hopscotch development environment. The
view of the AccessModifierTesting top-level class @ and its nested class
ClassAccessingTests (2 can be seen. Both within the same window and com-
plete with documentation, slots, and methods.

20

2.2 The Newspeak Metamodel

Method definitions consist of a method signature and the method body. The sig-
nature is very similar to Smalltalk’s method signatures in the way that the method
selector can consist of multiple words with arguments in-lined between them. For
example usingPlatform: platform testFramework: utf isthe signature of the de-
fault initializer of the AccessModifierTesting class in[Figure 2.1} It consists of two
words and expects two arguments: platform and utf. The difference to Smalltalk
method signatures is that Newspeak method signatures can be prepended by an
access modifier. The hello method in [Listing 2.1} for example, is public.

Within the method body, a variable is assigned at line 10. Actually, the assignment
is not a direct access of the timesCalled slot. A normal message is send to a setter
method, with the same effect as timesCalled: timesCalled + 1 would have had.
The difference to the two-colon notation is that it returns the assigned value and not
the receiver, as a normal setter send would do, to allow more convenient chaining
and avoid excessive use of parenthesis. Lines 11 to 13 of the method body are usual
method sends, with the nextPutAll: and nextPut: method being send to the same
receiver by using the semicolon.

There is one interesting thing, though. It was stated earlier that no state can be
accessed unless it is defined in an outer scope or passed as a parameter. However, the
Character class is accessed in line 13 even though it is not taken from the platform
object. Similar to the call of the 0SProcess getter method in line 11 with self being
the receiver (actually, it is an implicit self send as described in [subsection 2.3.4),
a method named Character is called in line 13. The difference between those two
is that 0SProcess is an immutable slot of the class, for which a getter method is
automatically defined by the system. This is not the case for the Character method.
However, the HelloWor1d class implicitly inherits from Object, which implements
the Character method to return the Character class.

2.2 The Newspeak Metamodel

To discuss the consequences of access modifier applications, first we present the
metamodel of Newspeak. We discuss how class inheritance is designed and the
implications for the meta classes.

Class inheritance in Newspeak is designed as a composition of mixins. A mixin is
an abstract subclass that implements extended behavior of a class [5]. Because the
mixin is an abstract subclass, the super class is not necessarily known when creating
the mixin. This makes mixin application—and therefore inheritance in Newspeak—
late bound.

Each class declaration defines a mixin in Newspeak. This sets class declarations
apart from classes—a class has a super class while a mixin does not. A mixin applica-
tion creates a new class which has all slots and methods of the super class combined
with those from the mixin. If there are name conflicts the mixin hides super class
definitions.

A mixin application is illustrated in [Figure 2.2] using the HelloWor1d example as
given in|Listing 2.1} The HelloWor1d class is a template for a family of HelloWor1d in-

21

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

Top
Object Object Mixin
[a HelloWorld }———) HelloWorld HelloWorld Mixin
O] (=] (O
Instance Class Class Class Class Mixin
inherits from applies mixin

Figure 2.2: The HelloWorld class is built by the application of the HelloWor1ld mixin
to the Object class. Thereby, HelloWor1ld inherits all behavior from Object which
is not explicitly overwritten by the HelloWorld mixin. Similarly, the Object class
is a product of the mixin application of the Object mixin to the empty class Top.

stances. They all implement the same functionality, which is defined in the HelloWor1d
class declaration and all super classes.

HelloWorld inherits from Object. The inheritance is implemented by defining a
HelloWorld mixin implicitly through the class definition. The mixin is applied to
the class returned by sending the message Object to self. Specifically at this point,
inheritance is late bound. Because object state cannot be accessed directly, a getter
method is created which returns the defined class. First, that getter method fetches
the super class by executing an implicit send with the super class name as the selector.
Then it applies the mixin from the class definition to that super class.

When following the super class chain of a class, every class, directly or indirectly,
inherits from the Object class. The specific Object class depends on the underlying
base system of the Newspeak implementation. In this case, where Squeak is used as
the base system, the Object class is defined in the KernelForSqueak module.

The same mixin-inheritance principle applies to Object, as to any other class.
Object inherits from an empty class Top by applying the Object mixin. This way, all
behavior in Newspeak is described in mixins.

The empty class Top, from which the object class should inherit according to the
Newspeak specification, does not exist in the current Squeak based Newspeak imple-
mentation. In[Figure 2.3} the actual meta model of the Squeak based implementation
of Newspeak is shown. The super class of Newspeak’s Object class is the Squeak
class ImplementationBase. It lives in the Squeak part of the system and has its own
meta class also living in Squeak. The ImplementationBase class is also not empty.

22

2.2 The Newspeak Metamodel

B
© .
£ i
g n
~
8 —————— Mo—oosesem=s){ ClassDescription c\assk‘,
g |
L2 i
i
|
|
|
|
i
ImplementationBase|»ff){ ImplementationBase class %*){ Metaclass %«){ Metaclass class %ﬂ
N a3 j
\. /
a KernelForSqueak
Behavior
~
~ 1
© I
= M !
o ~ !
% Object Somme=s Object class ===)| Metaclass |——-)| Metaclass class |—~|:
= 4 J
[a HeIIoWorId]——-)I Helloworld |— ——————— HelloWorld class F———————————- -

Tl Cheel o] [
is kind of inherits from
Every class has the 'is kind of' relationship to it's metaclass. a class

Most of these relations are omitted to maintain clarity.

Figure 2.3: The Newspeak metamodel. Classes can either be top-level classes or be
enclosed by enclosing objects. Classes are first-class citizens in Newspeak and, thus,
have their own class (so called meta class). Classes like Class, ClassDescription,
Behavior, or Object all have meta classes in Newspeak as well as in Smalltalk. Not
all of them are explicitly shown in the figure.

23

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

Classes are regular objects like every other object in Newspeak. Thus, they have
their classes, which are so called meta classes. In[Figure 2.3]it can be seen that the class
of the HelloWorld classis HelloWorld class, and thatthe class of HelloWorld class
is Metaclass. The metaclass chain— the list of metaclasses a class has—has a loop,
the so called strange loop. It can be found a the Metaclass class: The class of Metaclass
is Metaclass class and vice versa.

Interestingly, the meta classes in Newspeak are similar to those in Squeak. The
meta classes and their respective super class chain for Newspeak and Squeak are
listed in[Figure 2.3| Newspeak and Squeak have a very similar naming scheme and
layout of their meta classes, which emphasizes that Smalltalk is one of the origins of
Newspeak.

2.2.1 Newspeak’s Exchangeable Base Systems

The Newspeak environment can be executed on top of several other programming
languages and environments, which we call base systems. Currently supported base
system languages are JavaScript [3], Dart [30], and Squeak/Smalltalk.

Unless developers explicitly care about the base system— for example if they want
to use interface elements of the base system—they do not need to care about the
fact that the Newspeak environment is running on top of another language. The
Newspeak compiler compiles Newspeak entities, like classes or methods, directly
into executable entities of the base system. Therefore, the Newspeak environment is
split into multiple parts: independent Newspeak-only parts and parts which handle
matters of the underlying base system.

The Newspeak kernel depends on the base system. It holds vital classes like Object
or Class which are crucial to construct Newspeak objects. Therefore Newspeak has
one kernel module for each base system, namely KernelForSqueak, KernelForDart,
and KernelForVs. This means that if a class inherits from Object, the actually used
Object is chosen from the kernel module that matches the current base system.

In the scope of this work and for the presented implementation, the Squeak base
system is used. All findings of this work and in our implementation can be applied
analogously to the other base systems with the exception of Squeak-specific details.

2.2.2 Reflections in the Mirror

Newspeak’s reflection capabilities are based on a mirror system. Mirrors are objects
that provide meta facilities for other objects. They are used to separate base-level
functionality from meta-level functionality to support three important design prin-
ciples: encapsulation, stratification, and correspondence [6].

The principle of encapsulation states that the implementation of a module should
not depend on the actual implementation of other modules. Instead it should rely on
a purposely exposed ap1 of other modules. When respecting that principle, changes of
used modules affect the implementation much less and enable an easier dependency
management, for example by using semantic versioning. Good encapsulation often
cannot be achieved with classical reflection apris as shown in a case study [6].

24

2.2 The Newspeak Metamodel

Stratification is a principle of software engineering that states that meta-level func-
tionality must be separated from base-level functionality. It yields the benefit that a
feature does not impose costs if it is not used, because it is possible to not deploy it
if it is separated.

Classical reflection aris, which are woven into any object’s base functionality, in-
voke different kinds of costs. A programmer looking at the interface of an object has
to decide which method to use. Some of them providing meta level functionality,
whereas the developer is looking to implement base level functionality. This may
enlarge the probability of errors due to choosing the wrong methods and might
enlarge development time and costs. Another cost factor is maintenance, especially
for security. When meta-level facilities are easily reachable, it is often possible to
access objects in an unforeseen way. This may enable an attacker to attack the whole
system, after successfully exploiting a security hole in a single module. Separating
the meta level functionality into mirrors has the benefit that it is possible to ship
software, which should not use reflection, without the mirror system. This can also
reduce the size of deployed systems.

Ontological correspondence states that the ontology of meta-level functionality should
correspond to the ontology of the reflected system. Because computing environments
are temporally separated between code at compile time and computations at run
time, the mirror system should also separate between code and compile time. On
the other hand a language implementation is structurally separated into different
language constructs (like objects, classes, modules, types, or comments). Ideally the
reflection system should provide one entity for each language construct.

The usage of mirrors in Newspeak solves some of the issues listed above. It is
possible to ship applications without meta facility simply by not providing the mir-
ror classes in the platform object. Newspeak’s mirrors implement most meta-level
facilities, but they do not implement all meta-level functions. For example the class
method, which is implemented on Object and returns the class of the receiver, oper-
ates on the meta-level and is still present in every object’s interface.

Newspeak provides a rich landscape of different mirrors. As outlined in[Figure 2.4}
which shows all mirrors which are relevant for Newspeak and the Squeak base
system, there are many different types of mirrors for different purposes. For exam-
ple, Newspeak’s mirrors distinguish between different levels of the system archi-
tecture. For language constructs in the Newspeak language, appropriate mirrors in
the MirrorsForSqueakP]module can be found. Similar mirrors, but on a lower level,
can be found in the LowLevelMirrorsForSqueak module, which translates between
Newspeak and the Squeak base system. Furthermore, there are specific mirrors to
handle Newspeak source code. This serves the structural as well as the temporal on-
tological correspondence. There are mirrors for all the different Newspeak language
constructs on the source code level as well as on the runtime level.

*Fortunately, programmers do not have to know the base system their Newspeak applica-
tion is running on to get the mirrors from the correct module. Instead, the correct mirror
module is made available via the platform object when the mirrors message.

25

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

ClassHeaderBuilder| [MethodBuilder
[\
ClassDeclarationMirror MethodMirror
[\
ClassHeaderMirror SlotMirror InitializerMethodMirror|
ObjectMirror MixinBuilder | |ClassDeclarationBuilde

[\
ImageSourceMirror TextSourceMirror ClassSourceMirror | | SlotSourceMirror | [MethodSourceMirror
NameOnlySourceMirror StringMirror

| VMMirror | |CIassBuiIder

CompiledMixinMirror
[\

LowLevelMixinMirror LowLevelMethodMirror|
InstanceVariableMirror|

STClassSourceMirror STPackageSourceMirror
BootSqueakVmMirror STExtensionClassSourceMirror STMethodSourceMirror

|:| inherits from I:l

Squeak

a nested class

Figure 2.4: The Newspeak mirror landscape with focus on the Squeak base system.
For a more detailed snapshot of currently implemented mirrors, see in

26

2.3 Newspeak Message Send Types and Access Modifier Semantics

The mirror landscape in Newspeak is heterogeneous and split into different mod-
ules. Some mirrors inherit from a Mirror class, other don’t. There are even multiple
different Mirror classes living in different modules. The advantage of this design
is the independence of the different modules. It is possible to initialize one mirror
module without initializing the other modules. Some mirrors, like the VMMirror, are
not implemented in Newspeak, but as a Smalltalk class. This is necessary because
the VMMirror needs to call Squeak vm primitives, which is not possible in Newspeak.
One common convention is that mirrors can be initialized with the same default
initializer: reflecting: objectToBeReflected.

Reflective languages in general can be divided into three categories [6]:

* Introspection: The program is able to examine its own structure.

e Self-modification: The program is able to change its own structure. This includes
the ability to execute dynamically generated code.

* Intercession: The semantics of the underlying programming language can be
changed.

Mirrors in Newspeak usually are capable of introspection and self-modification.
The scope of the reflective capability depends on the actual mirrors. Some mirrors
reflect source code, other on live objects, and others may only allow introspection of
the public ar1 of an object.

Another entity in Newspeak's reflective system are builders. They allow building
new runtime entities, like classes or methods, which can be installed at run time in
the live environment. By using builders it is possible, for example, to construct a new
class—including methods and nested classes—in one step and install the finished
class into the runtime environment in a second step.

2.3 Newspeak Message Send Types and Access Modifier
Semantics

Newspeak is an object-oriented language where all interaction within and between
objects happens solely via message sends. A message send invokes a method on an
object. It consists of four parts which are crucial for the execution of the send:

* The receiver is the object in whose context the method of that message send
will be executed. The receiver can be given explicitly or implicitly.

o The sender is the activation of the current method [2].

e A method can be accessible under a name in the context of the receiver. That
name is the selector of the method.

* A method may require one or more parameters which will be passed along with
the message send.

27

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

Newspeak provides different syntax for different types of message sends. One
distinguishes between unary, binary, and keyword sends which are syntactically
similar to the corresponding Smalltalk sends. An additional send syntax, the setter
send, is syntactic sugar to set values on objects which enable chaining and eliminate
excess parenthesis. The setter send someSlot:: someValue is equivalent to the more
verbose expression [:v | someSlot: v. v] value:(someValue).

According to the Newspeak specification, methods are defined by the mixin in
which they are declared. A method is defined for a class if it is defined by the class’
mixin or its super class. When invoked, the method is executed in the context of the
receiver and passes control back to the sender if it is finished. In case no explicit
return statement is given in the method, the receiver, which corresponds to self in
the methods context, is returned.

Different types of message sends exists in the Newspeak language to provide
functionality, security, and convenience: the ordinary send, self send, super send,
outer send, and implicit receiver send. The message send types are distinguished by
the way the receiver is defined:

* Ordinary send: The receiver for an ordinary send is defined by a (possibly paren-
thesized) expression. The expression, when evaluated, yields the receiver ob-
ject. The execution of ordinary sends is described in[subsection 2.3.1

* Self send: Using the reserved word self as the receiver results in a self send.
Self sends are further described in|subsection 2.3.2}

* Super send: The reserved word super is used to do a super send which is de-
scribed insubsection 2.3.3|

o Quter send: If the receiver has the form outer N, in which N is an identifier, the
resulting send is an outer send as described in subsection 2.3.5,

* Implicit receiver send: It is possible to omit the receiver of a send (except for
binary sends). In this case the receiver is defined implicitly as described in
lsubsection 2.3.4|

2.3.1 Ordinary Send

Ordinary sends invoke public messages on the receiver object. They consist of an
explicit receiver expression followed by a message clause. To execute an ordinary
send, first the receiver expression is evaluated yielding the receiver object. Then the
method matching the selector is looked up on the receiver’s class.

The method lookup for ordinary sends searches the super class chain of the re-
ceiver for a method with a selector that matches the requested selector of the message
send. We define the term super class chain of a class recursively as: A list of classes
that contains a class and all super classes in the class hierarchy.

Method lookup always starts at the receiver’s class. If a public method matching
the selector of the message send is defined by the mixin of the receiver’s class, it
will be executed. Otherwise the lookup continues to the next class in the super class

28

= W N R

2.3 Newspeak Message Send Types and Access Modifier Semantics

chain. The lookup stops if either a method with a matching selector was found or if
all classes in the super class chain are searched unsuccessfully.

If no matching method could be found, the doesNotUnderstand: method is in-
voked with a message mirror of the failed message as an argument. This method is
defined as a protected method on Object so that it is part of every object’s internal
behavior. The default implementation of doesNotUnderstand: raises a runtime error.
Subclasses may overwrite it to implement custom behavior, for example to proxy
message sends to other objects.

Considering the scope of implementing access modifiers, asynchronous sends
are a special case of ordinary sends. An asynchronous send consist of a receiver
expression followed by the asynchronous send token <—: and a message clause. Like
ordinary sends, the receiver expression yields the receiver to which the message will
be send. However, the message send is not executed synchronously but it is sent to
the actor associated with the receiver. The message is placed in the message queue
of the receiving actor following the actor semantics.

2.3.2 Self Send

Self sends are evaluated similarly to ordinary sends, except that they use the reserved
word self instead of the receiver expression. The receiver of a self send is self—
self is the object in whose context the current method is executed.

Like ordinary sends, self sends follow the super class chain to lookup the method
with a matching receiver. Contrary to ordinary sends, they have more access rights. If
the method class (the class in which the current method is implemented) has a pri-
vate method with a matching selector that method is called. Otherwise, protected
or public methods are looked up beginning at the class of self.

Listing 2.2: A message send example: The message hellowWor1d is send to self in two
ways: As an ordinary send (line 3) and as a self send (line 4).

| this |

this:: self.

this helloWorld. ”only a public helloWorld method can be found this way”
self helloWorld. ”helloWorld could have any access modifier”

In contrast to ordinary sends, self sends are not evaluated by evaluating the receiver
first and then sending the message to the receiver. Instead of evaluating self, it is
built-in that the message is send to the current self. This is necessary to ensure the
access modifier semantics of self sends. If a self send would evaluate self to send a
message to the result, it could not be distinguished from an ordinary send. The issue
is illustrated in [Listing 2.2| by showing two ways to send the message helloWor1ld
to self. The first send is a verbose “self send” which evaluates self first and then

29

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

sends a message to the result. In the actual send in line 3, one cannot distinguish the
send from an ordinary send. Thus, the hellowWorld method can only be accessed if it
is public. In line 4, a self send is executed, which can access the method hellowor1ld
even if itis private.

2.3.3 Super Send

Super sends consist of the reserved word super followed by a message clause. Very
similar to self sends, they search the super class chain for a method whose selector
matches the selector of the message send. In contrast to the self send, the lookup
starts at the first super class in the chain (and not in the class of self). A super send
can only find protected or public methods.

Even though the lookup starts at the first super class of the receiver, the method
is executed in the context of the receiver itself.

2.3.4 Implicit Receiver Send

An implicit receiver send defines its receiver implicitly. Therefore, it only consists of
a message clause.

The lookup of an implicit receiver send starts at the method class. Any method,
including private and protected methods, whose selector matches the selector
requested in the message send, is searched. If such method cannot be found in the
method class, the lookup continues to the enclosing object’s class with respect to the
method class until the method was found or the top-level class was searched. In case
the method could not be found in any enclosing object’s class, the lookup continues
as a self send.

KernelForSqueak

’ Object [a KernelFo quueak]

’ BoxShape ‘ [a VisualClasses}

a RectangleShape RectangleShape Ma widgetclassesM WidgetClasses M a Brazil }—b{ Brazil ‘

-]

D enclosed by D D inherits from D Path of method lookup

Class Instance

VisualClasses

Figure 2.5: The Newspeak method lookup for an implicit receiver send. The lookup
of a method beginning from the context of a RectangleShape object is shown.
The inheritance chain of the RectangleShape class is displayed at the y-axis. The
nesting of the class can be seen at the x-axis.

30

2.4 The Newspeak Compiler Architecture

The lookup of implicit receiver sends is illustrated in starting from a
RectangleShape object. The RectangleShape is part of Newspeak’s graphical wid-
get library Brazil. Therefore, it is nested in the WidgetClasses class and the top-level
Brazil module. RectangleShape inherits its functionality from BoxShape as it repre-
sents a shape.

When a method in a RectangleShape object is implicitly called, the lookup
first searches the enclosing objects. In this example the search for the
method would start at RectangleShape and continue at WidgetClass and then
Brazil. If the method selector in question was theDesktop, it would return a
Desktop' ContainerClasses ' Brazil class because the theDesktop method is imple-
mented on the Brazil class. If the requested selector was size, no such method
could be found in any enclosing class. Thus, the size method of RectangleShapes
super class BoxShape would be found.

Super classes of enclosing classes, or enclosing classes of super classes will not be
searched. This is illustrated in [Figure 2.5|by the orange line— the path of method
lookup.

Other examples of implicit receiver sends can be found in In line 10
timesCalled is called, which can be found immediately in self. Inline 13 the method
Character is called, which is implemented in the super class chain, specifically in
Object.

2.3.5 Outer Send

An outer send has the form outer N, where outer is a reserved word and N is an
identifier, followed by a message clause. The identifier N must be a lexically enclosing
class.

Outer sends are commonly used to access methods in enclosing scopes. This is
necessary because methods can be shadowed in the scope lookup. If, for example,
WidgetClass and Brazil in[Figure 2.5/both define a method with the selector x, an
implicit receiver send would find the method defined in WidgetClass. To access the
shadowed method x defined in Brazil, an outer send is used: outer Brazil x.

The lookup of an outer send starts at the class specified by the identifier N. If the
method cannot be found in N, the lookup continues to search the super class chain
of N. An outer send can find protected and public methods. If a private method
is declared in N it can be found as well.

2.4 The Newspeak Compiler Architecture
Newspeak program code goes through different stages until it can be executed: It

starts as plain text, which needs to be parsed and then compiled. The compiled entity
can be made available to the system, ready to be used by other parts of the system.

31

B W N e

2 The Design of the Newspeak Language with Emphasis on Access Modifiers

2.4.1 Parser

The Parser takes Newspeak program code and produces an object graph. That object
graph is the abstract syntax tree with which further actions, like code highlighting
or code compilation, can be performed.

The Newspeak parsing uses the parser combinator library described by Bracha [1]
and Geller [12]. Using parser combinators, the Newspeak parser rules can be read
like Extended Backus-Naur Form (eBNE) while still being valid Newspeak code. This
is achieved by dividing the parser into many sub-parsers and viewing EBNF operators
as methods on those parsers.

Listing 2.3: A part of the Newspeak3 grammar as defined in the NS3GRammar class
initializer. It shows the definition of a method declaration, a parser stored in the
variable methodbecl, and how it is used to define further parsers.

NS3Grammar = ExecutableGrammar (
(* Grammar for Newspeak3 (without types). *)|

methodDecl = accessModifier opt, messagePattern, equalSign, lparen,
codeBody, rparen.

category = string, methodDecl star.

sideDecl = Tlparen, nestedClassDecl star, category star, rparen.

classDeclaration = (tokenFromSymbol: #class), classHeader, sideDecl,
classSideDecl opt.

An excerpt of the Newspeak grammar is presented in It is defined
in the NS3Grammar class initializer. The grammar is constructed of multiple parsers
stored in instance variables. The grammar for a method declaration is stored in the
methodDec1 variable. Just as described in a method declaration consists of
an optional access modifier, the method signature (here methodPattern), the equal
sign, and the method body enclosed by parenthesis.

2.4.2 Compiler

One entity that uses the abstract syntax tree (ast) produced by the parser is the
Newspeak compiler. It traverses the ast in multiple passes using a visitor pattern [12]
to compile it into an executable form. The “executable form”, as in Squeak, is a set
of runtime objects like classes and methods.

Thus, the compiler is able to compile Newspeak code and construct low-level
mirrors out of them. Those mirrors can later be installed into the Newspeak system
by the AtomicInstaller. In the case of adding a slot to a class that means, for example,
to compile the new class, swap all references to the old class with references to the
new one and migrate all instances of that class to follow the new class layout.

32

2.4 The Newspeak Compiler Architecture

2.4.3 The Squeak Virtual Machine as a Newspeak Interpreter

Newspeak runs on a derivative of the Squeak vm [34]] | Consequently, the Newspeak
compiler produces SqueakVM bytecodes with some modifications.

The most interesting differences between Squeak and Newspeak bytecodes in the
scope of this work are the send bytecodes. In Smalltalk there are two kinds of possible
send bytecodes: A normal send and a super send. Newspeak also knows the super
send bytecode and normal send bytecode, which was introduced as ordinary send in
lsubsection 2.3.11 However, Newspeak has more types of sends, namely the self send,
implicit receiver send, and outer send. All sends are mapped to an ordinary send by
the compiler. Therefore the compiler calculates the receiver beforehand and pushes
it onto the stack as a normal ordinary send receiver.

Because outer sends and self sends are mapped using the normalSendBytecode,
the current vm cannot know what type of send it executes. Without knowing the
type of the message send, the vm has no way to know if a class, method, or slot with
a specific access modifier can be reached. Therefore, access modifiers are currently
not considered during method lookup.

3The Newspeak vms can be downloaded here: http://www.mirandabanda.org/files/Cog/VM/, last
accessed June 18, 2015.

33

http://www.mirandabanda.org/files/Cog/VM/

3 An Access Modifier Design for
Newspeak

In this work we propose a two step approach for adding the missing access modifier
semantics to the Newspeak runtime.

Firstly, we propose changes to the Newspeak environment and its vm which result
in a Newspeak runtime with access control enabled. We present a way to encode
the access modifier information at the various levels of the Newspeak runtime. A
way to enforce access modifiers during the method lookup in the vm is shown, as
well as changes to the Newspeak runtime to enable reflection on access modifiers at
runtime.

Secondly, we present an approach to migrate the existing code base. Existing
Newspeak programs look up their methods as if they were public, even though
they might be defined as protected or private in the source code. Our approach
migrates Newspeak programs as well as the Newspeak runtime itself, to still function
with enforced access modifiers.

3.1 Encoding the Access Modifier Information

The Newspeak grammar, and therefore its parser, already support access modifiers.
Access modifiers can be used in Newspeak source code as described in the Newspeak
grammar. It states that there are four possible ways to specify an access modifier:
An access modifier can be defined either explicitly to be public, protected, or
private, or implicitly by omitting the access modifier. If the access modifier is not
defined, it is implicitly interpreted as if the entity is defined to be protected. Class,
method, or slot definitions all define their access modifier as the first part of their
grammar|| The parser parses the access modifiers and ignores them.

We changed the parser to not ignore access modifiers so that they are forwarded
to the compiler. The compiler needs to encode the access modifier information in a
way that enables the Newspeak runtime to reflect on access modifiers and react to
an attempt of unauthorized class, method, or slot access.

'"With the exception of top-level classes. They must not have an access modifier, because
they are defined to be public. We discuss a simplification of the Newspeak grammar

regarding this exception in|Appendix C

34

3.1 Encoding the Access Modifier Information

3.1.1 A Place to Store Access Modifier Information

One important fact is that Newspeak never directly accesses classes or slots. As
outlined in|chapter 2} an access to a class or slot is done by calling an automatically
created getter or setter method. We conclude that it is sufficient to check access
violations solely on methods, which greatly reduces the problem space.

It is a common pattern to check access modifiers and attempts to access protected
resources at compile time (as it is done in Java [16]]). Because Newspeak is a dy-
namic language, the compiler does not have enough information to decide whether
a method call fulfills the access restrictions. It is possible, for example through meta
programming, to alter the method lookup so that another method than the originally
intended method is found. Therefore, access restrictions are checked at runtime on
every method call. Because the different types of sends, have different method call
semantics, the access modifier check also depends on the type of the method call.

Thus, it is convenient to store the access modifier information in the method object
itself. The method object can be read by the vm to decide if it can be returned by the
method lookup. Newspeak has a built-in reflective system for method objects which
can be extended to store and read access modifiers from method objects.

3.1.2 Encoding Access Modifier Information in Method Objects

The method object, in which the access modifier information is to be stored, is an
instance of the Squeak class CompiledMethod in the Squeak-based implementation of
Newspeak. A compiled method consists of a 4 byte method header, method literals
(4 byte for each literal), a variable number of bytecodes, and at least one byte for the
method trailer.

The method trailer stores metadata for a method, for example a pointer to the
method’s source code. It would be possible to introduce a new kind of method trailer
which encodes the method’s access modifier. But since only two bits of information
need to be stored for the three possible access modifiers, a method trailer introduces
too much overhead. The encoded information of a method trailer is intended to be
encoded and decode by a subclass of CompiledMethodTrailer. If the vM needs to
read the access modifier of a method it either needs to instantiate such a method
trailer instance, which would cause overhead, or needs to duplicate the logic to
decode the access modifier of the trailer, which would introduce an unnecessary
dependency to the Squeak code of the method trailer.

Another place to store metadata in a CompiledMethod is the method header. The
method header has different layouts for different bytecode sets. Since the “alternate
instruction set”[|is used for current Squeak-based Newspeak implementations, we
can focus on the method header layout of the alternate bytecode set.

2The alternate instruction set is explained in this forum thread http://forum.world.st/Multiple-
Bytecode-Sets-td4651555.html written at Oct 16, 2012.

35

http://forum.world.st/Multiple-Bytecode-Sets-td4651555.html
http://forum.world.st/Multiple-Bytecode-Sets-td4651555.html

3 An Access Modifier Design for Newspeak

Table 3.1: The purpose of each bit of the 4 byte header of
CompiledMethods for the alternate bytecode set. We propose to
re-assign bit 28 and 29 to encode the access modifier of a method.

Bit Position Old Header Layout Proposed Header Layout
30 flag-bit for the alternate bytecode set no change

29 unused o

28 user-level flag-bit’ access modifier flags
27-24 number of arguments (4 bit) no change

23-18 number of temporary variables (6 bit) no change

17 flag-bit indicating a large frame size no change

16 flag-bit: method has a primitive no change

15-0 number of literals (16 bit) no change

" The flag-bit is ignored by the virtual machine and is only used ad-hoc by

user-level programs.

In the proposed re-assignment of bit 28 and 29 of the method header
to encode the access modifier of a CompiledMethod is shown. Bit 29 is currently not
assigned to any official purpose - this bit can be used without further complications.
Bit 28 is used as a user-level flag by any Squeak program that may need a bit in
the method header. Currently, it is not used in the Squeak image. To the best of our
knowledge there is no Newspeak application using that bit, so we re-assign bit 28 in

our context.

We propose to assign the different access modifiers bit 28 and 29 as shown in
If both bits are 0, the access modifier is not defined, so that the implemen-
tation is backwards compatible. A compiler that doesn’t know about access modifiers
would typically not set those bits, implicitly assigning the method the undefined ac-
cess modifier state. The vm should handle the undefined modifier as if it was public,

so that our extension remains as compatible as possible with the old header.

Table 3.2: The proposed access modifier

Assigned Access Modifier

encoding.
Bit29 Bit 28
0 0
) 1
1 0
1 1

undefined?
private
protected
public

*Should be handled by the virtual machine
as if it was public.

36

3.2 Enforcing Access Modifiers

3.2 Enforcing Access Modifiers

The vMm handles the execution of each method send in the Squeak-based implemen-
tation of Newspeak. Therefore, we need to adapt the vm to validate that message
sends conform to the attached access modifier semantics.

3.2.1 Modifications of the Method Lookup

When the vm needs to execute a message send, it does the following abstract steps:

1. Consume the send’s bytecode, the selector, receiver, and arguments from the
stack.

2. Find the object to start the method lookup, which depends on the type of the
send.

3. When handling an implicit receiver send, look up the method in the lexical
scope. If a method was found, prepare and then execute the new method. In
that case do not execute further steps.

4. Look up the superclass chain for the method. If a method could be found,
prepare and then execute the new method. In that case do not execute further
steps.

5. No matching method can be found. Start a new message send with the selector
doesNotUnderstand: to handle this case in Squeak /Newspeak.

We propose to alter the method lookup phase of the vm to also check for a method’s
access modifier. At this phase, the vm already has access to the method object, includ-
ing the header in which the access modifier is stored. In each phase of the lookup
the valid access modifiers for each message send type are known.

The implicit receiver send is the only send type that can lookup the lexical scope
as described infitem 3} This step does not need to be altered in any way because every
method that is found is allowed to be executed independently of its access modifier
as explained insubsection 2.3.4}

The method lookup in the superclass chain needs to be adapted. If a method is
found, the vm needs to decide if the method is allowed to be executed depending on
its access modifier. A public method can be executed for every send type. Only self
sends, super sends, outer sends, and implicit receiver sends are allowed to execute
a protected method. For self sends and outer sends, private methods can be
executed only if the method is found in exactly the same class where the method
lookup started. Thus, the vm needs to have access to three entities to decide whether
to execute a method: the type of the send, the class where the method lookup started,
and the class in which the method with a matching selector was found.

37

[C IO I VS

3 An Access Modifier Design for Newspeak

3.2.2 Possible Reactions to an Illegal Method Call

In this section we discuss how the Newspeak language should react on a method
call with insufficient access rights. We discuss several reactions and finally conclude
on why the behavior outlined in the Newspeak specification is the most appropriate
reaction.

One reaction could be to silently ignore method calls with insufficient access rights.
Another option is to let the program halt. Both ways are obviously impractical and
inflexible. A better approach is to raise a runtime error, which can be handled by the
Newspeak program.

Raising a Special Runtime Error A new error class could be created for that pur-
pose, for example AccessModifierMismatchError. The error would include informa-
tion about the message (which includes the sender and selector) and the allowed and
actual access modifier to indicate the mismatch. When this error is to be raised, the
vMm could follow the pattern of the MessageNotUnderstood error. Instead of sending
doesNotUnderstand: aMessage it would call the

accessModifierMismatch: aMessage expectedAccessModifier: modifier

method as a self send on the receiver. It assumes that the method is implemented on
the object class and raises the MessageNotUnderstood error when called. Subclasses
of Object may override the method to react on an access modifier mismatch in a
custom way.

However, a separate Error for an access modifier mismatch has one drawback: It
reveals the existence of a private or protected method even though the method
should be hidden from an ordinary message send. This can lead to undesired be-
havior, such as exposing the existence of a proxy which intended to fully mimic an
object, and might affect a programs security.

Listing 3.1: The implementation of a proxy class. The proxy forwards all messages
it receives to the target object. It also implements at least two non-public mes-
sages: target and doesNotUnderstand. The existence of those messages must not be
revealed so that the proxy can effectively act like the target object.

class Proxy on: anObject = (
(* A proxy that forwards ALL messages to the target object. *)
| private target = anObject. |

(’as yet unclassified’

doesNotUnderstand: aMessage = (
1 aMessage sendTo: target

)+ 0O

38

3.3 IDE support of Access Modifiers in Newspeak

A proxy class, as listed in [Listing 3.1, which has some private methods to han-
dle its internals, accidentally reveals the existence of its internal methods if an
AccessModifierMismatchError would be thrown. An object that owns a proxy, could
distinguish between the target and the proxy on that target by its behavior, which
might be a security concern. It requires more work to implement such a proxy with
the existence of a separate access violation error. The call-forwarding logic, which
is implemented in doesNotUnderstand: in the proxy, needs to be duplicated in the
error handler.

Denying the Existence of Not-Accessible Methods We conclude that an object
should act as if a called method does not exist if it cannot be reached due to its
access modifier. During the method lookup the existence of a method is only ac-
knowledged if it exists and if its access modifier allows execution. Like the previ-
ous solution, this solution allows flexible meta programming—by overwriting the
doesNotUnderstand: method of a class—while keeping the existence of an internal
method a secret.

When overwriting a method of a superclass, it is possible to give the new method
a different access modifier than the shadowed method of the superclass. This is not
a problem if the new method is more accessible— for example when the superclass
defines a private method which is defined as protected in a subclass. Although,
the Newspeak specification states that “subclasses should not, as a matter of good
practice, reduce the accessibility of inherited methods” [2], the case of reducing a
method’s accessibility has to be handled. Because the existence of a method is denied
on a method call with insufficient accessibility, the vm should continue the method
lookup in the hope to find another matching method in a superclass. Therefore, we
agree with the Newspeak specification: If a method with a matching selector but an
insufficient access modifier is found, the method lookup should skip the method
and continue the lookup.

3.3 IDE support of Access Modifiers in Newspeak

To write Newspeak programs that use access modifiers, program code not only needs
to be compiled with access modifiers. The system should also provide tool support
to developers. Thus, it should be possible to reflect on the compiled entity and get
information about its access modifier. Therefore, the reflective system of Newspeak
needs to be extended. Newspeak’s developer tools—like the class browser and code
editor—need to inform the developer about the access modifiers of classes, slots, or
methods.

Ideally, the programming environment does not only communicate access modi-
fiers through source code, but also in a more concise way. The Hopscotch IDE has
two views for classes and methods: an expanded view showing all the details and
program code, and a summary view which should fit in one line of text. As visu-
alized in we indicate the access modifier of a class, slot, or method in
the summary view with a colored symbol. The color indicates the access modifier:

39

3 An Access Modifier Design for Newspeak

ClassAccessingTests & in AccessModifierTesting W (=
Aocess Modifier : protected Category: (uncategorized) FPackage: AccessModifier Tests

Description Source

ClassAccessingTests = TestContext

Try to access classes with different access modifiers, but only wia public send. [...] o
shovw full cornmment

Slots &

O testSubjects o

Classes +

Methods + O (=) (e

» O testPrivateClassAccess as yet unclassified
» O testProtectedClasséccess as yet unclassified
» O testPublicClassAccess as yet unclassified

Class Methods +) (=) (e
= O TEST_COMTEXT as yet unclassified

Figure 3.1: The modified code editor with the proposed access modifier extensions:
The ClassAccessingTests class displayed is expanded in the Hopscotch IDE. The
slots and methods of the class with color-coded access modifiers are shown.

green for public, yellow for protected, and red for private. In the extended view,
slot and method definitions expose their access modifier directly in the source code.
For extended class views, as seen in the class declaration is not shown.
Therefore we textually indicate the access modifier just below the class name.

3.4 Migration to an Environment with Enforced Access
Modifiers

Before we began our work on Newspeak, the parser of Newspeak was capable of
parsing access modifiers— they had no effect, but the source code was valid. For the
scope of this work we assume that this behavior of the parser made programmers
write their programs using access modifiers, but without the ability to verify their
validity. For example, the words “public”, “protected”, and “private” can be found
1740 times in the 86129 lines of the Newspeak codeff| distributed with the Newspeak
image and vm.

If we enabled access modifiers in Newspeak, existing Newspeak programs, in-
cluding the programming IDE and Newspeak core, would break. We do not want to
break the existing Newspeak code base, which is why we need a way to migrate the
source code. Therefore, we propose to modify the vm so that it optionally prints a
warning to its standard output instead of raising an error when a method send can-
not be executed due to insufficient access modifiers. Message sends will succeed as if
every class, slot, or method was public. The access modifier warnings are collected
from the vms standard output into a file. After some time of using Newspeak, for

3As of commit 2bde®al0 from 2013-09-19 in the Newspeak source code repository.

40

3.4 Migration to an Environment with Enforced Access Modifiers

example by running the test suite, compiling programs, or browsing through source
code, a potentially long list of access modifier violations are collected in that file.

We contribute a Newspeak program which can parse such a file and upgrades
access modifiers in the Newspeak program code. This program needs to know the
receiver of the message send, the selector of the message, and the implementor of the
method. Provided with that information for each failed method send, the program
can find the current access modifier. If it finds an access modifier violation for a
private method, slot, or class, the access modifier will be upgraded to protected.
Similarly, a protected access modifier will be upgrade to public. When upgrading
an access modifier, a comment is inserted which states that the access modifier was
automatically upgraded and lists the old access modifier. This makes the review of
the programs changes easier. Finally, changes made by the upgrade program can be
merged back into the Newspeak source code repository.

There are multiple possible strategies to upgrade access modifiers. One strategy
is to first downgrade all access modifiers—even those stated implicitly by not spec-
ifying a modifier in the source code—to private. In a second step, the upgrade
procedure can be run as described previously to upgrade the access modifiers until
no more errors appear. This strategy has the advantage that the access modifier of
every entity in the Newspeak environment is specified with as little access rights
as possible while still having a working Newspeak environment with access modi-
fiers enforced. However, it is possible that the interface of a specific Newspeak class
was intentionally made public to be used by other (potentially not loaded) New-
speak programs. The strategy would alter the interface of Newspeak classes without
considering the intention of the interface.

We decided to use another strategy that does not change intentionally placed
access modifiers. It only downgrades access modifiers which were defined implicitly.
This would leave every intentionally set access modifier intact, while downgrading
the access modifiers which were not specified previously. In the second phase, where
the access modifiers are upgraded again, all access modifiers are considered again.

Because we change the interface of Newspeak classes with the upgrade program,
changes made by that program need to be reviewed by the Newspeak community.
The number of access modifier changes is high, which is why they should be split
into chunks of related changes. We assume that a smaller set of related access modi-
fier changes leads to a better code review. Unfortunately, we do not have a sufficient
grouping algorithm at hand which works automatically. Therefore, we group the
changes differently: The upgrade program is run multiple times. For each run an-
other part of Newspeak’s functionality is executed, the access modifier violations are
collected and fixed. The resulting source code changes are grouped into one change
request that can be reviewed by the community. We assume that grouping makes
it easier for the code reviewers to review the access modifier changes made by our
algorithm in a given context.

41

4 Implementation

This chapter provides some details on how we implemented the solutions outlined in
Therefore, we present insection 4.1how the access modifier information
was encoded, in how we enforced access modifiers in the vm, and in
section 4.3/how the Newspeak runtime environment can reflect on access modifiers.
Finally, we present details about our implementation of the access modifier upgrade

program in

4.1 Encoding the Access Modifier Information

As presented in we encode the access modifier information in
CompiledMethod objects. To that end, we change the interface of the CompiledMethod
class to include an accessModifier getter and setter method. Both methods access
the method header of the CompiledMethod object.

The #accessModifier: setter is presented in If the CompiledMethod
uses the alternative bytecode set, the access modifier, which is either the symbol #
private, #protected, or #public,is converted into the encoded value as per[Table 3.2}
Then the access modifier bits in the method header are set to 00 with a bit mask. The
new access modifier bit can then be set on the method header with a bit-wise or
operation. The getter method for the access modifier retrieves the access modifier in
a similar way. In addition to the getter and setter methods for access modifiers, we
added the convenience predicates isPublic, isProtected, and isPrivate.

Just like the accessor methods for the Newspeak runtime, which are implemented
in the CompiledMethod class, there is an accessor method in the vm to reflect on ac-
cess modifiers (shown in [Listing 4.2). Two pragmasff|are defined in the source of
the accessModifierFlags method. The first pragma (line 7) states that the method
should be inlined into methods which call the getter, whereas the second pragma
(line 8) defines a variable cogMethod in the generated C source code. The accessor
reads the encoded method header of the currently handled method, which is stored
in the global variable newMethod, and returns it. The newMethod variable is set on
every message send during the method lookup. The accessModifierFlags method
receives the methodHeader of the method. Therefore it needs to differentiate be-
tween normal CompiledMethod objects and methods that have been compiled by the

1A pragma is an annotation attached to a CompiledMethod in Smalltalk. The concept of
pragmas is used in Slang to modify the C source code generation of Slang methods.

42

G AW N e

4.2 Enforcing Access Modifiers

Listing 4.1: The implementation of the setter method for the access modifier of a
CompiledMethod. It is written in Smalltalk, because it is a Smalltalk class.

accessModifier: accessModifier
”set header bits 29-28 in Alternate Bytecode Set”
| accessModifierBits header |
self usesAlternateBytecodeSet ifTrue: [”accessModifier bits:
00 undefined
01 private
10 protected
11 public?”
“we rely on the fact that indexOf: returns 0 for objects not in the array”
accessModifierBits := (#(#private #protected #public) indexOf:
accessModifier).
header := self header bitAnd: (3 bitShift: 28) bitInvert. ”header with reset
accessModifier bits”
self objectAt: 1 put: (header bitOr: (accessModifierBits bitShift: 28))].

just-in-time compiler (jit) because they have a different layout (lines 11 to 14). Finally,
it takes the header and extracts and returns the access modifier bits (lines 17, 18).

4.2 Enforcing Access Modifiers

To enforce the access modifier semantics of Newspeak, two changes need to be im-
plemented in the vm: First, new message send bytecodes need to be added so that
we can distinguish a self or outer send from an ordinary send. Second, the method
lookup of the vM needs to be altered so that it considers access modifiers.

As described in[section 2.3} the different message send types in Newspeak have
different access modifier semantics. Therefore, the vm needs to know which message
send type is currently executed to decide whether the access modifier of a method is
sufficient or not. Prior to this work, all the send types were functional in Newspeak,
but the self send and outer send were emulated using the ordinary send by the
Newspeak compiler. We changed the self send and outer send so that they use their
own bytecode, removing the need to explicitly push the receiver.

In case of implicit receiver sends and outer sends, the receiver cannot be known
at compile time. Therefore the Newspeak derivative of the Squeak VM introduced
ImplicitReceiverBytecode and PushPseudoVariableOrOuterBytecode asnew byte-
codes. Both can search the lexical scope of an object to find and push the receiver of
the message send onto the stack.

To demonstrate this behavior of the Newspeak compiler for the different send
types, we use a method containing an ordinary send, a self send, and an outer sendf|
in[Listing 4.3 The method was compiled two times: using the old Newspeak compiler

2We have omitted implicit receiver sends and super sends in the listing, because they
produce the same bytecode for the old and new compiler.

43

15

16

S|

7

4 Implementation

Listing 4.2: The implementation of the getter method for the access modifier of a
CompiledMethod in the vm. It is implemented in the StackInterpreter class and writ-
ten in the Slang language, a subset of Smalltalk which is compiled to C to build
the Newspeak virtual machine.

accessModifierFlags

”fetches the access modifier flags, returns a number:

0 - undefined (treated equal to public)

1 - private

2 - protected

3 - public”

<inline: true>

<var: f#cogMethod type: #’CogMethod *’>

| methodHeader cogMethod |

methodHeader := self rawHeaderOf: newMethod.

methodHeader := (self isCogMethodReference: methodHeader)
ifTrue: [cogMethod := self cCoerceSimple: methodHeader to: #’CogMethod *’.
cogMethod methodHeader]

ifFalse: [self headerOf: newMethod].

(self headerIndicatesAlternateBytecodeSet: methodHeader)
ifTrue: [T (methodHeader >> 29) bitAnd: 3]

ifFalse:[1 0]

and using the Newspeak compiler with our modifications. The bytecodes produced
by the old compiler are shown in whereas the bytecodes produced by
the new compiler are shown in [Listing 4.5}

Ordinary Sends In the original Newspeak vm an ordinary send consists of two
steps: First, the receiver is pushed onto the stack with a push bytecode, then a mes-
sage send bytecode is used to execute a message send to the receiver. Because the
printString method does not take any parameters, no parameters need to be pushed
onto the stack prior to the message send bytecode. The self send is very similar to
an ordinary send. It first pushes the receiver (self) onto the stack and then issues an
ordinary send. Thus, the vm cannot distinguish if the send was originally an ordinary
send or self send. The same problem occurs with outer sends. Again, the receiver is
pushed onto the stack with a special push bytecode, which can push an enclosing
object. After the receiver was pushed, an ordinary send is issued to simulate the
outer send.

To let the vm know which message send type is used, we introduce two addi-
tional send bytecodes: the self send bytecode and the outer send bytecode. The self
send bytecode is a two-byte bytecode where the first byte consists of the bit pattern
<11110101> identifying the bytecode as a self send. The second byte consists of the

literal table, and 3 bits to encode the number of parameters for the message send.

44

G W N e

4.2 Enforcing Access Modifiers

Listing 4.3: A method containing an ordinary send, a self send and an outer send.
The class implementing this method is nested in the MyApplication class, so that
the outer send works. The printString method is implemented on Object and,
thus, can be send to every object.

testTheCompiler = (
5 printString.
self printString.
outer MyApplication printString.

)

Listing 4.4: The method listed in Listing 4.5: The method listed in
Listing 4.3| compiled with the un- Listing 4.3|compiled with the mod-
modified Newspeak compiler. The ified Newspeak compiler. The self
self send and the outer send are send and the outer send are imple-
implemented using the ordinary mented using their own bytecodes.
send bytecode.

<E5 05> pushConstant: 5
<71> send: printString

<E5 05> pushConstant: 5 2 <DC> pop

<71> : i i 3 . .
<Bé> ;ggd printstring 4+ <F5 08> selfSend: printString
<4C> self 5 <DC> pop

<71> send: printString ¢ <F8 08 01> outerSend:

<DC> pop printString (depth: 1)

~

<DC> pop
s <4C> self
9 <D9> returnTop

<E1l FF 4D> pushExplicitOuter: 1
<71> send: printString

<DC> pop

<D8> returnSelf

Using extension bytecodesP| higher literal numbers and parameter counts can be
encoded.

The newly introduced bytecodes are produced by our modified Newspeak com-
piler as shown in The self send consists only of one two-byte bytecode.
Similarly, the outer send consists of one three-byte bytecode. It is notable that for
both bytecodes the receiver is not set by the compiler anymore; it is implicitly given
through the specific message send bytecode. This way the higher access rights of
outer sends and self sends can only be used on receivers following the self send or
outer send semantics. If the sends were implemented to first push the receiver and
then execute the send (as it was done previously), a security risk would be present:
It would be possible to push any receiver and execute a self send on it.

3There can be up to two extension bytecodes following a normal bytecode. Both extension
bytecodes have two bytes, the first identifying the bytecode. The second byte encodes an
arbitrary number used to extend the previous bytecode.

45

4 Implementation

Self Sends and Outer Sends The vm side implementation of the self send and
outer send bytecode are very similar to the implementation of the ordinary send
bytecode. The send bytecode and extension bytecodes are consumed from the stack,
the selector is taken from the literal table, and the specified number of parameters
are taken from the stack. The difference to the ordinary send is that the receiver is
computed instead of taking it from the stack. For the self send, the receiver of the
send is always the receiver of the currently executing method. For the outer send, the
receiver is looked up using the same algorithm as the pushExplicitOuter bytecode
used by the unmodified compiler. To handle the self send and outer send bytecodes,
which have not pushed a receiver onto the stack, the calculated receiver is put on the
stack retroactively. This is done because the vm assumes that the receiver is placed
on the stack at various places, for example when removing the remains of a method
execution from the stack. We decided to push the absent receiver onto the stack
because it adds less complexity to the vm implementation than adding this corner
case to the various places which rely on the position of the receiver.

Method Lookup Since we refactored the vm to use different bytecodes for the
different types of message sends in Newspeak, it can enforce the access modifier
semantics of Newspeak during the method lookup. We found that, even though
there are five types of message sends, there are only two different ways required
to handle the method lookup. When looking for a method in the lexical scope, all
methods can be found no matter which access modifier they have. When looking for
a method in the superclass chain, there are two cases: First, only public methods
can be found (an ordinary send is executed). Second, all methods can be found if the
method is found directly in the receiver object. If the method is defined at any other
place, only protected or public method can be found (when executing a self send,
outer send, implicit receiver send, or super send— when executing a super send the
lookup starts at the superclass of the receiver).

The existing method lookup functionality in the vM is altered to find only public
methods and raise an error if any private or protected method with a matching
selector is found. Additionally, a second lookup was added to the vm which allows
all methods to be found if the method exists in the receiver. An error is raised if a
private method is found at any other place. This behavior is not conform to the
Newspeak specification (no error should be raised, but the method lookup should
continue ignoring the private method). The difference between our implementation
and the Newspeak specification is a known limitation as described in[section 5.3

We present a more detailed explanation of the method lookup implementation of

the interpreter vm in

4.3 Reflecting on Access Modifiers at Runtime

To enable Newspeak programs— for example, programming tools like the class
browser—to reflect on access modifiers, Newspeak’s mirror system has to be adapted.

46

4.3 Reflecting on Access Modifiers at Runtime

All access modifiers are encoded in CompiledMethod objects. This information has to
be available for method-related, slot-related, and class-related mirrors.

A MethodMirror directly reflects on a method. For the Squeak-based implemen-
tation of Newspeak the method mirror holds a reference to a CompiledMethod. The
mirror can obtain the access modifier directly from the CompiledMethod it holds.

SlotMirrors are a work in progress in the current version of Newspeak. Currently,
they are read only. They do not hold a reference to any other mirror and, therefore,
cannot dynamically determine their access modifier. Instead, they are initialized by
other mirrors with their name, mutability, and access modifier. A SlotMirror can
forward the access modifier it got during initialization when asked for its access
modifier. To enable this behavior, it needs to be extended by a slot capable of holding
the access modifier and by adapting the initializer of the SlotMirror class to access
the access modifier as a parameter. The MixinMirror and the ClassHeaderMirror
are the only mirrors in the Squeak based implementation of Newspeak that currently
instantiate SlotMirror objects. They have been adapted to use the new initializer of
the SlotMirror.

Class-related mirrors, which need to be able to give information about their re-
flectee’s access modifier, are the ClassDeclarationMirror and ClassMirror.

The ClassDeclarationMirror needs to be able to reflect on its access modifier
because it belongs to the declaration of a class. However, it does not have a reference
to an actively used class. Therefore, it does not have an accessor method from which
it can deduce its accessibility. Naturally, a ClassbDeclarationMirror would infer its
access modifier from the class declaration.

However, in the current Newspeak implementation only the class header, which
does not include the access modifier information, is saved. This needs to be changed
in a future version of Newspeak. We choose to implement a work around. The
ClassDeclarationMirror infers its access modifier by fetching its enclosing class—
via the instance mixin it was initialized with—and then searching the method dic-
tionary of the enclosing class for the getter method pointing to itself. The method
dictionary of a class contains all methods, even those generated to access slots or
classes. Because the access modifier was saved in the method header, the access
modifier of a class can be inferred by its accessor method. If there is no enclosing
class, we assume that we have a top-level class which are defined to be public.

The downside of this approach is that a mixin can be applied multiple times.
Therefore, a mixin might return the enclosing class of where it was defined, and not
necessarily where the class declaration was built. Because multiple applications of a
mixin are allowed in the specification, this workaround has to be removed as part of
future work. This is a known limitation as outlined insection 5.3}

The version control system of Newspeak, called Memory Hole [25], can save ver-
sions of Newspeak code in different repositories— currently Mercurial [36]], git [29],
and file-system-based repositories are supported. To serialize Newspeak classes and
their slots, methods, and inner classes, a separate set of mirrors is used. The New-
speak source code mirrors are located in the VCSNewspeakSourceMirrors module.
They can reflect on classes, slots, and methods and have been extended by us similar
to the previously described mirrors. Using the extended mirrors, the version control

47

4 Implementation

system of Newspeak is able to display added or removed access modifiers and is
able to merge them.

4.4 Migration to an Environment with Enforced Access
Modifiers

This section describes how the Newspeak code base can be migrated to use the now
functional access modifiers. A migration is necessary because of the use of access
modifiers in the Newspeak core.

An unchanged Newspeak image cannot correctly start with enforced access modi-
fiers. It fails due to an MessageNotUnderstood error before any Newspeak window
can be displayed. Similarly, it cannot handle the thrown error, because the user inter-
face for the debugger cannot be displayed without raising another MessageNotUnderstood

error. A similar issue arises when bootstrapping a new Newspeak image[z_f]

The implementation effort for the access modifier migration is split into two parts:
We have modified the vm to only check the access modifiers when a specific option
is enabled and, secondly, we have developed a Newspeak program which can find
access violations and attempts to fix them.

Optional Access Modifier Checks in the Virtual Machine To let the Newspeak
image start and bootstrap, we added an option to enable the access modifier checks.
If this option is not given, the vm will not check for access modifiers. This way de-
velopers can migrate their source code to work with enabled access modifiers. The
option may be enabled per default or removed completely in a later version (so that
it is permanently enabled).

We have added the command line argument —enforceam, which can be
given when starting the vm. If this argument is given, the vm sets the variable
enforceAccessModifiers to 1, which means that access modifiers will be enforced.

The vm has been adapted to check for access modifier during the method lookup,
but only call the doesNotUnderstand method if the —enforcean flag is set. If it is not
set, a warning containing the method selector, the receiver, and the class where the
method was found is printed to the standard output of the vm.

The Access Modifier Migration Program The second part of the code migration
effort is a Newspeak program that can upgrade access modifiers. It reads the access
violation outputted by the virtual machine and searches the method, class, or slot that
was called with insufficient access rights. The access modifier of that method, class,

4 Newspeak images are created starting from a Squeak image, which is modified to create
a full Newspeak image. Therefore, a pre-compiled environment (including a compiler) is
loaded and then all Newspeak sources are loaded, compiled, and installed. This process
is called bootstrapping.

48

N e oe R
O N

N

g = W N

NN NN

4.4 Migration to an Environment with Enforced Access Modifiers

Listing 4.6: The part of the migration program that calculates the new source code
of a method when migrating it

modi fiedMethodSourceOf: methodMirror = (
| source oldModifier newModifier |
(* Changes the method’s access modifier.
Also adds a comment to the source naming the previous modifier.x)

source:: methodMirror source asString.
methodMirror reflectee usesAlternateBytecodeSet ifFalse: [T source].

oldModifier:: methodMirror accessModifier.
newModifier:: newAccessModiferForMethod: methodMirror.
oldModifier = newModifier ifTrue: [T source].

(source startsWith: (oldModifier, ’ ’)) ifTrue: [
source replaceFrom: 1 to: (oldModifier size)
with: ~’ > startingAt: 1.

1.

(Regex string: source prefixMatchesRegex:
"\sx\ (* was (private|public|protected) *\) ’) ifTrue: [
1T (newModifier, ’ ’), (source withBlanksTrimmed)
] ifFalse: [
1T (newModifier, ’ (* was ’,oldModifier,’ x) ’),
(source withBlanksTrimmed)

or slot will be upgraded (a private access modifier will be changed to protected,
a protected access modifier will be changed to public).

For a given class, slot, or method, which has been identified to have a too restrictive
access modifier, the source code will be modified and the entity will be re-compiled.
For example, when a method shall be upgraded, the modifiedMethodSourceOf:
method of the upgrade program is used to migrate the method source. The
modi fiedMethodSourceOf, as listed in [Listing 4.6} only modifies the method source
if the method uses the alternate bytecode set, because only those methods use
the modified method header. Then it calculates the new access modifier using the
newAccessModifierForMethod: method that implements a strategy to upgrade the
access modifier. The strategy is to simply to upgrade the access modifier from pri-
vate to protected and from protected to public. After finding the new access
modifier, the source code is changed. When changing the source code, an additional
comment is inserted which states the old access modifier (except there already is
such a comment). The comment documents the automated access modifier change
and is intended to help to review the change. This approach takes the Newspeak
implementation (while not considering access modifiers) as a reference and adapts
the access modifiers according to their usage. Finally, the method returns the new
source code which can then be compiled and installed in the Newspeak system. A
similar approach is implemented for slots and class definitions, which changes the
class header source instead of the method source.

49

4 Implementation

Our approach adapts the access modifiers used in the observed Newspeak sys-
tem to how the classes, slots, or methods are used. It is possible, though, that the
access modifiers are set intentionally and the current implementation shouldn’t use
a specific private or protected entity. This case is not covered by our approach.
However, the changes done by the upgrade program are commented and meant to be
reviewed. We assume that an undesirable access modifier upgrade will be identified
during review.

The described process only upgrades access modifiers that are too strict. However,
there might be access modifiers that are too loose— for example a method which
does not have an access modifier (because they have not made a difference in the
current implementation anyway), which should be private. We assume that classes,
slots, or methods, which have no access modifier set explicitly, can fall into that
category. Therefore, our upgrade program is run once with a downgrade-strategy to
downgrade every not explicitly specified access modifier. The previously described
upgrade process can then be applied to the now private entities.

The downgrade approach works well for methods and slots because they store
their access modifier in the source code. If the access modifier is stored in the source
code, the program can distinguish a protected entity from an entity that does not
have an access modifier and is, therefore, implicitly defined as protected. Unfortu-
nately, class definitions do not store their access modifiers in the class header source.
Because our program has no way to distinguish a class which is explicitly set to
protected from a class which has no access modifier, it currently downgrades all
protected classes.

50

5 Evaluation

In this chapter our approach to implement access modifiers for Newspeak is eval-
uated. The evaluation is two-fold: We evaluate the performance impact of our im-
plementation compared to the current Newspeak implementation without access
modifier support. Secondly, our access modifier implementation is evaluated qual-
itatively by inspecting the errors that occur during image startup. We inspect the
behavior of the error propagation, fix the access modifier, and test if the error is
resolved. Finally, we point out known limitations of our approach as well as of the
current implementation.

5.1 Performance Impact

We expect performance to be negatively affected by our modifications to the vm and
to the Newspeak image. It was one of the implicit goals to minimize this effect. This
section presents the results of multiple performance benchmarks. The performance
benchmarks were executed using a combination of different vms and Newspeak
images:

1. An unmodified CogVM vwm is run using an unmodified image.

2. In the second benchmark run, the jit is disabled. Apart from that the vm and
the image is still unmodified.

3. The modified CogVM, a vm that was compiled with our modifications, is used
in the third run. The image is still unmodified.

4. In the last run we use the modified vm in combination with a modified image.
The modified image was built with our modifications.

The unmodified CogVM vm was built from the version VMMaker.oscog—eem.335
in the VMMaker repository[| The modified CogVM is based on the same version,
but includes our changes described in Newspeak images are based on
the Newspeak repositoryf’| mercurial version e651d4001702 and the Newspeak boot-
strapping repositoryP|mercurial version f86ca238aeb4. The unmodified image directly
bootstraped from these repositories. The modified image is the same Newspeak image
with our modifications as described in

Thttp://source.squeak.org/VMMaker, last accessed June 18, 2015.
2https://bitbucket.org/newspeaklanguage/newspeak_bleeding_edge, last accessed June 18, 2015.
3https://bitbucket.org/newspeaklanguage/nsboot_bleeding_edge, last accessed June 18, 2015.

51

http://source.squeak.org/VMMaker
https://bitbucket.org/newspeaklanguage/newspeak_bleeding_edge
https://bitbucket.org/newspeaklanguage/nsboot_bleeding_edge

5 Evaluation

The 5t was disabled in all but the first benchmark runs, by passing the parame-
ter —cogmaxlits 0 to the vm. The parameter sets the number of literals a method
should have to be just-in-time compiled. Setting it to 6 disabled the jit. Currently, our
modifications do not work with the jit. Because of that, the enabled and disabled jits
are compared first to see which part of the performance drop is due to the disabled
it and not due to our modifications. All measurements, except the first, are taken
with the nit disabled. This way it is possible to observe the performance drop that
comes from disabling the jir when comparing the first pair of results.

The results of two benchmarks are presented in this section, a microbenchmark
SlotWrite that measures slot writes and another benchmark ParserCombinators that
measures Newspeak’s parser combinator module.

All measurements are performed in a ThinkPad T430s (CPU: Intel® Core™ i7-
3520M CPU @ 2.90GHz x 4; 16GB RAM) running on a 64bit Ubuntu 14.04 with
the Linux kernel version 3.13.0—35—generic. All measured values on those two
benchmarks and all other benchmarks in the Newspeak benchmark repository are

lsted in

SlotWrite The SlotWrite benchmark is a microbenchmark that performs 1.000.000
slot writes to a protected slot per benchmark run.

The benchmark results are visualized in[Figure 5.1 Again, each result is the average
of 10 benchmark runs with the same configuration. The standard deviation of all
runs is shown as a black error handle on every bar.

SlotWrite
200
180
160 B Unmodified CogVM; Unmaodified
Image
140 ¥ Unmodified CogVM (disabled
120 JIT); Unmodified Image

Modified CogVM (disabled JIT);
100 Unmodified Image

80 B Modified CogVM (disabled JIT);
60 Modified Image

40
20
0 - I
176.48 7.03 6.93 6.94

Number of Benchmark Runs in 2 Seconds

Figure 5.1: The results of the SlotWrite benchmark for different vm and image com-
binations. The average results of the benchmark runs are plotted along the x-axis.
The y-axis shows the number of performed benchmark executions in 2 seconds
runtime.

52

5.1 Performance Impact

It can be observed that disabling the it hugely affects runtime performance. When
comparing the difference of the unmodified vm with the modified vm (both with
nt disabled), a slight performance drop of around 1.4 percent can be observed. We
conclude that our modifications do not have much impact on slot writes.

ParserCombinators The ParserCombinator benchmark is best described by citing
its class comment: “A macrobenchmark based on the Newspeak’s Combinatorial-
Parsing. This benchmark parses and evaluates a fixed string with a simple arithmetic
expression grammar. These parser combinators use explicitly initialized forward
reference parsers rather than mirrors to handle the cycles in the productions. They
also do not use of any platform streams to avoid API differences.”

The benchmark results are visualized in[Figure 5.2] Again, each result is the average
of 10 benchmark runs with the same configuration. The standard deviation of all
runs is shown as a black error handle on every bar.

Disabling the yit reduces the performance of the ParserCombinators benchmark.
Thus, we expect a huge performance increase when adapting our changes to the y.
When comparing the unmodified and modified vm (both with an unmodified image
and disabled yit) no difference in the runtime performance could be observed. This
is because even when using the modified vm, the image only sends the old bytecodes.
When using the modified image, a performance drop of 10 percent can be observed
because the new bytecodes are used.

ParserCombinators

1.80
3
& 1.60
§ B Unmodified CogVM; Unmodified
~ 1.40 |mage
E 1.20 B Unmodified CogVM (disabled
= JIT); Unmodified Image
T 1.00 Modified CogVM (disabled JIT);
g 0.80 Unmodified Image
s _ B Modified CogVM (disabled JIT);
é 0.60 Modified Image
S 040
(0]
Qo
E 0.20
=}
=z
0.00

1.57 0.70 0.70 0.63

Figure 5.2: The results of the ParserCombinators benchmark for different vm and
image combinations. The average results of the benchmark runs are plottet along
the x-axis. The y-axis shows the number of performed benchmark executions in 2
seconds runtime.

53

= W N e

o

5 Evaluation

5.2 Analysis of Access Violations

This section presents the impact of our modifications to the Newspeak image and
vMm. The startup process of a Newspeak image is observed with functioning access
modifiers, but an unmigrated code base. The access violation errors that are logged
are analyzed and retraced to the source code. After fixing the cause of the access
violation, we show that the error disappears and that our modifications are working.

We prepared a Newspeak vm and bootstrapped a Newspeak image with our mod-
ifications. The Newspeak source in the image contains our modifications, but the
access modifiers in the image are not yet migrated. When starting the modified vm
with the modified image and the —enforceam parameter (which activates the access
modifier checks), a blank window appears. No Newspeak window can be shown and
the Newspeak process occupies a CPU core by 100 %. The error log on the standard

output of the vm is listed in

Listing 5.1: The error log of the modified Newspeak image and vm before upgrading
the access modifiers. The last two lines are repeated in an endless loop.

RuntimeForSqueak’Platform?’3400>blackMarket

RuntimeForSqueak’Platform’3400 class(KernelForSqueak’Class’248)>name

RuntimeForSqueak’Platform’3400>resetForNewImageSession

RuntimeForSqueak’Platform’3400 class(KernelForSqueak’0Object’248)>
printString

KernelForSqueak’Metaclass’248(KernelForSqueak’0Object’248)>printString

KernelForSqueak’Metaclass’248 class(KernelForSqueak’0Object248)>printString

The first error in the error log appears on a Platformobject on which the blackMarket
method was called[|In the log the method appears to be protected, which is in-
dicated by the #-symbol before the class name (+ would be public; — would be
private). When opening the image, it can be observed that blackMarket is a slot
on the Platform class and is indeed protected. Because blackMarket is intended
to be a public arr slot, its access modifier should be changed to public.

But because blackMarket is not public, our modifications invoke the
doesNotUnderstand method. The default implementation of doesNotUnderstand:
in the Object class initializes a new MessageNotUnderstood error which is in-
stantly signaled. Because no method handles the error, Newspeak’s attempts to
log the error into a log file. This is done in the NsFFISessionManager class in
the prepareForNewvmSession method, which handles the image startup. While
writing the error log, the name method is called in Class. The name method is

4The blackMarket method was called while initializing a NativeSession object during
the image startup.

54

G B W N R

o

5.3 Known Limitations

protected. Again, our modifications do not allow method execution and invoke
doesNotUnderstand, which results in the second line of the error log in[Listing 5.1}

The remaining lines in the error log come from handling the resulting error, which
fails again and again, until the execution is caught in an endless loop. The last two
lines in the error log are repeated endlessly.

Listing 5.2: The error log of the modified Newspeak image and vm after upgrading
the access modifier of the blackMarket method of the platform class. The last two
lines are repeated in an endless loop.

Brazil’ContainerClasses’24>Desktop

Brazil’ContainerClasses’24 class(KernelForSqueak’Class’48)>name
Platform>resetForNewImageSession

Platform class(KernelForSqueak’Object’48)>printString
KernelForSqueak’Metaclass’248 (KernelForSqueak’Object’48)>printString
KernelForSqueak’Metaclass’248 class(KernelForSqueak’Object48)>printString

H o HHHH

When migrating the access modifier of the blackMarket method of the Platform
class (which cause the original error) to public, the error log is different. The original
error does not appear. Instead, the Desktop slot at the Brazil' ContainerClasses
class cannot be accessed. As shown in the new error log in again the
image cannot recover due to other access violations in a similar way as in the first
try.

From those two examples, we observed that our modifications worked for two
ordinary sends, which attempted to call a protected method.

5.3 Known Limitations

Although our modification to the Newspeak vm and image work in principle, some
limitations are still present. This section presents limitations of our approach as well
as of the current implementation.

Access Modifier Semantics As discussed in the vm should react to a
call to an not-accessible method by ignoring the not-accessible method and con-
tinuing the lookup. Our implementation currently violates the specification, be-
cause it aborts the lookup when such a method is called and directly calls the
doesNotUnderstand: method. We took this approach because it makes the migration
easier (calls of not-accessible methods are caught early). However, our implementa-
tion needs to be changed to obey the specification in future work.

Just-in-Time Compiler It is clear from the performance benchmarks that our im-
plementation is much slower than the usual Newspeak implementation because the

55

5 Evaluation

5T needs to be disabled. This is because our modifications of the it produce crashes
of the vm. However, we are certain that our modification can be applied to the yit
once the cause of the crashes is eliminated.

MixinMirrors We changed the ClassDeclarationMirror so that it can reflect on
the access modifier of its class. As discussed in[section 4.3} the downside of this ap-
proach is that a mixin can be used —by definition—multiple times to extend a class
through subclassing. Therefore, a mixin might return the enclosing class of where
it was defined, and not necessarily where the class declaration was built. Because
multiple applications of a mixin are allowed in the specification, this workaround
has to be removed as part of future work.

Migration As pointed out in[section 4.4} the migration program produces a lot of
changes. Those changes need to be grouped and submitted manually. Furthermore,

the migration program only fixes access violations that occurred during the testing
phase. It cannot detect access violations which did not throw an error during the
migration.

56

6 Related Work

Practical languages employ a wide variety of mechanisms to protect program entities
from unqualified access. We give representative examples of protection mechanisms
from JavaScript, Smalltalk, and C++.

Some languages do not directly provide access control on a language level. Instead,
programmers use other languages features to control information access. Examples
of such languages are JavaScript and Smalltalk.

JavaScript JavaScript [8] is a prototype-based language that treats all attributes
of a prototype as public. All attributes (and therefore methods) of a prototype
can be accessed by any other prototype. JavaScript does not directly offer means
for access control. A commonly used way to make methods private is to define
methods as local variables inside of closures [38]. This way those methods are only
accessible inside the closure’s scope which effectively hides them from outer access.
In comparison with Newspeak, JavaScript has no direct support for access modifiers.
There is, for example, no built-in way to define protected entities.

Smalltalk Smalltalk [15] objects consists of data, so called slots, and methods. In
Smalltalk an object’s methods can be accessed from any other object through message
sends. Slots, however, are only accessible by the object those slots belong to. Therefore,
access control in Smalltalk is implicit by a basic policy. Fine grained access control
for slots is possible by making slots available to other entities by using getter and
setter methods. Methods, however, cannot be made private. Methods which are
intended for internal use are often put in a method category with the name “private”.
This is only a convention that communicates that other objects should not call those
methods— the language does not enforce access control. Through reflection even
slots can be accessed by other objects. Newspeak is secure in this regard as it offers
reflection only through mirrors, which can be managed in an object-capability way.

C++ Many programming languages exist that explicitly feature access control. One
of them is C++ [45], which has access modifier keywords built into the language. It
is object-orientation and offers explicit access control through the following access
modifier keywords which can be given to members of classes:

* Public members can be used by any functions.

* Protected members can be used by functions of the same class or by sub-
classes. Additionally, they can be used by friend classes.

* Private members can only be used by the same class or friend classes.

57

6 Related Work

The protection provided by the C++ access control can be circumvented either by
directly accessing the memory of protected data, or by performing a type conver-
sion (type cast) [31]. Type conversion and direct memory access is not possible in
Newspeak.

&

Among the other popular languages with explicit access control are Java and Ruby.
The following sections provides a closer look into the access control implementation
of those languages.

6.1 The Access Modifier Implementation of Ruby

Ruby [11] is an object-oriented scripting language designed for high-level general-
purpose programming. It aims to have a rich syntax and emphasizes meta program-
ming. Ruby provides explicit access control for methods[[]In Ruby, the class body is
executed—just as if it was defined in a method—to define, for example, methods
or attributes. Thus, the words public, protected and private are not keywords.
Instead they are implemented as class-side functions.

The semantics of the access modifiers in Ruby are as follows:

* Public methods are accessible from everywhere.

* Protected methods can only be invoked from within methods of the same
class or subclasses.

* Private methods can only be invoked through an implicit receiver send from
within methods of the same class or subclasses.

The de facto reference implementation of the Ruby language is implemented in C
and is commonly called MRI (Matz’ Ruby Interpreter— Yukihiro “Matz” Matsumoto
is the creator of the language) [40]. Many other Ruby implementations have been de-
veloped [22} 23} |39]. We want to examine a Ruby implementation called MagLev [13].
MagLev is built on top of VMware’s GemStone/S 3.1 vM [14]. GemStone is a Smalltalk
implementation similar to Newspeak. The MagLev Ruby implementation is based
on an extended Smalltalk vm, just as Newspeak is based on a Smalltalk vm. Therefore
we can compare how the access modifier semantics of Ruby are implemented in
MagLev and compare the findings to our implementation.

Defining Access Controlled Methods Ruby classes and modules can have pri-
vate, protected, and public methods. As shown in[Listing 6.1} the access modifier

"Ruby also provides access control for constants. Because the constant lookup is different
than the method lookup and because space in this work is limited, we focus on access
modifiers for methods.

58

16

6.1 The Access Modifier Implementation of Ruby

Listing 6.1: An example Person class written in Ruby. A person may have a birthday,
which is private and has a private getter/setter method. A public method
exists which returns the age of the person in years.

require ’date’

class Person

public
def age_in_years
now = Time.now.utc.to_date
age = now.year - birthday.year
for days in the year before the birthday
age - ((now.month > birthday.month ||
(now.month == birthday.month && now.day >= birthday.day)) ? 0 : 1)
end
private
def birthday(date = nil)
if date
@birthday = date
else
@birthday ||= Date.parse(’1903-06-25")
end
end
end

directives do not need to be directly attached to the methods. Instead, an access mod-
ifier directive controls all following methods until another directive occurs or the
class definition ends. Classes and modules define a methodProtection slot, which
encodes the last access modifier directive seen during method compilation. In our
example inListing 6.1|the methodProtection slot is initialized with 6 (which stands
for public). The public method, which is executed as the first statement in the class
body, re-sets the value to 0. All following methods are defined as public, which
makes the age_in_years function public. A private call follows, which sets the
methodProtection slot to 2 (which stands for private) and makes the following
methods private.

Method Lookup and Access Violations Three execution levels exist in MagLev:
The GemStone Smalltalk vM, the Smalltalk environment, and the Ruby environment.
Ruby-methods are written in Ruby, but compiled to Smalltalk-level method objects.
The GemStone vm can execute Smalltalk methods as well as Ruby methods and is
responsible for the method lookup of Ruby methods.

The access modifier of a Ruby method is saved in the Smalltalk-side method object.
The rubyInfo slot of the GsComMethNode class, which is the intermediate representa-
tion for the compiler of a CompiledMethod, holds a bit map which encodes the access
modifier of a method. It makes the access modifier information available through
the methodProtection getter method, so that the vm can decide whether the method
can be found by a method call or not.

The method lookup code of the GemStone vm checks for the accessibility of a
method, if it is found in a Ruby-method dictionary. If a method is not accessible, the

59

6 Related Work

vM executes the Smalltalk method _doesNotUnderstand. The _doesNotUnderstand
method does a dispatch depending on the language environment. If the current en-
vironment is the Ruby environment, it calls the Ruby-level method method_missing.
The method_missing method is the default Ruby handler for methods calls that could
not be found — very similar to doesNotUnderstand in Newspeak.

Methods that could not be found due to an access restriction also result in a
method_missing call. To provide the reason of the failing method call in the error
message, the vM provides an primitive to get the “lastDNUProtection” variable. It en-
codes whether the last doesNotUnderstand (or method_missing) was called because
of a protected or private method or if the method was not present.

The Ruby access control for methods in MagLev is implemented very similar to
our implementation. The access modifier bits are stored in the Smalltalk compiled
method object. MagLev stores them in a slot whereas our implementations encodes
the access modifier in the method header. The error handling is similar, too, except
that MagLev provides the information that a method could not be executed be-
cause the access rights were insufficient. This reveals the existence of a not accessible
method. Our semantics hide the fact that the method exists.

6.2 The Access Modifier Implementation of Java

Java [16] is an object-oriented language that also provides explicit access control.
Similar to Newspeak, program code in Java is compiled into bytecode and then
executed by the Java vm [28]. The reference implementation of the Java language is
maintained by Oracle [35].

Java’s access modifiers semantics are as follows:

* Private members are only accessible if the member is defined within the same
class as the calling code.

® Package Private is the default modifier and is chosen if no modifier was
given. Members defined with this modifier are only accessible from code that
is within the immediately enclosing package they are defined in.

* Protected members are accessible like package private members. Addition-
ally, the are accessible from subclasses.

* Public members are accessible from everywhere within the same compilation
unit.

In contrast to Ruby or Newspeak, accessibility in Java is a static property that is
determined at compile time [16]. Thus, access modifiers are easily circumvented by
using reflection.

Besides the reference implementation, there are multiple other Java implemen-
tations, for example STX:LIBJAVA [21], which is a Java environment implemented
within the Smalltalk/X vm [g]. STX:LIBJAVA allows runtime access control [19) 20].
It lazily loads references to classes, methods, or fields that are not in the current class.

60

16

N o= e ol
S o ®N

N

o)

N NN NN
g = W N

W oW Ww W N NN
2O N B DO 3

6.2 The Access Modifier Implementation of Java

Listing 6.2: Part of the STX:LIBJAVA code which resolves references to methods
or fields of a class. The resolver takes the accessibility of methods and fields into
account when referencing them. Note: The privilegedAccessQuery method is a way
to bypass access control, for example for certain tests. The hasMagicAccessRights
method returns true if the class inherits from “sun.reflect. MagicAccessorImpl”.

!JavaResolver methodsFor:’common helpers’!
checkPermissionsForMethodOrField: aJavaMethodOrField from: accessingJlavaClass
to: resolvedJavaClass
accessinglavaClass hasMagicAccessRights ifTrue: [Ttrue].

(self checkPermissionsFrom: accessingJavaClass to: resolvedJavaClass)

ifFalse: [
JavaVM privilegedAccessQuery query ifTrue: [T true].
1 false

1o
aJavaMethodOrField isPublic ifTrue: [1 true].
((aJavaMethodOrField +isProtected
and: [
resolvedJavaClass javaComponentClass
equalsOrIsSubclassOf: aJavaMethodOrField javaClass

D
and: [
accessingJavaClass javaComponentClass
equalsOrIsSubclassOf: aJavaMethodOrField javaClass
D)

ifTrue: [1 true].
g
aJavaMethodOrField +isPrivate not
and: [resolvedJavaClass javaPackage = accessingJavaClass javaPackage])
and: [resolvedJavaClass classlLoader = accessingJavaClass classlLoader
D
ifTrue: [1 true].
(aJavaMethodOrField -isPrivate
and: [aJavaMethodOrField javaClass name = accessingJlavaClass name])
ifTrue: [1 true].

”/a little bit too verbose here just so it’s clear what’s in query”

JavaVM privilegedAccessQuery query ifTrue: [T true] ifFalse: [1 false].

61

6 Related Work

The loading process of references also includes an accessibility check as shown in[List}
The permission check from the listing implements Java’s access modifier se-
mantics for fields and methods. If the method returns false,an I1legalAccessError
is thrown.

When a reference is resolved, which usually happens lazily on the first time a
reference is used, the resulting entity is stored in the constant pool of a classfile. The
reference is cached there for future use. If a class was changed at runtime (STX:LIB-
JAVA provides a live coding environment for Java) the reference in the classfile is
changed to the new class. Existing instances keep their classes (so they do not need
to be migrated), but new objects get the changed class. This way access modifiers
can be changed at runtime.

The access control implementation in Java is not suitable for a dynamic runtime
environment like Newspeak. However, STX:LIBJAVA solves this problem and makes
access modifiers possible in a dynamic Java environment. Still, access control can be
bypassed through reflection, which is not possible with our access modifier imple-
mentation for Newspeak.

62

7 Summary and Conclusions

In this work, we have shown the importance of an access control implementation
for Newspeak. Although access control was alreay specified in the Newspeak speci-
fication, it was not implemented. We presented a way to implement the Newspeak
specification in this regard and discussed design decisions relevant to the implemen-
tation.

We have shown that our approach is feasible. At the time of writing, our work is
partially merged into the Newspeak code base. Some parts of our implementation,
especially the changes to the vM, need minor improvements to be mergable.

Since access modifiers were available in the syntax but were not enforced, we
concluded that the existing implicit and explicit access modifiers in the Newspeak
code base need to be migrated. We have described an approach to migrate access
modifiers so that the Newspeak image works with enforced access modifiers.

We evaluated the performance of our implementation using multiple benchmarks.
The benchmark results of a micro and a macro benchmark are presented in this work,
showing no severe performance penalty. We have compared the access modifier
design of Newspeak to other programming languages and, in more detail, have
compared our implementation to the access control implementation of a Java and a
Ruby derivative.

Access modifiers in a language environment offer much potential for improve-
ments from the language level up to the tooling:

Virtual Machine We proposed changes to the vm, implementing access control
for Newspeak. Since we started the implementation, the Newspeak vm source base
progressed a lot due to the Spur project of Eliot Miranda [33]. Spur is a project to
rewrite parts of the Squeak/Newspeak vy, affecting large parts of it. To make our
changes useful to a greater public, they should be (re-)implemented on top of Spur.

Performing Sends The Squeak-based implementation of Newspeak allows to per-
form message sends through meta programming. This functionality is implemented
in the ImplementationBase class by reusing the perform: method of Squeak. It al-
lows to do an ordinary send to the object on which the perform: method is called
on. A possible future work is to implement similar methods to perform other sends
so that protected or private methods can be executed through meta program-
ming. Those methods should not be implemented as a global authority because they
provide extra capabilities.

Bytecodes We introduced two new bytecodes in this work: The self send bytecode
and the outer send bytecode. We assume that the self send bytecode is a frequently

63

7 Summary and Conclusions

used bytecode. Thus, a possible future work would be to obtain data on the uses of
self sends. Based on that data, common uses of self sends could be implemented with
a one-byte bytecode (our current implementation of the self send bytecode needs
two bytes). This would reduce the average size of CompiledMethods.

&

We conclude that our approach to access control in Newspeak successfully imple-
ments the language specification. Our modifications to the Newspeak source code
have been merged into the main development branch. Some modifications, like the
modifications to the vM, need further refinements. The performance impact of our
modifications are moderate— especially when the vm modifications are ported to
the jt.

Our implementation is a keystone for Newpeak. A functioning access control
does not only help to implement the Newspeak specification, it also enables security
concepts like the object-capability approach.

64

References

[1]

[6]

[7]

[8]

G. Bracha. “Executable grammars in Newspeak”. In: Electronic Notes in Theo-
retical Computer Science 193 (2007).

G. Bracha. Newspeak Programming Language Draft Specification Version 0.091. URL:
http://bracha.org/newspeak-spec.pdf (last accessed 2014-09-30).

G. Bracha. NS2JS. urt: https://groups.google.com/d/msg/newspeaklanguage/
m6z3Lx8NHcY/TivKuz-LcJYJ (last accessed 2014-09-30).

G. Bracha, P. Ahe, V. Bykov, Y. Kashai, and E. Miranda. The Newspeak Program-
ming Platform. Technical report. Cadence Design Systems, 2008.

G. Bracha and W. Cook. “Mixin-based Inheritance”. In: SIGPLAN Notices 25.10
(1990).

G. Bracha and D. Ungar. “Mirrors: Design Principles for Meta-level Facilities of
Object-Oriented Programming Languages”. In: ACM SIGPLAN Notices 39.10
(2004).

V. Bykov. “Hopscotch: Towards user interface composition”. In: Proceedings

of the 1st International Workshop on Academic Software Development Tools and
Techniques (WASDeTT-1). 2008.

ECMA. ECMA-262: ECMAScript Language Specification. Geneva, Switzerland,
June 2015.

eXept Software AG. Smalltalk/X - Object-oriented programming language. URL:
http://www.exept.de/en/products/smalltalkx (last accessed 2014-09-30).

M. Fiahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and
S. Levi. “Language Support for Fast and Reliable Message-Based Communi-
cation in Singularity OS”. In: ACM SIGOPS Operating Systems Review. 2006.

D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O’Reilly Me-
dia, Inc., 2008. 1sBN: 978-0-596-55465-1.

F. Geller, R. Hirschfeld, and G. Bracha. Pattern Matching for an object-oriented and
dynamically typed programming language. Technical report. Universitdtsverlag
Potsdam, 2010.

GemStone Systems. MagLev. UrL: https:// maglev. github . io/ (last accessed
2014-09-30).

GemTalk Systems. GemStone/S Product Line. urL: http://gemtalksystems.com/
index.php/products/gemstones/ (last accessed 2014-09-30).

A. Goldberg and D. Robson. Smalltalk-8o: The Language and Its Implementation.
Addison-Wesley, 1983. 1sBN: 978-0-201-11371-6.

65

http://bracha.org/newspeak-spec.pdf
https://groups.google.com/d/msg/newspeaklanguage/m6z3Lx8NHcY/TivKuz-LcJYJ
https://groups.google.com/d/msg/newspeaklanguage/m6z3Lx8NHcY/TivKuz-LcJYJ
http://www.exept.de/en/products/smalltalkx
https://maglev.github.io/
http://gemtalksystems.com/index.php/products/gemstones/
http://gemtalksystems.com/index.php/products/gemstones/

References

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. Gosling, B. Joy, G. L. J. Steele, G. Bracha, and A. Buckley. The Java Language
Specification Java SE 8 Edition. Addison-Wesley Professional, 2014. 1sBN: 978-
0-133-90079-8.

E. G. Haffner, T. Engel, and C. Meinel. “Techniques for Securing Networks
Against Criminal Attacks”. In: International Conference on Internet Computing.
2000.

R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-Oriented Program-
ming”. In: Journal of Object Technology 7.3 (2008).

M. Hlopko. “Java implementation for Smalltalk/X VM”. Master’s thesis. Czech
Technical University in Prague, 2011.

M. Hlopko, J. Kurs, and J. Vrany. “Towards a Runtime Code Update in Java”.
In: Proceedings of the 13th Annual International Workshop on Databases, Texts,
Specifications, and Objects. 2013.

M. Hlopko, J. Kurs, J. Vrany, and C. Gittinger. “On the Integration of Smalltalk
and Java”. In: Science of Computer Programming (2014).

JRuby a Java powered Ruby implementation. urL: http://jruby.org/ (last accessed
2014-09-30).

A. Junod, R. Bazinet, and D. Bernier. Professional IronRuby. John Wiley & Sons,
Incorporated, 2010. 1sBN: 978-0-470-37708-6.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,].-M. Loingtier,
and J. Irwin. “Aspect-Oriented Programming”. In: Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programming. 1997.

M. Kleine, R. Hirschfeld, and G. Bracha. An Abstraction for Version Control
Systems. Technical report. Universitdtsverlag Potsdam, 2012.

B. W. Lampson. “Protection”. In: ACM SIGOPS Operating Systems Review 8.1
(1974)-

K.]. Lieberherr and A.J. Riel. “Demeter: A CASE Study of Software Growth

through Parameterized Classes”. In: Proceedings of the 10th International Confer-
ence on Software Engineering. 1988.

T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification Java SE 8 Edition. Addison-Wesley Professional, 2014. 1sBN: 978-
0-133-92272-1.

J. Loeliger and M. McCullough. Version Control with Git - Powerful Tools and
Techniques for Collaborative Software Development. O'Reilly Media, Inc., 2012.
ISBN: 978-1-449-31638-9.

R. Macnak. Newspeak-to-Dart Compilation. URL: https://docs.google.com/docu
ment/d/1pU_nautpK49pJzwZkJM1INhACcadOHjqOrjlomLSWQ1Y/edit (last accessed
2014-09-30).

Microsoft MSDN. Controlling Access to Class Members. URL: http://msdn.microsoft,
com/en-us/library/zsc61976(v=vs.100).aspx (last accessed 2014-09-30).

66

http://jruby.org/
https://docs.google.com/document/d/1pU_nautpK49pJzwZkJM1NhACcad0Hjq0rjIomLSWQ1Y/edit
https://docs.google.com/document/d/1pU_nautpK49pJzwZkJM1NhACcad0Hjq0rjIomLSWQ1Y/edit
http://msdn.microsoft.com/en-us/library/zsc61976(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/zsc61976(v=vs.100).aspx

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[43]

[44]

[45]

[46]

[47]

References

M. S. Miller and]. S. Shapiro. “Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control”. PhD thesis. Johns Hop-
kins University, 2006.

E. Miranda. Spur. urt: http://www.mirandabanda.org/cogblog/category/spur/page/
3//(last accessed 2014-09-30).

E. Miranda. “The Cog Smalltalk Virtual Machine”. In: Proceedings of the 5th
Workshop on Virtual Machines and Intermediate Languages. 2011.

Oracle. Java Software. URL: https://www.oracle.com/java/index.html (last accessed
2014-09-30).

B. O’Sullivan. Distributed Revision Control with Mercurial. Mercurial project,
2007.

D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into Mod-
ules”. In: Communications of the ACM 15.12 (1972).

M. Pennisi. Information Hiding in JavaScript. UrL: http://bocoup.com/weblog/info-
hiding-in-js/ (last accessed 2014-09-30).

E. Phoenix. Rubinius: The Ruby Virtual Machine. URL: http://rubini.us/ (last
accessed 2014-09-30).

Ruby Programming Language. UrL: https://www.ruby-lang.org (last accessed
2014-09-30).

R. S. Sandhu and P. Samarati. “Access Control: Principle and Practice”. In:

Communications Magazine, IEEE 9 (1994).

M. Shapiro. “Structure and Encapsulation in Distributed Systems: The Proxy
Principle”. In: Proceedings of the 6th Int. Conf. on Distributed Computing Systems
(ICDCS). 1986.

J. Sinschek, E. Bodden, and M. Mezini. “Injecting Security into Untrusted
Components”. Unpublished.

S. Stefanov. JavaScript Patterns. 1st. O’Reilly Media, Inc., Sept. 2010. 1sBN: 978-
1-449-39694-7.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, 2013. 1sBN:
978-0-133-52285-3.

D. Ungar and R. B. Smith. “Self: The Power of Simplicity”. In: Conference Pro-
ceedings on Object-oriented Programming Systems, Languages and Applications.
1987.

B.]. Walker, R. A. Kemmerer, and G. J. Popek. “Specification and Verification of
the UCLA Unixt Security Kernel”. In: Communications of the ACM 23.2 (1980).

67

http://www.mirandabanda.org/cogblog/category/spur/page/3/
http://www.mirandabanda.org/cogblog/category/spur/page/3/
https://www.oracle.com/java/index.html
http://bocoup.com/weblog/info-hiding-in-js/
http://bocoup.com/weblog/info-hiding-in-js/
http://rubini.us/
https://www.ruby-lang.org

A Newspeak’s Mirror Landscape

Newspeak provides a rich mirror landscape. In we list all implemented
Mirrors in the Newspeak codebase at the time of writing this work. We also listed
builder classes, which are similar to mirrors, except that they do not only reflect on
objects, but also help to construct new objects.

There is a multitude of modules which contain mirrors, builders, and other reflec-
tion related classes. Each module serves different purposes. See [subsection 2.2.2|for
a description of Newspeak’s mirror system.

68

A Newspeak’s Mirror Landscape

sse|> paisau e

wouy syuayuy

JoJIIN3IqRIIBARDURISU]

10.11N21n0SPOYIBIN 1011IN2IN0SI0|S

JounywAyeanbsloog

\

sleyjews/yeanbs

Japiingsse|d _ _ JOLINWA _

10.1IN21N0SSSe|D)

Jounbuns 221n0SAjUQaWeN

JOLIININ0SIXOL Jo1nNeIN0SBeW]

\/

10.IN2IN0S

o soumalao E
J9piInguIxin JOLINUIXIN JouINpoyIRIN Japlingpoyie i

JOLIINIDPRIHSS.|D 1y UOY; Da@sse|D I nese|pagsse|d

JoLINPOYRN

10LIINBD. PIWLS JOLIIN®:

Joued1nosabexdedls JOLIN®2IN0SSSe|DLS

JoluiNR|qeLIRARIURISU]

onms soumi3lao E

\/

P— E Jouors

10111

1ese|Paasse|d

JONUIXIN JouNRI0

JoLIINIBpEIHSSeID

\/
J0LIINPOYIBIN E JolluoneIe|dasse|d

\V
H E

JollinRY e J0111NJRYUSNOIG
\/
E

D9sIWoId

JouinyeyiesN JOLINAsIwold
E Jo1npabesSaI0Y

Jouidensqy

Figure A.1: The Newspeak mirror landscape.

69

G W N e

o

10
11
12
13
14

15

NN NN NN 2 s om o
£ W N R OOV »®»I >

a1

B The Implementation of the Method
Lookup in the Virtual Machine

Newspeaks method lookup funcitonality is implemented in the vm. In fact, there are
different vms in Newspeak. Most notably, an interpreter vm and a jit vm. The method

shown in implements a part of the method lookup of the Newspeak
interpreter vm. Its first parameter class indicates the class where the method is

currently searched in. The second parameter originClass indicates the class where
the method lookup originally started.

Listing B.1: The lookupMethodInClass:StartLookupFrom: method implemented at the
StackInterpreter class. It implements the method lookup for a given selector and
class, knowing that the lookup originally started at the startingClass.

lookupMethodInClass: class startLookupFrom: originClass
| currentClass dictionary found |
<inline: false>

self assert: class ~= objectMemory nilObject.
currentClass := class.
[currentClass ~= objectMemory nilObject]
whileTrue:
[dictionary := objectMemory fetchPointer: MethodDictionaryIndex ofObject:
currentClass.

found := self lookupMethodInDictionary: dictionary.

found ifTrue: [1T self currentClassUnlessAccessRestricted: currentClass
class: class
originClass: originClass].

currentClass := self superclassOf: currentClass].

»”Could not find #doesNotUnderstand: -- unrecoverable error.”
messageSelector = (objectMemory splObj: SelectorDoesNotUnderstand) +ifTrue:
[self error: ’Recursive not understood error encountered’].

»”Cound not find a normal message -- raise exception #doesNotUnderstand:”
self createActualMessageTo: class.
messageSelector := objectMemory splObj: SelectorDoesNotUnderstand.

self sendBreak: messageSelector + BaseHeaderSize
point: (objectMemory lengthOf: messageSelector)
receiver: nil.
1self privatelLookupMethodInClass: class startLookupFrom: class

It searches the method dictionary of a class for a method with a matching selector.
If such a method is found, it will be checked against the access modifier semantics
with the help of the currentClassUnlessAccessRestricted method listed in
If the check succeeded, the class holding the right method will be returned.

70

B The Implementation of the Method Lookup in the Virtual Machine

Listing B.2: The implementation of currentClassUnlessAccessRestricted, which
either prints a warning to the standard output of the vm, or calls the
doesNotUnderstandMethod depending on the enforceAccessModifiers option.

1 currentClassUnlessAccessRestricted: currentClass class: class originClass:

originClass
(currentClass = originClass or: [self newMethodIsPrivate not]) ifFalse: [

3 enforceAccessModifiers ifTrue: [

4 ”Cannot access method; pretend not to understand -- raise exception #
doesNotUnderstand:”

5 self createActualMessageTo: class.

6 messageSelector := objectMemory splObj: SelectorDoesNotUnderstand.

7 self sendBreak: messageSelector + BaseHeaderSize

8 point: (objectMemory lengthOf: messageSelector)

9 receiver: nil.

10 ”Lookup the DNU; allowing all methods to be found”

1 1self privateLookupMethodInClass: currentClass

12 startLookupFrom: originClass]

13 ifFalse: [

14 self print: ’Not accessible method 7

15 printMessageAccessModifier;

16 print: > 7

17 printActivationNameForSelector: messageSelector

18 startClass: originClass; cr.]].

19 TcurrentClass

Otherwise the doesNotUnderstand method is called on the reciever, either because
the access modifier was not sufficient, or because no matching method could be
found. To call the doesNotUnderstand method, a new method lookup is started. If
the doesNotUnderstand method cannot be found (which should not happen because
it is part of the Object class) a hard error is raised.

71

C Possible Simplifications of the
Newspeak Grammar

There are different expectations on an access control implementation for the New-
speak runtime. Some are defined explicitly in the Newspeak specification, others
implicitly in the way of the intended development experience and the nature of the
dynamic Newspeak runtime.

The explicitly defined requirements in the specification are the method lookup,
which we have already discussed insection 2.3} and the Newspeak grammar rules.
Relevant grammar rules are those for class, method, and slot definitions, because
they are the only entities having an access modifier.

Newspeak’s grammar states that there are four possible ways to specify an access
modifier: It can be defined either explicitly to be public, protected, or private,
or implicitly by omitting the access modifier. If the access modifier is not defined, it
is implicitly interpreted as if the entity is defined to be protected. Class, method,
or slot definitions all define their access modifier as the first part of their grammar.

The only exception to that rule is the top-level class declaration. Top-level classes
are by definition public, which is why the grammar does not allow to specify any
access modifier. This exception might confuse a Newspeak programmer. It also re-
quires to consider corner cases in the grammar definition and compilation.

The Newspeak grammar currently has two very similar class definitions: toplevelClass

and nestedClassDecl, both listed in Both declarations basically consist
of a classDeclaration, which offers unification potential. An example for that uni-

fication is shown in|Listing C.2

The simplification of the grammar is an ongoing discussion and a potential future
work.

72

(€ I I N

[CUR SR

C Possible Simplifications of the Newspeak Grammar

Listing C.1: An excerpt of the Newspeak grammar featuring class definitions. Only
the grammar productions which lead from compilationunit to nestedClassbecl are
shown.

compilationUnit = Tlanguageld, toplevelClass, eoi.

toplevelClass = classCategory, classDeclaration.

classDeclaration = (tokenFromSymbol: #class), classHeader, sideDecl,
classSideDecl opt.

sideDecl = 1paren, nestedClassDecl star, category star, rparen.

nestedClassDecl = accessModifier opt, classDeclaration.

Listing C.2: A possible refactoring of the Newspeak grammar shown in
The nestedClassDecl is not necessary anymore, because it was merged with the
classDeclaration. It would be a compilation error if the access modifiers was pri-
vate or protected.

compilationUnit = Tlanguageld, toplevelClass, eoi.

toplevelClass = classCategory, classDeclaration.

classDeclaration = accessModifier opt, (tokenFromSymbol: #class), classHeader
, sideDecl, classSideDecl opt.

sideDecl = 1paren, classDeclaration star, category star, rparen.

73

D Performance Benchmarks

This chapter presents more details and the underlying data of the performance bench-
marks presented in[section 5.1} The description of every benchmark in the Newspeak
benchmark suite is taken from the class comment of the benchmark class. For every
benchmark the results are shown in a figure comparing run times across different
vMm and image combinations. Finally we provide the measured data.

D.1 Benchmark Results

The performance benchmark were executed using a combination of different vms
and Newspeak images as explained in[section 5.1}

Every paragraph in the remainder of this sections briefly describes one of the
benchmarks from Newspeak’s benchmark suite[l|as of git version 4737002. A short
description of every benchmark is given along with the performance graphs. The
description is usually taken from the class comment of the corresponding benchmark
class.

ClosureDefFibonacci A fibonacci microbenchmark stressing closure allocation,
closure evaluation and integer arithmetic. The benchmark results are visualized in
stre D

ClosureFibonacci A fibonacci microbenchmark stressing closure evalutation and
integer arithmetic. The benchmark results are visualized in[Figure D.2]

DeltaBlue One-way constraint solver, originally written in Smalltalk by John Mal-
oney and Mario Wolczko. The benchmark results are visualized in

MethodFibonacci A microbenchmark stressing method invocations and integer
arithmetic. The benchmark results are visualized in

NLRImmediate A microbenchmark performing non-local returns. The benchmark

results are visualized in|Figure D.5

NLRLoop A microbenchmark performing non-local returns in a loop. The bench-

mark results are visualized in|Figure D.6

Thttp://bitbucket.org/newspeaklanguage/benchmarks, last accessed June 18, 2015.

74

http://bitbucket.org/newspeaklanguage/benchmarks

D.1 Benchmark Results

ClosureDefFibonacci

=
o

B Unmodified CogVM; Unmodified
Image

B Unmodified CogVM (disabled
JIT); Unmodified Image
Modified CogVM (disabled JIT);
Unmodified Image

B Modified CogVM (disabled JIT);
Modified Image

Number of Benchmark Runs in 2 Seconds
O Rr N W M 1O N 0 ©

4.91 4.81

Figure D.1: The results of the ClosureDefFibonacci benchmark for different vm and
image combinations. The average results of the benchmark runs are plottet along
the x-axis. The y-axis shows the number of performed benchmark executions in 2
seconds runtime.

ClosureFibonacci

120
1%
°
8 100
8 B Unmodified CogV/M; Unmodified
o Image
% 80 ¥ Unmodified CogVM (disabled
é JIT); Unmodified Image
X 60 Modified CogVM (disabled JIT);
E Unmodified Image
é B Modified CogVM (disabled JIT);
g 40 Modified Image
k]
1
g 20 ~
=]
:]

0

101.31 15.43 15.68 15.08

Figure D.2: The results of the ClosureFibonacci benchmark for different vm and im-
age combinations. The average results of the benchmark runs are plottet along
the x-axis. The y-axis shows the number of performed benchmark executions in 2
seconds runtime.

75

D Performance Benchmarks

DeltaBlue

70
(%]
©
S 60
0
0 B Unmodified CogVM; Unmodified
T 50 Image
2 B Unmodified CogVM (disabled
£ 40 JIT); Unmodified Image
f‘xa Modified CogVM (disabled JIT);
E 30 Unmodified Image
2 ® Modified CogVM (disabled JIT);
& Modified Image
5 20
g
£
=]
z

i : -
0

64.44 11.38 11.36 11.08

Figure D.3: The results of the DeltaBlue benchmark for different vm and image com-
binations. The average results of the benchmark runs are plottet along the x-axis.
The y-axis shows the number of performed benchmark executions in 2 seconds
runtime.

MethodFibonacci
300
250
B Unmodified CogVM; Unmodified
Image
200

B Unmodified CogVM (disabled
JIT); Unmodified Image

150 Modified CogVM (disabled JIT);
Unmodified Image

B Modified CogVM (disabled JIT);
100 Modified Image

50
0 I

285.12 24.01 24.52 21.57

Number of Benchmark Runs in 2 Seconds

Figure D.4: The results of the MethodFibonacci benchmark for different vm and
image combinations. The average results of the benchmark runs are plottet along
the x-axis. The y-axis shows the number of performed benchmark executions in 2
seconds runtime.

76

D.1 Benchmark Results

NLRImmediate

60.00
3
]
§ 50.00 ® Unmodified CogVM; Unmodified
~ Image
= 40.00 ® Unmodified CogVM (disabled
g JIT); Unmodified Image
o Modified CogVM (disabled JIT);
é 30.00 Unmodified Image
5 B Modified CogVM (disabled JIT);
$ 20.00 Modified Image
s3]
G
2 10.00
£
=]
z

0.00

51.83 46.09 47.18 43.03

Figure D.5: The results of the NLRImmediate benchmark for different vm and image
combinations. The average results of the benchmark runs are plottet along the
x-axis. The y-axis shows the number of performed benchmark executions in 2
seconds runtime.

NLRLoop

B Unmodified CogVM; Unmodified
Image

B Unmodified CogVM (disabled
JIT); Unmodified Image
Modified CogVM (disabled JIT);
Unmodified Image

M Modified CogVM (disabled JIT);
Modified Image

Number of Benchmark Runs in 2 Seconds
w
S

49.78 26.4 26.13 24.26

Figure D.6: The results of the NLRLoop benchmark for different vm and image com-
binations. The average results of the benchmark runs are plottet along the x-axis.
The y-axis shows the number of performed benchmark executions in 2 seconds
runtime.

77

D Performance Benchmarks

Richards An OSkernel simulation benchmark, originally written by Martin Richards
in BCPL. The benchmark results are visualized in

Richards
180

160

140
B Unmodified CogVM; Unmodified

120 Image
B Unmodified CogVM (disabled
100 JIT); Unmodified Image
Modified CogVM (disabled JIT);
80 Unmodified Image
60 B Modified CogVM (disabled JIT);
Modified Image

40

Number of Benchmark Runs in 2 Seconds

20 = i

155.80 17.58 17.44 16.92

Figure D.7: The results of the Richards benchmark for different vm and image com-
binations. The average results of the benchmark runs are plottet along the x-axis.
The y-axis shows the number of performed benchmark executions in 2 seconds
runtime.

SlotRead A microbenchmark that performs many slot reads. The benchmark re-

sults are visualized in

Splay This benchmark is based on a JavaScript log processing module used by the
V8 profiler to generate execution time profiles for runs of JavaScript applications,
and it effectively measures how fast the JavaScript engine is at allocating nodes and
reclaiming the memory used for old nodes. Because of the way splay trees work,
the engine also has to deal with a lot of changes to the large tree object graph. The

benchmark results are visualized in

D.2 Benchmark Result Data

The exact measurements taken from the benchmarks are shown in the following

tables: [Table D.1} [Table D.2} [Table D.3| and [Table D.4]

78

D.2 Benchmark Result Data

SlotRead

160
[%2]
2
Q 140
§ B Unmodified CogVM; Unmodified
~ 120 Image
U% B Unmodified CogVM (disabled
S 100 JIT); Unmodified Image
« Modified CogVM (disabled JIT);
g 80 Unmodified Image
5 60 B Modified CogVM (disabled JIT);
S Modified Image
o
5 40
5]
g 20
2 —

0 |

151.51 7.48 7.54 7.85

Figure D.8: The results of the SlotRead benchmark for different vm and image com-
binations. The average results of the benchmark runs are plottet along the x-axis.
The y-axis shows the number of performed benchmark executions in 2 seconds
runtime.

Splay

30
(2]
=]
S
53) 25 B Unmodified CogVM; Unmodified
~ Image
= 20 ® Unmodified CogVM (disabled
S JIT); Unmodified Image
c Modified CogVM (disabled JIT);
E 15 Unmodified Image
5 B Modified CogVM (disabled JIT);
$ 10 Modified Image
0]
bS]
L 5
5
=]
z

0

24.98 12.88 13.23 11.81

Figure D.9g: The results of the Splay benchmark for different vm and image combi-
nations. The average results of the benchmark runs are plottet along the x-axis.
The y-axis shows the number of performed benchmark executions in 2 seconds
runtime.

79

D Performance Benchmarks

Table D.1: Benchmark results for the unmodified virtual machine and the unmodified Newspeak image. Every available benchmark was
run 10 times. The result shows the number or benchmark runs within 2 seconds. Minimum, maximum, and average values are shown as
well as the standard deviation.

Name #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Min Max Average Std. Deviation
ClosureDefFibonacci 65.1 66.7 66.6 65.3 65 65.8 65.1 65 66.4 65.1 65 66.7 65.65 0.70
ClosureFibonacci 500 503 505.5 497.5 490.5 471.5 502 489 492 491 471.5 505.5 493.25 9.90
DeltaBlue 140.8 144.5 145.3 145 138 139 136.8 141 141.3 144.5 136.8 145.3 141.53 3.09
MethodFibonacci 773 793 766 759 750 755 674.5 735 782 760 674.5 793 751.25 32.60
NLRImmediate 948.5 954.5 983 9735 938 946.5 938 967.5 980.5 964 938 983 959.58 16.71
NLRLoop 582.5 575 571.5 577 577-5 560 561.5 580.5 577 569 560 582.5 572.83 7.62
ParserCombinators 16 16.3 16.1 15.6 14.9 15.5 14.5 16 15.6 16.1 14.5 16.3 15.62 0.58
Richards 295.2 290.2 280.5 284.2 278.5 279.7 284 285.5 278.5 291.5 278.5 295.2 285.13 5.85
SlotRead 166.5 168.1 167.1 165 165.8 166.8 165.3 153.8 153.3 165.1 153.3 168.1 163.18 5.43
SlotWrite 171.6 171.1 196.5 172.6 189.5 193 173.5 186.3 178.8 172.1 171.1 196.5 181.05 9.88
Splay 77-9 76.7 77.3 76.4 77-9 77-3 76.4 76.4 77.1 755 755 77-9 76.86 0.75

8o

D.2 Benchmark Result Data

Table D.2: Benchmark results for the unmodified virtual machine with disabled just-in-time compiler and the unmodified Newspeak
image. Every available benchmark was run 10 times. The result shows the number or benchmark runs within 2 seconds. Minimum,
maximum, and average values are shown as well as the standard deviation.

Name #1 #2 #3 #4 #5 #6 #y #8 #9 #10 Min Max Average Std. Deviation
ClosureDefFibonacci 8.7 9.5 9.5 9.4 9.4 9.4 9.3 9.2 9.4 9.4 8.7 9.5 9.28 0.23
ClosureFibonacci 87 102.2 104.2 103.5 103.5 103.9 105.5 104.5 104.6 104.3 87 105.5 101.31 5.45
DeltaBlue 61.5 67 66 66.8 64.4 63.8 64.3 64.9 63.5 62.6 61.5 67 64.44 1.77
MethodFibonacci 260.5 297.5 300 289 285 288.2 286 284.5 286.2 284 260.5 300 285.12 10.54
NLRImmediate 46.5 52.9 53.1 53.2 53.1 53.1 52.9 52.6 52.6 52.3 46.5 53.2 51.83 2.03
NLRLoop 44.9 51.2 51.2 50.8 50.1 50.7 51.1 50 51 50.2 44.9 51.2 49.78 1.89
ParserCombinators 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.6 1.57 0.06
Richards 165.5 148.5 154 167.8 147.8 154.1 154.5 156 152 153.8 147.8 167.8 155.80 6.50
SlotRead 156 160.8 160 144.7 148.8 148.5 149 148.8 148 148 144.7 160.8 151.51 5.57
SlotWrite 170.6 176.3 172.4 173.8 178.3 178.5 179.1 180.3 179.3 178.3 170.6 180.3 176.48 3.30

Splay 31.9 26.1 26.1 26 21.5 26.5 22.5 21.5 22.3 22 21.5 31.9 24.98 3.32

81

D Performance Benchmarks

Table D.3: Benchmark results for the modified virtual machine with disabled just-in-time compiler and the unmodified
Newspeak image. Every available benchmark was run 10 times. The result shows the number or benchmark runs

within 2 seconds. Minimum, maximum, and average values are shown as well as the standard deviation.

Name #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Min Max Average Std. Deviation
ClosureDefFibonacci 5 4.9 4.8 4.8 4.9 5 4.9 5 4.9 4.9 4.8 5 4.91 0.07
ClosureFibonacci 15.5 15.8 15.5 15.8 15.6 16.1 15.9 15.7 15.8 15.2 15.2 16.1 15.68 0.25
DeltaBlue 11.8 11.6 10.9 11.2 11.4 11.5 11.5 11.5 11.5 10.8 10.8 11.8 11.36 0.31
MethodFibonacci 24.5 24.8 24.5 24.3 24.1 24.5 24.5 24.4 24.5 25 24.1 25 24.52 0.25
NLRImmediate 48.2 471 47.7 46.4 47.1 48.2 47.2 47.7 47.4 45.5 45.5 48.2 47.18 0.82
NLRLoop 26.6 26.6 25.9 25.5 26.1 26.2 26 26.3 26.2 26 25.5 26.6 26.13 0.33
ParserCombinators 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.70 0.00
Richards 17.3 17.5 17.2 17.2 17.9 17.4 17.1 17.7 17.7 17.3 17.1 17.9 17.44 0.26
SlotRead 7.7 7.8 6.9 7.8 7.8 7:5 7-4 7.8 7-4 7.7 6.9 7-8 7-54 0.29
SlotWrite 7 7.1 7 7 7 6.8 7.2 6.8 6.9 6.6 6.6 7.2 6.93 0.17
Splay 13.3 13.3 13.2 13.2 13.3 13.2 13.2 13.1 13.3 13.2 13.1 13.3 13.23 0.07

82

D.2 Benchmark Result Data

Table D.4: Benchmark results for the modified virtual machine with disabled just-in-time compiler and the modified
Newspeak image. Every available benchmark was run 10 times. The result shows the number or benchmark runs
within 2 seconds. Minimum, maximum, and average values are shown as well as the standard deviation.

Name #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Min Max Average Std. Deviation
ClosureDefFibonacci 4.9 4.9 4.8 4.7 4.7 4.8 4.7 4.8 4.9 4.9 4.7 4.9 4.81 0.09
ClosureFibonacci 15.5 15.3 15.8 14.7 15.3 15.4 14.9 15.1 15.7 13.7 13.7 15.8 15.08 0.61
DeltaBlue 11.3 11.2 11.5 10.8 10.9 11.4 10.7 11 11.3 10.7 10.7 11.5 11.08 0.30
MethodFibonacci 24.5 24.3 23.5 14.2 23.3 20.7 23 17.3 24.6 24.6 14.2 24.6 21.57 3.57
NLRImmediate 48 43.3 41.8 40 36.2 40.8 44.3 43.7 47.4 46.6 36.2 48 43.03 3.66
NLRLoop 26.9 25.1 25.5 25 18.4 22 25 25.4 26.4 26.1 18.4 26.9 24.26 2.54
ParserCombinators 0.7 0.6 0.6 0.7 0.5 0.6 0.5 0.7 0.7 0.7 0.5 0.7 0.63 0.08
Richards 18 17.7 17.2 16.9 16. 16.1 15.4 16 17.9 17.6 15.4 18 16.92 0.89
SlotRead 8.4 7.6 7.8 8.1 7.4 7.9 7.2 7.6 8.3 8.3 7.2 8.4 7.85 0.41
SlotWrite 7.3 6.9 7.2 6.8 6.1 7.2 6.5 7.1 7.4 7.3 6.1 7.4 6.94 0.41

Splay 12.8 10.8 12.6 12.2 10.9 11.9 11.6 11.2 11.8 12.3 10.8 12.8 11.81 0.69

83

Band

105

104

103

102

101

100

99

98

97

96

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

ISBN

978-3-86956-360-2

978-3-86956-355-8

978-3-86956-348-0

978-3-86956-347-3

978-3-86956-346-6

978-3-86956-345-9

978-3-86956-339-8

978-3-86956-333-6

978-3-86956-334-3

978-3-86956-324-4

Titel

Proceedings of the Third HPI
Cloud Symposium
"Operating the Cloud" 2015

Tracing Algorithmic Primitives
in RSqueak/VM

Babelsberg/RML : executable
semantics and language testing
with RML

Proceedings of the Master
Seminar on Event Processing
Systems for Business Process
Management Systems

Exploratory Authoring of
Interactive Content in a Live
Environment

Proceedings of the 9th Ph.D.
retreat of the HPI Research
School on service-oriented
systems engineering

Efficient and scalable graph view
maintenance for deductive graph
databases based on generalized
discrimination networks

Inductive invariant checking
with partial negative application
conditions

Parts without a whole? : The
current state of Design Thinking
practice in organizations

Modeling collaborations in self-
adaptive systems of systems :
terms, characteristics,
requirements and scenarios

Autoren / Redaktion

Estee van der Walt, Jan
Lindemann, Max Plauth,
David Bartok (Hrsg.)

Lars Wassermann, Tim
Felgentreff, Tobias Pape, Carl
Friedrich Bolz, Robert
Hirschfeld

Tim Felgentreff, Robert
Hirschfeld, Todd Millstein,
Alan Borning

Anne Baumgraf}, Andreas
Meyer, Mathias Weske (Hrsg.)

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wollff,
Bastian Steinert, Lauritz
Thamsen, Macel Taeumel, Jens
Lincke, Robert Krahn, Daniel
H. H. Ingalls, Robert
Hirschfeld

Christoph Meinel, Hasso
Plattner, Jiirgen Dollner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich (Hrsg.)

Thomas Beyhl, Holger Giese

Johannes Dyck, Holger Giese

Jan Schmiedgen, Holger
Rhinow, Eva K6éppen,
Christoph Meinel

Sebastian Wétzoldt, Holger
Giese

ISBN 978-3-86956-373-2
ISSN 1613-5652

	Title
	Imprint

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Access Modifiers as an Instrument to Structure Programs
	1.2 The Object-Capability Model
	1.3 Access Control: A Key Feature of the Newspeak Programming Language
	1.4 Contributions
	1.5 Structure

	2 The Design of the Newspeak Language with Emphasis on Access Modifiers
	2.1 A Brief Introduction to Newspeak's Syntax
	2.2 The Newspeak Metamodel
	2.2.1 Newspeak’s Exchangeable Base Systems
	2.2.2 Reflections in the Mirror

	2.3 Newspeak Message Send Types and Access Modifier Semantics
	2.3.1 Ordinary Send
	2.3.2 Self Send
	2.3.3 Super Send
	2.3.4 Implicit Receiver Send
	2.3.5 Outer Send

	2.4 The Newspeak Compiler Architecture
	2.4.1 Parser
	2.4.2 Compiler
	2.4.3 The Squeak Virtual Machine as a Newspeak Interpreter

	3 An Access Modifier Design for Newspeak
	3.1 Encoding the Access Modifier Information
	3.1.1 A Place to Store Access Modifier Information
	3.1.2 Encoding Access Modifier Information in Method Objects

	3.2 Enforcing Access Modifiers
	3.2.1 Modifications of the Method Lookup
	3.2.2 Possible Reactions to an Illegal Method Call

	3.3 IDE support of Access Modifiers in Newspeak
	3.4 Migration to an Environment with Enforced Access Modifiers

	4 Implementation
	4.1 Encoding the Access Modifier Information
	4.2 Enforcing Access Modifiers
	4.3 Reflecting on Access Modifiers at Runtime
	4.4 Migration to an Environment with Enforced Access Modifiers

	5 Evaluation
	5.1 Performance Impact
	5.2 Analysis of Access Violations
	5.3 Known Limitations

	6 Related Work
	6.1 The Access Modifier Implementation of Ruby
	6.2 The Access Modifier Implementation of Java

	7 Summary and Conclusions
	References
	A Newspeak's Mirror Landscape
	B The Implementation of the Method Lookup in the Virtual Machine
	C Possible Simplifications of the Newspeak Grammar
	D Performance Benchmarks
	D.1 Benchmark Results
	D.2 Benchmark Result Data

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

