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Preface

Since the experimental realization of the long–standing theoretical prediction of Bose–
Einstein condensation in dilute atomic gases a marriage between two major fields of
quantum physics, atomic physics and quantum many-particle physics, took place. In fact,
neutral atoms confined in magnetic or optical traps and cooled to temperatures in the
some tens nano Kelvin regime provide the most ”clean” systems with widely controllable
parameters that are known at this time to test the predictions of many-particle quantum
theories in a limit that is accessible partly analytically and partly numerically, namely
in the dilute limit, where only two-particle interactions are important. In turn, most of
the theoretical problems studied in this field are motivated by current experiments. One
can talk maybe not about a marriage, but at least of an engagement of theoretical and
experimental physics in this new field. The experimental and theoretical attention that
was some years ago mainly on Bosons, i.e. atoms with an even number of Fermionic
constituents (nuclei and electrons), is shifting now also to Fermions (atoms with an
odd number of Fermionic constituents), which can nowadays also be cooled to quantum
degeneracy by making use of the experimentalists’ experience with cooling Bosons and
take a system of ultracold Bosons as a ”refrigerator” for the Fermions. In the end,
consequently, a mixed system of Bosons and Fermions will result. Maybe the most
striking feature one hopes to be able to observe in this way is a Bardeen–Cooper–Schrieffer
phase transition of the Fermions. This effect is promoted by means of a Bosonic phonon
exchange among the Fermions. Thus a Bose–Fermi mixed system is a promising candidate
to observe not ”only” Bose–Einstein phase transition of the Bosons but also a Bardeen–
Cooper–Schrieffer phase transition of the Fermions. This system is, however, also rich
of other phase structures that are only present in mixed systems. Among them are
component mixing vs. component separation and stability vs. collapse in continuous
systems. In optical lattices one can observe Mott–insulating and superfluid phases and
also interesting crystalline structures. This thesis is intended give a complete overview of
the theoretical results on atomic Bose–Fermi mixtures to which I contributed during my
PhD studies in years 2000–2003. But I will also discuss some results obtained by other
authors, sometimes rewriting their derivations in order apply the methods used in this
thesis and thus to make the thesis more coherent.
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Deutsche Zusammenfassung

Heutzutage ist es möglich, einen heißen Strahl aus Alkalimetallatomen, die vorher in
einem Ofen verdampft wurden, in einer magnetischen Falle einzusperren und anhand von
Kühlung mithilfe von Laserstahlen in einen Temperaturbereich von einigen mikro Kelvin,
also nahe dem absoluten Nullpunkt, zu kühlen. Man erhält eine Wolke aus ca. einer Mil-
lion Atomen, die einen Durchmesser von einigen tausendstel Millimetern hat. Verglichen
mit ”normalen” Umweltbedingungen ist das eine extrem niedrige Teilchendichte — so
niedrig, daß die Atome trotz der ultrakalten Temperatur nicht in ihren üblichen met-
allischen Aggregatzustand zurückfallen, sondern ein meta–stabiles, atomares Gas bilden.
Ein solches Gas eignet sich hervorragend zum Studium von Quantenphänomenen. Fun-
damental verschieden verhalten sich dabei Gase aus Atomen, die einen geradzahligen
Spin haben, und solche mit einem ungeraden. Die ersten zählt man deshalb zur Kate-
gorie der Bosonen, die letzteren zu den Fermionen.

Ziel der Arbeit war die systematische theoretische Behandlung von Gemischen aus
bosonischen und fermionischen Teilchen in einem Parameterbereich, der sich zur Be-
schreibung von aktuellen Experimenten mit ultra–kalten atomaren Gasen eignet.

Zuerst wurde der Formalismus der Quantenfeldtheorie auf homogene, atomare Boson–
Fermion Gemische verallgemeinert. Mithilfe von Feynman–Diagrammen ließen sich die
Terme der zeitabhängigen Störungstheorie darstellen. Werden die Linien der Diagramme
als virtuelle Teilchen interpretiert, so laßen sich anhand von Feynman–Diagrammen alle
für ein niederdichtes System relevanten störungstheoretischen Terme identifizieren. Auch
die Dyson–Reihe mittels Selbstenergien und die Leiterapproximation für die T–Matrix
sowie deren Renormalisierung konnten auf Boson–Fermion Gemische angewandt wer-
den. Damit konnten alle (unendlich vielen) Feynman–Diagramme, die zur Beschrei-
bung von meta–stabilen Alkaligasen nötig sind, aufsummiert werden. Die T–Matrix,
die die Boson–Fermion Wechselwirkung beschreibt, ließ sich mittels einer modifizierten
Bethe–Salpether–Gleichung bestimmen und mithilfe des Hugenholtz–Pines–Theorems
das bosonische chemische Potentials berechnen.
Aus dem bosonischen chemischen Potential und den Ausdrücken für die Dyson–Selbst-
energien lassen sich viele physikalisch relevanten Größen über die Molekularfeldnäherung
hinaus berechnen. Darunter, die Grundzustandsenergie, der Druck, die modifizierte
Boson– bzw. Fermionmasse und die Geschwindigkeit des Phononschalls.

In Experimenten werden die Atomgase mithilfe von Magnetfeldern, die an das mag-
netische Moment der Atome koppeln, festgehalten. Im Zentrum dieser Falle, wo die
Atome sich befinden, können die vom Magnetfeld erzeugten Kräfte durch ein harmonis-
ches Potential beschrieben werden. Unter Zuhilfenahme der Resultate für das entsprechen-
de homogene System wurde ein Boson–Fermion Gemisch in einem Fallenpotential im
Rahmen der Dichtefunktionaltheorie beschrieben.
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Das Hoheberg–Kohn Theorem, welches besagt, daß bei gegebener Wechselwirkung
die Grundzustandsenergie funktional nur von der Dichtverteilung abhängt, wurde auf
Boson–Fermion Gemische übertragen. In diesem Fall ist die Grundzustandsenergie E
ein Funktional der Bosondichteverteilung nB(r) und der Fermiondichteverteilung nF (r).
Man schreibt daher E[nB , nF ].

Zur Bestimmung von E[nB , nF ] wurde eine Verallgemeinerung des Kohn–Sham–Sche-
mas benutzt. Hierbei wurde ein nichtwechselwirkendes Hilfssystem definiert und es ließ
sich zeigen, daß genau ein solches Hilfsystem gefunden werden kann, so daß dessen
Dichteverteilungen identisch mit denen des ursprünglichen wechselwirkenden Systems
sind. Eine zentrale Größe bei der Konstruktion des Hilfssystems ist die sog. Austausch–
Korrelationsenergie.

Für typische Parameterbereiche bei atomaren Gasen läßt sich diese Austausch–Kor-
relationsenergie mittels lokaler Dichteapproximation ermitteln. Sie besteht aus Termen
höherer Ordnung in der Streulänge und ist damit eine Korrektur zur Molekularfeld-
energie. Durch numerische Lösung der Kohn–Sham Gleichungen wurden die Dichtepro-
file in der Falle ermittelt und daraus konnte auf die Phasengrenzen eines gemischten
stabilen Regimes geschlossen werden. Im Falle von abstoßender Boson–Fermion Wech-
selwirkung kommt es an der Phasengrenze zur Entmischung beider Spezies, im Falle von
gegenseitiger Anziehung zum Kollaps in das Zentrum der Falle. In beiden Fällen ließen
sich untere Schranken für die kritischen Teilchenzahlen an den Phasengrenzen angeben.
Im Vergleich zur Molekularfeldnäherung ändert die Austausch-Korrelationsenergie das
Phasendiagram bei abstoßender Wechselwirkung wenig. Bei Anziehung hingegen ver-
schieben sich die Phasengrenzen stark. Im Allgemeinen stabilisiert der Beitrag der
Austausch–Korrelationsenergie das System gegen Kollaps.

Die kritische Temperatur des Phasenübergangs von einem thermischen Bosonengas
zu einem Bose–Einstein–Kondensat (BEK) läßt sich nur für den einfachen Fall eines
nicht–wechselwirkenden Gases im thermodynamischen Limes exakt berechnen. Korrek-
turen, die einerseits der Endlichkeit der Teilchenzahl andererseits der Wechselwirkung
der Bosonen untereinander Rechnung tragen, existieren zur jeweils ersten Ordnung. In
einem Gemisch aus Bosonen und Fermionen beeinflußt auch die Boson–Fermion Wech-
selwirkung die kritische Temperatur des Phasenübergans zu einem BEK.
In der semiklassichen Molekularfeldnäherung ließen sich gekoppelte Gleichungen für die
Boson– und Fermiondichteverteilungen bei endlicher Temperatur angeben. Durch Expan-
sion in der Boson–Fermion Streulänge zu erster Ordnung wurde die kritische Temperatur
durch numerische Integration bestimmt. In den Extremfällen eines thermisch verteilten
Fermiongases einerseits bzw. eines voll quantendegenerierten Fermiongases andererseits
konnten analytische Ergebnisse angeben werden.

Mittels stehenden Laserlichtwellen kann man periodische Potentiale für atomare Gase
erzeugen. Anhand dieser Systeme lassen sich Phänomäne, die ansonsten für die Festkör-
perphysik typisch sind, mit großer Präzission und in einem vergleichbar breiten Para-
meterbereich untersuchen. Im Vordergrund steht dabei das Verständnis von Phasenüber-
gängen zwischen Mott–Isolator– und suprafluiden Bereichen. In der Mott–Isolatorphase
sitzen die Atome in den Potentialminima fest und es ist kein Teilchentransport möglich
während in der suprafluiden Phase die Atome zwischen den Potentialminima ”hin– und
hertunneln” können.
Eine geeignete Expansion der Feldoperatoren in Anwesenheit eines starken periodischen
Potentials existiert mittels Wannier–Funktionen, da in diesem Fall nur das energetisch
niedrigste Wannier–Band wesentlich ist. Diese Expansion führt zu einem Hubbard–
artigen Hamiltonoperator für Boson–Fermion Gemische, wobei sich alle Parameter dieses
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Hamiltonoperators aus den atomaren Parametern wie Massen und Streulängen und der
Gitterstärke berechnen ließen.

Eine Molekularfeldnäherung für den Hubbard–Hamiltonoperator erlaubte das Studi-
um der Phasenstabilitäten. Mittels Störungstheorie konnten approximativ die jeweiligen
Bereiche des Phasendiagramms gefunden werden, in denen die Bosonen in einem Mott–
Isolator bzw. in einen suprafluiden Zustand sind. Anhand eines Gutzwilleransatzes
ließen sich weiterhin Besetzungszahlen der Gitterplätze und lokale Suprafluidparameter
durch numerische Minimierung mittels einer ”simulated annealing”–Methode berechnen
und auf kritische Werte der Gitterstärke für einen Phasenübergang schließen. Im Falle
eines sehr starken Gitterpotentials wurden hochgradig degenerierte Grundzustände ge-
funden. In diesem Fall ist das Ensemble der Grundzustände symmetrisch bei Austausch
von Bosonen und Fermionen und die räumliche Spiegelsymmetrie des Systems wird ge-
brochen.
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Introduction. 3

As almost any publication in the field of cold trapped atoms this thesis also starts
with a brief discussion of Bose-Einstein condensation. The first experimental realizations
of a Bose–Einstein Condensate (BEC) were achieved in 1995 by the groups of E. Cornell,
C. E. Wieman [1] and W. Ketterle [2] and lead to the Nobel price. The striking feature of
a BEC is that on can literally take photographs of the signatures of Quantum mechanics.
In a BEC, which was theoretically predicted already in 1924 by Bose [3] for photons and
extended to conserved particles and brought to a wide attention by Einstein [4, 5, 6],
the remarkable feature is that a single wave function is occupied by a macroscopic num-
ber (up to 107) of particles. This is due to the peculiar statistics of Bosonic particles,
which allows many particles to occupy one single quantum mechanical wavefunction. The
reason, why it took so long to experimentally verify this effect is that usually thermal
fluctuations are so large that a single wavefunction cannot be populated by a macro-
scopic number of particles. Only when the system is cooled to very low temperatures,
the thermal fluctuations are small enough such that the occupation number of a certain
state (usually the ground state) N0 can be of the order of the total number of particles N .
According to a simple argument by Noziéres (in Ref. [7]), one knows that for energetic
reasons only one (not two or more) wave-function can be occupied macroscopically. The
change from a microscopic to a macroscopic occupation of this wavefunction takes place
at a certain critical temperature Tc. Above this temperature (if we extrapolate to the
case N →∞) the relative population of the BEC is zero (N0/N = 0). For the ideal case
of non-interacting Bosons, this changes suddenly at Tc and the order parameter N0/N
becomes finite with a kink at Tc. Clearly, in this idealized case a first order quantum
phase transition1 takes place with the order parameter being N0/N . As the temperature
is decreased even farther the number of particles not in the BEC, the so-called thermal
particles N − N0, decreases as (T/Tc)3/2. This means that for temperatures that are
much lower than Tc almost all particles are in the BEC or, put in another way, a large
number of particles occupies one single–particle wavefunction. Thus, the wavefunction
must be visible in principle. With the proper technical equipment this is indeed the case
(for reviews of experimental techniques, see Ref. [9]). The results are shown in Fig. 1.
These pictures are taken for temperatures above, at and below the critical temperature.
We can observe, how the sharply peaked ground state wave function emerges from widely
distributed thermal particles.

Since Bosons are that interesting one might ask what happens for Fermions. Clearly,
several identical Fermions (named after E. Fermi who discovered their statistics [10, 11];
and rediscovered by P. Dirac [12]) cannot occupy a single wavefunction which is explicitly
forbidden by the Pauli principle [13]. Thus, the ”most quantum” many–particle state
one can think of for Fermions is a state in which each single–particle wavefunction start-
ing from the lowest energetic wavefunction to one with energy EF = kBTF is occupied
by exactly one particle. Here, the Fermi energy EF is determined by the total number
for Fermions. Single–particle wavefunctions with higher energies than EF should not be
occupied at all in this ideal scenario. Certainly, thermal fluctuations also play a role
for Fermions and this ideal case can only be reached approximately. In contrast to the
case of Bosons, the transition is continuous (no kink), meaning that there is no phase
transition. In any case, the passing to a quantum degenerate regime has been observed
in the experiment. Most clearly, this can be understood by looking at the momentum
distributions of the particles which are shown in the pictures of Fig. 2. The plots can
obtained by a ”time-of-flight” measuring technique, where roughly speaking the trap is

1When using the term phase transition in this context we skip to discuss the question how a phase
transition can be defined for finite systems. In the case of a BEC phase transition there are finite system
analogies to a real phase transition [8].



4 Introduction.

Figure 1: Momentum density distribution of a BEC, taken from the homepage of the
group of E. Cornell at JILA

suddenly turned off and the particles with a higher momentum escape faster than the
particles with a lower momentum. By measuring the time the particles need to reach
a detector one can deduce the initial momentum distribution. The picture on the right
which was taken at a temperature below the Fermi temperature shows that a lot of par-
ticles have energies below the Fermi energy and only few have energies above. So to
say, the Fermions stack up to the Fermi energy. For this reason, one does not speak
of a Fermi-Dirac condensate in analogy to a BEC but of a Fermi-Dirac stack (FDS). A
possible phase transition that is expected for the Fermions to take place is a Bardeen–
Cooper–Schrieffer (BCS) transition which is known from the theory of superconductivity
[14]. In order to lower the total energy, the Fermions can form pairs (e.g. Cooper pairs)
and the pairs being Bosons can condense and thus lower the total energy. Usually, the
pairing mechanism and condensation takes place at the same temperature, but this is
not necessarily so. These issues are investigated in the theory of the BEC–BCS crossover
[15, 16, 17], but are not topic of this thesis. One should mention that no experiment
has been carried out so far in which the existence of a BCS transition was proved (see
however [18]). The reason is that one needs even lower temperatures than for BEC and
Fermi degeneracy.

The main problem is that it is much harder to cool Fermions than Bosons. Atoms
are usually trapped by a magnetic ”potential” VT (r) = −µB(r), where µ is the magnetic
dipole moment of the atoms. Strong magnetic fields are required and thus the spins of
the atoms are aligned either all parallel or all anti–parallel (depending on the sign of the
coupling constant between the spin and the magnetic field). In other words, the spins
are polarized. But Fermions do not s-wave scatter since this would be only allowed by
the Pauli principle in the case of anti–parallel spin alignments between two atoms. Since
s-wave scattering is the dominant interaction in the low momentum regime (cf. chapter
1) the Fermions can be approximated as non-interacting with each other. Interactions
are, on the other hand, needed in the final stage of the cooling process which is the
process of evaporative cooling. Roughly, this cooling procedure can be summarized in
the following way: In the beginning, the particles in the trap are already rather cool
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Figure 2: Momentum density distribution of a FDS (TF ≈ 100nK) taken from the
homepage of D. Jin at JILA

due to other cooling procedures applied before. Now, the potential ramp at the edges of
the trap are decreased slightly, and consequently some particles are lost from the trap.
But just the most energetic particles are lost because only they ”can climb the potential
ramp up to the edge”. After re–thermalization the remaining particles have less average
energy and are thus cooler. Interactions among the particles, however, are required for
re–thermalization process and the number of particles that are left in the trap after many
iterations of this step strongly depends on the quality of the re–thermalization. Thus,
this procedure cannot work for pure Fermions unless some tricks are applied as done in
the group of D. Jin [19], where the previous figure was taken from. Perhaps a simpler
trick is to put other particles (e.g Bosons) into the same trap and let the Fermions re–
thermalize via interactions with them. Because of this idea many experimental groups
have produced Bose–Fermi mixtures rather than pure Fermion systems [20, 21, 22, 23].
This cooling technique is termed sympathetic cooling. For a theoretical description of
this process the reader is referred to Refs. [24, 25]. Fig 3 shows the density distributions
measured in the Florence group for such a system of ultracold mixtures of Bosons and
Fermions.

Among other things, this experiment led to the observation of a phenomenon that is
not present in pure systems, namely the mutual collapse of the system. In this experi-
ment, the Bosonic component was formed by 87Rb atoms while the Fermionic component
consisted of 40K atoms. For those isotopes, the Boson–Boson interaction is repulsive, but
the Boson–Fermion interaction is attractive. Although Bose systems with a repulsive in-
teraction are stable a collapse of this system was be observed if the number of both the
Bosonic and the Fermionic atoms were large. The reason why a collapse occurs is the
following: Due to the Boson–Fermion attraction, the Bosons that are located close to the
center of the trap pull the Fermions to the center of the trap. In turn, the Fermions at
the center also pull even more Bosons inside and vice versa. If the number of particles is
large enough such that this mutual attraction cannot be balanced by the Boson–Boson
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Figure 3: Density distributions of a Bose-Fermi mixture, taken from Science 297, 2240
(2002), top: Boson density, bottom: Fermion density. For better visibility, the two
density distributions are displayed separately, in the system they are on top of each
other.

repulsion or the Fermion Pauli pressure the system eventually implodes. Finally, the im-
plosion stopes when a ’high density configuration’ in the center is reached. In this ’high
density configuration’, formation of molecules and solid structures may occur in contrast
to the dilute regime (which is said to be meta–stable against formation of molecules or
solid structures). The crucial difference is that in the dilute regime three or more par-
ticle processes are very unlikely whereas for high densities they are not. In two particle
processes, energy and momentum conservation does not allow for molecule formation
whereas three or more particle processes can result in molecules. Unfortunately, these
molecules are lost from the trap and as in the above figure we can only see a strong
particle loss of 40K atoms. On might ask the question why nothing similar can be seen
for the 87Rb atoms. The reason is simply that initially there are many more 87Rb in the
trap and the mutual collapse is halted when almost all the 40K are lost from the trap by
molecule formation, but still a large number of 87Rb atoms remains in the trap.

As the previous pictures have shown the density of the particles (either in real or
momentum space) are directly observable in the experiment. A theory which uses the
density of particles as a basic variable is thus ab initio closely related to the experi-
ment since the basic variable is observable. Maybe this was the original idea of density
functional theory invented by Hohenberg and Kohn in 1964 [26] for electron systems. As
shown in this thesis, one can adapt this theory also for Bosons and for mixtures of Bosons
and Fermions. The shift from wave-functions to densities as basic variables has also a
pragmatic advantage. As mentioned before, we deal with particle numbers of the order of
107. The particle density is only a function of the three spacial coordinates, whereas the
many-particle wave-functions are functions of three spacial coordinates times the number
of particles present in the system. To simulate a many–particle ground–state wavefunc-
tion numerically would be an impossible task due to the large number of its arguments.
The number of arguments of the densities, however, is always three — independently
of the number of particles. This drastic advantage, of course, comes with a price, since
one has to express other observables in terms of densities, or say, as functionals of the
density distributions. These are not a priori known. For example, to obtain the ground
state properties one has to minimize the energy functional with respect to the densities.
The first task is thus to calculate the ground state energy functionals. The first part of
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this thesis was motivated by this task for the most simple case of a homogeneous system.
The condition of diluteness that was already mentioned several times can be formalized
in terms of densities in a very intuitive way. One simply requires the average radius occu-
pied by a single particle in the systems to be small compared to the characteristic length
scales of the particle–particle interactions. The average radius is roughly the third root
of the inverse of the particle density and the length scale of the interaction is given by the
s–wave scattering length. Thus, the diluteness condition is that the product of the third
square root of the density times the s-wave scattering length has to be small. A closer
look in the following shows that more precisely these conditions read:

√
nBa3

BB << 1
and kF aBF << 1, where nB is the Boson density, the Fermi wave vector is related to the
Fermion density by kF = (6π2nF )1/3 for spin–aligned systems, and the Bose–Bose and
Bose–Fermi s–wave scattering lengths are aBB and aBF , respectively.

The parameters aBB and aBF are hard to determine theoretically, since for neutral
atoms they reflect a net interaction of the entire electronic clouds of the scattering atoms.
Furthermore, the interactions also depend on the internal state of the atoms and even
on the external magnetic field. This latter effect experimentalists can use to tune the
values over a wide range by simply applying an additional magnetic field. What then
happens is that by tuning the magnetic field one can bring a virtual bound state (with
different magnetic properties than the two atom scattering state) into resonance with the
two atom scattering state. The particles cannot bind because of energy and momentum
conservation, but this resonant molecular state has a strong influence on the scattering
process. By this means, the scattering lengths depends on the magnetic field in the
following way a(B) = a− A

B−B0
[27], where A is independent of B and B0 is the magnetic

field strength where the Feshbach resonance occurs. From this dependence, one can see
that close to B0 on can in principle adjust any (positive and negative!) values of the
scattering length. In this thesis, the scattering length is regarded as a basic input variable
to be determined by methods not considered here (or practically, mostly experimentally).

Thesis outline

Before the work on this thesis was started, the situation on the theoretical description of
dilute Bose–Fermi mixtures can briefly be summarized in the following way: For trapped
systems the theory has been developed in the mean–field approximation to determine
the Boson and Fermion density profiles at zero temperature [28, 29, 30], and the related
properties of stability against phase separation and collapse, numerically in Refs. [31, 32,
33, 34] and by a Gaussian variational Ansatz in Ref. [35]. Speculations about a possible
BCS phase transition were drawn in Refs. [36, 37, 38]. Recent work was performed on the
strongly interacting mixture of 4He-3He was mainly on the calculation of the structure
factors. (within a linear response theory [39] or using a correlated basis Ansatz [40]).

The work for alkali–metal atoms was mostly done with the help of the mean–field
approximation while variational approaches were used for srongly–interacting helium.
Beyond mean–field studies on Bose–Fermi mixtures were mostly done within the so–
called Boson–Fermion model (BFM) of superconductivity [41, 42]. The results obtained
for this model, however, can not be carried over to the description of atomic Bose–Fermi
mixtures, since the Hamiltonian and the particle conservation laws are different in the
two cases.

In the mean–field approximation, the interaction energy functionals are
4πh̄2aBBnBnF /mB for the Boson–Boson interaction, and 2πh̄2aBF m2

B/m for the Boson–
Fermion interaction. Here, mB is the Boson mass and m = mBmF /(mB + mF ) is the
reduced mass, mF being the Fermion mass. By using the methods of quantum field
theory and density functional theory, beyond mean–field studies are possible. They are
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relevant when the interaction parameters are large or to gain a very precise knowledge of
the density profiles and the related properties of stability. One might also be interested
in checking under what circumstances mean–field leads to reliable results.

The theory of atomic Bose–Fermi mixtures beyond mean–field is considered in this
thesis. We will show that the mean–field is the zeroth order expansion of the interaction
energies in terms of the above gas parameters and ignores quantum fluctuations. Cor-
rections to the mean–field are of first or higher order in the gas parameters. Important
are these corrections in a regime at the onset collapse. In optical lattices, exchange–
correlation effects essential to describe to Mott-insulation regime.

In chapter 1 the theory of two–particle scattering processes is reviewed. The results
of this chapter will be fundamental for the later development of the theory of dilute
systems, since the interaction properties of those systems are described by two–particle
interactions. This reader is probably familiar with this subject from a Quantum mechan-
ics course. Yet, attention is paid to the modification due to particle statistics already on
this level.

Chapter 2 summarizes the methods needed from many–particle Quantum mechanics.
The main ideas were developed already in 1958 by Galitskii for Fermion and Beliaev for
Bosons. This chapter is intended to show that most of the results can be adapted to
Bose–Fermi mixtures. The content is published in less detail in the first part of Ref. [A].

The application of the methods presented in chapter 2 to dilute systems comprises
the content of chapter 3. The results of this chapter are published in the second part
of Ref. [A]. Results published by other authors are also presented making use of the
methods of chapter 2 (mostly in contrast to the original work).

While the previous development was on the ideal case of homogeneous systems, chap-
ter 4 shows how some results can be taken over to actual experimental systems that are
confined by a trapping potential. The method of density functional theory applied here
is briefly (i.e. omitting the mathematical details) formulated for Bose–Fermi mixtures.
This chapter was published with some modifications in Ref. [B].

Chapter 5 addresses the problem of the critical temperature of Bose-Einstein conden-
sation in trapped Bose–Fermi mixtures and was published in Ref. [C]. There, we make
use of finite temperature theory which is briefly described in the beginning of the chapter.

The topic of Bose–Fermi mixtures in optical lattices is introduced in chapter 6 and
some basics results that can be obtained by rather simple methods are given. Chapter 6
was published in Ref. [D] with slight changes.

The appendices consist of some lengthy calculations and an alternative derivation of
a result in the main text.

While the studies for this thesis a tremendous work on Bose–Fermi mixtures was done
by other authors. In brief, some of their work is listed paying attention to topics that
are not or only briefly addressed in this thesis:

Various excitations of the system have been studied. Among them are the zero–sound
density oscillations within a random phase approximation [43] and other collective oscil-
lations within a sum–rule approach [44]. The dynamical behavior during an expansion
[45], close to a Feshbach resonance [46], and in a monopole oscillation [47] has been stud-
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ied. Hydrodynamic excitation have been calculated in local density approximation [48]
and beyond local density approximation by using a Weizsäcker kinetic energy functional
for the Fermions [49]. Other collective modes were considered within a linear response
theory [50] and in the random phase approximation [51]. The system behavior in pres-
ence of BCS pairing for the Fermions has been considered in Refs. [52, 53, 54, 55], and the
transition temperature of BCS was calculated in Ref. [56] for spin unpolarized systems
and in Ref. [57] for spin polarized systems.



10 Introduction.

List of publications

[A] A. P. Albus, S. A. Gardiner, F. Illuminati, and M. Wilkens, Quantum field theory of
dilute homogeneous Bose-Fermi mixtures at zero temperature: General formalism
and beyond mean-field corrections, Phys. Rev. A 65, 053607 (2002).

[B] A. P. Albus, F. Illuminati, and M. Wilkens, Density functional theory and ground-
state properties of trapped Bose-Fermi mixtures, Phys. Rev. A 67, 063606 (2003).

[C] A. P. Albus, S. Giorgini, F. Illuminati, and L. Viverit, Critical temperature of Bose-
Einstein condensation in trapped atomic Bose-Fermi mixtures, J. Phys. B 35, L511
(2002).

[D] A. P. Albus, F. Illuminati, and J. Eisert, Mixtures of Bosonic and Fermionic Atoms
in Optical Lattices, accepted for publication in Phys. Rev. A 68, 023606 (2003).



11

h̄ Planck constant 1.055× 10−34Js
kB Boltzmann constant 1.381× 10−23J/K
a0 Bohr radius 5.292× 10−11m
m0 atomic mass unit 1.661× 10−27kg
mB mass of the Bosonic atoms
mF mass of the Fermionic atoms
m reduced mass mBmF /(mB + mF )
δ relative mass difference (mB −mF )/(mB + mF )
aBB Boson-Boson scattering length
aBF Boson-Fermion scattering length
nB density of the Bosonic atoms
nF density of the Fermionic atoms
t time variable
x,y, r position vectors
ω frequency variable
k,p,q wave vectors
x, y, r, k, . . . the magnitudes of x, y, etc.
xi, yi, ri, ki, . . . the i-th component of x, y, etc.
xµ, yµ four vectors xµ = (t,x) etc.
kµ, qµ, pµ four wave vectors kµ = (ω,k) etc.
Ô an operator
|ψ〉 a ket vector
〈ψ| a bra vector
δ(x) the Dirac delta function

Table 1: Some commonly used symbols
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Chapter 1

Two–particle scattering in
various dimensions

In this introductory chapter, we mostly follow the textbook Ref. [58] and the paper by
Lee, Morgan and Burnett [59]. In the latter, calculations are done not only in three,
but also in one and two spacial dimensions. Even though in the following chapters of
this thesis reduced dimensions are not considered, it is maybe useful to have a parallel
treatment for one, two and three dimensions. At the end of this section we briefly
motivate to consider also Bose–Fermi mixtures in low dimensions.

1.1 Reduction to an effective one-particle problem

The Hamiltonian for a system of two particles in homogeneous and isotropic space inter-
acting via a potential U is:

Ĥ = − h̄2∇2
B

2mB
− h̄2∇2

F

2mF
+ U(|rB − rF |) (1.1)

For the purpose of this thesis, we mostly assume that one of the particles is a Boson and
the other one a Fermion, so we label the parameters of one particle by a subscript B and
the parameters of the other particle by F , e.g. rB is the Boson coordinate and rF is the
Fermion coordinate. From the very beginning it is assumed that U(r) decays faster that
1
r for large r.
The Laplacian is defined as

∇2
i =

D∑

j=1

∂2

∂r2
i,j

, (1.2)

where the index i is either B or F and D is the spatial dimension. As indicated above
the three cases D = 1, 2, 3 are treated here.
An eigenstate Φ(rB , rF ) of the above Hamilton operator with energy Etotal satisfies the
Eigenvalue equation:

ĤΦ(rB , rF ) = EtotalΦ(rB , rF ). (1.3)

If the center–of–mass coordinates (as e.g. in [60]) are defined as

R =
mBrB + mF rF

mB + mF

r = rB − rF , (1.4)

15
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we immediately see that

Ĥ = ĤCM + Ĥrel,

ĤCM = − h̄2

2(mB + mF )

D∑

j=1

∂2

∂R2
j

,

Ĥrel = − h̄2

2m

D∑

j=1

∂2

∂r2
j

+ U(r), (1.5)

where m = mBmF

mB+mF
is the relative mass. This means that the Hamiltonian separates

into a center–of–mass part and a part which describes the relative motion. Thus, for the
wave function it is useful to choose a product Ansatz:

Φ(rB , rF ) = Ψ(R)ψ(r) (1.6)

The center–of–mass part can be easily solved by a plane–wave:

Ψ(R) = eiKR. (1.7)

We now define h̄2k2

2m = Etotal − h̄2K2

2(mB+mF ) . Assuming that the particles do not bind and
form a molecule (i.e ψ(r) does not decay exponentially for large r), we can infer that
k is real. Redefining the potential u(r) = 2m

h̄2 U(r), we arrive at the following effective
Schrödinger equation for the relative motion:


−

D∑

j=1

∂2

∂r2
j

+ u(r)


ψ

(D)
k (r) = k2ψ

(D)
k (r). (1.8)

Consider only for a moment that the two particles are identical (this of course then
implies that either both of them are Bosons or both of them are Fermions, and also
mB = mF ). Then, because of the symmetry postulate of Quantum Mechanics, the wave
function has to be (anti-)symmetric if we exchange the arguments rB and rF of Φ. This
parity operation is equivalent to the replacement (see Eqns. 1.4): R → R and r → −r.
Looking at Eqn. (1.8), we can see that because of the symmetry of u(r) (and also of the
Laplacian), ψD

k (−r) is a also solution if ψD
k (r) is a solution (of no definite symmetry).

Thus, if the two particles are Bosons then we can construct the solution with the correct
symmetry by setting:

ψ
B(D)
k (r) = 1

2

(
ψ

(D)
k (r) + ψ

(D)
k (−r)

)
. (1.9)

And likewise if the two particles are Fermions the solution with the correct symmetry is:

ψ
F (D)
k (r) = 1

2

(
ψ

(D)
k (r)− ψ

(D)
k (−r)

)
. (1.10)

We come back to this argument below.

1.2 The scattering amplitude

The usual way to analyze a scattering process like the one given in Eqn. (1.8) is by means
of the Lippmann-Schwinger equation for the outgoing wave:

ψ
(D)
k (r) = eikr +

∫
dDr′G(D)

k (r, r′)u(r′)ψ(D)
k (r′), (1.11)
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This equation is equivalent to Eqn. (1.8), if the Green’s functions G
(D)
k (r, r′) satisfy:

(∇2 + k2
)
G

(D)
k (r, r′) = δ(D)(r− r′), (1.12)

where δ(D)(r − r′) is the D-dimensional delta function. By the requirement that the
Green’s functions behave for large r as outgoing spherical waves with origin r′, they are
uniquely fixed:

G
(D)
k (r, r′) = lim

η→0

〈
r

∣∣∣∣∣∣
1

k2 +
∑D

j=1
∂2

∂r2
j

+ iη

∣∣∣∣∣∣
r′

〉
. (1.13)

As usual, |r〉 is the (improper) bra position eigenvector and 〈r| the corresponding ket
vector. Since the Laplacian looks particularly simple in momentum space, it is not hard
to see that

G
(D)
k (r, r′) = lim

η→0

1
(2π)D

∫
dDp

eip(r−r′)

k2 − p2 + iη
, (1.14)

which is simply the Fourier transform (with respect to r− r′) of

G
(D)
k (p) =

1
k2 − p2 + iη

, (1.15)

where the limit η → 0 is now implicit.
We now study the behavior of the wave function given by Eqn. (1.11) at large dis-

tances from the scattering center. Large means r is a lot larger than the range of the
potential u(r′) and also a lot larger that 1

k . After making use of the approximation
k|r− r′| ≈ kr−k′r′ with k′ = k r

r which is valid for large r and some algebra, the result-
ing expressions for the Green’s functions at large r can be inserted into the Lippmann-
Schwinger equations (1.11). This leads to expressions for the wavefunctions at large
distances from the scattering center:

ψ
(1)
k (r) ≈ eikr − i

2k
eikrf (1)(k′,k), (1.16)

ψ
(2)
k (r) ≈ eikr − eiπ/4

4

√
2

πkr
eikrf (2)(k′,k), (1.17)

ψ
(3)
k (r) ≈ eikr − 1

4π

eikr

r
f (3)(k′,k), (1.18)

where the scattering amplitudes are defined as:

f (D)(k′,k) =
∫

dDr′e−ik′r′u(r′)ψ(D)
k (r′). (1.19)

All this reads in momentum space:

u(q) =
∫

dDr e−iqru(r), (1.20)

ψ
(D)
k (q) =

∫
dDr e−iqrψ

(D)
k (r), (1.21)

f (D)(k′,k) =
1

(2π)D

∫
dDq u(q)ψ(D)

k (k′ − q). (1.22)
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The last equation can be also be written
(
upon using the completeness relation

1
(2π)D

∫
dDk ψ

(D)
k (p)ψ(D)

k (p′)∗ = (2π)Dδ(D)(p− p′)
)
:

1
(2π)D

∫
dDk f (D)(k′,k)ψ(D)

k (p)∗ = u(k′ − p). (1.23)

The Fourier transform of the Lippmann-Schwinger equation is:

ψ
(D)
k (p) = (2π)Dδ(D)(p− k) + G

(D)
k (p)

∫
dDq u(q)ψ(D)

k (p− q). (1.24)

Inserting Eqns. (1.22) and (1.15) the Lippmann-Schwinger equation in momentum space
can also be written as

ψ
(D)
k (p) = (2π)Dδ(D)(p− k) +

f (D)(p,k)
k2 − p2 + iη

, (1.25)

which, in turn, we can insert into Eqn. (1.22) in order to get an integral relation for the
scattering amplitudes:

f (D)(k′,k) = u(k′ − k) +
1

(2π)D

∫
dDq u(k′ − q)

f (D)(q,k)
k2 − q2 + iη

(1.26)

Finally, we can insert Eqn. (1.25) into Eqn. (1.23) to get:

u(k′ − p) = f (D)(k′,p) +
1

(2π)D

∫
dDk

f (D)(k′,k)f (D)(p,k)∗

k2 − p2 − iη
(1.27)

In this way, the potential is completely expressed in terms of the scattering amplitude, but
the values of the amplitude are not only required on the energy shell (i.e. for (k′)2 = k2),
but also off the energy shell.

For D = 1, 2, 3 the off shell scattering amplitude was determined in Ref. [59] for a
hard-sphere scattering potential using an approach based on solving an inhomogeneous
Schrödinger equation. The authors call the scattering amplitude ”half on the energy shell
T–matrix”. But we do not use this terminology here in order to avoid confusion with the
many–body T–matrix, which is introduced below. Also, the definition used here deviates
from theirs by a factor of h̄2

2m . With the definitions used here the results are:

f (1)(k′,k) = −2ik exp
(
−i(k + k′ cos θ)a(1)

)
, (1.28)

f (2)(k′,k) = 4
∞∑

m=0

εm
Jm(k′a(2))
iHm(ka(2))

cos(mθ), (1.29)

f (3)(k′,k) = −4ia(3)
∞∑

l=0

(2l + 1)
jl(k′a(3))

(ka(3))hl(ka(3))
Pl(cos θ), (1.30)

where θ is the angle between k and k′ (in 1D θ is either 0 or π), Jm (jl) is the (spherical)
Bessel function of the first kind and order m (l), Hm (hl) is the first (spherical) Hankel
function of order m (l), εm = 1 for m = 0 and εm = 2 otherwise, and Pl is the Legendre
polynomial of oder l. The parameters a(i) can be identified with the radii of the atoms
if the interaction potential is modeled by hard sphere potentials. For more general
potentials, they are identified with the (s–wave) scattering lengths. In the limit of low
momenta (k′a(i) ¿ 1 and ka(i) ¿ 1) the appropriate limits of the Bessel (Hankel)
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functions (see e.g. [61]) show that only the first terms of the series expansions are
important to first order in k′a(i) and ka(i). In this limit, the expressions for the scattering
amplitudes simplify considerably:

f (1)(k′,k) = −2ik
(
1− ika(1) − ik′a(1) cos θ

)
, (1.31)

f (2)(k′,k) = −4π/
(
2 ln(ka(2)/2) + 2γ − iπ

)
, (1.32)

f (3)(k′,k) = 4πa(3)
(
1− ika(3)

)
, (1.33)

where γ ≈ 0.577 is the Euler-Mascheroti constant. We observe that in two and three
dimensions in the low momentum limit the scattering amplitudes do not depend on k′

and θ. These are the main results of this section.
Going back to Eqns. (1.9) and (1.10) we can conclude that for two identical Bosons

(we assume Spin 0) the scattering amplitude is:

1
2

(
f (D)(k′,k) + f (D)(−k′,k)

)
. (1.34)

Fermions have at least spin 1
2 . If the spin wavefunction is antisymmetric then the spatial

wave function has to be symmetric and the scattering amplitude in this case is the same
as for Bosons. In the following, however, we consider spin-polarized Fermions. Since in
this case all spins point into the same direction, the spin wavefunction is symmetric and
thus the spacial wavefunction has to be antisymmetric. We then get:

1
2

(
f (D)(k′,k)− f (D)(−k′,k)

)
. (1.35)

Since we know from the preceding discussion that in two and three dimensions the
low momentum scattering amplitude does not depend on the scattering angle, we have
f (D)(k′,k) = f (D)(−k′,k) in this case. We conclude: In two and three dimensions the low
momentum scattering amplitude for identical Bosons is the same as for distinguishable
particles. The scattering amplitude for spin-polarized identical Fermions is zero.

1.3 Replacing the interaction potential by the scat-
tering length

In this section, we derive expressions for the interaction potential in terms of the scat-
tering lengths. There are basically three reasons for doing this.

The first pragmatic reason is that when we deal with atomic interactions it is very hard
to determine the interaction potential precisely, since atom–atom interactions are a net
result of the interactions between the their electron clouds. But, to completely describe
interactions of two electronic clouds is a really complicated many–body problem. Also
experimentally, it is hard to measure the shape of the interaction potentials. On the
other hand, there are some measurements available for the scattering lengths.

A more mathematical argument in favor the notion of the scattering length is that
even if the Fourier transform of the interaction potential is not defined (as e.g. for the
Coulomb potential or the hard-sphere potential) or the potential has bound states, it is
still possible to apply the concept of a scattering length. We then automatically describe
the system in a state that is meta–stable against binding. This is exactly the situation
we aim to describe in atomic gases.

The third point is that as we have seen in the last section, the scattering amplitude
depends only on the scattering length and the relative momentum of the particles in the
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low momentum limit (a limit which is approriate for atomic gases as we will see in the
following). In this limit, the only parameter we need to specify the scattering amplitude
is the scattering length. The same is also true for the interaction potential as we will see
now.

Starting from Eqn. (1.27) along with Eqns. (1.31)–(1.33), we find:

u(k′ − p) = −2ip
(
1− ipa(1) − ik′a(1) cos θ

)

+
4
π

∫ ∞

0

dk
k2(1− 2ika(1))
k2 − p2 − iη

(1.36)

u(k′ − p) = −2π/ ln(pa(2)) + π(2γ − 2 ln 2− iπ)/ ln2(pa(2))

+2π

∫ ∞

0

dk
k

ln2(ka(2))
1

k2 − p2 − iη
(1.37)

u(k′ − p) = 4πa(3)
(
1− ipa(3)

)

+8(a(3))2
∫ ∞

0

dkk2 1
k2 − p2 − iη

, (1.38)

where we integrated (summed) over the angels and kept only terms to maximally second
order in the small parameters k′a(i) and pa(i) or 1/ ln(k′a(2)) and 1/ ln(pa(i)), respectively.
We also assumed that the main contribution to the non divergent parts of the integrals
come from regions with k ≈ p. To the issue of divergences we come later in the context
of the many–body T–Matrices.

1.4 Comments on reduced dimensions

Up to this point, it was not motivated why other than three dimensional scattering
processes might be interesting. The reason is that in experiments with atomic gases in
magnetic traps one can (almost arbitrarily) choose the shape of the trap by varying the
strengths of the magnetic fields in each spacial direction [62, 63, 64]. In the center of a
magnetic trap, the confining potential is nearly harmonic in all directions. To be specific
let us consider the following one-particle Hamiltonian:

Ĥxy = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ 1

2mω2
xy

(
x2 + y2

)
, (1.39)

Ĥz = − h̄2

2m

∂2

∂z2
+ 1

2mω2
zz2. (1.40)

There, we have an isotropic part within the xy-plane (the radial part) and an axial part
with a different trapping frequency ωz 6= ωxy. The trapping frequencies are determined
by the masses, the magnetic moments, and the magnetic fields in the radial and axial
directions. Experimentalists can increase the trapping frequency in either the radial
ωxy À ωz or the axial direction ωz À ωxy considerably. Correspondingly, the energy
quantum in these direction(s) (h̄ωxy or h̄ωz, respectively) also increases and if it is larger
than all other energy scales of the system only the ground state wavefunction(s) in this
(these) direction(s) is (are) populated for energetic reasons. Straightforwardly, one writes
the 3D wavefunction as a product of this ground state (a Gaussian state) and another
wavefunction in the direction with the weak confinement. The problem is then solved
in the direction(s) of the strong confinement and only the wavefunction in the other
directions(s) is yet unknown. Then we have a so–called confinement dominated system
that behaves in some aspects effectively one or two dimensionally. Some consequences
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for Bose–Fermi mixtures have been explored in Ref. [65]. But this is not yet exhaustive,
because as the trapping frequency in a certain direction raises the harmonic oscillator
length (lxy =

√
h̄/mωxy or lz =

√
h̄/mωz, respectively) in this direction decreases. At

some point, it will be comparable and even smaller than the magnitude of the inter–
particle scattering length. This has a dramatic impact on the scattering process because
then some intermediate states of the scattering process are suppressed in the direction(s)
with the strong confinement. In this regime, the results of the low dimensional scattering
amplitudes of the previous sections have to be applied. The system is then said to be
quasi one dimensional or quasi two dimensional, respectively (in contrast to confinement
dominated), because in every respect it behaves as if its world had only one or two
spacial dimension(s). In the case of pure quantum gases, interesting properties of quasi
low dimensional system were found that are very different from the 3D–case, e.g. quasi–
1D or quasi–2D Fermi gases were studied in Refs. [66, 67] while quasi–1D gases were
considered in Refs. [68, 69, 70] for quasi–1D Bosons and and quasi–2D Bose gases in
Refs. [71, 72, 73, 74]. It was also possible to derive expressions for the scattering lengths
in quasi low dimensional systems, only in terms of the three dimensional scattering length
and the harmonic oscillator length of the strong confinement:

a(1) = − lxy

2a(3)

(
1− C

a(3)

lxy

)
, (1.41)

where C ≈ 1.4603 . . .. This was derived in Ref. [75]. And in Ref. [76] it was shown that:

a(2) = 2
√

π

B
lze

−√πlz/a(3)−γ , (1.42)

where B ≈ 0.915 . . ..
To our best knowledge nobody has investigated Bose–Fermi mixtures in this regime.

Thus interesting new projects are possible and the results for the low dimension scattering
amplitudes could be a starting point. The following methods applied in this thesis might
also be useful as a guideline, even though only three dimensional systems are treated.
If one, however, wants to apply Eqn. (1.31) special attention has been drawn to the
validity of perturbation theory. In fact, for a(1) → 0, the scattering amplitude does not
vanish and thus not correspond to the non-interacting limit. Useful remarks about this
observation can be found in Ref. [69].
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Chapter 2

Many–particle Bose–Fermi
systems

2.1 Formulation of second quantization for
many–particle Systems

A pure state of a single quantum mechanical particle can be described by a vector from
a Hilbert space H. In the last chapter, we have worked with elements in the two–particle
space H⊗H. As the number of particles increases the so called ”first quantized” notation
we used there becomes more and more cumbersome. In this section, we briefly review
the formulation of ”second quantization” which is suitable for the description of many–
particle systems.

A pure state of N distinguishable particles is represented by a vector out of the tensor
product H⊗N := H1⊗. . .⊗HN . For completeness we also define H⊗0 := Span{|〉}, where
|〉 is the so–called vacuum state. If the particles are indistinguishable (i.e. no quantum
measurement can be designed to distinguish a certain particle from all the N −1 others),
then H1 = Hi = HN = H and the state is necessarily contained in a subspace of the full
tensor product space, namely either an element of H⊗N

B := SH⊗N or H⊗N
F := AH⊗N ,

where the operators S and A are the complete symmetrization and anti-symmetrization
operators, respectively:

Sψ1 ⊗ . . .⊗ ψN :=
1

N !

∑

P

ψP (1) ⊗ . . .⊗ ψP (N), (2.1)

Aψ1 ⊗ . . .⊗ ψN :=
1

N !

∑

P

(−1)|P |ψP (1) ⊗ . . .⊗ ψP (N). (2.2)

The sums run over all permutations P and |P | denotes the number of transpositions in
P . The extension of the above definitions to arbitrary states is done by linearity. We
note that these operators are projectors. Bosonic particles are described by the elements
in H⊗N

B and Fermionic ones by the elements in H⊗N
F . A more complete space for the

Bosons, which also allows a superposition of arbitrary numbers of particles is the Bosonic
Fock1 space:

FB =
∞⊕

N=0

H⊗N
B (2.3)

1Sometimes the term ”Fock state” is used to denote a state with a sharp number of particles. We
adopt a more general definition here.

23
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and likewise for the Fermions the Fermionic Fock space:

FF =
∞⊕

N=0

H⊗N
F . (2.4)

Creation and destruction operators on the respective Fock spaces can be defined with
help of the auxiliary operators:

ĉ†(ψ)|〉 := ψ,

ĉ†(ψ)ψ1 ⊗ . . .⊗ ψN :=
√

N + 1ψ ⊗ ψ1 ⊗ . . . ψN , (2.5)
ĉ(ψ)|〉 := 0,

ĉ(ψ)ψ1 ⊗ . . .⊗ ψN :=
√

N〈ψ|ψ1〉ψ2 ⊗ . . . ψN . (2.6)

Again, the extension to arbitrary states is done by linearity. After a little algebra one
can see that indeed ĉ†(ψ) is the adjoint of ĉ(ψ). Also we note that the operators ĉ†(ψ)
depend linearly on ψ and the operators ĉ(ψ) are anti-linear in ψ. Thus, a basis in H
induces a corresponding basis for the Fock space operators. The Bosonic creation and
destruction operators are

â†(ψ) := S ĉ†(ψ)S, â(ψ) := S ĉ(ψ)S, (2.7)

and likewise the Fermionic creation and destruction operators are

b̂†(ψ) := Aĉ†(ψ)A, b̂(ψ) := Aĉ(ψ)A. (2.8)

Because S and A are projectors â†(ψ) is still the adjoint of â(ψ) and b̂†(ψ) is still the
adjoint of b̂(ψ). The physical interpretation is that â†(ψ) creates a Boson in the state ψ
and â(ψ) destroys a Boson in the state ψ. The interpretation of the Fermion operators
is analogous. After some algebra, it follows:

[â†(ψ1), â†(ψ2)] = 0, [â(ψ1), â(ψ2)] = 0,

[â(ψ1), â†(ψ2)] = 〈ψ1|ψ2〉 (2.9)

and

{b̂†(ψ1), b̂†(ψ2)} = 0, {b̂(ψ1), b̂(ψ2)} = 0,

{b̂(ψ1), b̂†(ψ2)} = 〈ψ1|ψ2〉 (2.10)

where [·, ·] denotes the commutator and {·, ·} denotes the anti-commutator. The creation
and destruction operators are not Hermitian and thus not observables. The operators
N̂B(ψ) = â†(ψ)â(ψ) and N̂F (ψ) = b̂†(ψ)b̂(ψ), however, are observables. If NB(ψ) denotes
an eigenvalue of N̂B(ψ), NF (ψ) denotes an eigenvalue of N̂F (ψ) and | . . . , NB(ψ), . . .〉 or
| . . . , NF (ψ), . . .〉 denote the corresponding eigenvectors, then it can be shown from the
(anti-)commutator relations that

N̂B(ψ)â†(ψ)| . . . , NB(ψ), . . .〉
= (NB(ψ) + 1) â†(ψ)| . . . , NB(ψ), . . .〉, (2.11)

N̂B(ψ)â(φ)| . . . , NB(ψ), . . .〉
= (NB(ψ)− 1) â(ψ)| . . . , NB(ψ), . . .〉, (2.12)

N̂F (ψ)b̂†(ψ)| . . . , NF (ψ), . . .〉 (2.13)

= (NF (ψ) + 1) b̂†(ψ)| . . . , NF (ψ), . . .〉, (2.14)

N̂F (ψ)b̂(ψ)| . . . , NF (ψ), . . .〉
= (NF (ψ)− 1) b̂(ψ)| . . . , NF (ψ), . . .〉, (2.15)
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such that the operator N̂B(ψ) counts the number of Bosons in the state ψ and the opera-
tor N̂F (ψ) counts the number of Fermions in the state ψ. We can use this interpretation
to promote a single–particle operator ÔH on H to an operator on the Fock space:

ÔFB
=

∑

i

〈ψi|ÔH|ψi〉N̂B(ψi), (2.16)

ÔFF
=

∑

i

〈ψi|ÔH|ψi〉N̂F (ψi), (2.17)

with {ψi} being an orthonormal basis of H, where ÔH is diagonal2. Since i can also be
a continuous index, the sum may be changed into an integral in this case. The above
definition is independent of the choice of this orthonormal basis and thus well–defined
and a Hermitian single-particle operator goes into a Hermitian operator on Fock space.
Similarly, one can extend all two–particle operators ÔH⊗H to the Fock space by defining:

ÔFB =
∑

i,j

〈ψi ⊗ ψj |ÔH⊗H|ψi ⊗ ψj〉â†(ψj)â†(ψi)â(ψi)â(ψj) (2.18)

ÔFF
=

∑

i,j

〈ψi ⊗ ψj |ÔH⊗H|ψi ⊗ ψj〉b̂†(ψj)b̂†(ψi)b̂(ψi)b̂(ψj). (2.19)

Again, ÔH⊗H has to be diagonal in the basis {ψi⊗ψj}. It has to be noted that the Fock
space operators appearing in Eqns. (2.18) and (2.19) are not simply N̂B(ψi)N̂B(ψj) or
N̂F (ψi)N̂F (ψj), because the latter are not Hermitian.

From the anti-commutators for the Fermions is follows that b̂†(ψ)b̂†(ψ) = 0, i.e. no
two Fermions can be created in the same state. This is the mathematical statement of
the Pauli principle. There is no such relation for the Bosons which opens the possibility
of Bose-Einstein-condensation (BEC).

It is very common to work with creation and destruction operators for certain ψ’s
namely the (improper) eigenstates of the position (

√
V δ(· −x)) or momentum operators

(eik·/
√

V ) respectively, where V is the volume of the system (f(·) is a short hand notation
for an entire function x 7→ f(x)). Therefore, we make the following identifications:

â†k := â†
(
eik·/

√
V

)
, âk := â

(
eik·/

√
V

)
, (2.20)

Φ̂†(x) := â†
(√

V δ(· − x)
)

, Φ̂(x) := â
(√

V δ(· − x)
)

, (2.21)

and

b̂†k := b̂†(eik·/
√

V ), b̂k := b̂(eik·/
√

V ), (2.22)

Ψ̂†(x) := b̂†
(√

V δ(· − x)
)

, Ψ̂(x) := b̂
(√

V δ(· − x)
)

. (2.23)

The operators Φ̂†(x), Φ̂(x), Ψ̂†(x), Ψ̂(x) are the field operators. Using the (anti–) linearity
of the operators in φ and

√
V δ(· − x) =

1√
V

∑

k

eik·e−ikx (2.24)

2If one wants to relax the condition that ÔH has to be diagonal, the definition looks ÔFB
=∑

i,j
〈ψj |ÔH|ψi〉â†(ψi)â(ψj), but then the interpretation is only obvious, if we diagonalize ÔH, and

thus we are back at the original definition.
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we can express the field operators in terms of the â†k, âk, b̂†k, b̂k:

Φ̂†(x) = â†
(

1√
V

∑

k

eik·e−ikx

)
=

∑

k

eikxâ†k, (2.25)

Φ̂(x) = â

(
1√
V

∑

k

eik·e−ikx

)
=

∑

k

e−ikxâk, (2.26)

Ψ̂†(x) = b̂†
(

1√
V

∑

k

eik·e−ikx

)
=

∑

k

eikxb̂†k, (2.27)

Ψ̂(x) = b̂

(
1√
V

∑

k

eik·e−ikx

)
=

∑

k

e−ikxb̂k. (2.28)

The following (anti–)commutators are merely special cases of the above Eqns. (2.9) and
(2.10):

[âk, â†k′ ] = δk,k′ , [â†k, â†k′ ] = 0, [âk, âk′ ] = 0, (2.29)

[Φ̂(x), Φ̂†(x′)] = δ(x− x′), [Φ̂†(x), Φ̂†(x′)] = 0, (2.30)
[Φ̂(x), Φ̂(x′)] = 0, (2.31)

{b̂k, b̂†k′} = δk,k′ , {b̂†k, â†k′} = 0, {b̂k, b̂k′} = 0, (2.32)

{Ψ̂(x), Ψ̂†(x′)} = δ(x− x′), {Ψ̂†(x), Ψ̂†(x′)} = 0, (2.33)
{Ψ̂(x), Ψ̂(x′)} = 0. (2.34)

We now look at some examples of how to extend single–particle and two–particle
operators on Fock–space. We start with the single–particle operator which gives the
density at position x and reads

∫
d3x′δ(x′ − x)|x′〉〈x′|, where |x′〉〈x′|, is the projection

operator onto the the position eigenvector at x′. This operator is as it stands diagonal in
space representation and its diagonal elements are δ(x′ − x). So we can apply the above
Defs. (2.16) and (2.17) to see that the density operator in Fock space reads

n̂B(x) =
∫

d3x′δ(x′ − x)Φ̂†(x′)Φ̂(x′) = Φ̂†(x)Φ̂(x). (2.35)

The same reasoning leads to

n̂F (x) = Ψ̂†(x)Ψ̂(x). (2.36)

Similarly, the operator of potential energy
∫

d3x′VB(x′)|x′〉〈x′| extended to Fock space
reads

V̂B =
∫

d3x′VB(x′)Φ̂†(x′)Φ̂(x′) (2.37)

On the other hand, the single-particle kinetic energy operator is diagonal in momentum
representation:

∑
k

h̄2k2

2m |k〉〈k|. The corresponding Fock space operator is then:

T̂B =
∑

k

h̄2k2

2mB
â†kâk
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=
∑

k

h̄2k2

2mB

∫
d3x e−ikxΦ̂†(x)

∫
d3x′eikx′Φ̂(x′)

= −
∫

d3xΦ̂†(x)
h̄2∇2

2mB

∫
d3x′

∑

k

eik(x′−x)Φ̂(x′)

= −
∫

d3x Φ̂†(x)
h̄2∇2

2mB
Φ̂(x), (2.38)

where the inversions Eqns. (2.25) and (2.26) were inserted and∑
k eik(x′−x) = δ(x′ − x) was used. ∇2 is supposed to act on the unprimed x.
An important two–particle operator is that of interaction energy. It reads in two–

particle space 1
2

∫ ∫
d3xd3x′U(x−x′)|x〉⊗|x′〉〈x|⊗〈x′| (i.e diagonal in the basis |x〉⊗|x′〉)

and in Fock space:

Û = 1
2

∫ ∫
d3x d3x′U(x− x′)Φ̂†(x′)Φ̂†(x)Φ̂(x)Φ̂(x′). (2.39)

All the corresponding Fermionic operators are very similar only with Bosonic field oper-
ators replaced by Fermion field ones.

For a mixed system of identical Bosons and identical Fermions we work in the space
FB ⊗ FF . Of course, then all operators which act only on the Boson part of this space
commute with all operators that act only on the Fermion part. The Boson-Fermion
interaction energy operator in Fock–space is derived from the two–particle interaction
energy operator just in the same way as before. Its expression is:

V̂ =
∫ ∫

d3x d3x′V (x− x′)Φ̂†(x′)Ψ̂†(x)Ψ̂(x)Φ̂(x′). (2.40)

2.2 Particle-hole transformation
and Bogoliubov replacement

In this section, we consider the simplest case of a many–particle Boson-Fermion system,
namely a system with no external potential, neither for the Bosons nor for the Fermions,
and no particle–particle interactions at all. Then the Hamiltonian reads:

Ĥ0 = T̂B + T̂F , (2.41)

with T̂B and T̂F as defined in the previous section. In the absence of Boson-Fermion
interactions, the Boson and the Fermion sector completely decouple. To label the states,
we use the eigenvalues of the number operators as defined in the previous section. If the
boundaries of the system is the surface of a large cube with volume V and we choose
periodic boundary conditions, the single particle states are simply 1√

V
e−ikx, where

k =
2π

V 1/3
(nx, ny, nz), (2.42)

and where all natural numbers ni are allowed. As seen in the last section, the number
of particles in each state is determined as the eigenvalue of the operators NB/F (k). The
operators of total numbers of Bosons and Fermions respectively,

N̂B =
∑

k

â†kâk, (2.43)

N̂F =
∑

k

b̂†kb̂k, (2.44)
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are constants. The ground state of the systems is then simply:

|G〉 = |NB , 0, 0, . . .〉 ⊗ |1, 1, . . . , 1, 0, 0, . . .〉 =
1√
NB !

(
â†0

)NB

b̂†0...b̂†kF
|〉, (2.45)

where kF is the highest occupied Fermion momentum. As seen in the previous section,
all Fermion momenta in Eqn. (2.45) have to be different, otherwise the result would be
zero. |G〉 can also be characterized as:

âk|G〉 = 0 for |k| > 0, (2.46)

b̂†k|G〉 = 0 for |k| ≤ kF , (2.47)

b̂k|G〉 = 0 for |k| > kF . (2.48)

This suggests to re–define the Fermion operators:

ĉk = b̂†−k for |k| ≤ kF , ĉk = b̂k for |k| > kF . (2.49)

This transformation does not alter the anti–commutation relations. The interpretation is
that ĉk destroys a Fermion hole if k is below the Fermi momentum and destroys a Fermion
particle if k is above the Fermi momentum. Unfortunately, it is not possible to define a
complete set of annihilation operators for the Bosons, because â0|G〉 6= 0 and â†0|G〉 6= 0.
In order to apply Wick’s theorem (see below), it is, however, essential to have a complete
set of annihilation operators. For this reason, already in 1947 Bogoliubov [77] proposed
to treat the single particle ground state separately. He argued that 〈G|â†0â0|G〉 = NB

and 〈G|â0â†0|G〉 = NB + 1 are almost equal if NB À 1. The same is of course also true
for all other states, where the single-particle ground state is populated with macroscopic
number of particles N0 (but only for them!). For those states (i.e. all states with a BEC),
the operators â0 and â†0 ”almost commute”. So it might be allowed to treat them as
simple c-numbers: â0 =

√
N0, â†0 =

√
N0 + 1 ≈ √

N0. This approach has the advantage
of algebraic simplicity over some more recent and elaborate prescriptions [78, 79, 80].
There are, however, some disadvantages. For example, after applying the Bogoliubov
replacement for the ground state operators, the number operator for the Bosons does not
commute with the Hamiltonian anymore and so the ground state is not automatically
a fixed Boson number state. This is, because the ground state particles are so to say
excluded from the quantum field and transformed into a classical field. But there will
be always a particle exchange between those two fields. Thus, one has to impose the
condition of correct number of Bosons by a Lagrange multiplier. In the next section,
we will apply the Bogoliubov replacement to the Bose–Fermi Hamiltonian, but first
expressions of the field operators after the particle–hole transformation for the Fermions
and the Bogoliubov replacement for the Bosons are listed:

φ̂(x) = 1√
V

∑

|k|>0

e−ikxâk, (2.50)

ψ̂1(x) = 1√
V

∑

|k|≤kF

e−ikxĉk, (2.51)

ψ̂2(x) = 1√
V

∑

|k|>kF

e−ikxĉk, (2.52)

where the factors 1√
V

were inserted in order to talk about particle densities rather than
particle numbers. Then, the old field–operators in terms of the new ones read:

Φ̂(x)/
√

V =
√

n0 + φ̂(x), (2.53)

Ψ̂(x)/
√

V = ψ̂†1(x) + ψ̂2(x), (2.54)
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where n0 = N0/V is the density of the BEC, i.e. the density of the Bosons in the single-
particle ground state. Treating the BEC separately, there is no need to include the lowest
energy state in the description of the states. So we introduce a new ground state

|0〉 = |·, 0, 0, . . .〉 ⊗ |0, 0, . . .〉 = ĉ0...ĉkF
|〉, (2.55)

where the · indicates that the single particle ground state is omitted. In the labeling of
the Fermion states we switched into a particle–hole picture for the Fermions, so the 1’s
in |G〉 turned into 0’s. In this picture the operators of kinetic energy densities read

T̂B/V =
h̄202

2mB
n0 +

∑

|k|>0

h̄2k2

2mB
â†kâk =

∑

|k|>0

h̄2k2

2mB
â†kâk (2.56)

T̂F /V =
∑

|k|≤kF

h̄2k2

2mF
ĉkĉ†k +

∑

|k|>kF

h̄2k2

2mF
ĉ†kĉk. (2.57)

Passing to the limit V → ∞ such that the densities nB = NB/V and nF = NF /V are
finite we can see from Eqn. (2.42) that

d3k → (2π)3/V (2.58)

and so
∑

k → V
(2π)3

∫
d3k. Under these circumstances:

E0 = 〈0|Ĥ0|0〉

=
V

(2π)3

∫
d3k

h̄2k2

2mB
〈0|â†kâk|0〉

+
V

2π2

∫ kF

0

dk k2 h̄2k2

2mF
〈0|ĉkĉ†k|0〉+

V

2π2

∫ kF

0

dk k2 h̄2k2

2mF
〈0|ĉ†kĉk|0〉

= 0 +
3
5

h̄2k2
F

2mF
k3

F /(6π2) + 0 (2.59)

So for the homogeneous, non-interacting system the only contribution to the ground state
energy is the kinetic energy of the Fermions. kF can be easily determined from:

NF = 〈0|N̂F |0〉 =
V

2π2

∫ kF

0

dk k2〈0|ĉkĉ†k|0〉
V

2π2

∫ kF

0

dk k2〈0|ĉ†kĉk|0〉

= V k3
F /(6π2). (2.60)

Likewise, the number of condensed Bosons is determined from:

NB = N0 + 〈0|N̂ ′
B |0〉

= N0 +
∑

|k|>0

〈0|â†kâk|0〉

= N0, (2.61)

where N̂ ′
B is the number operator of excited (also called thermal or non-

condensed) Bosons. As expected, all Bosons are condensed in the absence of interactions.

2.3 Perturbation theory

2.3.1 The grand-canonical Hamiltonian

Now, we also allow for interactions among the particles. The resulting equations are
by no means solvable exactly, so one has to use a perturbative approach assuming that
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the interactions are weak in a sense that will be clarified below. We will also see below
that the first correction terms to the noninteracting system involve the s-wave scattering
lengths. Since, as we have seen in chapter 1, the Fermions do not s–wave scatter one
can omit the Fermion–Fermion interactions from the very beginning. The Hamiltonian
is thus:

Ĥ0 = T̂B + T̂F + Û + V̂ , (2.62)

where Û and V̂ are defined in Sec. 2.1. As indicated before, we are going to apply a Bo-
goliubov replacement and so it is required to assure (average) particle conservation for the
Bosons by introducing a Lagrangian multiplier µB and the grand-canonical Hamiltonian

K̂ = Ĥ − µBN̂B , (2.63)

where µB is identified with the Boson chemical potential [58]. Substituting Eqn. (2.53)
into Eqn. (2.63), the grand-canonical Hamiltonian reads

K̂ = K̂0 − µBN0 + Ŵ , (2.64)

where

K̂0 =
h̄2

2mB

∫
d3x∇φ̂†(x) · ∇φ̂(x) +

h̄2

2mF

∫
d3x∇Ψ̂†(x) · ∇Ψ̂(x)

−µB

∫
d3xφ̂†(x)φ̂(x), (2.65)

and
Ŵ = Û1 + Û2 + Û3 + V̂1 + V̂2 + V̂3 + V̂4 + V̂5 + V̂6 + V̂7 (2.66)

with

Û1 = n0

∫ ∫
d3xd3x′Ψ̂†(x′)U(|x− x′|)Ψ̂(x′), (2.67)

Û2 =
√

n0

∫ ∫
d3xd3x′Ψ̂†(x′)U(|x− x′|)Ψ̂(x′)φ̂(x) + h.c., (2.68)

Û3 =
∫ ∫

d3xd3x′φ̂†(x)Ψ̂†(x′)U(|x− x′|)Ψ̂(x′)φ̂(x), (2.69)

V̂1 =
1
2
n2

0

∫ ∫
d3xd3x′V (|x− x′|), (2.70)

V̂2 = n0
√

n0

∫ ∫
d3xd3x′V (|x− x′|)φ̂(x) + h.c., (2.71)

V̂3 =
1
2
n0

∫ ∫
d3xd3x′V (|x− x′|)φ̂(x′)φ̂(x) + h.c., (2.72)

V̂4 = n0

∫ ∫
d3xd3x′φ̂†(x)V (|x− x′|)φ̂(x′), (2.73)

V̂5 = n0

∫ ∫
d3xd3x′φ̂†(x)V (|x− x′|)φ̂(x), (2.74)

V̂6 =
√

n0

∫ ∫
d3xd3x′φ̂†(x)V (|x− x′|)φ̂(x′)φ̂(x) + h.c., (2.75)

V̂7 =
1
2

∫ ∫
d3xd3x′φ̂†(x)φ̂†(x′)V (|x− x′|)φ̂(x′)φ̂(x). (2.76)
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2.3.2 Pictures and Green’s functions

According to the Schrödinger dynamics, an initial state vector |Φ(0)〉 will develop as
|Φ(t)〉 = exp(−iK̂t/h̄)|Φ(0)〉. The corresponding state in the Heisenberg picture |Φ(t)〉 =
exp(iK̂t/h̄)|Φ(t)〉 = |Φ(0)〉 is time independent. In the interaction picture, the state at
time t is |Φ(t)〉I = exp(iK̂0t/h̄) exp(−iK̂t/h̄)|Φ(0)〉.
Let Ô be a (time independent) operator in the Schrödinger-picture. Then the operator in
the Heisenberg picture is Ô(t) = exp(iK̂t/h̄)Ô exp(−iK̂t/h̄) and the same operator in the
interaction picture: Õ(t) = exp(iK̂0t/h̄)Ô exp(−iK̂0t/h̄). From the notation, it is clear
that all operators without the time argument are meant to be in the Schrödinger picture.
The operator with a time argument are meant to be in the Heisenberg picture, whereas
operators with a tilde are in the interaction picture. We note that in the Heisenberg
picture, the canonical (anti–)commutation relations are the same as in the Schrödinger
picture only if the operators are taken at equal times. At different times the (anti-
)commutators are very hard to determine. And this is exactly the point where the
interaction picture proves to be useful. To determine the commutation relations in the
interaction picture we explicitly evaluate the time dependence of ãk(t) and c̃k(t). For
this purpose we write K̂0 =

∑
k( h̄2k2

2mB
− µB)â†kâk + h̄2k2

2mF
b̂†kb̂k.

∂ãk(t)
∂t

=
∂ exp(iK̂0t/h̄)âk exp(−iK̂0t/h̄)

∂t

=
1
ih̄

exp(iK̂0t/h̄)[âk, K̂0] exp(−iK̂0t/h̄)

=
1
ih̄

exp(iK̂0t/h̄)(
h̄2k2

2mB
− µ)âk exp(−iK̂0t/h̄)

=
1
ih̄

(
h̄2k2

2mB
− µ)ãk(t) (2.77)

With the boundary condition ãk(0) = âk this differential equation has the solution

ãk(t) = e
−i( h̄2k2

2mB
−µ)t/h̄

âk. (2.78)

Similarly, we get

c̃k(t) = e
−isgn(|k|−kF ) h̄2k2

2mF
t/h̄

ĉk, (2.79)

where sgn(|k|−kF ) gives the sign of |k|−kF . Thus the field operators in the interaction
picture are (upon using Eqns. (2.50)-(2.52)):

φ̃(x, t) =
∑

|k|>0

e
−ikx−i( h̄2k2

2mB
−µ)t/h̄

âk, (2.80)

ψ̃1(x, t) =
∑

|k|≤kF

e
−ikx+i h̄2k2

2mF
t/h̄

b̂†k, (2.81)

ψ̃2(x, t) =
∑

|k|>kF

e
−ikx+i h̄2k2

2mF
t/h̄

ĉk. (2.82)

From this, it is easy to compute all possible (anti-)commutation relations of these oper-
ators, namely:

[φ̃(x, t), φ̃†(x′, t′)] =
1
V

∑

|k|>0

e
−i( h̄2k2

2mB
−µ)(t−t′)/h̄

eik(x−x′), (2.83)
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{ψ̃1(x′, t′), ψ̃
†
1(x, t)} =

1
V

∑

|k|≤kF

e
−i( h̄2k2

2mF
)(t−t′)/h̄

eik(x−x′), (2.84)

{ψ̃2(x, t), ψ̃†2(x
′, t′)} =

1
V

∑

|k|>kF

e
−i( h̄2k2

2mF
)(t−t′)/h̄

eik(x−x′), (2.85)

for any t and t′. The other commutation relations between the Boson operators or Boson
and Fermion operators vanish as well as the other anti–commutators between Fermion
operators.

Another nice property of the interaction picture is that a product operator in the
interaction picture is just the product of its factors in the interaction picture (which is also
true for the Heisenberg picture). For example, we can use this to express the interaction
operator in the interaction picture in terms of field operators in the interaction picture:

Ṽ (t) = n0

∫ ∫
d3xd3x′Ψ̃†(x′, t)U(|x− x′|)Ψ̃(x′, t)

+
√

n0

∫ ∫
d3xd3x′Ψ̃†(x′, t)U(|x− x′|)Ψ̃(x′, t)φ̃(x, t)

+
√

n0

∫ ∫
d3xd3x′φ̃†(x, t)Ψ̂†I(x

′, t)U(|x− x′|)Ψ̃(x′, t) (2.86)

+
∫ ∫

d3xd3x′φ̃†(x, t)Ψ̃†(x′, t)U(|x− x′|)Ψ̃(x′, t)φ̃(x, t).

The Green’s functions are defined as:

iGB(x, t,x′, t′) = 〈F(µB)|T [Φ̂(x, t)Φ̂†(x′, t′)]|F(µB)〉, (2.87)
iGF (x, t,x′, t′) = 〈F(µB)|T [Ψ̂(x, t)Ψ̂†(x′, t′)]|F(µB)〉. (2.88)

Here |F(µB)〉 is the normalized ground state of K̂. In the special case of a non-interacting
system, we have already seen that µB = 0 (cf. Eqn. (2.59)), which means that |F(µB)〉 =
|0〉 is the ground state of K̂0). The T denotes the time ordered product:

T [Φ̂(x, t)Φ̂†(x′, t′)] = θ(t− t′)Φ̂(x, t)Φ̂†(x′, t′)
+(1− θ(t− t′))Φ̂†(x′, t′)Φ̂(x, t) (2.89)

T [Ψ̂(x, t)Ψ̂†(x′, t′)] = θ(t− t′)Ψ̂(x, t)Ψ̂†(x′, t′)
−(1− θ(t− t′))Ψ̂†(x′, t′)Ψ̂(x, t). (2.90)

θ(t − t′) is the step function, which is 1 for t − t′ > 0 and 0 for t − t′ ≤ 0, so that in
the T–ordered product the operator at the later time is on the left. Note that the sign
conventions are different for Fermion and for Boson operators.

One can use the Bogoliubov replacement to write:

iGB(x, t,x′, t′) = n0 + iG′B(x, t,x′, t′), (2.91)

where
iG′B(x, t,x′, t′) = 〈F(µB)|T [φ̂(x, t), φ̂†(x′, t′)]|F(µB)〉 (2.92)

is the Green’s function for the non-condensate Bosons. Directly from the definition of
the Green’s functions, it is easy to see that:

iG′B(x, t,x, t) = n′B(x), (2.93)
−iGF (x, t,x, t) = nF (x), (2.94)
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where n′B(x) is the density of the non-condensed Bosons and nF (x) is the density of the
Fermions.
For general x′ and t′, the Green’s functions can be evaluated in perturbation theory [58].
Thus

iG′B(x, t,x′, t′) =
∑∞

n=0 iG̃
(n)
B (x, t,x′, t′)∑∞

n=0〈0|S(n)|0〉 , (2.95)

iGF (x, t,x′, t′) =
∑∞

n=0 iG̃
(n)
F (x, t,x′, t′)∑∞

n=0〈0|S(n)|0〉 , (2.96)

where

iG̃
(n)
B (x, t,x′, t′) = 〈0|T [S(n)φ̃(x, t)φ̃†(x′, t′)]|0〉, (2.97)

iG̃
(n)
F (x, t,x′, t′) = 〈0|T [S(n)Ψ̃(x, t)Ψ̃†(x′, t′)]|0〉, (2.98)

S(n) =
1
n!

(−i

h̄

)n ∫
dt1 . . .

∫
dtnT [W̃ (t1) . . . W̃ (tn)]. (2.99)

2.3.3 Evaluation of terms using Wick’s theorem

Equations (2.97), (2.98), and (2.99) can be evaluated by Wick’s theorem, which states
that the vacuum (non-interacting ground state) expectation values of time ordered prod-
ucts of operators can be expressed as the sum of all products of contractions of pairs of
operators in the time-ordered product. Contractions are defined in terms of time and
normal ordered products:

Õ(t)(i)P̃ (t′)(i) = T [Õ(t)P̃ (t′)]− : Õ(t)P̃ (t′) : , (2.100)

where : Õ(t)P̃ (t′) : is the normal ordered product. From Eqns. (2.80)-(2.82)

φ̃(x)|0〉 = ψ̃1(x)|0〉 = ψ̃2(x)|0〉 = 0 (2.101)

and
〈0|φ̃†(x) = 〈0|ψ̃†1(x) = 〈0|ψ̃†2(x) = 0. (2.102)

This defines a unique set of creation and destruction operators. Accordingly, the normal
product is defined on pairs of creation and destruction operators:

: φ̃(x, t)φ̃†(x′, t′) : = φ̃†(x′, t′)φ̃(x, t),

: ψ̃j(x, t)ψ̃†k(x′, t′) : = −ψ̃†k(x′, t′)ψ̃j(x, t),

: φ̃(x, t)ψ̃†j (x
′, t′) : = ψ̃†j (x

′, t′)φ̃(x, t),

: ψ̃j(x, t)φ̃†(x′, t′) : = φ̃†(x′, t′)ψ̃j(x, t), (2.103)

for j, k ∈ {1, 2}. For all other pairs of creation and destruction operators, the normal
product is the same as the ordinary operator product (because they commute and the
order does not matter). The extension to arbitrary operators is done by linearity (every
operator can be uniquely decomposed into a creation and a destruction part). Depending
on the time arguments of the creation and destruction operators the contraction is either
zero or the (anti-)commutator of the operators. Simply by keeping track of the order of
the operators one gets the following results:

φ̃(x, t)(i)φ̃†(x′, t′)(i) = θ(t− t′)[φ̃(x, t), φ̃†(x′, t′)], (2.104)
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φ̃†(x′, t′)(i)φ̃(x, t)(i) = θ(t− t′)[φ̃(x, t), φ̃†(x′, t′)], (2.105)

ψ̃1(x′, t′)(i)ψ̃
†
1(x, t)(i) = (1− θ(t− t′)){ψ̃1(x′, t′), ψ̃

†
1(x, t)}, (2.106)

ψ̃†1(x, t)(i)ψ̃1(x′, t′)(i) = −(1− θ(t− t′)){ψ̃1(x′, t′), ψ̃
†
1(x, t)}, (2.107)

ψ̃2(x, t)(i)ψ̃†2(x
′, t′)(i) = θ(t− t′){ψ̃†2(x, t), ψ̃2(x′, t′)}, (2.108)

ψ̃†2(x
′, t′)(i)ψ̃2(x, t)(i) = −θ(t− t′){ψ̃†2(x, t), ψ̃2(x′, t′)}. (2.109)

and all other contractions of pairs of operators ∈ {φ̃(x, t), φ̃†(x′, t′), ψ̃i(x′′, t′′), ψ̃†k(x′′′, t′′′)}
vanish. Using the linearity of the contraction we can further calculate:

Ψ̃(x, t)(i)Ψ̃†(x′, t′)(i)

= ψ̃†1(x, t)(i)ψ̃1(x′, t′)(i) + ψ̃2(x, t)(i)ψ̃1(x′, t′)(i) +

ψ̃†1(x, t)(i)ψ̃†2(x
′, t′)(i) + ψ̃2(x, t)(i)ψ̃†2(x

′, t′)(i)

= θ(t− t′){ψ̃2(x, t), ψ̃†2(x
′, t′)}

−(1− θ(t− t′)){ψ̃†1(x′, t′), ψ̃1(x′, t′)|} (2.110)

Ψ̃†(x′, t′)(i)Ψ̃(x, t)(i)

= ψ̃1(x′, t′)(i)ψ̃
†
1(x, t)(i) + ψ̃†2(x

′, t′)(i)ψ̃†1(x
′, t′)(i) +

ψ̃1(x′, t′)(i)ψ̃2(x, t)(i) + ψ̃†2(x
′, t′)(i)ψ̃2(x, t)(i)

= −θ(t− t′){ψ̃2(x, t), ψ̃†2(x
′, t′)}

+(1− θ(t− t′)){ψ̃†1(x′, t′), ψ̃1(x′, t′)|} (2.111)

and all other contractions of pairs from φ̃(x, t), φ̃†(x, t), Ψ̃(x, t), Ψ̃†(x, t) vanish.
Wick’s theorem (see e.g. [58]) states how a time ordered product of arbitrary op-

erators can be written in terms of normal ordered products and contractions. Loosely
speaking: A time ordered product of operators is the same as the sum of all normal
ordered products, where all possible contractions can be taken inside the normal ordered
product. By definition of the normal ordered product, all terms in this sum vanish in the
average regarding to the non-interacting ground state unless all factors are contracted.
So we can write:

〈0|T [Õ(t)P̃ (t′)Q̃(t′′) . . .]|0〉 = (2.112)∑
(all products of pairs of contractions of Õ(t), P̃ (t′), Q̃(t′′), . . .).

As an important example of Wick’s theorem, we now evaluate the Green’s functions
in the limit of a non-interacting system (W̃ = 0). In this case, they reduce to the zeroth
order terms in the expansions Eqns. (2.95) and (2.96), so that

iG0
B(x, t,x′, t′) = iG̃

(0)
B (x, t,x′, t′)

= 〈0|T [φ̃(x, t)φ̃†(x′, t′)]|0〉, (2.113)

iG0
F (x, t,x′, t′) = iG̃

(0)
F (x, t,x′, t′)

= 〈0|T [Ψ̃(x, t)Ψ̃†(x′, t′)]|0〉. (2.114)

Upon applying Wick’s theorem, one gets

iG0
B(x, t,x′, t′) = φ̃(x, t)(i)φ̃†(x′, t′)(i), (2.115)

iG0
F (x, t,x′, t′) = Ψ̃(x, t)(i)Ψ̃†(x′, t′)(i). (2.116)
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Using Eqns. (2.104)-(2.111) along with Eqns. (2.83)-(2.85) it follows:

iG0
B(x, t,x′, t′) = θ(t− t′)

1
V

∑

|k|>0

e
−i( h̄2k2

2mB
−µB)(t−t′)/h̄

eik(x−x′), (2.117)

iG0
F (x, t,x′, t′) = θ(t− t′)

1
V

∑

|k|>kF

e
−i( h̄2k2

2mF
)(t−t′)/h̄

eik(x−x′) (2.118)

+ (1− θ(t− t′))
1
V

∑

|k|≤kF

e
−i( h̄2k2

2mF
)(t−t′)/h̄

eik(x−x′),

The last expressions are Fourier transforms in space but not in time. To also express
them as Fourier transforms in time, one can use the following Fourier representations of
the θ-functions:

θ(x) = − lim
ε→0+

1
2πi

∫ +∞

−∞
dω

e−iω(x−ε)
ω + iν

and similarly

1− θ(x) = lim
ε→0+

1
2πi

∫ +∞

−∞
dω

e−iω(x−ε)

ω − iν
,

These lead to:

G0
B(x, t,x′, t′)

=
1
2π

∫
dω

e−iω(t−t′−ε)

ω + iν

1
V

∑

|k|>0

e
−i( h̄2k2

2mB
−µ)(t−t′)/h̄

eik(x−x′)

=
1

2πV

∑

|k|>0

∫
dωeik(x−x′) e

i(ω− h̄k2
2mB

+µ/h̄))(t−t′)

ω + iν
eiωε

=
1

2πV

∑

k

∫
dωeik(x−x′)e−iω(t−t′) eiωε(1− δk)

ω − h̄k2

2mB
+ µ/h̄ + iν

, (2.119)

where the limit ε → 0 is implicit.
And for the Fermions:

G0
F (x, t,x′, t′)

=
1
2π

∫
dω

e−iω(t−t′−ε)

ω + iν

1
V

∑

|k|≤kF

e
−i( h̄2k2

2mF
)(t−t′)/h̄

eik(x−x′)

+
1
2π

∫
dω

e−iω(t−t′−ε)

ω − iν

1
V

∑

|k|>kF

e
−i( h̄k2

2mF
)(t−t′)/h̄

eik(x−x′)

=
1

2V π

∑

k

∫
dωeik(x−x′)e

i(−ω− h̄k2
2mF

)(t−t′)

×(
1− θ(kF − |k|)

ω + iν
+

θ(kF − |k|)
ω − iν

)eiωε

=
1

2πV

∑

k

∫
dωeik(x−x′)e−iω(t−t′)(

1− θ(kF − |k|)
ω − h̄k2

2mF
+ iν

+
θ(kF − |k|)

ω − h̄k2

2mF
− iν

)eiωε

=
1

2πV

∑

k

∫
dωeik(x−x′)e−iω(t−t′) eiωε

ω − h̄k2

2mF
+ isgn(|k| − kF )ν

, (2.120)
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where sgn(x) = 1 for x ≥ 0 and sgn(x) = −1 for x < 0.
We immediately recognize that the energy-momentum components of the Green’s func-
tions are

G0
B(k, ω) =

eiωε(1− δk)
ω − h̄k2

2mB
+ µ/h̄ + iν

(2.121)

and

G0
F (k, ω) =

eiωε

ω − h̄k2

2mF
+ isgn(|k| − kF )ν

. (2.122)

These results could of course also have been obtained directly without using Wick’s
theorem. Usually, in literature the limits ε → 0 are carried out directly, in these expres-
sions, even though this is strictly only correct after evaluating integrals which involve
the Green’s functions. If the volume V → ∞, the δk appearing in the Boson Green’s
function is only non-zero on a volume of measure 0 and may thus be replaced by 1.

2.3.4 Higher order terms and Feynman diagrams

Inserting Eqn. (2.66) into the perturbation series Eqns. (2.95) and (2.96) using Wick’s
theorem to evaluate the time ordered products and expressing the contractions via
Eqns. (2.113) and (2.114), in principle all terms in the expansion of the Green’s functions
can be evaluated. The first order terms are readily determined to be:

iG̃
(1)
B (xµ, yµ) =

−i

h̄

∫ ∫
d4xµ

1d4yµ
1

{
U(xµ

1 − yµ
1 )

[
−n0iG

0
F (yµ

1 , yµ
1 )iG0

B(xµ, yµ)

−iG0
F (yµ

1 , yµ
1 )iG0

B(xµ, xµ
1 )iG0

B(xµ
1 , yµ)

]

+V (xµ
1 − yµ

1 )
[
n2

0

2
iG0

B(xµ, yµ) + n0iG
0
B(xµ, xµ

1 )iG0
B(xµ

1 , yµ)

+n0iG
0
B(xµ, xµ

1 )iG0
B(xµ, xµ

2 )
]}

, (2.123)

iG̃
(1)
F (xµ, yµ) =

−i

h̄

∫ ∫
d4xµ

1d4yµ
1

{
U(xµ

1 − yµ
1 )

[
−n0iG

0
F (yµ

1 , yµ
1 )iG0

F (xµ, yµ)

−n0iG
0
F (xµ, yµ

1 )iG0
F (yµ

1 , yµ)
]

+V (xµ
1 − yµ

1 )
[
n2

0

2
iG0

F (xµ, yµ)
]}

, (2.124)

S(1) =
−i

h̄

∫ ∫
d4xµ

1d4yµ
1

{
U(xµ

1 − yµ
1 )

[
−in0G

0
F (yµ

1 , yµ
1 )

]

+V (xµ
1 − yµ

1 )
[
n2

0

2

]}
, (2.125)

where we have used the more compact four-vector notation [xµ = (t,x)], and defined
U(xµ − yµ) = U(x − y)δ(x0 − y0) and V (xµ − yµ) = V (x − y)δ(x0 − y0). Note that
G0

B(t,x, t,y) = 0 (i.e. there are no Boson loops at zero temperature).
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Higher order terms may be similarly evaluated, and will similarly be expressed in
terms of integrals over products of noninteracting Green’s functions, condensate fac-
tors n0, and interaction terms. We represent these graphically (see Fig. 2.1): straight
lines for Fermions, wiggly lines for non-condensate Bosons, dashed lines for condensate
Bosons, and zigzag lines for interaction terms (whether it is a Boson-Boson or Boson-
Fermion interaction is clearly determined by the kinds of particle lines attached to the
vertexes of the interaction line). Some terms in the numerators of the perturbation
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Figure 2.1: Definition of the diagram lines

series separate into products. They are called disconnected. To (n + 1)st order they
sum up to denominator S(n) times a connected term. This means that they cancel the
denominator S(n) to order n. The proof for Bose–Fermi mixtures can be adapted from
that of spin– 1

2 Fermions in the following way: Considering Eqn. (7.12) of Ref. [58], we
take V (x,x′)αα′,ββ′ = U(x,x′)δαα′δββ′δα(−β) + V (x,x′)δαα′δββ′δαβδα(1/2), and replace
ψ̂1/2(x) by φ̂(x) and ψ̂−1/2(x) by Ψ̂(x). The derivation is then the same, apart from
some sign factors. As a result, we only need to consider the connected diagrams, so that

G′B(xµ, yµ) =
∞∑

n=0

G̃
(n)
B (xµ, yµ)connected , (2.126)

GF (xµ, yµ) =
∞∑

n=0

G̃
(n)
F (xµ, yµ)connected . (2.127)

Noting that each connected graph essentially appears n! times, with simple permutations
on the labeling, when composing such graphs we integrate over all internal variables and
affix a factor of (i/h̄)n(−1)F (−i)C , where n is the number of interaction lines, F is the
number of closed Fermion loops, and C is the number of dashed Boson lines.

Before we finally state the Feynman rules, we transform to energy–momentum space,
which is appropriate for homogeneous systems, since the non–interacting Green functions
look relatively simple in this space (see (2.121), (2.122)). If the Fourier components of the
potential are defined by (here we use the Minkowski scalar product kµxµ = k ·x−k0x0):

U(xµ − yµ) =
1

2πV

∑

k

∫
dk0eikµ(xµ−yµ)U(kµ) (2.128)

(since U(xµ − yµ) = U(x − y)δ(x0 − y0), U(kµ) must be independent of k0) and use
(2.119) and (2.120) for the non-interacting Green functions, what reads in four-vector
notation:

G0
B(xµ, yµ) =

1
2πV

∑

k

∫
dk0eikµ(xµ−yµ)G0

B(kµ) (2.129)
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and
G0

F (xµ, yµ) =
1

2πV

∑

k

∫
dk0eikµ(xµ−yµ)G0

F (kµ), (2.130)

we can do the integration over the internal variables of the Feynman-diagrams.
Those integrations gives a factor of

(2π)−4

∫
d4xµei(

∑
kµ)xµ = δ(

∑
kµ) (2.131)

at every vertex, where by
∑

kµ we mean the sum over the momenta of all lines entering
or leaving the vertex, where we count the momentum of the leaving lines negative. In
other words: At every vertex energy-momentum is conserved.

Now, we state the Feynman-rules for the Boson (Fermion) Green’s functions in mo-
mentum space, which are just a summary of this section:

1. Draw all topologically distinct connected diagrams with one outgoing
external wiggly Boson (Fermion) line and one incoming external wig-
gly Boson (Fermion) line, no external Fermion (Boson) lines and no
internal dashed Boson lines, n zigzag interaction lines, each of which
is attached at one vertex to an incoming and an outgoing Boson line
(either wiggly or dashed), and at the other vertex either to an incoming
and an outgoing Boson line, or to an incoming and an outgoing (not
necessarily distinct) Fermion line. Each vertex must be attached to
exactly one zigzag interaction line.

2. All wiggly Boson lines must run into the same direction and there are
no closed Boson loops.

3. Each dashed Boson line corresponds to a factor of
√

n0, each wiggly
Boson line to a factor of G0

B(kµ), each Fermion line to a factor of
G0

F (kµ), each Boson-Fermion interaction line to a factor of U(kµ) =
U(k), and each Boson-Boson interaction line to a factor of V (kµ) =
V (k).

4. Assign a direction to each interaction line; associate a directed four-
momentum with each line and conserve four-momentum at each ver-
tex. Each dashed Boson line carries four-momentum 0 and each wiggly
Boson line has four-momentum 6= 0.

5. Integrate over the n independent four-momenta.

6. Affix a factor of (i/h̄)n(2π)−4(n)(−1)F (−i)C , where F is the number
of closed Fermion loops and C is the number of dashed Boson lines.

2.3.5 The Dyson equations

The Dyson equation is a simple method to sum an infinite series of certain diagrams. As
we will see, it also makes the pole structure of the Green’s functions very transparent.
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First, we consider the Fermion Green’s function only. The proper self energy ΣF (pµ)
is defined as a part of a Feynman diagram for the Fermion Green’s function, which is
connected to the rest of the diagram by an only one ingoing and an only one outgoing
Fermion line, but which itself cannot be split into two diagrams by cutting one single
Fermion line. So without the danger of double counting one can generate an infinite
series of diagrams by:

GF (pµ) = G0
F (pµ) + G0

F (pµ)ΣF (pµ)G0
F (pµ)

+ G0
F (pµ)ΣF (pµ)G0

F (pµ)ΣF (pµ)G0
F (pµ) + . . .

which is an iterative form of the following Dyson equation for the Fermions:

GF (pµ) = G0
F (pµ) + G0

F (pµ)ΣF (pµ)GF (pµ) (2.132)

and has the solution:

GF (pµ) =
1

[G0
F (pµ)]−1 − ΣF (pµ)

. (2.133)

The spectrum is determined by the poles of the Green’s function, which are determined
by

p0 =
h̄p2

2mF
− ΣF (pµ), (2.134)

which clearly has the solution p0 = h̄p2

2mF
, when the self energy vanishes. In the next

chapter, we derive expansions which imply small self-energies, such that consistency only
requires to use the zeroth order result (i.e. for vanishing self-energy) inside ΣF (pµ) in
Eqn. (2.135) for p0, which leads to the much simpler equation:

p0 =
h̄p2

2mF
− ΣF (h̄p2/2mF ,p). (2.135)

For the Bosons the case is more complicated, since a wiggly Boson line not necessarily
runs continuously through a diagram, because it can change into a dashed Boson line
(this ultimately stems from the non particle-conservative structure of the Bogoliubov
Hamiltonian). So, if we define the proper self energy as a part of a Feynman diagram for
the Boson Green function, which is connected to the rest of the diagram by exactly two
wiggly Boson lines, but which itself cannot be split into two diagrams by cutting a sin-
gle wiggly Boson line, we basically have three proper self-energies, namely one with one
incoming and one outgoing wiggly line (ΣB(pµ)), one with two outgoing wiggly Boson
lines and two incoming dashed Boson lines (Σ12(pµ)), and another one with two incom-
ing wiggly Boson lines and two outgoing dashed Boson lines (Σ21(pµ)). Analogously,
we have Green’s functions representing G12(pµ) the scattering of two wiggly Boson lines
into the condensate and G21(pµ) for the reverse process (defined as the Fourier trans-
forms of G12(xµ, yµ) = 〈G|T [φ̂(xµ)φ̂(yµ)]|G〉 and G21(xµ, yµ) = 〈G|T [φ̂†(xµ)φ̂†(yµ)]|G〉,
respectively). The Dyson equations for Bosons tells us how these quantities are related:

(
G′B(pµ) G12(−pµ)
G21(pµ) G′B(−pµ)

)
=

(
G0

B(pµ) 0
0 G0

B(−pµ)

)

+
(

G0
B(pµ) 0
0 G0

B(−pµ)

)(
ΣB(pµ) Σ12(pµ)
Σ21(pµ) ΣB(−pµ)

)

×
(

G′B(pµ) G12(pµ)
G21(pµ) G′B(−pµ)

)
. (2.136)
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The solution in terms of G′B(pµ) is:

G′B(pµ) =
1

[G0
B(pµ)]−1 − ΣB(pµ)− Σ12(pµ)Σ21(pµ)

[G0
B

(−pµ)]−1−ΣB(−pµ)

. (2.137)

2.3.6 The Hugenholtz-Pines theorem and Boson spectrum

According to the Hugenholtz-Pines theorem [81], the Bosonic chemical potential µB

introduced in the Bogoliubov Hamiltonian (see Eqn. (2.63), is given by

µB = h̄ΣB(0)− h̄Σ12(0), (2.138)

where ΣB(0) and Σ12(0) are the proper self-energies for the Bosons due to their interac-
tion with both Bosons and Fermions, evaluated at pµ = 0 (in what follows we call them
the Bosonic self-energies). Furthermore, the chemical potential and the ground state
energy are related in an obvious way:

∂E/V

∂nB
= µB , (2.139)

The proof of the validity of the Hugenholtz-Pines theorem can be adopted literally from
the pure Boson case, since it is based on how to replace condensate lines by non-
condensate propagators; a procedure which is unchanged in the present situation of
Bose-Fermi mixtures.

With the Hugenholtz-Pines theorem we an derive the Boson spectrum simply by
insertion of µB into Eqn. (2.119) and use it in Eqn.(2.137) to get:

G′B(pµ) =
[
p0 − h̄p2

2mB
+ ΣB(0)− ΣB(pµ)− Σ12(0) (2.140)

− Σ12(pµ)Σ21(pµ)
−p0 − h̄p2/2mB + ΣB(0)− ΣB(−pµ)− Σ12(0)

]−1

,

Thus, we get the following pole equation

(p0)2 =
[
h̄p2/2mB + ΣB(0)− ΣB(p0,p)− Σ12(0)

]2

−Σ2
12(p

0,p), (2.141)

where we have assumed ΣB(pµ) = ΣB(−pµ) and Σ12(pµ) = Σ21(pµ), which will be always
satisfied in the following.



Chapter 3

Results for dilute systems

3.1 The T–matrix in ladder approximation

As previously mentioned, dilute systems are defined as systems where the mean radius
occupied by a particle is large compared to the characteristic length scale of the interac-
tions. This means that processes, where three or more particles interact with each other
at the same time are very rare. In turn, only two–particle scattering processes have to be
considered. In terms of Feynman diagrams, it follows that only diagrams with interaction
lines between two systems of connected propagators have to be taken into account (see
Refs. [82, 58]). This approximation is called ladder approximation, because the Feynman
diagrams look like ladders in this case as we will see in the following. The task is then
to sum all the ladder diagrams.

Most easily this can be achieved if one expresses the self–energies in terms of the
so-called T–matrices, which describe the two–particle scattering process in the medium,
as shown in Fig. 3.1, where the Boson-Fermion T–matrix TBF in ladder approximation
is defined in Fig. 3.2, the Boson-Boson T–matrix TBB (also in ladder approximation) is
well known from studies of dilute pure Bose systems, and the normal (diagonal) Bosonic
proper self–energy is given by

ΣB(pµ) = ΣBF (pµ) + ΣBB(pµ). (3.1)

The proper self–energies can thus be determined by adding the proper self–energies of
a system of interacting Bosons to those of a hypothetical mixed Boson-Fermion system
where there are Boson-Fermion interactions only. This result arises from our use of the
ladder approximation, and is not in general true (there also exist, for example, inseparable
three–legged ”ladders” consisting of a Boson–Boson and a Boson–Fermion ladder joined
by a common Boson leg, but these clearly describe higher order processes). For such a
hypothetical mixed system, the only self–energies we need to consider and to evaluate
are ΣBF (pµ) and ΣF (pµ), which can be written algebraically as:

h̄ΣBF (pµ) = − i

(2π)4

∫
d4kµTBF (pµ, kµ, pµ, kµ)G0

F (kµ), (3.2)

h̄ΣF (pµ) = TBF (0, pµ, 0, pµ)n0. (3.3)

41
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Figure 3.1: The self–energies in ladder approximation, expressed in terms of the T -
matrices.

3.1.1 Bethe-Salpeter equation for TBF

The Boson–Fermion T–matrix TBF can also be represented recursively, as shown in
Fig. 3.3. If we now transform to center–of–mass coordinates,

Pµ = pµ
1 + pµ

2 = pµ
3 + pµ

4 ,

kµ
1 = (pµ

1 − pµ
2 )/2,

kµ
2 = (pµ

3 − pµ
4 )/2, (3.4)

the algebraic form of the equation represented in Fig. 3.3 reads:

TBF (kµ
1 , kµ

2 , Pµ) = U(k1 − k2) +
i

h̄(2π)4

∫
d3kU(k1 − k)

×
∫

dk0G0
B(Pµ/2 + kµ)G0

F (Pµ/2− kµ)

×TBF (kµ, kµ
2 , Pµ) . (3.5)

This is a kind of Bethe–Salpeter integral equation, which we will now solve recursively for
low momenta, stopping at order a2

BF , where aBF is the Boson-Fermion scattering length.
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Figure 3.2: The Boson-Fermion T -matrix.
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Figure 3.3: The integral equation for TBF .

As the interactions are instantaneous, the only frequency dependence in TBF (kµ
1 , kµ

2 , Pµ)
is in P 0 [82, 58]. Thus, a contour integration over k0 in Eqn. (3.5) yields:

TBF (k1,k2, P
µ) = U(k1 − k2) +

1
(2π)3

∫
d3k

× U(k1 − k)TBF (k,k2, P
µ)θ(|P/2− k| − kF )

h̄P 0 − h̄2(P/2 + k)2/2mB − h̄2(P/2− k)2/2mF + µB + iν
. (3.6)

We now make use of Eqn. (1.38) in order to point out, that to lowest order
TBF (k1,k2, P

µ) is linear in aBF and thus iteration of Eqn. (3.6) produces an expansion
in aBF , which is correct to second order in aBF , if one stops after two iteration steps.
We insert Eqn. (1.38) into Eqn. (3.6) (remembering that U(p) = h̄2

2mu(p)) keeping only
terms up to second order in aBF : This produces

TBF (k1,k2, P
µ) ≈ 2πh̄2

m
[aBF − ia2

BF k1] +
4π2h̄4a2

BF

(2π)3m2

∫
d3k

×
[

θ(|P/2− k| − kF )
h̄P 0 − h̄2(P/2 + k)2/2mB − h̄2(P/2− k)2/2mF + µB + iν



44 Results for dilute systems.

− 1
h̄2k2

1/2m− h̄2k2/2m + iν

]
, (3.7)

the renormalized second order expansion of the Boson–Fermion T–matrix. The integral
can be evaluated (see Appendix B) to give

TBF (k1,k2, P
µ) ≈ 2πh̄2

m
aBF +

2h̄2a2
BF kF

m

+
a2

BF h̄2

2m2

(
mBk2

F

P
− m2P

mB
− 2m

√
D − mBD

P

)

× ln
kF + mP/mB +

√
D + iν/2aBF

√
D

kF −mP/mB −
√

D − iν/2aBF

√
D

−a2
BF h̄2

2m2

(
mBk2

F

P
− m2P

mB
+ 2m

√
D − mBD

P

)

× ln
kF −mP/mB +

√
D + iν/2aBF

√
D

kF + mP/mB −
√

D − iν/2aBF

√
D

, (3.8)

where

D = − m

mB + mF
P 2 +

2mP 0

h̄
+

2mµB

h̄2 . (3.9)

The T–matrix is the analog of the vacuum scattering amplitude taking into account the
many–particle background. All quantities that depend on the particle interactions pro-
cesses are derived from the T–matrix. To lowest order in aBF , the scattering amplitude
and the T–matrix are the same. In this case, the many–particle background can be ig-
nored. This is consistent on a mean–field level. Beyond the mean–field approximation,
we have to consider also higher order terms as we shall do in the following.

3.2 Physical quantities

3.2.1 Bosonic chemical potential

In the following, we use the above expression for the T–matrix to evaluate the Boson self–
energies. Then, we use the Hogenholtz–Pines theorem to calculate the Boson chemical
potential, which we can use to find expressions for the Bosonic Green’s functions. In the
mean–field approximation, we will see that the Boson Green’s functions do not depend
on the Fermions. In a later section, we reconsider the dependence of Bosonic Green’s
functions on the Fermions to a higher order to see how the spectral properties of the
Bosons are modified due to the presence of the Fermions.

Substituting Eqn. (2.122) into Eqn. (3.2) the equation for ΣBF (pµ) can be rewritten
as

h̄ΣBF (pµ) = − i

(2π)4

∫
d4qµ TBF [(p− q)/2, (p− q)/2, pµ + qµ]

q0 − h̄q2/2mF + isgn(q − kF )ν
. (3.10)

To evaluate this, we substitute Eqn. (3.7) into Eqn. (3.10), and first carry out the fre-
quency integral. As the pole in the complex q0–plane of the integrand in Eqn. (3.7) is
below the real axis, in order to get a non vanishing result the pole of [q0 − h̄q2/2mF −
isgn(q − kF )ν]−1 must be above the real axis (q < kF ). The frequency integral is thus
readily solved by contour integration. The k integration in Eqn. (3.7) is then very similar
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to that leading to Eqn. (3.8). The resulting expression for h̄ΣBF (pµ) is then

h̄ΣBF (pµ) =
1

(2π)3

∫
d3qθ(kF − q)

×TBF

[
p− q

2
,
p− q

2
,

(
p0 +

h̄q2

2mF
,p + q

)]
. (3.11)

We wish to similarly solve this integral to second order in aBF . In Eqn. (3.8), all
terms which depend on D have a factor a2

BF . Thus, in order to get a result for Eqn. (3.11)
that is correct to second order in aBF , it is sufficient to use the zeroth order expression
for D. Specializing to the case where pµ = 0 this can be written as

D0 =
m2

B

(mB + mF )2
q2. (3.12)

We now substitute D0 for D in Eqn. (3.8), and, after a straightforward (if lengthy)
integration over q, arrive at

h̄ΣBF (0) =
2πh̄2aBF

m
nF

[
1 +

aBF kF

π
f(δ)

]
, (3.13)

where

f(δ) = 1− 3 + δ

4δ
+

3(1 + δ)2(1− δ)
8δ2

ln
1 + δ

1− δ
, (3.14)

δ = (mB −mF )/(mB + mF ), and we have used

(2π)−4

∫
d4kµGF (kµ) = GF (xµ, xµ) = inF .

Note that in this integration we need only consider the real part of the Boson-Fermion
T–matrix, as within the range of the integration the imaginary part is zero (see Appendix
B.1). The necessary expression for the T–matrix is then just given by Eqn. (3.8), where
we take the absolute values of the arguments of the logarithms and set ν = 0. From the
Hugenholtz–Pines theorem [Eqn. (2.138)]:

µB = h̄ΣBF (0) + h̄ΣBB(0)− h̄Σ12(0). (3.15)

Thus, using the expression for ΣBF (0) in Eqn. (3.13), and the results from Ref. [83] for
ΣBB(0) and Σ12(0) (neglecting corrections of the order of the Boson gas parameter),

µB =
4πh̄2aBB

mB
nB +

2πh̄2aBF

m
nF

[
1 +

aBF kF

π
f(δ)

]
. (3.16)

This is exactly equivalent to adding h̄ΣBF (0) to the standard mean field result for the
Bosonic chemical potential for a pure, self–interacting Bosonic system.

Considering for the moment only mean–field terms (i.e. terms to first order in the
scattering lengths), the Bosonic self energy matrix reads:

ΣB(pµ) =

[
8πh̄2n0aB

mB
+ 2πh̄2nF a

m
4πh̄2n0aB

mB
4πh̄2n0aB

mB

8πh̄2n0aB

mB
+ 2πh̄2nF a

mB

]
, (3.17)

Looking at the pole equation Eqn. (2.141), we can see that to the mean–field level, there
is no change in the Bose-spectrum as compared to the pure Bose gas, since there is no
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off–diagonal self–energy contribution coming from Bose–Fermi interaction, and the self–
energies are independent of the four–momentum. Consequently, also all quantities that
are derived from the spectrum are not changed compared to the pure Boson case in the
mean–field approximation. Thus, to mean–field order, we can copy the results for pure
Bosons and get the following diagonal and off–diagonal Green’s functions:

GB(pµ) =
u2

p

p0 − Ep/h̄ + iν
− v2

p

p0 − Ep/h̄− iν
, (3.18)

G12(pµ) = G12(pµ) =
−upvP

p0 − Ep/h̄ + iν
+

upvp

p0 − Ep/h̄− iν
, (3.19)

where

u2
p =

1
2

[
E−1

p

(
h̄2p2/2mB + 4πn0aBh̄2/mB

)
+ 1

]
,

v2
p =

1
2

[
E−1

p

(
h̄2p2/2mB + 4πn0aBh̄2/mB

)− 1
]
,

and

Ep =
√(

h̄2p2/2mB

) (
h̄2p2/2mB + 8πn0aBh̄2/mB

)
,

which is derived from the expression Eqn. (2.140) by a factorization of the denominator
into parts that are linear in p0. This leads to the following spectrum:

p0 =
√

h̄p2/2mB(h̄p2/2mB + 8πh̄2aBnB/mB),

which is again the same as if no Fermions were present. Also all other quantities, that
are calculated from the first–order Bosonic Green function are consequently the same as
in the pure Boson case. For example, the depletion of the BEC which is (cf. [58])

n0 = nB/

(
1 +

8
3

√
nBa3

B

π

)
≈ nB

(
1− 8

3

√
nBa3

B

π

)
. (3.20)

To the issue of the Bose spectrum beyond mean–field we come later. We will see that
via induced interactions the Fermions indeed have an effect on the Bose spectrum. But
before we focus on the Fermionic properties. There, one can neglect induced interactions,
since just as the direct interactions, they are not relevant for spin–polarized Fermions.

3.2.2 The Fermionic spectrum

According to Eqns. (3.4) and (3.3) the Fermion self–energy is

ΣF (pµ) = n0T (−p
2

,−p
2

, pµ) . (3.21)

One can improve on this, if diagrams involving the mean-field Bosonic Green’s functions,
that we have found before, are also included. With the due modification the self–energy
then reads

ΣF (pµ) = n0T (−p
2

,−p
2

, pµ) (3.22)

+i(2π)−4

∫
d4qµTBF

(
1
2
(p− ~q),

1
2
(p− ~q), pµ + qµ

)
G

(1)
B (qµ),
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where G
(1)
B (qµ) is taken from Eqn. (3.18).

We now split the T–matrix into its first–order part (which is independent of the four-
momentum) and the second order part in the following way:

T (1) =
2πh̄2

m
aBF , (3.23)

T (2)(Pµ) =
2a2

BF h̄2kF

m
+

a2
BF h̄2

2m2

(
mBk2

F

P
− m2P

mB
− 2m

√
D − mBD

P

)

× ln
kF + mP

mB
+
√

D + iν
2aBF

√
D

kF − mP
mB

−√D − iν
2aBF

√
D

− a2
BF h̄2

2m2

(
mBk2

F

P
− m2P

mB
+ 2m+

√
D − mBD

P

)

× ln
kF − mP

mB
+
√

D + iν
2aBF

√
D

kF + mP
mB

−√D − iν
2aBF

√
D

. (3.24)

ΣF (pµ) in terms of T (1) and T (2)(Pµ) reads:

ΣF (pµ) = n0T
(1) + n0T

(2)(pµ) +
[
i(2π)−4

∫
d4qµG

(1)
B (qµ)

]
T (1)

+i(2π)−4

∫
d4qµT (2)(pµ + qµ)G(1)

B (qµ) . (3.25)

From Eqn. (3.20) we can see that nB − n0 is of higher than first order in aB . But by
definition T (2)(pµ) is of second order in aBF . So (nB−n0)T (2)(pµ) is of higher than second
order in the scattering lengths and can thus be neglected in our present approximation.
This means that we can replace n0T

(2)(pµ) by nBT (2)(pµ).
Since G

(1)
B (qµ)−G0

B(qµ) is also of higher than zeroth order in aB and T (2)(pµ) is already
second order in aB , we can replace G

(1)
B (qµ) by G0

B(qµ) in the last term in the equation
for ΣF (pµ). But since T (2)(pµ + qµ) and G0

B(qµ) have both poles below the real axis in
the q0-plane, the q0-integration in i(2π)−4

∫
d4qµT (2)(pµ + qµ)G0

B(qµ) is zero (because
we close the integration contour above the real axis). This means that the last term in
(3.25) can be approximated as zero.
From Eqn. (2.94) it is clear that

i(2π)−4

∫
d4qµG

(1)
B (qµ) = iG

(1)
B (xµ, xµ) = nB − n0,

so that the third term in (3.25) is (nB − n0)T (1).
Putting all this together we get:

ΣF (pµ) = nBT (1) + nBT (2)(pµ) = nBTBF (−p
2

,−p
2

, pµ) . (3.26)

The only difference of this improved equation to Eqn. (3.21) is that n0 is replaced by nB .
This we use in Eqn. (2.135) to get the following pole equation:

h̄p0 − h̄2p2

2mF
− nBTBF (−p

2
,−p

2
, h̄p2/2mF ,p) + iνsgn(p− kF ) = 0 . (3.27)

In evaluating the T–matrix consistently to second order in aBF one may use as in the

previous section D = D0 =
(

mB

mB+mF

)2

p2. The solution of the pole equation is then

h̄p0 =
h̄2p2

2mF
+

2πh̄2

m
aBF nB +

2a2
BF h̄2kF nB

m
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+
a2

BF h̄2nB

m(1− δ)p
(
k2

F − p2
)
ln

kF + p + iν
2aBF

√
D

kF − p− iν
2aBF

√
D

− a2
BF h̄2nB

m(1− δ)p
(
k2

F − δ2p2
)
ln

kF − δp + iν
2aBF

√
D

kF + δp− iν
2aBF

√
D

− iνsgn(p− kF ) . (3.28)

It follows that

Imh̄p0 =





ν : p ≤ kF ,

−πa2
BF h̄2nB

m(1−δ)p (p2 − k2
F ) : kF < p < |δ| kF ,

−πa2
BF h̄2nB(1+δ)

m p : p ≥ |δ| kF .

(3.29)

This means that the lifetime of the excitations are infinite for p ≤ kF and positive for
p > kF .
The quasiparticle energies are given by the real part of the spectrum:

Reh̄p0 =
h̄2k2

F

2mF
+

2πh̄2

m
aBF nB +

2a2
BF h̄2kF nB

m

+
a2

BF h̄2nB

m(1− δ)p
(
k2

F − p2
)
ln

kF + p

kF − p

− a2
BF h̄2nB

m(1− δ)p
(
k2

F − δ2p2
)
ln

kF − δp

kF + δp
. (3.30)

Performing an expansion to linear order in p− kF around kF yields:

Reh̄p0 ≈ h̄2k2
F

2mF
(2(p/kF − 1) + 1) +

2πh̄2

m
aBF nB

+
a2

BF h̄2nBkF

m

(
2 + (1 + δ) ln

1 + δ

1− δ

)
(3.31)

+
a2

BF h̄2nBkF

m(1− δ)

(
2δ − (1 + δ2) ln

1 + δ

1− δ
− 2 ln 2

)
(p/kF − 1) .

The effective mass of the particles on the Fermi surface is thus

1
m∗

F

=
1

mF
(3.32)

+
a2

BF nB

kF m(1− δ)

(
2δ − (1 + δ2) ln

1 + δ

1− δ
− 2 ln 2

)
(p/kF − 1) .

One might be tempted to calculate the chemical potential of the Fermions via µF =
Reh̄p0|p=kF

[84]. This, however, is not correct, since this expression was derived for
pure Fermions and is not applicable to Bose–Fermi mixtures, since it does not take into
account the dependence of the Bose chemical potential on the Fermions.

3.2.3 Ground state energy density and derived quantities

There are two different ways to calculate the ground state energy with the results we
already have. The most easy one is to integrate the Boson chemical potential with respect
to the Boson density. This approach we present here. The other one by using the Green’s
functions to evaluate the ground state energy in shown in the appendix C.
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Now, we integrate Eqn. (2.139):

E

V
=

∫ nB

0

µ(n′B)dn′B + C(nF ), (3.33)

where C(nF ) is a quantity that can depend on the Fermion density nF only. Considering
the limit aBF → 0, we see that C(nF ) can only be the kinetic energy of free Fermions
(the Fermi energy density εF ) that was calculated before as the only non–vanishing term
in Eqn. (2.59):

C(nF ) = εF =
3
5

h̄2k2
F

2mF
nF . (3.34)

Substituting this and Eqn. (3.16) into Eqn. (3.33), and integrating gives

E

V
= εF + εB +

2πh̄2aBF

m
nF nB

[
1 +

aBF kF

π
f(δ)

]
, (3.35)

where εB = 2πh̄2aBBn2
B/mB is the Bosonic mean–field energy density. Eqn. (3.35) is

the main result of this chapter. The Bose–Fermi interaction term splits into a mean–field
part given by

εMF =
2πh̄2aBF

m
nF nB (3.36)

and another part which is of second order in aBF and is due to quantum correlation
effects. Clearly, there is no contribution due to Boson–Fermion exchange, since the
Bosons are distinguishable from the Fermions. In analogy to the terminology used for
pure systems, we still call it exchange–correlation energy:

εxc =
2πh̄2aBF

m
nF nB

aBF kF

π
f(δ). (3.37)

The function f(δ) is given by Eqn. (3.14). Fig. 3.4 shows it dependence on δ.
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Figure 3.4: Plot of f(δ), where δ = (mB−mF )/(mB +mF ), proportional to the exchange
correlation energy in Eqn. 3.37 The relevant values of f(δ) for mixtures of 3He and 1H,
6Li and 7Li, 3He and 4He, and 40K and 87Rb are indicated. Quantities are dimensionless.

Note that in the limit mB/mF → ∞, one has δ → 1 and f(δ) → 0. Thus, the
second–order correction to the Boson–Fermion interaction energy and the total Boson–
Boson interaction energy disappear. This is because if the Bosons are infinitely massive
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Figure 3.5: The induced interaction

(compared to a fixed, finite Fermion mass), then it is impossible for them to be scattered
out of the condensate by the lighter Fermions, and only the Boson-Fermion mean field
interaction remains, since all the Bosons populate the classical condensate field. In the
opposite limit of mB/mF → 0, the situation is different, because of the Pauli exclusion
principle.

Directly from the ground state energy, we obtain

µF =
(

∂E/V

∂nF

)

NB ,V

=
h̄2k2

F

2mF
+

2πh̄2aBF

m
nB

[
1 +

4aBF kF

3π
f(δ)

]
, (3.38)

P = −
(

∂E

∂V

)

NB ,NF

(3.39)

=
2
5

h̄2k2
F

2mF
nF +

2πh̄2aBB

mB
n2

B +
2πh̄2aBF

m
nF nB

[
1 +

4aBF kF

3π
f(δ)

]

for the Fermionic chemical potential and the ground state pressure.

We must mention that in this section all terms of the order of the Bose gas parameter√
nBa3

BB = (n(1/3)
B aBB)3/2 were neglected. These terms are of order 3/2 in the small

”diluteness parameter” and thus half an order more than kF aBF ∝ (n(1/3)
F aBF ). Because

of this, in the dilute limit, the Bose gas parameter is in general smaller that kF aBF ∝
(n(1/3)

F aBF ). Of course, when the Boson density is a lot higher than the Fermion density
then the also terms of the order of the Bose gas parameter become important. For a
more detailed discussion of this point, see chapter 4.

3.2.4 Induced interactions and related properties

Induced interactions can be derived from diagrams of the form shown in Fig. 3.5, where
the intermediate line, labelled χi, is the so–called density–density response function of
the component that mediates the interaction.

For the floowing illustration we will temporarily assume the Fermions to be not spin–
ploraized, because then an effective Fermi–Fermi interaction can be mediated by density
fluctuations of the Bosons. In order to calculate the Boson density–density response
function, we note that it consists of diagrams which can have interaction lines attached
to their ends. The simplest diagrams of this form are shown in Fig. (3.6), where the
double wiggly lines are the diagonal or off–diagonal Boson Green functions. There, we
can use the mean–field expressions for the Green’s function derived previously. We must
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Figure 3.6: The Boson density-density response function

be aware, however, that this way we neglect all the modifications of the Bose density–
density response function due to the presence of the Fermions, and thus the expression
we get is just the lowest order term. Writing the above diagram as an equation, we get:

χB(qµ) = GB(qµ) + GB(−qµ) + G12(qµ) + G21(qµ) (3.40)

If we take the terms for the Bose Green’s function in mean–field approximation from
Eqns. (3.18) and (3.19) we get to lowest order in the Boson–Boson scattering length:

χB(qµ) =
nBq2

mB(q0)2 − q4/4mB + 4πnBaBq2)
(3.41)

For algebraic simplicity, we continue by considering the static limit (i.e. for q0 = 0) only,
even though very recently it was pointed out that this limit is not exactly appropriate for
the parameters typical for current experiments, since the Boson sound velocity usually
exceeds the Fermi velocity vF = h̄kF /mF [85]. In the static limit, the induced interaction
reads in the mean–field approximation for the Bose–Fermi interaction:

UFF (q) =
(

2πh̄2aBF

m

)2

χB(0,q)

=
(

2πh̄2aBF

m

)2 −nB

mB(q2/4mB + 4πnBaB)
. (3.42)

This can be Fourier transformed to real-space to show that the induced interaction is
of the Yukawa form as shown in Ref. [36]. The remarkable feature is that no matter
what the sign of the Bose–Fermi interaction length is the induced interaction is always
attractive. This opens the possibility of Cooper pairing. Nevertheless, the pairing has
to take place in the p–wave channel since s–wave paring for spin-polarized Fermions
is forbidden by the Pauli principle. Estimates of the critical temperature have lead to
critical temperatures of about 0.5nK for optimal conditions [57]. This is to low to be
reached in current experiments. An interesting perspective would be to find systems
with higher critical temperatures by using Feshbach resonances or optical lattices. In
optical lattices, the Boson density–density response function which is related to the dy-
namical structure factor changes compared to the homogeneous case we considered here
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Figure 3.7: The Fermion density-density response function

as pointed out in Ref. [86] and Fermions in an optical lattice can be tuned to have a
comparatively high critical temperature of BCS [87]. Together those two effects, could
lead to a critical temperature which could be reached under the conditions of the current
experiments. In the last chapter of this thesis, Boson–Fermion mixtures in optical lat-
tices are introduced. Issues related to the Cooper pairing, however, are not treated there.

If we now turn the attention on the reverse process, namely the Fermion induced
interaction on the Bosons, we need the Fermion density–density response function, which
is given to lowest order by the diagram of Fig. 3.7 and its algebraic form can be taken
from Ref. [58]. The Fermion induced interaction has three major consequences. First,
just as the direct Bose–Bose interactions the induced one leads to a modification of the
Bose excitation spectrum and thus also to a depletion of the condensate. Second, the
induced interaction can cause an instability of the system. We first consider the effect
on the excitation spectrum.

Previously, we have seen that to a mean–field level there is no change in the Bose
spectrum according to the presence of the Fermions. This was because on this level there
was no off–diagonal contribution and also the Boson self–energies were independent of
the four momentum. Now, we will see that beyond mean-field the self–energies are
momentum dependent and there is also an off–diagonal self–energy term coming from
the induced interaction. The latter one gives rise to a change in the phonon sound
velocity and the first one to an effective change in the Bose particle mass. Therefore we
now revisit the Bose spectrum, this time to higher order than mean–field. We start again
from Eqn. (2.140). We recall that the mean—field spectral equation for the Bosons is

p0 = Ep =
√

h̄p2/2mB(h̄p2/2mB + 8πh̄2aBnB/mB).

To get the spectrum to next order, we have to solve the pole equation (2.141), but it
is enough to insert the mean–field excitation frequency on the right hand side of this
equation, such that we get the following spectrum:

(p0)2 =
[
h̄p2/2mB + ΣB(0)− ΣB(Ep,p)− Σ12(0)

]2

−Σ2
12(Ep,p), (3.43)

The off–diagonal self–energy term due to the Fermions is solely due to the induced
interaction and reads to lowest order:

ΣBF
12 (Ep,p) =

(
2πh̄2aBF

m

)2

χF (Ep,p) (3.44)
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Also the diagonal part of the self-energy is modified by the induced interaction:

h̄ΣBF (Ep,p) =
1

(2π)3

∫
d3qθ(kF − q)

×TBF

[
p− q

2
,
p− q

2
,

(
Ep +

h̄q2

2mF
,p + q

)]

+
(

2πh̄2aBF

m

)2

χF (Ep,p) (3.45)

In the Hugenholtz–Pines theorem, the two modifications of the self–energy terms accord-
ing to the induced interaction exactly cancel, so it is a posteriori justified that we did not
consider them in order to calculate the Boson chemical potential. For the spectrum, in
contrast, they are important. Also, for the spectrum we need the momentum dependence
of the self–energy terms at least in the low–momentum limit and not just the value at
zero momentum as in the Hugenholtz–Pines theorem. For general momentum, the inte-
grals cannot be evaluated analytically. We may, however, do a low-momentum expansion
to quadratic order, thus writing:

ΣBF
12 (Ep,p) ≈ ΣBF

12 (0) + p · d

dp

∣∣∣∣
p=0

ΣBF
12 (Ep,p)

+
1
2
p2 · d2

dp2

∣∣∣∣
p=0

ΣBF
12 (Ep,p) (3.46)

ΣBF (Ep,p) ≈ ΣBF (0) + p · d

dp

∣∣∣∣
p=0

ΣBF (Ep,p)

+
1
2
p2 · d2

dp2

∣∣∣∣
p=0

ΣBF (Ep,p). (3.47)

The Fermion density–desnity response functions is well known (cf. e.g. Ref. [58]). In
different contexts, it is also called polarization propagator or structure factor and denoted
by Π0. We find

ΣBF
12 (Ep,p) = −mF kF

2π2h̄2

(
2− x ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ +
p2

6(x2 − 1)
+ iπxθ(1− x)

)
, (3.48)

where x = mF /
√

2mBkF ξB with ξB = 1/
√

8πaBBnB being the Boson healing length.
We note that the linear term in p vanishes and now show that the same is also true for
ΣBF (Ep,p). Looking at Eqns. (3.45) and (3.8), we can observe, that the first term of
Eqn. (3.45) is of the form

1
(2π)2

∫ kF

0

dq q2

∫ −1

1

d cos θ TBF

(
p2, pq cos θ, q2

)
. (3.49)

The derivative with respect to p at zero is thus

1
(2π)2

∫ kF

0

dq q2

∫ −1

1

d cos θ
[
p ∂1TBF

(
p2, pq cos θ, q2

)

+ q cos θ ∂2TBF

(
p2, pq cos θ, q2

)] ∣∣∣∣
p=0

(3.50)

The first term is zero after setting p = 0 and the second after integration over cos θ. The
second derivative we do not evaluate, but just observe that the spectral equation (3.43)
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can now be written to second order in the momentum as:

(p0)2 = h̄Σ12(0)p2/m∗
B , (3.51)

where the modified mass is defined as:

1
m∗

B

=
1

mB
− 8h̄mF kF a2

BF

m2

p2

6(x2 − 1)
(3.52)

− 1
2π2h̄

∫ kF

0

dqq2

∫ −1

1

d cos θ
d2

dp2

∣∣∣∣
p=0

TBF

(
p2, pq cos θ, q2

)
,

and the off–diagonal self–energy term is, upon including Bose–Bose interactions on a
mean–field level,

Σ12(0) =
2h̄mF kF a2

BF

m2

(
2− x ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ + iπxθ(1− x)
)

+
4πh̄2aBBnB

mB
. (3.53)

Thus the spectrum is still phononic, but compared to the pure Bose case the mass and
the sound velocity are modified. The new sound velocity is cB =

√
h̄ReΣ12(0)/m∗

B . and
the lifetimes of the phonon excitations are ∝ ImΣ12(0) Neglecting mass modification,
this was first found in Ref. [88]. There, by integrating the off–diagonal Green’s function
including the induced interaction, the depletion of the condensate was found in the limit
of small Fermion density (which is not considered in the present chapter) and in the
opposite limit. In the first case, as expected, the depletion is dominated by the direct
Boson–Boson interaction and in the second case, the depletion caused by the Fermions
is of order ∝ (kF aBF )2.

The other effect due to Fermion induced interaction is to cause a potential instability
of the system. Although we assume a repulsive direct Boson–Boson interaction, the
net interaction (i.e. direct plus induced) can indeed be attractive, due to the attractive
nature of the induced interaction. Since we know, that attractive Bosons are unstable (see
Refs. [89, 90]), the Fermions could cause the Bosons to collapse. Exactly this argument
was used in Ref. [91] to explain the collapse of the system observed in Ref. [92]. In
the experiment, however, only the collapse of the Fermions can be clearly identified,
not of the Bosons. Motivated by this observation an interesting alternative procedure
would the be use the Bose induced interaction among the Fermions, which we have
calculated above, to find a criterion of collapse of the Fermions. That also attractive
spin–polarized Fermions can be unstable for an attractive p-wave interaction as has been
shown in Ref. [93]. There is, however, a technical difficulty since the length scale of the
Boson induced Fermi–Fermi interaction is of order of the Boson healing length ξB . Then,
depending on the magnitude kF ξB one has to find an energy functional for either high,
low or intermediate momentum p–wave scattering. This we will not carry out here. But
yet another kind of collapse, a simultaneous collapse, of both, Fermions and the Bosons,
as explained in the introductory chapter of this thesis was predicted in [33]. In the next
chapter, this latter kind of collapse is investigated in more detail.



Part III

Inhomogenous Boson-Fermion
systems

55





Chapter 4

Density functional theory

4.1 The Hohenberg-Kohn theorem

In this section, we shall treat the full problem, i.e. we include all relevant energy con-
tributions to the Hamiltonian, thus in addition to the particle-particle interaction terms
also the external potentials. The Hamiltonian now reads:

Ĥ = T̂B + T̂F + V̂B + V̂F + Û + V̂ , (4.1)

where we recall that the external potential operators are:

V̂B =
∫

d3rΦ̂†(r)VB(r)Φ̂(r) (4.2)

and
V̂F =

∫
d3rΨ̂†(r)VF (r)Ψ̂(r) . (4.3)

The effects of the interaction terms have been extensively studied in the previous chapter.
Now, we consider these interactions to be fixed and explore how the ground state proper-
ties depend on the external potential. This investigation will lead to the Hohenberg-Kohn
theorem, which we formulate here for Bose-Fermi mixtures.

Let the ground state of the system be |G〉, and define the ground state energy

E0 = 〈G|Ĥ|G〉 (4.4)

and the Boson and Fermion densities, which we write for brevity as a tuple:
(

nB(r)
nF (r)

)
=

( 〈G|Φ̂†(r)Φ̂(r)|G〉
〈G|Ψ̂†(r)Ψ̂(r)|G〉

)
(4.5)

Clearly, considering Ĥ0 = T̂B + T̂F + Û + V̂ to be fixed, the tuple of potential energies
(

VB(r)
VF (r)

)
∈ V (4.6)

maps on the set of ground states via the eigenvalue equation (we always assume the
Hamiltonian to be bounded from below).1

Ĥ|G〉 = E0|G〉 (4.7)
1V is an appropriate set which is specified in mathematically rigorous treatments (see e.g. [94]).
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Thus we define the map:

C :
(

VB(r)
VF (r)

)
7→ |G〉. (4.8)

The definition of the densities (4.8) can be considered as another map:

D : |G〉 7→
(

nB(r)
nF (r)

)
, (4.9)

The composite map D ◦ C describes the dependence of the ground state densities with
respect to the external potentials. We shall see that this relation is invertible, which we
prove by showing that the maps D and C are invertible.

• C is invertible:
In the following we will see that two different tuples of external potentials, (VB(r), VF (r))
and (V ′

B(r), V ′
F (r)), that lead to the same ground state |G〉 are necessary related

by an additive constant. This additive constant is not observable and thus the
potentials are considered to be equivalent. C is invertible on this equivalence class.
The formal proof starts with the definition of C for the two different tuples, which
are assumed be mapped onto the same ground state |G〉:

(Ĥ0 + V̂B + V̂F )|G〉 = E0|G〉
(Ĥ0 + V̂ ′

B + V̂ ′
F )|G〉 = E′

0|G〉. (4.10)

The difference of these equations is:

(V̂B + V̂F − V̂ ′
B − V̂ ′

F )|G〉 = (E0 − E′
0)|G〉. (4.11)

Multiplication from the left by the following state
∫

d3y1 . . . d3yNB
〈|Ψ(rNF

) . . . Ψ(r1)Φ(yNB
) . . . Φ(y1) (4.12)

projects out the Boson sector and leads after making extensive use of the (anti-)-
commutation relations to an equation in terms of the many–Fermion wave function

Ψ(r1, . . . , rNF )

=
∫

d3y1 . . . d3yNB
〈|Ψ(rNF

) . . . Ψ(r1)Φ(yNB
) . . . Φ(y1)|G〉,

which reads:
(

NF∑

i=1

[VF (ri)− V ′
F (ri)]

)
Ψ(r1, . . . , rNF

) = (E0 − E′
0)Ψ(r1, . . . , rNF

)

For arbitrary coordinates r1, . . . , rNF , this can only be satisfied if

VF (r)− V ′
F (r) = (E0 − E′

0)/NF . (4.13)

Applying analogous arguments for the Bosons many–particle wave functions leads
a similar condition:

VB(r)− V ′
B(r) = (E0 − E′

0)/NB . (4.14)

Eqns. (4.13) and (4.14) show that the respective Bosonic and Fermionc potentials
are equivalent and hence the proof is completed.
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• D is invertible:
The proof is by reductio ad absurdum. We assume two non-equivalent tuples of
potentials (VB(r), VF (r)) and (V ′

B(r), V ′
F (r)), which lead to different ground states

|G〉 and |Ψ〉, respectively. We show that the assumption that the two ground states
give rise to the same Boson and the same Fermion densities leads to a contradiction.
In the following we assume a non-degenerate ground states |G〉 and |Ψ〉. The case
of a degenerate ground state complicates matters slightly, but the essential result
does not change. For more details, the reader may refer to the book Ref. [94]. To
proceed with the proof, we make use of Ritz-principle which states that the ground
state energy is smaller than the expectation value with respect to any other states.
This is in particular true for the state |Ψ〉:

E0 = 〈G|Ĥ|G〉 < 〈Ψ|Ĥ|Ψ〉
= 〈Ψ|Ĥ ′ + V̂B + V̂F − V̂ ′

B − V̂ ′
F |Ψ〉

= E′
0 +

∫
d3r[VF (r)− V ′

F (r)]n′F (r)

+
∫

d3r[VB(r)− V ′
B(r)]n′B(r) . (4.15)

In the same way, one can derive

E′
0 = 〈G′|Ĥ ′|G′〉 < E0 +

∫
d3r[V ′

F (r)− VF (r)]nF (r)

+
∫

d3r[V ′
B(r)− VB(r)]nB(r) . (4.16)

The assumption

(
nB(r)
nF (r)

)
=

(
n′B(r)
n′F (r)

)
(4.17)

leads to a contradiction, which becomes obvious by adding the two inequalities.
Thus, the density profiles have to be different and the proof is completed.

We have just shown that given the interaction potentials the external potentials
uniquely determine the Boson and Fermion densities. In turn, knowing the density
profiles one can in principle the external potentials that gave rise to the given densities.
Thus, the Hamiltonian is uniquely determined (remember we considered the interactions
to be fixed) by the Boson and Fermion density distribution and thus all observables in
particular the ground state energy are functionals of the density profiles:

E0 = E0[nB , nF ], (4.18)

which is the Hohenberg-Kohn theorem (HKT) and was originally formulated for an in-
homogeneous electron gas already in 1964 [26].

In order for the HKT to be useful, one has to know (at least good approximations) for
the energy functional. The above proof was merely a proof of existence and gives no hint
how to construct the energy functional. Besides some ad-hoc expressions for the energy
functional (Thomas–Fermi approximations), Kohn and Sham [95] presented a systematic
scheme to construct this functional.
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4.2 The Kohn-Sham scheme

Kohn and Sham proposed to invent a hypothetical non-interacting reference system,
described by the Hamiltonian

Ĥref = T̂B + T̂F + V̂ ref
B + V̂ ref

F , (4.19)

such that the exact density profiles of the original interacting system and the reference
system are identical: (

nB(r)
nF (r)

)
=

(
nref

B (r)
nref

F (r)

)
. (4.20)

The point of this procedure is that the non–interacting reference system can be solved
at least numerically and with the above requirements for the densities, one int turn
known the density distribution even for the original interacting system. Existence of
this reference system will be shown in this section by construction. However, we do not
address mathematically subtle questions here. For details the reader is again referred to
Ref. [94]. According to the HKT, the potentials of the reference system V ref

B (r) and
V ref

F (r) are unique functionals of the reference densities nref
B (r) and nref

F (r) and thus by
construction also of the original densities nB(r) and nF (r), so that the reference system
is unique. Once V ref

B (r) and V ref
F (r) are known, the ground state of the reference system

simply factorizes into a product wave function for the Bosons and a Slater determinant
for the Fermions:

|G〉ref =
1√
NB !

φ(r1) · · ·φ(rNB )× 1√
NF !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) . . . ψ1(rN )
...

...
...

. . .
...

...
...

ψN (r1) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.21)

where the wave Boson (φ(r)) and Fermion (ψi(r)) functions are determined via:

(
h̄2

2mB
+ V ref

B (r)
)

φ(r) = µBφ(r), (4.22)
(

h̄2

2mF
+ V ref

F (r)
)

ψi(r) = εiψi(r), (4.23)

where εi are the lowest NF energy eigenvalues. The densities are easily obtained from
these wave functions:

(
nref

B (r)
nref

F (r)

)
=

(
NB |φ(r)|2∑NF

i=1 |ψi(r)|2
)

. (4.24)

At this point, we do not bother very much about the problem of degeneracies of the
highest occupied energy level of the Fermions which in principle causes an ambiguity in
determining the densities. Considering the fact that we mostly deal with a large number
particles and expecting only a small portion of them occupying the highest energy level
we note that this ambiguity can only slightly change the final outcome. Also, one can
partially overcome this ambiguity if one imposes the same symmetry of the density
profiles as of the external potentials.
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Employing again the HKT, one knows that the wave functions φ(r) and ψi(r) are
functionals of the densities2 and consequently also the kinetic energies:

T ref
B [nB , nF ] = NB

∫
d3rφ∗(r)

(
− h̄2∇2

2mB

)
φ(r) , (4.25)

T ref
F [nB , nF ] =

NF∑

i=1

∫
d3rψ∗i (r)

(
− h̄2∇2

2mF

)
φi(r) . (4.26)

In order to determine V̂ ref
B and V̂ ref

F one has to establish a connection between the
reference system and the original interacting system.

In this spirit, we express the ground state energy functional of the interacting system
as:

E0[nB , nF ] = T ref
B [nB , nF ] + T ref

F [nB , nF ] +∫
d3rVB(r)nB(r) +

∫
d3rVF (r)nF (r)

+ 1
2

4πh̄2aBB

mB

∫
d3rn2

B(r)

+ 2πh̄2aBF

m

∫
d3rnB(r)nF (r)

+Exc[nB , nF ]. (4.27)

Here, the first two terms are the kinetic energies of the reference system, the next two
terms is the potential energy, the fourth and fifth term is mean-field part of the interaction
energy, where we have used the s-wave approximation of the interaction potentials to first
order only, which are given by:

U(|r− r′|) = 4πh̄2aBB

mB
δ(r− r′),

V (|r− r′|) = 2πh̄2aBF

m δ(r− r′). (4.28)

These equations can be verified by a Fourier transformation of Eqn. (1.38) and keeping
only the first order term in the scattering length. The last term in the above expression for
the energy functional is the so-called exchange-correlation energy an contains all higher
order terms in the scattering length. The expression is as it stands merely a definition of
the exchange-correlation energy functional Exc[nB , nF ]. But since for weakly correlated
systems the major contribution of the kinetic energy is contained in the first two terms
and the major part of the interaction energy consists of the mean-field part one hopes
that the exchange-correlation energy is small. Thus by finding suitable approximations
of Exc[nB , nF ] one can hope to find a very precise description of the system. In fact, if
Exc[nB , nF ] is neglected altogether one simply obtains a sum of the well-known Gross-
Pitaevskii energy functional for the Bosons, the energy functional obtained by the self-
consistent Hartree Ansatz for the Fermions, and a mean-field Boson-Fermion coupling
term. This was the basis of the calculations of the density distribution for Boson-Fermion
mixtures done so far [31, 33]. Here we want to go a step further and carry out the full
Kohn-Sham scheme.

2One might be tempted to identify the wave functions φ(r) and ψi(r) with states that are occupied
by the particles, but this identification is not correct. The only physical meaning that can be ascribed
to the wave function is that they reproduce the correct densities
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We go on by imposing the saddle point condition on E0[nB , nF ], namely δE0[nB , nF ] =
0 using (see Ref. [94])

δT ref
B = −

∫
d3rV ref

B (r)δnB(r), (4.29)

δT ref
F = −

∫
d3rV ref

F (r)δnF (r). (4.30)

Then the saddle point condition yields

0 = δE0[nB , nF ] = δT ref
B + δT ref

F

+
∫

d3rVB(r)δnB(r) +
∫

d3rVF (r)δnF (r)

+ 4πh̄2aBB

mB

∫
d3rδnB(r)nB(r)

+ 2πh̄2aBF

m

∫
d3r (δnB(r)nF (r) + δnF (r)nB(r))

+
∫

d3rV xc
B (r)δnB(r) +

∫
d3rV xc

F (r)δnF (r), (4.31)

with the definition of the exchange-correlation potentials

V xc
B (r) =

δExc[nB , nF ]
δnB(r)

, (4.32)

V xc
F (r) =

δExc[nB , nF ]
δnB(r)

. (4.33)

Solving for the reference potentials leads to:

V ref
B (r) = VB(r) + 4πh̄2aBB

mB
nB(r)

+ 2πh̄2aBF

m nF (r) + V xc
B (r), (4.34)

V ref
F (r) = VF (r) + 2πh̄2aBF

m nB(r) + V xc
F (r). (4.35)

These can be inserted into Eqns. (4.23) to lead to the Kohn-Sham equations for Bose-
Fermi mixtures:

[
− h̄2∇2

2mB
+ VB(r) + 4πh̄2aBB

mB
nB(r)

+ 2πh̄2aBF

m nF (r) + δExc[nB ,nF ]
δnB(r)

]
φ(r) = µBφ(r),

[
− h̄2∇2

2mF
+ VF (r)

+ 2πh̄2aBF

m nB(r) + δExc[nB ,nF ]
δnF (r)

]
ψi(r) = εiψi(r). (4.36)

The conditions (4.20) introduce non-linearities:

nB(r) = NB |φ(r)|2, nF (r) =
NF∑

i=1

|ψi(r)|2, (4.37)

where the sum in nF (r) runs over the NF states ψi that have the lowest energies εi .
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4.3 The exchange–correlation energy

For the exchange-correlation energy, we resort to the so called local density approximation
(LDA), i.e. we approximate the exchange–correlation energy as an integral over the
exchange correlation energy density of a homogeneous system taken at the –yet unknown–
densities nB(r) and nF (r):

Exc[nB , nF ] ≈
∫

d3rεxc(nB(r), nF (r)) . (4.38)

This is very much in the spirit of Thomas–Fermi approximation, which is in fact a LDA
on the kinetic energies. With this expression of Exc[nB , nF ] the effective exchange–
correlation potentials appearing in the Kohn-Sham equations (4.47) become:

V xc
B (r) =

δExc[nB , nF ]
δnB(r)

=
∂εxc

∂nB
(nB(r), nF (r)) , (4.39)

V xc
F (r) =

δExc[nB , nF ]
δnF (r)

=
∂εxc

∂nF
(nB(r), nF (r)) . (4.40)

As mentioned before, the exchange-correlation energy contains all terms in the energy
functional which are of at least quadratic order in the coupling constants. A topic of
the previous chapter was to find the lowest order expression for the exchange-correlation
energy in the homogeneous case. We use Eqn. (3.37) for the exchange-correlation energy
of a homogeneous system εxc(nB , nF ):

εxc(nB , nF ) = 2h̄2aBF

m f(δ)aBF kF nF nB , (4.41)

where we recall that kF = (6πnF )1/3 is the Fermi wave vector, and that f(δ) (see
Eqn. (3.14)) only depends on the masses of the Bosons and Fermions, respectively:

f(δ) = 1− 3 + δ

4δ
+

3(1 + δ)2(1− δ)
8δ2

ln
1 + δ

1− δ
. (4.42)

Viverit and Giorgini have recently shown [88] that Eqn. (4.41) is exact in the limit
kF ξB À 1, where ξB is the Boson healing length. In order of magnitude, the ho-
mogeneous densities are nF ≈ NF /`3 and nB ≈ NB/`3, where ` is the characteris-
tic length of the confining potential. The condition kF ξB À 1 is then equivalent to
NF À N

3/2
B (aBB/`)3/2. On the other hand, LDA is correct for large NB and NF ,

provided that ` À aBB , aBF , i.e., the characteristic lengths of the confining potentials
are much larger than the scattering lengths. In current experiments NF ≈ NB ≈ 104

and aBF /` ≈ aBB/` ≈ 10−3, so that the condition kF ξB À 1 is well satisfied. More-
over, the Boson-Boson exchange-correlation energy is 256h̄2aBBn2

B

√
πnBa3

BB/15mB (see
e.g. [83]). This is much smaller than the exchange-correlation energy in Eqn. (4.41) if
NF >> 5.4(aBB/aBF )3/2(aBB/`)3/8((1 − δ)/f(δ))N9/8

B . Since aBB/aBF = 0.13 for the
Paris experiment with 6Li-7Li [21] and aBB/aBF = 0.28 for the Florence experiment
with 40K-87Rb [23] (these are the only two experiments where aBF has been measured),
this condition is satisfied as well. Yet other higher order terms are due to direct Fermion–
Fermion p-wave scattering. These terms are at least of the order of (kF aFF )3[96],
where aFF is the Fermion–Fermion p–wave scattering length, and thus certainly neg-
ligible against the term we consider. Altogether, Eqn. (4.41) provides the most relevant
contribution to the exchange–correlation energy for the current experimental situations.
For more general situations, Eqn. (4.41) provides the most relevant contribution beyond
mean field any time LDA is satisfied, NF is comparable or larger than NB in order of
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magnitude, and perturbation theory holds, i.e. kF aBF /π << 1, and a sufficiently small
Bose gas parameter. The final expressions for the exchange–correlation potentials are
now:

V xc
B (r) =

2a2
BF f(δ)
m

nF (r)kF (r), (4.43)

V xc
F (r) =

8a2
BF f(δ)
3m

nB(r)kF (r). (4.44)

4.4 The numerical procedure

We now specialize to spherically symmetric, harmonically trapped systems:

VB(r) = 1
2mBω2

Br2, VF (r) = 1
2mF ω2

F r2, (4.45)

where ωB (ωF ) are the harmonic oscillator frequencies for the Bosonic (Fermionic) atoms.
As indicated in the introduction chapter, they are due to the external magnetic field and
also depend on the magnetic moments of the atoms. If the magnetic moments are the
same for both species, then the external potentials are also the same for the Bosons and
the Fermions. Due to the spherical symmetry, we separate off the angular parts in the
usual way by the Ansatz:

φ[nB , nF ](r) =
u(r)

r
Y00(Θ, Φ), ψnlm[nB , nF ](r) =

unl(r)
r

Ylm(Θ, Φ), (4.46)

where Ylm are the spherical harmonics and the Kohn-Sham equations (4.36) become:
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[
− 1

2mB

d2

dr2
+

mB

2
ω2

Br2 +
4πaBB

mB
nB(r) +

2πaBF

m
nF (r)

+
2a2

BF f(δ)
m

nF (r)kF (r)
]

u(r) = µBu(r) ,

[
− 1

2mF

d2

dr2
+

l(l + 1)
2mF r2

+
mF

2
ω2

F r2 +
2πaBF

m
nB(r)

+
8a2

BF f(δ)
3m

nB(r)kF (r)
]

unl(r) = εnlunl(r) , (4.47)

with
∫

dr u2(r) = 1,
∫

dr u2
nl(r) = 1 and n denotes the number of nodes of the radial

functions unl. Here we have chosen ` =
√

h̄/MΩ as the length unit, where M and Ω
are appropriate units of mass and frequency. Energies are expressed in units of h̄Ω. The
density distributions read:

r2nB(r) =
NB

4π
u2(r), r2nF (r) =

1
4π

∑

εnl≤µF

(2l + 1)u2
nl(r). (4.48)

Eqns. (4.47) together with Eqns. (4.48) define a system of coupled non-linear differ-
ential equations. We solve them numerically by an iterative procedure. We initialize
nB(r) and nF (r) to be the Thomas–Fermi density distribution with no Boson-Fermion
coupling. We then use these as initial densities for Eqns. (4.47). The energy eigenvalues
are found by a bi-section algorithm, i.e. we assume the correct energy eigenvalue to be
in a certain interval. We take a trial energy in this interval and numerically integrate
the differential equations from r close to zero and from an outer (large) cut-off radius
to the first classical turning point. We then compare the differences in the first loga-
rithmic derivatives of the two computed parts of the wave function at the first classical
turning point. If the difference is negative the trial energy eigenvalue was too small;
if it is positive, the trial energy was too large. According to this, we adjust the new
interval, where the true energy eigenvalue is supposed to be in. We then iterate the
procedure with this new interval. The length of the interval tends to zero with the num-
ber of iterations and the true energy eigenvalue in this interval can be determined with
better and better accuracy. Having found the states u and unl, we only have to look
for NF unl with lowest energy εnl. For the search, we use the fact that εnl grows with
n and l. When all the occupied Kohn-Sham states are determined the output densities
are computed with Eqn. (4.48). We then compare the initial and output density distri-
butions. If these are about the same, we have found a self-consistent solution and the
procedure ends. If not, we mix new densities from the initial and output ones, i.e. we
use nnew

B/F (r) = (1− x) · ninitial
B/F + x · noutput

B/F , where 0 < x ≤ 1. If x is close to 0 then the
convergence is very slow, if x is too large the procedure does not converge or run into
local minimums. We have found good convergence with x = 0.3. Then we start a new
iteration steps with the new densities nnew

B/F (r).
If the number of Fermions is large (i.e. of order 1000) it is very time consuming

to determine all the occupied Kohn-Sham states for the Fermions. Additionally, the
more states are required, the higher is the number of nodes of the high energetic wave
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functions. For the numerics, one has to discretise space and thus there is a maximum
number of nodes that can be represented. For these reasons we use the Thomas–Fermi
approximation of the kinetic energy part of the Fermions, when the number of Fermion
is above 1000:

T ref
F [nB , nF ] = 3

5

∫
d3r h̄2k2

F (r)
2mF

nF (r), (4.49)

instead of T ref
F [nB , nF ] from Eqn. (4.26). The Thomas–Fermi approximation is rea-

sonably accurate for large Fermion numbers. A good agreement to the single-particle
description was obtained for NF > 1000.

4.5 Results

A comparison of our results with current experiments can be carried out for those sys-
tems whose Boson-Fermion scattering length has been measured. These are the 6Li-7Li
mixtures realized in the Paris experiment [21], and the 40K-87Rb recently realized in the
Florence experiment [23]. In the Paris experiment with Fermionic 6Li and Bosonic 7Li,
the measured scattering lengths are aBB = 5.1a0 and aBF = 38.0a0, where a0 is the
Bohr radius. Here and in the description of the following experiment, we have restricted
ourselves to spherically symmetric systems. Since the actual experiments are only axi-
ally symmetric we have taken the geometric mean of the axial trapping frequencies. The
mean trapping frequencies are about ωB = ωF = 7000Hz. Taking the unit of frequency
Ω = ωB and the mass unit M = mB , the exchange-correlation energy turns out to be
≈ 50h̄Ω, whereas the mean-field Boson-Fermion interaction energy is ≈ 7455h̄Ω. Thus,
only about 0.67% of the interaction energy is due to exchange correlations, it has the
same sign of the mean-field energy, and the modification of the mean-field density profiles
is negligible. In Fig. 4.1 we show a plot of our calculated density profiles for the Paris
experiment. We can see almost no difference between the calculations neglecting the
exchange correlation energy and the calculations including exchange correlation in LDA.
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Figure 4.1: Solid line: Boson density (same with and without exchange-correlation),
Fermion density (same with and without exchange-correlation). For better visibility of
the Fermion density profile we multiplied the densities by r2 in this plot.
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However, in Fig. 4.2, one can see that there is a little effect in the Fermion density
distribution close to the center of the trap. Since aBF > 0 exchange correlation effects
enhance the mean-field effects and the 6Li atoms are even more expelled to the outside
of the trap than in the pure mean-field calculation.
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Figure 4.2: Solid line: Fermion density without exchange-correlation, dashed line:
Fermion density with exchange-correlation

The situation is very different for the mixture of Fermionic 40K and Bosonic 87Rb
realized in the Florence experiment, due to the large and negative Boson-Fermion scat-
tering length giving rise both to a large attractive mean–field Boson–Fermion interaction
potential, and to a non negligible exchange–correlation potential. The latter, being pro-
portional to the square of the Boson-Fermion scattering length, is always repulsive. For
this experiment, a typical stable configuration is achieved for NF = 104, NB = 2× 104.
The Boson–Boson scattering length is aBB = 100.0a0, while the Boson–Fermion scat-
tering length aBF ≈ −400.0a0 is measured with an uncertainty of about 50%. The
mean-field interaction energy is ≈ −98165h̄ωB , while the exchange-correlation energy
is ≈ 6783h̄ωB . Thus, the relative correction in the interaction energy is about 7% of
the mean-field result, going in opposite direction, and leads to a pronounced effect on
the density profiles. Both the Boson and Fermion densities spread out and decrease
substantially at the center of the trap with respect to the mean-field prediction, due to
the repulsive exchange–correlation potential. This effect is shown in Figs. 4.3 and 4.4,
where we show the Boson and Fermion density distributions with and without exchange
correlations, calculated with the parameters fixed at the values measured in the Florence
experiment. At the center of the trap, the Boson and Fermion densities are reduced,
respectively, to about 85% and 78% of the mean-field result.

4.6 Stability and collapse

In general, there are two kinds of instabilities in a binary mixture (we do not consider
instabilities due to Fermion pairing): demixing [28] and simultaneous collapse of both the
Boson and the Fermion component [33]. The first can occur if the interaction between
the two species is repulsive, and implies by definition a minimal overlap of the density
distributions. In this case, we do not expect a significant change of the phase diagram
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Figure 4.3: The Boson density profile for the Florence experiment. Solid line: without
exchange correlations; dashed line: with exchange correlations. Quantities are dimen-
sionless, rescaled in units of ` = (h̄/mBωB)1/2.

by repulsive exchange–correlation interactions, but only for a small enhancement of the
phase separation.

In the collapse regime, which can occur if the interaction between the two species is
attractive, the situation is radically different, as in this case one has indeed a very high
overlap of the densities in the center of the trap. The exchange–correlation interaction,
which is always repulsive to second order in the Boson-Fermion scattering length, opposes
the propensity to collapse due to the attractive mean-field contribution. If the coupling
strength between the two components of the mixture is sufficiently strong, the exchange–
correlation can significantly modify the phase diagram.

In Fig. 4.5, we provide the mean–field phase diagram of a binary Boson–Fermion
mixture, with the physical parameters of the Florence experiment [92]. The plot shows
the behavior of the critical number of Bosons N cr

B , i.e., the threshold number for the onset
of collapse , as a function of the number of Fermions NF . Collapse occurs at any point of
the phase plane above the critical curve, while the mixture is stable at all points below it.
For low Fermion numbers NF ≤ 8×103, the critical number of Bosons N cr

B begins to grow
so fast that to all practical purposes collapse is inhibited. The inversion regime between
the number of Fermions and the critical number of Bosons takes place at NF ' N cr

B '
5×104. For a typical number of Fermions NF ' 2×104 one has a critical Boson number
N cr

B ' 7×104. The situation in the mean-field approximation is to be compared with the
prediction obtained by including exchange–correlation. Fig. 4.6 shows the same phase
diagram as in Fig. 4.5 but with the inclusion of exchange–correlation. We clearly see
a significant increase in the critical number of the Bosons due to exchange–correlation.
The inversion regime between the number of Fermions and the critical number of Bosons
takes place at NF ' N cr

B ' 1.2×105, and for a typical Fermion number NF ' 2×104 the
critical Boson number N cr

B ' 1.5×105, i.e., a much larger number of Bosons is needed to
produce a collapse of the Fermion component. This behavior was qualitatively expected
since the effective exchange-correlation potentials are always repulsive to second order in
the Boson-Fermion scattering length.

Due to the large difference between the mean-field and the exchange-correlation phase
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Figure 4.4: The Fermion density profile for the Florence experiment. Solid line: without
exchange correlations; dashed line: with exchange correlations. Quantities are dimen-
sionless, rescaled in units of ` = (h̄/mBωB)1/2.

diagram, some comments are in order. First of all, the determination of the critical
line for simultaneous collapse of the mixture is very sensitive to the exact value of the
Boson-Fermion scattering length. Since this value is experimentally known with a large
uncertainty, it would be crucial to know it with a much greater precision. This could
be achieved by tuning the scattering length in order to fit the experimental data on
the onset of collapse [97]. Moreover, for large interaction strengths, such as that in the
Florence experiment, the second–order term in the exchange–correlation energy might
overestimate the effect of stabilization. In fact, in these cases, the attractive third–order
term could possibly give rise to a non negligible contribution, so that the mean–field
critical line of Fig. 4.5 and the second–order critical line of Fig. 4.6 would provide,
respectively, a lower and an upper bound. The true phase–diagram would, therefore, lie
in between the two. A more detailed analysis than that provided in the present thesis
requires, however, knowledge of the third–order interaction energy in powers of kF aBF ,
and this is a formidable task, even numerically. One might also ask in what respect the
anisotropy plays a role. We have assumed a spherically symmetric trapping potential.
In actual experiments, the traps are only axially symmetric. The system is thus more
accurately described by external potentials of the form given in Eqn. (1.40). even if
the anisotropy parameter λ = ωx/ωyz deviated from 1 not so much that we are in the
confinement dominated (or even quasi-low dimensional) regime. In Figs. 4.7 and 4.8 we
show plots of the density distributions for λ = in a stable regime.

In order to simplify the numerics, we also used a Thomas–Fermi approximation also
for the Bosons. Thomas–Fermi approximation is a local density approximation on the
kinetic energy. From Eqn. (2.59), we can see that in this approximation the Boson kinetic
energy is zero. The exploration how the collapse regime depends on the anisotropy will
be subject of a future work.
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Figure 4.5: The critical number of Bosons N cr
B for the onset of collapse as a function of

the number of Fermions NF in mean–field approximation.
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B for the onset of collapse as a function of

the number of Fermions NF including exchange–correlation.
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Figure 4.7: The Boson densities including exchange–correlation (solid lines, below) and
in mean-field approximation (dahed lines, above) in a cylindrical trap
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in mean-field approximation (dahed lines, above) in a cylindrical trap



Chapter 5

The critical temperature of
BEC

Up to this point, the discussions were mostly restricted the case of zero temperature.
We briefly mentioned the possibility of a BSC phase transition of the Fermions due to
exchange of phonon fluctuations in the Bose gas. In this chapter, the phase transition for
the Bosons from an (almost classical) Bose gas to a BEC in the presence of Fermions is
studied in more detail. Whereas previously, we have assumed the existence of a BEC, we
here give an estimate of how low the temperature has to be in order for this assumption to
be satisfied. As in the previous chapter, the harmonically trapped systems are considered
and we also make extensive use of LDA. Unlike before we do not consider exchange
and correlation effects, thus restrict the discussion to mean-field approximation for the
interaction terms. Our aim is to calculate the critical temperature Tc of BEC. Within our
mean-field approach the contribution to the critical temperature is due to re-distribution
of density profiles caused by particle-particle interactions. In homogeneous systems, the
situation is far more complicated since mean-field does not lead to a temperature shift
and corrections are due to beyond mean-field effects. Some work on this issues has been
done for the case of pure Bosonic systems and the interested reader is referred to the
literature (Refs. [98, 99], and references therein).

5.1 Thermodynamics of inhomogeneous
Bose-Fermi mixtures

We start with the well-known equation of state relating the chemical potentials µB and
µF to the particle densities nB and nF in the grand–canonical ensemble for homoge-
neous non-interacting Bose and Fermi gases, respectively, in a large volume. The expres-
sions can be found in any standard textbook about Quantum Statistical Mechanics, e.g.
Ref. [100]:

nB =
1

2π2h̄3

∫ ∞

0

dp
p2

exp ((p2/2mB − µB)/kBT )− 1
+ n0, (5.1)

nF =
1

2π2h̄3

∫ ∞

0

dp
p2

exp ((p2/2mF − µF )/kBT ) + 1
. (5.2)

Here T is the temperature of the system and kB is the Boltzmann constant. n0 denotes
the BEC density. The critical temperature Tc is defined as the minimal temperature

73



74 The critical temperature of BEC.

with n0 = 0. The difference in the signs in the denominators under the integrals is due
to the different statistics for the Bosons and Fermions.

A spatially uniform external potential can be easily included in the above expressions
for the density distributions, since it can be easily absorbed by a shift in the chemical
potential. However, we consider cases when the Bosons and Fermions are trapped by the
respective (not necessarily isotropic) harmonic potentials:

V B
ext(r) = mB(ω2

xx2 + ω2
yy2 + ω2

zz2)/2, (5.3)

V F
ext(r) = mF (ω′ 2x x2 + ω′ 2y y2 + ω′ 2z z2)/2. (5.4)

Local density approximation (LDA) in this context consist of dividing the inhomogeneous
system into hypothetical (small) boxes in which the external potentials and the densities
can be considered to be almost constant (at respective values nB(r), nF (r), VB(r), VF (r),
where r is a position inside the box). Then the above equations of state turn into local
equations of state:

nB(r) = (λF
T )−3g3/2(exp{−[V B

eff (r)− µB ]/kBT}) (5.5)

nF (r) = (λF
T )−3f3/2(exp{−[V F

eff (r)− µF ]/kBT}), (5.6)

where we have replaced the momentum by a dimensionless integration variable x =
p2/(2mBkT ) in the Boson equation of state and x = p2/(2mF kT ) in the Fermion equation
of state and well-known Bose and Fermi functions of order 3/2 are given by:

g3/2(x) =
2√
π

∫ ∞

0

√
z

ez/x− 1
(5.7)

and

f3/2(x) =
2√
π

∫ ∞

0

√
z

ez/x + 1
. (5.8)

Also, we have introduced the Boson and Fermion thermal wavelengths λB
T = h̄(2π/mBkBT )1/2

and λF
T = h̄(2π/mF kBT )1/2. The effective potentials take into account the external po-

tential energies and the inter-particle interactions in mean-field approximation:

V B
eff (r) = V B

ext(r) + 2gBBnB(r) + gBF nF (r) , (5.9)

V F
eff (r) = V F

ext(r) + gBF nB(r) . (5.10)

Notice the factor 2 present in the Bose-Bose contribution and absent in the Bose-
Fermi term due to exchange effects. In the above equation gBB = 4πh̄2aBB/mB and
gBF = 2πh̄2aBF /m are the Bose-Bose and Bose-Fermi coupling constants. In principle
also the exchange–correlation potentials from Eqns. (4.43) and (4.44) could be included
here, but since we perform a first order expansion in the coupling constants for the crit-
ical temperature all higher order terms my be neglected. The above Eqns. (5.5) and
(5.6) determine the density profiles for an inhomogeneous Bose-Fermi mixture at finite
temperature above Tc.

In using the equations of state (5.1) and (5.1) along with LDA, we face the dilemma
that we have to fit the large volume, which is required in order for Eqns. (5.1) and (5.1) to
hold into the ”small boxes” we needed for LDA. So are the approximations we use incom-
patible? No, because the volume needs to be large compared to the third power of the
thermal wavelengths, but for LDA the size of the boxes have to be small compared to the
third power of the characteristic length scale of the external potentials (i.e. the harmonic
oscillator length for harmonic potentials), which are usually orders magnitude larger
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than the thermal wavelengths: {λB
T , λB

T } À {lx,y,z, l
′
x,y,z}, where the harmonic oscillator

length are lx,y,z =
√

h̄/mBωx,y,z, l′x,y,z =
√

h̄/mF ω′x,y,z. The above conditions of validity

for LDA can also be written in terms of energy quantities: kBT À {h̄ωx,y,z, h̄ω′x,y,z}. Also
LDA requires that the energy associated with the Fermi temperature of the Fermionic
system to be much larger than the harmonic oscillator energies kBTF À h̄ω′x,y,z. For a
non-interacting trapped Fermi system the Fermi temperature, or equivalently the Fermi
energy, is given by [101] kBTF = εF = h̄ωF (6NF )1/3, where ωF = (ω′xω′yω′z)

1/3 is the ge-
ometric mean of the Fermion oscillator frequencies. The density profiles without making
use of LDA were recently determined numerically in Ref. [102] confirming the above and
following results under the restrictions we have stated above.

5.2 Introduction to Tc

For the most simple case of a non-interacting pure Bose gas confined by an external
harmonic potential the density distribution reads

n0
B(r) = (λB

T )−3g3/2(exp{−[V B
ext(r)− µB ]/kBT}) (5.11)

in the LDA. In this case, the critical temperature for BEC is given by [103]:

kBT 0
c = h̄ωB

(
NB

ζ(3)

)1/3

' 0.94h̄ωB N
1/3
B , (5.12)

where ωB = (ωxωyωz)1/3 is the geometric mean of the oscillator frequencies and mB ,
NB are respectively the particle mass and the number of Bosons in the trap. At T = T 0

c

the Boson chemical potential takes the critical value µB = µ0
c = 0, corresponding to the

bottom of the external potential, and the density n0
B(0) in the center of the trap satisfies

the critical condition n0
B(0)(λB

T 0
c
)3 = ζ(3/2) ' 2.61 holding for a homogeneous system

[100].
Finite size effects modify the prediction of the critical temperature (5.12) resulting in

a reduction of T 0
c . The first correction due to the finite number of atoms in the trap is

given by [104]:
(

δTc

T 0
c

)

fs

= − ζ(2)
2ζ(3)2/3

ω̄B

ωB
N
−1/3
B ' −0.73

ω̄B

ωB
N
−1/3
B , (5.13)

where ω̄B = (ωx + ωy + ωz)/3 is the arithmetic mean of the oscillator frequencies.
Interparticle interactions have an effect on the BEC transition temperature as well.

The presence of repulsive interactions has the effect of expanding the atomic cloud, with
a consequent decrease of the density. Lowering the peak density has then the effect of
lowering the critical temperature. On the contrary, attractive interactions produce an
increase of the density and thus an increase of Tc. This effect, which is absent in the
case of a uniform gas where the density is kept fixed, can be easily estimated within
mean-field theory. For pure Bosonic systems the shift δTc = Tc−T 0

c has been calculated
in Ref. [105], (

δTc

T 0
c

)

BB

= −1.33
aBB

`B
N

1/6
B , (5.14)

to first order in the coupling constant gBB . In the above equation `B =
√

h̄/mBωB is
the (mean) harmonic oscillator length. Result (5.14) has been obtained within LDA and
neglects finite size effects.
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In the case of trapped Bose-Fermi mixtures, the shift of Tc due to both Bose-Bose and
Bose-Fermi couplings can be calculated in mean-field approximation using the methods
of Ref. [105]. The transition temperature Tc of a trapped Bose gas is defined by the
normalization condition

NB =
∫

dr nB(r, Tc, µc) . (5.15)

For a fixed value of the Boson chemical potential µB and a fixed temperature T , the
Boson density (5.5) can be expanded to first order in gBB and gBF as

nB(r, T, µB) = n0
B(r, T, µB)− [2gBBn0

B(r) + gBF n0
F (r)]

∂n0
B

∂µB
, (5.16)

in terms of the non-interacting Boson (5.11) and Fermion density. The Fermion chemical
potential µF is fixed by the normalization condition

NF =
∫

dr n0
F (r) , (5.17)

where NF is the total number of Fermions in the trap.
To first order in gBB and gBF , the critical value µc of the Boson chemical potential

can be written as
µc = µ0

c + 2gBBn0
B(r = 0) + gBF n0

F (r = 0) . (5.18)

By writing Tc = T 0
c + δTc, one can expand Eqn. (5.15) obtaining the following result for

the total relative shift of the condensation temperature:

δTc

T 0
c

=
(

δTc

T 0
c

)

BB

+
(

δTc

T 0
c

)

BF

= −2gBB

T 0
c

∫
dr ∂n0

B/∂µB [n0
B(r = 0)− n0

B(r)]∫
dr ∂n0

B/∂T

−gBF

T 0
c

∫
dr ∂n0

B/∂µB [n0
F (r = 0)− n0

F (r)]∫
dr ∂n0

B/∂T
, (5.19)

where the derivatives of the non-interacting Boson and Fermion densities n0
B and n0

F

are evaluated at the ideal critical point µ0
c = 0, T = T 0

c . The first term
(
δTc/T 0

c

)
BB

in
the above equation accounts for interaction effects among the Bosons and coincides with
the shift (5.14). The second term

(
δTc/T 0

c

)
BF

accounts instead for interaction effects
between Bosons and Fermions, and its determination will constitute the main result of the
present chapter. Some comments are in order here. (i) The shift δTc derived above is a
mean-field effect which originates from the fact that in a trapped Bose-Fermi mixture the
total number of Bosons and the total number of Fermions are fixed, but not the density
profiles of the two species. This effect is peculiar of trapped systems, since it vanishes
identically in the case of uniform systems, and should not be confused with the shift of Tc

occurring in homogeneous Bose systems, which is instead due to many-body effects (see
Ref. [99]). (ii) The shift originating from the Bose-Fermi coupling, similarly to the one
arising from the Bose-Bose one, is negative if gBF > 0 and is positive if gBF < 0. If aBB

and aBF have opposite sign, the corresponding shifts of Tc go in opposite directions. (iii)
Result (5.19) holds to lowest order in gBB and gBF and, since it has been obtained using
LDA, is exact if the number of Bosons and Fermions is large. Finite-size corrections are
not included in (5.19). For a finite system, a reasonable estimate of the total shift of the
critical temperature can be obtained by adding to result (5.19) the finite-size correction
(5.13) of the non-interacting model.
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5.3 Results

We now concentrate on the relative shift
(
δTc/T 0

c

)
BF

due to the Boson-Fermion inter-
action. First of all we observe that

∂n0
B(r)

∂µB
=

1
(λB

T 0
c
)3kBT 0

c

g1/2(exp[−V B
ext(r)/kBT 0

c ]) , (5.20)

and T 0
c

∫
dr ∂n0

B/∂T = 3NB , where the derivatives are evaluated at the condensation
point of the non-interacting gas µ0

c = 0, T = T 0
c . Using the zeroth order Fermi density

distribution, i.e.

n0
F (r) = (λF

T )−3f3/2(exp{−[V F
ext(r)− µF ]/kBT}) , (5.21)

the relative shift can then be rewritten as:
(

δTc

T 0
c

)

BF

= − gBF

3NB

1
(λB

T 0
c
)3(λF

T 0
c
)3kBT 0

c

×
∫

dr g1/2(exp[−V B
ext(r)/kBT 0

c ]) (5.22)

× [
f3/2(exp{µF /kBTc})− f3/2(exp{[µF − V F

ext(r)]/kBT 0
c })

]
.

In the following, we shall assume that even if the trapping potentials of Bosons and
Fermions can have different oscillator frequencies, nevertheless
ωx/ω′x = ωy/ω′y = ωz/ω′z = ωB/ωF , i.e. the anisotropy is the same for the Bosonic
and Fermionic trapping potentials. This is always the case in today’s experiments, and
assuming otherwise would introduce unnecessary complications. In fact, the assumption
of equal anisotropies holds in general in magnetic traps since the confining potentials
depend only on the (common) external magnetic field, the magnetic moments, and the
masses of the atoms. Eqn. (5.22) contains the Fermion chemical potential µF (NF , T 0

c )
which has to be determined from Eqn. (5.17). Eqns. (5.22) and (5.17) have then to be
solved simultaneously. We notice that Eqn. (5.17) can be rewritten in dimensionless form
as

T̃ 3
F = 3

∫ ∞

0

dt
t2

exp(t− µ̃F ) + 1
, (5.23)

where we have introduced the reduced chemical potential µ̃F = µF /kBT 0
c and the reduced

Fermi temperature T̃F = TF /T 0
c . Eqn. (5.23) reveals that µ̃F is only a function of T̃F ,

which in turn is a measure of the degeneracy of the Fermi gas at T = T 0
c . In terms of

µ̃F and T̃F Eqn. (5.22) then becomes
(

δTc

T 0
c

)

BF

= −4πgBF

3NB

R3
F

(λB
T 0

c
)3(λF

T 0
c
)3kBT 0

c

×
∫

ds s2 g1/2(exp{−T̃F α s2})

× [
f3/2(exp{µ̃F })− f3/2(exp{µ̃F − T̃F s2})] . (5.24)

In writing Eqn. (5.24), we have rescaled each integration coordinate by the appropriate
Thomas-Fermi radius of the Fermion cloud R′i = (2εF /mF ω′ 2i )1/2. We have then intro-
duced the mean Fermi radius RF = (R′xR′yR′z)1/3 and named α = mBω2

B/mF ω2
F . Since

µ̃F depends only on T̃F through Eqn. (5.23), the integral in Eqn. (5.24) above depends
only on the values of the two parameters T̃F and α.



78 The critical temperature of BEC.

The system of Eqns. (5.24) and (5.23) for general T̃F and α can only be solved
numerically, and later we shall present the full numerical results for some specific choices
of the parameters. However, approximate analytical solutions exist in two limits: when
T̃F À 1 (i.e. TF À T 0

c ) where the Fermi gas is completely degenerate at T = T 0
c (Fermi-

Dirac regime), and when T̃F ¿ 1 (i.e. TF ¿ T 0
c ) so that at T 0

c Fermions behave as a
classical thermal gas (Boltzmann regime).

In order to clarify the connection between the two limits and the general numerical
solution, it is useful to further manipulate Eqn. (5.24). By explicitly evaluating the
prefactor, it can be finally recast in the convenient form

(
δTc

T 0
c

)

BF

= − 25/3

35/6πζ(3)

(
mF

mB
+ 1

)
aBF

`F
N

1/6
F · F (T̃F , α) , (5.25)

where

F (T̃F , α) = α3/2T̃F

∫
ds s2 g1/2(exp{−T̃F α s2})

× [
f3/2(exp{µ̃F })− f3/2(exp{µ̃F − T̃F s2})] , (5.26)

and `F =
√

h̄/mF ωF is the Fermionic oscillator length. Notice the formal analogy
between Eqn. (5.25) and Eqn. (5.14) for the shift (δTc/T 0

c )BB due to the Boson-Boson
interactions alone.

Let us begin by considering the Thomas-Fermi limit (T̃F À 1). In this limit, the
chemical potential of the Fermions µF tends to the Fermi energy εF = kBTF . Thus
µ̃F ' T̃F À 1. The limit of the Fermi functions in Eqn. (5.8) for x → ∞ is f3/2(x) ≈
4(lnx)3/2/3

√
π. This implies that the density profile of the Fermion cloud takes the well

known Thomas-Fermi shape

n0
F (r) = n0

F (0)
[
1− (x/R′x)2 − (y/R′y)2 − (z/R′z)

2
]3/2

, (5.27)

with n0
F (0) = (2εF mF /h̄2)3/2/(6π2), whenever the expression inside the square brackets

is positive, and n0
F (r) = 0 otherwise.

The function F (T̃F , α) then goes to the limiting form

F (T̃F , α) → 4
3
√

π
α3/2(T̃F )5/2

∞∑
n=1

1
n1/2

∫ 1

0

ds s2

× e−n T̃F α s2
[1− (1− s2)3/2] . (5.28)

In the above expression, we have expanded the Bose function (5.7) as g1/2(x) =
∑∞

n=1 xn/n1/2,
which is allowed since the argument x is always smaller than 1 in the present situ-
ation. We cannot perform a similar expansion for the Fermi function since µ̃F can
take any positive or negative values. We obtained Eqn. (5.28) in the limit T̃F À 1.
Therefore, if α is not too small (so that T̃F α À 1 still holds), then, for every n in
the series, the exponential is non-vanishing only for values of s ¿ 1, and we can
adopt the expansion 1 − (1 − s2)3/2 ' 3s2/2. The integral in Eqn. (5.28) becomes∫ 1

0
ds s4 e−n T̃F α s2 ' 3

√
π/[8(n T̃F α)5/2]. Finally, therefore, F (T̃F , α) → 3ζ(3)/4α and

the Thomas-Fermi prediction for the relative shift reads

(
δTc

T 0
c

)

BF

= − 31/6

21/3π

(
mF

mB
+ 1

)
mF ω2

F

mBω2
B

aBF

`F
N

1/6
F , (5.29)
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where 31/6/(21/3π) ' 0.304. We notice that in the Thomas-Fermi regime the shift is
independent of the number of Bosons NB and varies as the first inverse power of the
parameter α = mBω2

B/mF ω2
F .

We now consider the Boltzmann limit for the Fermi gas (T̃F ¿ 1). In this case, the
chemical potential µ̃F is large and negative and depends on T̃F as: µ̃F ≈ ln{(T̃F )3/6}.
In the limit x → 0, f3/2(x) ≈ x, and then

F (T̃F , α) → α3/2(T̃F )4

6

∞∑
n=1

1
n1/2

∫ ∞

0

ds s2

×
[
e−nT̃F αs2 − e−(nT̃F α+T̃F )s2

]
. (5.30)

Evaluation of the integrals is straightforward and yields

F (T̃F , α) →
√

π

24
(T̃F )5/2 · f(α) , (5.31)

with

f(α) =
∞∑

n=1

(
1
n2
− 1

n1/2(n + α−1)3/2

)
, (5.32)

so that:
(

δTc

T 0
c

)

BF

= − 1
24/3π1/2311/6ζ(3)

(
mF

mB
+ 1

)
aBF

`F
N

1/6
F (T̃F )5/2 · f(α) , (5.33)

where the numerical prefactor is ' 0.025.
We notice that f(α) in Eqn. (5.32) is a monotonically decreasing function of α. In

particular, one finds the following behaviors: f(α → 0) = π2/6, f(1) ' 0.85, and
f(α → ∞) = 3ζ(3)/2α. As one should expect, in the Boltzmann limit (T̃F ¿ 1), the
Bose-Fermi shift is negligible.

We now turn to the full numerical solution of Eqns. (5.25), (5.26), and (5.23) for
more general values of the degeneracy parameter T̃F . In Fig. 5.1, we show the dimen-
sionless function F (T̃F , α) as a function of T̃F for three different values of the parameter
α = mBω2

B/mF ω2
F , α = 0.1, 1, and 10. For fixed α, F (T̃F , α) is a monotonically non-

decreasing function of T̃F , which saturates for T̃F → ∞ at the value predicted in the
Thomas-Fermi regime 3ζ(3)/4α ' 0.9 α−1. For fixed T̃F , F (T̃F , α) increases by de-
creasing α. For the largest value of α (α = 10) the function F reaches its asymptotic
Thomas-Fermi value already at T̃F ' 5. For α = 1 and α = 0.1 the function saturates
for larger values of T̃F not shown in the figure. The reason for this difference can be
understood by recalling that the Thomas-Fermi result requires not only T̃F À 1, but
also T̃F À α−1 (see the discussion below Eqn. (5.28)).

The physically relevant regimes in current experiments fall roughly around α ' 1
and T̃F ' 1. In this respect, a particularly interesting situation is the one realized in
the Florence experiment [23], where a quantum degenerate trapped atomic mixture of
Fermionic 40K and Bosonic 87Rb has been recently produced. One of the appealing fea-
tures of this system is that the measured Boson-Fermion scattering length is large and
negative: aBF = −22 nm, giving rise to a fairly strong attractive Boson-Fermion interac-
tion. The shift

(
δTc/T 0

c

)
BF

is thus positive and opposite to the shift
(
δTc/T 0

c

)
BB

, since
for pure 87Rb the Boson-Boson scattering length is aBB = 6 nm, giving rise to a repul-
sive Boson-Boson interaction. In the Florence experiment, the two atomic species are
magnetically trapped, and are both prepared in their doubly polarized spin state. These
states experience the same trapping potential so that α = mBω2

B/mF ω2
F = 1, while the
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Figure 5.1: Dimensionless function F (T̃F , α) as a function of T̃F for the values α = 0.1
(dotted line), α = 1.0 (dashed line), and α = 10 (solid line).

number of Bosons and of Fermions are respectively NB = 2 × 104, NF = 104, so that
NF /NB = 0.5, and T̃F = TF /T 0

c ' 2.3. For the conditions of the Florence experiment the
shift (5.14) due to the Boson-Boson coupling turns out to be:

(
δTc/T 0

c

)
BB

' −0.037,
and is comparable with the shift (5.13) due to finite size effects, which is given by:(
δTc/T 0

c

)
fs

= −0.044. For α = 1 at T̃F ' 2.3, the function F is at about 1/3 of its
asymptotic value in the Thomas-Fermi regime, resulting in a Bose-Fermi shift consider-
ably smaller than the Bose-Bose one:

(
δTc/T 0

c

)
BF

' 0.012. In Fig. 2 we show the shift(
δTc/T 0

c

)
BF

as a function of the ratio NF /NB , with all the other parameters entering
Eqn. (5.25) fixed at the values of the Florence experiment [23]. In the same figure, we
include as a reference value the modulus of the Boson-Boson relative shift | (δTc/T 0

c

)
BB

|,
calculated using the values of the parameters given by the Florence experiment.

From Fig. 5.2, we see that, while in the present experimental situation the Boson-
Fermion shift is about 1/3 of the Boson-Boson one, by increasing the number of trapped
Fermions the two shifts become comparable at NF ' 5NB . The Boson-Fermion shift is
instead dominant at still larger values of NF . It is important to remark that, even if the
Bose-Fermi shift of the critical temperature is a small effect for the present experimental
conditions, it might be observable. Since the Fermions can be eliminated from the trap,
one can look for the differences in the transition temperature with and without Fermions.
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Figure 5.2: Boson-Fermion relative shift
(
δTc/T 0

c

)
BF

from Eqn. (5.25) (solid line) as a
function of the ratio NF /NB . Horizontal dashed line: value of the modulus | (δTc/T 0

c

)
BB

|
of the Boson-Boson shift (5.14). All other parameters, except the number of Fermions
NF , have been fixed at the values of the Florence experiment.
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Chapter 6

Bose–Fermi Mixtures in
optical lattices

6.1 Introduction to optical lattices

Recent spectacular progress in the manipulation of neutral atoms in optical lattices [106,
107, 108] has opened the way to the simulation of complex quantum systems of condensed
matter physics, such as high–Tc superconductors, Hall systems, and superfluid 4He, by
means of atomic systems with perfectly controllable physical parameters [109]. Optical
lattices are stable periodic arrays of microscopic potentials created by the standing waves
of intersecting laser beams [110]. Atoms can be confined to different lattice sites, and
by varying the strength of the periodic potential it is possible to tune the inter-atomic
interactions with great precision. They can be enhanced well into regimes of strong
correlation, even in the dilute limit. The transition to a strong coupling regime can be
realized by increasing the depth of the lattice potential wells, a quantity that is directly
proportional to the intensity of the laser light. This is an experimental parameter that can
be controlled with great precision. For this reason, besides the fundamental interest for
the investigation of quantum phase transitions [111] and other basic quantum phenomena
[112, 113, 114, 87, 115, 116, 117], optical lattices have become an important practical
tool for applications, ranging from laser cooling [118] to quantum control and information
processing [119], and quantum computation [120, 121, 122, 123, 124, 125].

As compared to systems with no optical lattices that have been considered in the
previous chapters, the new phases present in optical lattices are the superfluid phase and
the Mott–insulating phase. In the former, the particles can easily hop from lattice site
to lattice site and thus behave as a superfluid (SF). As the lattice strength is increased,
tunneling is inhibited due to a larger potential barrier between the lattice sites. At
some critical lattice strength, the particles are completely localized at a certain lattice
site and tunneling is completely suppressed. This is the so-called Mott-insulator (MI)
phase. The present chapter is concerned with the study of dilute mixtures of interacting
Bosonic and Fermionic neutral atoms subject to an optical lattice and a superimposed
trapping harmonic potential at zero temperature. Again, we assume the Fermions to
be identical, so that there are only s–wave Boson–Boson and Fermion–Boson contact
interactions present. Mixing vs. demixing phase transitions a nd phase transitions of the
type SF–MI are investigated in this setting. Due to the approximations we use in the
following we will not be able to describe phase transitions to the collapse regime that
has been studied in previous chapters for continuous systems. In this case, the reader is
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referred to future work.
The theory of Bosonic atoms in optical lattices has been developed [112] by assuming

that the atoms are confined to the lowest Bloch band of the periodic potential. It can
then be shown that the system is effectively described by a single–band Bose–Hubbard
model Hamiltonian [126]. In such a model, the superfluid–insulator transition is predicted
to occur when the on site Boson–Boson interaction energy becomes comparable to the
hopping energy between adjacent lattice sites. This situation can be experimentally
achieved by increasing the strength of the lattice potential, which results in a strong
suppression of the kinetic (hopping) energy term. In this way, the superfluid–Mott-
insulator quantum phase transition has been realized by loading an ultracold atomic
Bose–Einstein condensate in an optical lattice [107]. The system of interacting Fermions
in optical lattices was exactly solved in 1968 by Lieb and Wu [127] by means of a Bethe
Ansatz. Since we treat the Fermions to be non-interacting the latter work has not so
many implications to the work presented here, while we will often refer to methods uses
for the Bosonic systems.

6.2 The Hubbard Hamiltonian

We start by introducing the Hamiltonian for a Bose–Fermi mixture loaded into optical
lattice potentials and confined by additional, slowly varying, external (harmonic) trap-
ping potentials. The Hamiltonian is similar to the one of chapter 4, only that now the
external potentials are of the following form:

V̂B =
∫

d3rΦ̂†(r) (VB(r) + PB(r)) Φ̂(r) , (6.1)

V̂F =
∫

d3rΨ̂†(r) (VF (r) + PF (r)) Ψ̂(r) , (6.2)

and are due to the magnetic trapping and standing laser waves. In the subsequent
analysis, we will consider the harmonic approximation of a typical quadrupolar magnetic
field with strong anisotropy in the transverse directions y and z, i.e.,

VB(r) ' mBω2
B(x2 + λ2y2 + λ2z2)/2 , (6.3)

and
VF (r) ' mF ω2

F (x2 + λ2y2 + λ2z2)/2 , (6.4)

where λ À 1 is the anisotropy parameter. Moreover, if we assume trapping in the same
magnetic state for the Bosons and the Fermions, then the trapping frequencies are related
according to ωF /ωB = (mB/mF )1/2, so that the two potentials coincide: VB(r) = VF (r).
The ground–state harmonic oscillator lengths, however, are different due to the different
masses, and also differ for the x-direction on the one hand and the y and z-directions on
the other hand:

`
‖
B/F =

√
h̄/(mB/F ωB/F ) (6.5)

in the x direction, and `⊥B/F = `
‖
B/F /

√
λ in the y and z directions. We next consider a

lattice structure for the Bosons and the Fermions in the x–direction, associated to the
corresponding Bosonic and Fermionic one–dimensional optical lattice potentials PB(x)
and PF (x) are

PB(x) = V 0
B sin2(πx/a) ,

PF (x) = V 0
F sin2(πx/a) , (6.6)
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where a is the lattice spacing associated to the frequency ωL = πc/a of the laser light
with c being the speed of light. The optical potentials are due to the AC Stark shift and
their strengths are [9]

V 0
B/F ≈ 6πc2

ω3
B/F

ΓB/F I

ωL − ωB/F
, (6.7)

where the intensity at the maximum of the standing wave is four times the intensity I
of a laser beam. Usually the natural width ΓB/F and the atomic frequencies ωB/F differ
only slightly. If the lattice potentials are produced by a far off–resonant laser for both
species, then also the ration of the two detuning frequencies ωL − ωB/F is close to one
and we can approximate that the lattice potential strengths are equal for both Fermions
and Bosons: V 0

F = V 0
B = V0, and the two optical lattices coincide. This is the situation

we will always consider in the following.
In the presence of a strong optical lattice and a sufficiently shallow external confine-

ment, to incorporate the localization of the particles at the lattice sites, one can choose a
different expansion of the field operators as before (cf. Eqns. (2.27) and (2.28)), namely
in terms of the so-called Wannier functions. We write:

Φ̂(r) =
∑

i,j

âijw
B
j (r− ri), (6.8)

Ψ̂(r) =
∑

i,j

b̂ijw
F
j (r− ri) , (6.9)

where the Wannier functions are defined as the eigenfunctions of the ”local single-particle
Hamilton operators”:

[
h̄2∇2

2mB/F
+ PB/F (r) + VB/F (r)

]
w

B/F
j (r− ri) = E

B/F
i,j w

B/F
j (r− ri), (6.10)

with the boundary conditions that the Wannier functions w
B/F
j (r − ri) are strongly

localized at ri. Then i is the site index, the points xi = ia indicate the minima of
the lattice potential, and the index i runs on positive and negative integers, the origin
of the lattice being fixed at i = 0 so that it coincides with the center (the minimum)
of the external trapping potential. j is the so-called band index. We agree that j is
defined in such a way that E

B/F
i,j grows with j. In writing the above expansion we have

already assumed that the E
B/F
i,j depends on the lattice site only by and additive constant

of mB/F ω2
B/F x2

i /2 and w
B/F
j (r − ri) only by a shift of the origin. This assumption is

satisfied if the external potential can be assumed to be constant between two neighboring
lattice sites which is the case if the trapping potentials are very shallow in the lattice
direction. This is again a sort of local density approximation, and we comment on it later
in more detail. To further simplify we retain only the lowest band j = 0 at each site.
This way the Wannier basis is by no means complete anymore and the restricted Hilbert
space that is spanned by the lowest band Wannier functions is much smaller than the full
Hilbert space. We assume, however, that the ground state of the system is contained in
the restricted Hilbert space, which is assured if the excitation energies E

B/F
j −E

B/F
0 are

larger that the typical on-site interaction energies. We also discuss the implications of
this condition on our model below. To simplify even more we use the observation that if
the Wannier functions are very much localized at a site ri = (xi, y, z) only the behavior
of the potential in Eqn. (6.10) very close to the point ri is relevant and thus it is sufficient
to expand the potential to second order in r − ri. We than have a harmonic potential
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also in the x-direction and the lowest band Wannier functions factorize into Gaussian
states:

w
B/F
j (r− ri) = wB/F

x (x− xi)wB/F
y (y)wB/F

z (z), (6.11)

where

wB/F
y (y) =

exp
[
−y2/2(`⊥B/F )2

]

π1/4(`⊥B/F )1/2
, (6.12)

wB/F
z (z) =

exp
[
−z2/2(`⊥B/F )2

]

π1/4(`⊥B/F )1/2
, (6.13)

and

wB/F
x (x− xi) =

exp
[
−(x− xi)2/2(`0B/F )2

]

π1/4(`0B/F )1/2
, (6.14)

where
`0B/F = a/[π(V0/ER

B/F )1/4] , (6.15)

is the width of the harmonic oscillator potential wells at each lattice site, with ER
B =

(πh̄)2/2a2mB and ER
F = (πh̄)2/2a2mF being the Boson and Fermion recoil energies,

respectively. In principle, one could even solve the so–called 1 − D Matthieu equation
which results from Eqn. (6.10) in the x-direction without the harmonic expansion of the
potentials. This is, however, somewhat cumbersome and in the following we will work in
the Gaussian approximation. The single–band expansions of the field operators in terms
these functions now read:

Φ̂(r) =
∑

i

âiw
B
x (x− xi)wB

y (y)wB
z (z) , (6.16)

Ψ̂(r) =
∑

i

b̂iw
F
x (x− xi)wF

y (y)wF
z (z) , (6.17)

where âi and b̂i are, respectively, the Bosonic and Fermionic annihilation operators of
the harmonic ground state at the i–th lattice site.

As already mentioned, we will consider the physical situation of very shallow trap-
ping potentials in x-direction, such that `

‖
B/F À aNB/F and consequently local density

approximation can be applied in the study of the ground–state properties of the system.
Therefore, when exploiting the Wannier function expansions (6.16) and (6.17) to map
the full Hamiltonian (4.1) into its lattice version, we discard all terms that are of order
(aNB/F /`

‖
B/F )2 or of higher powers of it, which appear due to the fact that the Wannier

functions localized at adjacent lattice are not exactly orthogonal. Otherwise, nonlocal
effects caused by the trapping potential, like site–dependent hopping terms, have to be
considered.

In this physical setting, the Wannier function expansions (6.16) and (6.17) map the
full Hamiltonian (4.1) into the following Hubbard type Hamiltonian:

Ĥ = −1
2

∑

i

(
JB â†i+1âi + JF b̂†i+1b̂i + H. c.

)
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+
UBB

2

∑

i

n̂
(i)
B (n̂(i)

B − 1) + UBF

∑

i

n̂
(i)
B n̂

(i)
F

+
∑

i

V
(i)
B n̂

(i)
B +

∑

i

V
(i)
F n̂

(i)
F

+ h̄
(
λωB + ω0

B/2
)
N̂B + h̄

(
λωF + ω0

F /2
)
N̂F . (6.18)

The first line in the above Bose–Fermi Hubbard Hamiltonian describes independent
nearest–neighbor hopping of Bosons and Fermions, with amplitudes JB and JF , re-
spectively. The terms in the second line describe Boson–Boson on site repulsion (with
UBB > 0) and Boson–Fermion on site interaction. This interaction can be repulsive or
attractive, depending on the sign of UBF . The third line describes the energy offset at
each lattice site due to the x component of the external trapping potentials VB/F (r),
and the last line contains the overall constant zero–point energy terms due to the y and
z components of VB/F (r) and to the lattice potential P (x). The on site interaction and
offset energy terms are simple functions of the on site Boson and Fermion occupation
number operators n̂

(i)
B = â†i âi and n̂

(i)
F = b̂†i b̂i, while the zero–point energy terms are

proportional to the total particle number operators N̂B =
∑

i â†i âi and N̂F =
∑

i b̂†i b̂i.
The frequency

ω0
B/F = h̄/[(`0B/F )2mB/F ] (6.19)

fixes the Bosonic and Fermionic harmonic oscillations in each lattice well. The relevant
parameters entering in the Hamiltonian are the on site values of the trapping harmonic
potential

V
(i)
B/F =

mB/F

2
ω2

B/F x2
i , (6.20)

the nearest–neighbor hopping amplitudes between adjacent sites xi and xi+1 for Bosons
and Fermions

JB/F =
∫

dx wB/F
x (x− xi)

[
− h̄2

2mB/F

d2

dx2

+ V0 sin2
(
π

x

a

) ]
wB/F

x (x− xi+1) , (6.21)

the strength of the on site repulsion energy between two Bosonic atoms at the same
lattice site

UBB =
4πh̄2aBB

mB

∫
dx (wB

x (x− xi))4

×
∫

dy (wB
y (y))4

∫
dz (wB

z (z))4 , (6.22)

and the strength of the on site interaction energy (either repulsive or attractive) between
a Bosonic and a Fermionic atom at the same lattice site

UBF =
2πh̄2aBF

m

∫
dx

[
wB

x (x− xi)wF
x (x− xi)

]2
(6.23)

×
∫

dy
[
wB

y (y)wF
y (y)

]2 ∫
dz

[
wB

z (z)wF
z (z)

]2
.

In typical situations, we may neglect next–to–nearest neighbor hopping amplitudes and
nearest–neighbor interaction couplings that are usually some orders of magnitude smaller,
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so that the Hamiltonian (6.18) provides a rather accurate model for the dynamics of a
Bose–Fermi mixture with three–dimensional scattering in a one–dimensional periodic po-
tential. Terms involving nearest–neighbor interaction strengths and/or next–to–nearest
neighbor hopping amplitudes can become relevant and need to be included, e.g., when
considering phonon exchange between Fermions, and this would lead to a Bose–Fermi
analog of the so–called extended Hubbard models. To evaluate estimates for the pa-
rameters entering the Bose–Fermi Hubbard Hamiltonian (6.18) using Eqns. (6.12),(6.13)
and (6.14), we will set the Boson recoil energy ER

B = h̄2π2/(2mBa2) as the unit of en-
ergy. We then introduce the dimensionless quantity Ṽ0 = V0/ER

B , and, analogously, the
dimensionless quantities ŨBB , ŨBF , Ṽ

(i)
B , Ṽ

(i)
F , J̃B , and J̃F . We then have

ŨBB =

√
8
π3

aBB a

(`⊥B)2
Ṽ

1/4
0 , (6.24)

ŨBF =

√
8
π3

(
1 +

mB

mF

)
aBF a

(`⊥B)2 + (`⊥F )2
Ṽ

1/4
0 , (6.25)

Ṽ
(i)
B =

i2

π2(`‖B/a)4
, Ṽ

(i)
F =

mB

mF

i2

π2(`‖F /a)4
, (6.26)

J̃B =
(

π2

4
− 1

)
Ṽ0 exp

[
−π2

4

√
Ṽ0

]
, (6.27)

J̃F =
(

π2

4
− 1

)
Ṽ0 exp

[
−π2

4

√
mF

mB
Ṽ0

]
. (6.28)

In Fig. 6.1 we show the dependencies of the these parameters on the potential strength
Ṽ0 (compare also Ref. [125]). For reference we have included as well the overlap integral
〈w(x − xi)|w(x − xi+1)〉 of adjacent Wannier functions. The overlap is negligible but
for very small values of the potential strength, confirming that terms of the order of the
overlap integral can be neglected in the Hamiltonian. The Gaussian approximation holds
rather well as can be seen by comparing the associated Bosonic hopping amplitude JB

with the one obtained by using the exact 1–D Mathieu equation [117].
Besides the conditions mentioned earlier, all the expressions derived in the present

section are justified under the following circumstances: First of all, we must require that
the two–body scattering processes are not influenced by the confinements, a condition
that is guaranteed if the lengths of the confining and lattice potentials in all directions
are much larger than the Boson–Boson and Fermion–Boson scattering lengths. Next,
the single–band structure of the lattice Hamiltonian is assured if the lattice spacing a is
much greater than the harmonic confinements in each direction at all lattice sites. On
the other hand, in this limit the harmonic approximation for the Wannier functions at
each lattice well is automatically satisfied. Finally, as mentioned earlier, the assumption
of a slowly varying confining potential such that LDA is applicable leads to the condition
`
‖
B/F À aNB/F . We can summarize all the above conditions with the following chain of

inequalities:
{|aBF |, aBB} ¿ {`0B/F , `⊥B/F } ¿ a ¿ `

‖
B/F /NB/F . (6.29)

Our model is for some aspects unrealistic, since in present experimental situations the
transverse confinements cannot be made very strong. Therefore a multi–band structure
can appear with several radial states being occupied, as reported in a recent experiment
by the Florence group on Bose–Fermi mixtures in a 1–D optical lattice [128].
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Figure 6.1: Top to bottom: the Fermion hopping amplitude J̃F for mF /mB = 0.5 (dashed
line); the Boson hopping amplitude J̃B (solid line); the Fermion hopping amplitude for
mF /mB = 1.5 (dotted–dashed line); and, for comparison, the overlap integral 〈w(x −
xi)|w(x− xi+1)〉 of adjacent Wannier functions (dotted line).

6.3 Phase stability and the superfluid transition

In this section, we investigate the zero temperature ground state properties of the sys-
tem in a mean field approximation. For convenience, we will adopt a grand-canonical
description through the Hamiltonian

K̂ = Ĥ − µBN̂B − µF N̂F , (6.30)

where µB and µF are the Bosonic and Fermionic chemical potentials. According to the
Hohenberg–Kohn theorem, the ground state energy

E = 〈Ψ0|K̂|Ψ0〉 (6.31)

is a functional of the on site Bosonic and Fermionic densities n
(i)
B = 〈â†i âi〉 and n

(i)
F =

〈b̂†i b̂i〉, where the expectation values are taken with respect to the ground state with state
vector |Ψ0〉. We decompose the functional E according to

E = EB + EF + EBF − µB

∑

i

n
(i)
B − µF

∑

i

n
(i)
F , (6.32)

where EB is the energy contribution depending only on the Boson parameters JB , UBB ,
V

(i)
B ; EF is the energy depending only on the Fermion parameters; and EBF is the

term due to the Boson–Fermion interaction. We treat this latter term in mean field
approximation: neglecting exchange–correlation effects:

EBF = UBF

∑

i

n
(i)
B n

(i)
F . (6.33)

Exchang–correlation effects have been recently studied for the case of homogeneous
mixtures in the continuum (see chapter 3 and Ref. [88]). For the Fermion energy EF , we
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take the energy of the noninteracting homogeneous system and exploit LDA on it,

EF = −2JF

π

∑

i

sin(πn
(i)
F ) +

∑

i

V
(i)
F n

(i)
F . (6.34)

This approximate description of the Fermions is well justified in the presence of a slowly
varying trapping potential (so that LDA can be applied), when there are no direct inter-
actions among the Fermions (as in our case), and moreover when one can neglect induced
phonon–mediated self–interactions due to the presence of the Bosons. Therefore, in this
situation, the nontrivial features of different quantum phases will regard only the Bosonic
sector and not the Fermionic one. However, the presence of the Fermions will indirectly
contribute to the properties of the different Bosonic phases, and this is the subject that
we will study in the following.

In order to find an expression for the Boson energy EB , we will proceed in steps of
increasing accuracy. First we perform a very simple mean field analysis in two extreme
limits: a completely superfluid Boson ground state and a totally Mott–insulating Boson
ground state. In the latter case, we will provide a simple criterion for stability of the
mixture against demixing. Next, we will perform a perturbation expansion around the
Mott–insulating Boson ground state to recover perturbatively the phase boundary against
transition to superfluidity. Finally, in the next section, we will study the ground state
properties of the mixture using a Gutzwiller Ansatz for the Bosons capable of describing
the intermediate regimes between the insulating and superfluid Bosonic phases.

We first consider the Bosons to be superfluid. In this regime, the chemical potential
and the number of particles in a homogeneous system of pure Bosons are related, to
lowest order in UBB , via [129]:

µB = UBBn0 − 2JB , (6.35)

where n0 is the density of condensed Bosons. Additionally, for very weak interaction
n0 ≈ nB . Exploiting this result in LDA and using the mean field expression for the
Bose–Fermi interaction energy we can then write for the inhomogeneous Bose–Fermi
mixture at a given lattice site:

UBBn
(i)
B = µB + 2JB − V

(i)
B − UBF n

(i)
F . (6.36)

Next, we consider the case of a Mott–insulating Bosonic phase. To lowest order in JB we
neglect the kinetic term altogether. Then it is easily shown that the relation between the
Bosonic chemical potential and the Bosonic density for a homogeneous system of pure
Bosons is given by

µB = UBBnB − UBB/2 . (6.37)

By the same strategy as before, we have in the inhomogeneous case at a given lattice
site:

UBBn
(i)
B = µB + UBB/2− V

(i)
B − UBF n

(i)
F . (6.38)

Comparing Eqns. (6.36) and (6.38), we observe the same behavior of the on site density
profiles but for a constant correction to the Boson chemical potential depending whether
the Bosons are in a superfluid or in a Mott–insulating state. Finally, differentiating the
energy functional with respect to the on site populations of the Fermions, we determine
the associated density field and the set of coupled equations describing the ground state
of the mixture at any lattice site,

UBBn
(i)
B = µ′B − V

(i)
B − UBF n

(i)
F , (6.39)
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−2JF cos(πn
(i)
F ) = µF − V

(i)
F − UBF n

(i)
B , (6.40)

where µ′B is the proper expression of the Boson chemical potential according to whether
the Bosons are in the Mott–insulating or superfluid regime. These equations are valid at
a given lattice site i if µ′B −V

(i)
B −UBF n

(i)
F > 0, otherwise one must set n

(i)
B = 0. On the

other hand, if
(µF − V

(i)
F − UBF n

(i)
B )/2JF < 0 (6.41)

we must impose n
(i)
F = 0 at the given lattice site, while n

(i)
F = 1 must be imposed when

(µF −V
(i)
F −UBF n

(i)
B )/2JF > 1. These expressions are the lattice analogs of the Thomas–

Fermi description of Boson–Fermion mixtures in the continuum. We remark that in the
Mott–insulating regime the Boson on site populations n

(i)
B must be rounded off to the

integer closest to the solutions of Eqns. (6.39)–(6.40).
In the Mott–insulating regime, we can determine a criterion of linear stability against

phase separation of the two species if we expand the energy functional E to second order
in the small density variations δn

(i)
B/F around the minimum provided by the solution of

Eqns. (6.39)–(6.40):

δ2E =
1
2

∑

i

(
δn

(i)
B

δn
(i)
F

)
·
[(

UBB UBF

UBF 2πJF sin(πn
(i)
F )

)

×
(

δn
(i)
B

δn
(i)
F

)]
. (6.42)

This quadratic form is positive at a given site i if and only if

2πJF sin(πn
(i)
F )UBB > U2

BF (6.43)

and 2πJF sin(πn
(i)
F ) + UBB ≥ 0. This last condition is always satisfied for UBB > 0 and

identical Fermions. If this is not the case for every site i, then the ground state is not
stable against demixing. This result is similar to that recently obtained for a mixture
of two different Boson species on a lattice [130], which states that the mixture is stable
if U1U2 > U2

12, where U1 and U2 are the Boson–Boson interaction strengths of species 1
and 2 respectively, and U12 is the interspecies coupling. The form of expression (6.43)
then suggests that the Pauli on site energy 2πJF sin(πn

(i)
F ) has the meaning of a density–

dependent interaction strength. A similar correspondence was previously pointed out for
homogeneous Bose–Fermi mixtures in the continuum [36].

Introducing a perturbation expansion with respect to JB around the Mott–insulating
ground state we can recover the zero–temperature phase transition to the superfluid
phase. The reverse, i.e. to build a perturbative expansion in powers of UBB around the
superfluid ground state fails to describe the transition to a Mott insulator, as pointed
out in Ref. [129] for the pure Bose case. We follow the procedure adopted in Ref. [130]
for the two–component Boson mixture, with the due modifications for the present case
of a Boson–Fermion mixture, by treating the Bosonic kinetic (hopping) term as the
perturbation with respect to the Bosonic Mott–insulating ground state. This scheme was
first introduced for one–component Bose systems in Refs. [129, 131, 132]. We proceed
by expanding the ground state energy with respect to the (local) Bosonic superfluid
parameter ψ(i) = 〈âi〉, which we assume to be real. A mean–field prescription of the
Bosonic hopping energy in terms of the superfluid parameter reads

T̂B = −1
2
JB

∑

i

â†i+1âi + H. c.
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≈ −1
2
JB

∑

i

ψ(i+1)âi + â†i+1ψ
(i) − ψ(i+1)ψ(i) + H. c.. (6.44)

This term is regarded as a perturbation to the other terms in Eqn. (6.18). The zeroth

order energies E0(|m(i)
B 〉) in a Mott-insulting state |m(i)

B 〉 =
∏

i
(â†

i
)
m

(i)
B√

m
(i)
B

!
|0〉 are simply

found from Eqn. (6.38). Building up a perturbation series to second order in JB we have

E = E0(|n(i)
B 〉) + 〈n(i)

B |T̂B |n(i)
B 〉+

∑

|m(i)
B
〉6=|n(i)

B
〉

∣∣∣〈m(i)
B |T̂B |n(i)

B 〉
∣∣∣
2

E0(|n(i)
B 〉)− E0(|m(i)

B 〉)
, (6.45)

where |n(i)
B 〉 is the (Mott–insulating) ground state. The first order term only stems from

mean-fields in Eqn. (6.44) since the expectation values of the creation and destruction
operators appearing in Eqn. (6.44) vanish in the Mott–insulating ground state. The
second order term can only couple states to the ground state whose occupation number
at a site i differ from the ones of the ground state by one. After some algebra we get the
seconder order expansion

E = E0(|n(i)
B 〉) + JB

∑

i

ψ(i+1)ψ(i) + 2J2
B

∑

i

ψ(i+1)ψ(i)

×
[

n
(i)
B

−µB + UBB(n(i)
B − 1) + V

(i)
B + UBF n

(i)
F

+
n

(i)
B + 1

µB − UBBn
(i)
B − V

(i)
B − UBF n

(i)
F

+

]
(6.46)

At the phase boundary between a Mott insulator (MI) and a superfluid (SF) the expan-
sion coefficients of ψ(i+1)ψ(i) must vanish so that the energy functional is differentiable
(the phase transition is of second order). This yields the following criterion for the onset
of the transition to the (local) SF state:

UBB(2n
(i)
B − 1)− 2JB

−
(
U2

BB − 4U2
BB(2n

(i)
B + 1) + 4J2

B

)1/2

< µB − V
(i)
B − UBF n

(i)
F

< UBB(2n
(i)
B − 1)− 2JB

+
(
U2

BB − 4U2
BB(2n

(i)
B + 1) + 4J2

B

)1/2

. (6.47)

The minimum value of UBB/JB , where a MI phase can exist, is given by the condition

UBB/JB = 4n
(i)
B + 2 + 2

√
(2n

(i)
B + 1)2 − 1 , (6.48)

and it involves the Fermionic sector indirectly through the dependence of n
(i)
B on the

Fermionic parameters and density distributions provided by Eqns. (6.39) – (6.40). Apart
from this important modification, the phase diagram, at this level of approximation, is
analogous to that of a one–component Bose system.
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6.4 Number–conserving Gutzwiller Ansatz and nu-
merical analysis

The simplest Ansatz for the Boson ground state being capable of describing both the SF
and the MI phases is the Gutzwiller Ansatz, which contains the mean field approximations
previously discussed as special cases. In contrast to the previous discussion, we assure
particle number conservation exactly and not via the chemical potentials. The number–
conserving Gutzwiller Ansatz consists of factorizing the amplitudes of superpositions of
all possible states of sharp local particle numbers consistent with a fixed total number of
Bosons NB , in the following way [133]:

|Ψ〉B 7−→
∑

∑
j

nj=NB

∏

i

f (i)
ni

(â†i )
ni

√
ni!

|0〉 . (6.49)

Using the Gutzwiller Ansatz in the determination of the energy functional, while keeping
the same approximations previously introduced for the Boson–Fermion interaction and
the Fermion energy, the total ground state energy reads

E = EB + EF + UBF

∑

i

n
(i)
B n

(i)
F , (6.50)

where the subsidiary conditions ensuring particle number conservation are
∑

i

n
(i)
B =

∑

i

〈â†i âi〉 = NB , (6.51)

∑

i

n
(i)
F =

∑

i

〈b̂†i b̂i〉 = NF . (6.52)

The Boson energy contribution is now

EB = −1
2
JB

(∑

i

ψ(i+1)ψ(i) + C. c.

)

+
∑

i

(
UBB

2
(σ(i)

B − n
(i)
B ) + V

(i)
B n

(i)
B

)
, (6.53)

and the Bosonic observables are related to the Gutzwiller amplitudes by

n
(i)
B =

∞∑
n=0

n(f (i)
n )2, (6.54)

σ
(i)
B = 〈â†i âiâ

†
i âi〉 =

∞∑
n=0

n2(f (i)
n )2, (6.55)

ψ(i) = 〈âi〉 =
∞∑

n=0

√
n + 1f (i)

n f
(i)
n+1 . (6.56)

Moreover, we must impose the natural constraints that

∞∑
n=0

(f (i)
n )2 = 1, (6.57)

0 ≤ n
(i)
F ≤ 1, (6.58)
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for each lattice site i, reflecting the fact that the Gutzwiller amplitudes form a probability
distribution for each lattice site, and that the on site Fermion occupation number cannot
exceed one.

To identify the ground state amounts to solving a constrained optimization problem:
one has to minimize the energy functional (6.53) subject to the constraints given by
Eqns. (6.51) and (6.52), together with Eqns. (6.57) and (6.58).
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Figure 6.2: On site Bosonic densities for a Bose–Fermi repulsion aBF = 0.04, as a function
of the lattice potential strength. In this figure – as well as in the following figures – Ṽ0

runs from 1 to 8.

We have solved the problem numerically for a small system of ten particles (five
Bosons and five Fermions). The first observation is that the optimization problem is not
a convex optimization problem. Hence, one has to expect several local, “poorer” extrema
in addition to the (not necessarily unique) global one. The numerical solution of this
optimization problem has been performed first using a simulated annealing method [134]
with an appropriate logarithmic annealing schedule. The quadratic constraints (6.57)
and (6.58) have been incorporated in a dynamical penalty formulation (see, e.g., Ref.
[135]). Finally, for the local refinement the Nelder–Mead downhill simplex method [136]
has been applied.

In Fig. 6.2 we show the change of the on site Bosonic densities with increasing lat-
tice potential strength Ṽ0 for a system of five Bosons and five Fermions with moderate
repulsive Boson–Fermion interaction. We note from Fig. 6.2 that as the strength of the
lattice potential increases the Bosons go in a complete Mott–insulating phase, forming
a block crystalline configuration around the center of the trap (which coincides with the
origin of the optical lattice) with exactly one Boson per lattice site. The corresponding
on site Fermionic densities are plotted in Fig. 6.3. From both figures we can see that, if
UBF > 0, by increasing the lattice potential strength the system eventually undergoes
simultaneously a Boson MI transition and complete phase separation, in accordance with
Eqn. (6.43) along with Eqns. (6.24) – (6.28).

The local Bosonic superfluid parameter ψ(i) for the same physical situation is shown
in Fig. 6.4. We can see a rather clear signature of the onset of a phase transition to a
Mott–insulator regime when the superfluid parameter suddenly drops to very low values
at a critical lattice potential strength Ṽ c

0 ' 7.
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Figure 6.3: On site Fermionic densities for a Bose–Fermi repulsion aBF = 0.04, as a
function of the lattice potential strength.

We next consider the ground–state properties in the case of an attractive Boson–
Fermion interaction. Because of the strong attraction with growing lattice strength,
the Fermions follow the Bosons in building a sharp crystalline block around the center
of the trap, as can be seen from Figs. 6.5 and 6.6. We cannot expect in this case to
observe a simultaneous mean field collapse like the one discussed in previous chapters
for continuous systems, as this possibility is forbidden in a single–band approximation.
Finally, we consider the behavior of the Bosonic superfluid on site parameter in the
case of a Boson–Fermion attractive interaction. Comparing Fig. 6.7 with Fig. 6.4, we
see that the transition to a Mott insulating phase for the Bosons takes place at the
same lattice potential strength, irrespectively of the repulsive or attractive nature of the
Boson–Fermion interaction. This finding confirms the results of the mean field analysis
presented in the previous section.

6.5 Mirror symmetry breaking and transition to de-
generacy

The above optimization problem associated with the constrained minimization of the
energy is not convex, hence there can be many local minima in addition to the global
one. However, even the ground state may be approximately or exactly degenerate. In
fact, this is what happens in the case of Boson–Boson and Boson–Fermion repulsion for
large values of the lattice potential strength Ṽ0. As Ṽ0 grows, it becomes eventually
energetically more favorable for the bosons to be arranged in single–particle occupancy
of the available sites around the center of the external trap. The Bosonic and Fermionic
on–site occupation numbers can only assume the values 0 or 1, and a definite Boson–
Fermion symmetry is established in the Bose–Fermi Hubbard Hamiltonian assuming that
the on site Fermionic and Bosonic trapping potentials coincide.

A similar transmutation of Bosons into Fermions in strong optical lattices has been
pointed out by Paredes and Cirac in a recent paper [115]. They consider a model of
pure Bosons in an optical lattice and show that in the limit of very strong Boson–Boson
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Figure 6.4: The Bosonic superfluid on site order parameter for a Bose-Fermi repulsion
aBF = 0.04, as a function of the lattice potential strength.

on site interaction, the Bosonic operators can be mapped into Fermionic operators by
means of the well known Jordan–Wigner transformation. Let us consider what happens
in the case of a Boson–Fermion mixture. As the lattice strength grows, configurations of
lowest energy that are mirror–symmetric with respect to the center of the lattice, like e.g.
those of Figs. 2 and 3, become approximately energetically equivalent to other symmetric
configurations (e.g., a checkerboard of alternating Bosons and Fermions with one particle
per lattice site), as well as to nonsymmetric configurations (like a succession of four
Fermions followed by five Bosons and then a last Fermion, again with one particle per
lattice site), and mirror symmetry breaking takes place. We may thus consider sequences
of energy functionals with increasing lattice potential strengths Ṽ0. For each value of Ṽ0,
one may identify a ground state. Then, the difference in energy of this ground state to
those states that can be obtained by interchanging the role of Fermions and Bosons will
converge to zero as Ṽ0 grows. The Boson hopping contribution will become negligible,
whereas the behavior of ŨBB will enforce the mean Bosonic on site occupation number
to be at most one. Hence, for each lattice site, the constraints on the Boson and Fermion
occupation numbers become identical (at most one Boson or one Fermion per lattice
site). Notice that the suppression of the hopping terms is exponential. Moreover, since
Ṽ

(i)
B = Ṽ

(i)
F for all lattice sites i, the larger the value of Ṽ0, the more symmetric is the

role of Bosons and Fermions. There are then many ground states that are degenerate
in energy with respect to any permutation of lattice sites – as long as all particles are
located around the minimum of the confining external potential Ṽ

(0)
B = Ṽ

(0)
F = 0. These

degenerate configurations will be given by all possible symmetric and nonsymmetric
Fermion and Boson distributions in a region around the center of the lattice, with every
site of the region occupied by one and only one particle. Such possible configurations are
for example checkerboard alternating patterns of Bosons and Fermions, or Mott Bosonic
central configurations with Fermionic wings on the sides, or consecutive block crystalline
arrangements of variable length of Bosons and Fermions. In brief, while the Hamiltonian
formally retains its mirror symmetry under reflection of the lattice around its center, the
degenerate ground states need not, and spontaneous mirror symmetry breaking occurs.
At the same time complete Boson–Fermion exchange symmetry sets on. No ground state
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Figure 6.5: On site Bosonic densities for a Bose–Fermi attraction aBF = −0.04, as a
function of the lattice potential strength.

is a priori favored compared to any other: any random pattern of consecutive Bosons and
Fermions located around the minimum of the external trapping potential is a legitimate
ground state. Fig. 6.8 shows representative on site Bosonic densities in the regime of
large values of Ṽ0 around Ṽ0 = 50 for the case of Boson–Boson and Boson–Fermion
repulsion in a system composed of five Bosons and five Fermions: at each value of the
lattice potential strength, a particular state is selected from the set of those with same
energy. Each vanishing value of the on site Bosonic density means that exactly one
Fermion has filled that particular lattice site. The large value chosen for Ṽ0 allows to
clearly stress the random nature of the configuration patterns even for very small changes
of the lattice potential strength, whereas degeneracy and disorder can set in already at
lower values of the lattice depth, depending on the tuning of the harmonic oscillator and
scattering lengths (see below). The degenerate states are separated by energy barriers.
The system is non–ergodic, and hysteresis should be observed: what particular state is
chosen, depends on the exact mechanism of preparation of the system and of loading of
the mixture into the optical lattice.

The criterion for the onset of degeneracy and non-periodic ground states in the bulk
region around the center of the lattice and of the trapping potential is easily identified,
by looking at the relative importance of the trapping on site energy with respect to the
on site Boson or Fermion interaction energy. For instance, to allow for the Fermionic
behavior of the Boson on site occupation numbers (either 0 or 1) one must require that
the energy is lower having one Boson at the edge of the bulk central region rather than
having it sitting on top of another Boson at the center of the lattice:

ŨBB > ṼB (i = (NB + NF )/2) . (6.59)

The analogous condition for the Bose–Fermi on site interaction is:

ŨBF > ṼB/F (i = (NB + NF )/2) . (6.60)

For smaller values of Ṽ0, the Boson hopping contribution will become more and more
important. A representative situation of this intermediate regime is depicted in Figs. 6.2
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Figure 6.6: On site Fermionic densities for a Bose–Fermi attraction aBF = −0.04, as a
function of the lattice potential strength.

and 6.3: here, the repulsion between Bosons and Fermions is strong enough to allow for
phase separation, while the non–negligible hopping terms still favor configurations where
Bosons have Bosons as nearest neighbors. The transition to degeneracy and disorder,
exact in the limit of infinite lattice depth, is a novel and peculiar feature of Bose–Fermi
mixtures and it should hold in general for any multicomponent Bose and/or Fermi dilute
atomic system loaded in a deep optical lattice at zero temperature, provided that inter-
component interactions are repulsive and the on site confining potentials coincide for the
different components. It clearly cannot take place in a single–component system, say a
pure single–component Bose gas, where only a SF–MI transition occurs [112]. The rather
complex and rich interplay between ordered and disordered configurations of Bose–Fermi
mixtures in very deep optical lattices will be considered in more detail elsewhere.

Certainly a larger number of Bosons and Fermions have to be considered in order to
obtain a more realistic description of the system. While our previous analytical findings
are applicable to any numbers of atoms, in order to extend the numerical calculations to
larger numbers more powerful numerical methods have to be introduced. So far, Monte
Carlo simulations with a fairly large number of particles have been carried out only for
an inhomogeneous Bose–Hubbard model [137]. The authors have also speculated that
the qualitative phase diagram does not depend on the dimensionality of the system.
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Figure 6.7: The Bosonic superfluid on site order parameter for a Bose–Fermi attraction
aBF = −0.04, as a function of the lattice potential strength.
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Figure 6.8: The disordered pattern of Bosonic ground–state distributions for repulsive
Boson–Boson and Boson–Fermion interactions for large values of Ṽ0 around Ṽ0 = 50.
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Closing remarks. 103

In this thesis, we have presented results on mixtures of atomic Bosons and Fermions in
different spatial settings. Bosonic atoms possess according to the spin-statistics theorem
integer Spin. We assumed Spin 0 Bosons throughout this thesis. Fermions have half
inter Spin, so in general there are at least two Fermionic components – one with Spin up
the other one with Spin down – for Spin one–half Fermions. Due to the Spin-alignment
in magnetic traps the Spin degree of freedom is frozen for the Fermions and we could
treat the Fermions as one-component particles. In experiments with cold atomic gases the
dilute limit provides a very good approximation and thus the particle-particle interactions
are dominated by s-wave scattering. Fermion-Fermion s-wave scattering is prohibited in
this setting.

With these assumptions, we started with a homogeneous system, which is an idealized
system assuming NB Bosons and NF Fermions confined in a volume V with periodic
boundary conditions and let NB , NF , V →∞, such that the densities NB/V, NF /V are
finite. Using the methods of Quantum field theory we derived some physical quantities
of interest, the most important of which is the ground state energy beyond a mean-field
level. An extension to finite temperature would certainly be advantageous. We expect
considerable difficulties near the critical temperature. Well below that temperature,
however, we expect no major complications and the calculations will be similar to the
present case, except that boson loops will have to be taken into account and frequency
integrals will have to be replaced by Matsubara frequency sums.

Within the framework of density functional theory the ground state energy could be
incorporated to derive the density field equations beyond a mean-field level for systems
of Bose–Fermi mixtures in a trap. More precisely, we have introduced the Kohn-Sham
scheme of DFT for inhomogeneous Bose-Fermi systems to determine the ground-state
energy and density profiles to second–order in the Boson–Fermion scattering length. We
solved these equation numerically for experimentally relevant parameters, compared the
theoretical predictions with current experiments, and discussed the importance of the
exchange-correlation effects. We have shown that they are substantial for systems, like
40K-87Rb, with a large attractive Boson-Fermion interaction, especially in the critical
regime of collapse onset, by comparing the mean–field and the exchange–correlation
phase diagrams. We have shown that the phase diagram stability vs. collapse changes
considerably due to exchange and correlation effect. The DFT method outlined here
can be in principle extended to include higher–order corrections and finite temperature
effects (see Ref. [138]).

To learn about the critical temperature of BEC in the presence of Fermions we derived
the density field equations on a mean-field level in local density approximation at finite
temperature and analytically derived the change in critical temperature in regimes where
the Fermions are described by Boltzmann gas or in the quantum degenerate regime,
respectively. In the intermediate regime, we gave numerical results. The conclusion of
this part was that the shift due to the presence of the Fermions is strongest when they
are quantum degenerate, but in general the shift is only up to 5% of the non-interacting

Finally, the system of a Bose–Fermi mixture was considered in the presence of an op-
tical lattice. We have shown that the system can be described by a single–band Hubbard
type Hamiltonian for sufficiently strong lattices, found a linear stability criterion against
demixing by requiring the energy functional to be positive definite at the minimum,
and investigated the MI-SF phases analytically was well as numerically for systems with
strong transverse but weak collinear confinement. The optical lattice potential plays a
crucial role, allowing to tune the system into regimes of strong Boson–Boson and Boson–
Fermion couplings as the lattice depth is increased. According to the possible different
combinations of intraspecies and interspecies attractive and repulsive interactions, the
system displays a rich phase structure, including the onset of a SF–MI transition in
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the Boson sector, and a simultaneous transition to demixing in the Boson–Fermion sec-
tor. For very deep lattices the system displays a remarkable transition to a multiply
degenerate phase in which all possible permutations of configurations with one Bosonic
or Fermionic atom per site are legitimate ground states. The transition is related with
breaking of the lattice mirror symmetry for very large values of the lattice depth. This
peculiar disordered pattern of degenerate ground–state configurations separated by very
large barriers is somehow reminiscent of the behavior of classical disordered systems like
glasses and spin glasses, but it takes place in a quantum system at zero temperature.
Besides these fundamental theoretical aspects related to the theory of quantum phase
transitions Bose-Fermi mixtures in optical lattices are also a promising candidate to
observe BCS phase transitions and qualify for potential applications in the physics of
quantum information. As with systems involving either Bosons or Fermions that have
been studied so far [112, 120, 124, 122, 125], mixtures could be used for the prepara-
tion of multi-particle entangled states [125] such as cluster states or certain instances of
graph states [139], as well as for the implementation of quantum gates. With Bosons
and Fermions serving two different purposes, Bose-Fermi mixtures could in fact allow
for new possibilities of quantum information processing in optical lattices. The Fermions
would be suitable for storage of quantum information due to their non–interacting behav-
ior, whereas the Bosons could be used to let the systems interact and perform operations.

The complexity of the systems considered in this thesis can be extended in various
obvious ways. For example one can consider unpolarized spin-1/2 fermions. Spin unpo-
larized systems are becoming of more experimental relevance, because one can nowadays
also trap by purely optical means. In this case the Fermions are not necessarily spin–
aligned. Calculations are very similar to the present situation with the main difference
that one has to include the effects of the direct interactions of fermions with different
spins. This would correspond to having a third scattering length aFF .

As already pointed out quasi one or two dimensional systems are expected to have
very special properties. The methods used in this thesis could potentially also be used
to those systems if applied with some care.

An interesting perspective would be to investigate how the system behaves not only
in the presence of Cooper pairing but also of ordinary molecule formation. Very recently
there were even some speculations about the possibility of a atom-molecule Cooper pair-
ing in Bose–Fermi mixtures [140].



Appendix A

The ground state energy in
terms of Green’s functions

Here, we show how the ground state energy can be calculated directly from the Green’s
functions. First, by using

T̂ = − h̄2

2mB

∫
d3xφ̂†(x)∇2φ̂(x)

− h̄2

2mF

∫
d3xΨ̂†(x)∇2Ψ̂(x) (A.1)

and the definitions (2.88) and (2.88) of the Green functions, we can easily see that:

〈G|T̂ |G〉 = −i
h̄2

2mB

∫
d3x lim

x′→x
∇2G′B(x, t,x′, t)

+i
h̄2

2mF

∫
d3x lim

x′→x
∇2GF (x, t,x′, t) (A.2)

To determine 〈G|Ŵ |G〉 in terms of the Green functions is a little more involved. For
this purpose, we need the equations of motion of the field operators in the Heisenberg
picture:

ih̄
∂φ̂H(x, t)

∂t
= exp(iK̂t/h̄)[φ̂(x, t), K̂] exp(−iK̂t/h̄)

= exp(iK̂t/h̄)
[
h̄2∇2

2mB
φ̂(x) +

√
n0

∫
d3x′Ψ̂†(x′)U(|x− x′|)Ψ̂(x′)

+
√

n0

∫
d3x′Ψ̂†(x′)U(|x− x′|)Ψ̂(x′)φ̂(x)− µφ̂(x)

]
exp(−iK̂t/h̄)

=
h̄2∇2

2mB
φ̂H(x, t) +

√
n0

∫
d3x′Ψ̂†H(x′, t)U(|x− x′|)Ψ̂H(x′, t)

+
√

n0

∫
d3x′Ψ̂†H(x′, t)U(|x− x′|)Ψ̂H(x′, t)φ̂H(x, t)− µφ̂(x, t) (A.3)

and

ih̄
∂Ψ̂H(x, t)

∂t
= exp(iK̂t/h̄)[Ψ̂(x, t), K̂] exp(−iK̂t/h̄)

i
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= exp(iK̂t/h̄)
[
h̄2∇2

2mF
Ψ̂(x) + n0

∫
d3x′U(|x− x′|)Ψ̂(x)

+
√

n0

∫
d3x′U(|x− x′|)φ̂†(x)Ψ̂(x) +

√
n0

∫
d3x′U(|x− x′|)φ̂†(x)Ψ̂(x)

+
∫

d3x′φ̂†(x′)U(|x− x′|)φ̂(x′)Ψ̂(x)
]

exp(−iK̂t/h̄)

=
h̄2∇2

2mF
Ψ̂H(x, t) + n0

∫
d3x′U(|x− x′|)Ψ̂H(x, t)

+
√

n0

∫
d3x′U(|x− x′|)φ̂†H(x, t)Ψ̂H(x, t) +

√
n0

∫
d3x′U(|x− x′|)φ̂†H(x, t)Ψ̂H(x, t)

+
∫

d3x′φ̂†H(x′, t)U(|x− x′|)φ̂H(x′, t)Ψ̂H(x, t), (A.4)

where we have used [Ô, P̂ Q̂] = [Ô, P̂ ]Q̂− P̂ [Q̂, Ô] for the Boson operators and [Ô, P̂ Q̂] =
{Ô, P̂}Q̂−P̂{Q̂, Ô} for the Fermion operators. Adding the equations in the following way
1
2 φ̂†H(x, t) · (A.3)+ 1

2 (A.3)† · φ̂H(x, t)+Ψ̂†H(x, t) · (A.4), rearranging terms and integrating
over x gives:

∫
d3x

1
2
φ̂†H(x, t)

(
ih̄

∂

∂t
+

h̄2∇2

2mB
+ µ

)
φ̂H(x, t)

+
1
2

[(
−ih̄

∂

∂t
+

h̄2∇2

2mB
+ µ

)
φ̂†H(x, t)

]
φ̂H(x, t)

+Ψ̂†H(x, t)
(

ih̄
∂

∂t
+

h̄2∇2

2mF

)
Ψ̂H(x, t)

= V̂1,H(t) +
3
2
V̂2,H(t) +

3
2
V̂3,H(t) + 2V̂4,H(t)

Taking the ground state average of this we get:
∫

d3x lim
x′→x

(
ih̄

∂

∂t
− ih̄

∂

∂t′
|t′→t+

− h̄2∇2

2mB
− h̄2∇′2

2mB
+ 2µ

)
〈G|φ̂†H(x′, t′)φ̂H(x, t)|G〉

+
(

ih̄
∂

∂t
− h̄2∇2

2mF

)
〈G|Ψ̂†H(x′, t+)Ψ̂H(x, t)|G〉

= 2〈G|V̂H(t)|G〉 − n0〈G|dV̂H(t)
dn0

|G〉

now we use µV = 〈G| dV̂
dn0

|G〉 (see Ref. [81]),

n0V = NB −
∫

d3x〈G|φ̂†H(x, t)φ̂H(x, t)|G〉

and the definition of the Green’s functions:

2〈G|V̂H(t)|G〉 = µNB −
∫

d3x lim
x′→x

[µiG′B(x, t,x′, t)
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+
1
2

(
ih̄

∂

∂t
− ih̄

∂

∂t′
|t′→t+ −

h̄2∇2

2mB
− h̄2∇′2

2mB
+ 2µ

)
iG′B(x, t,x′, t′)

−
(

ih̄
∂

∂t
− h̄2∇2

2mF

)
iGF (x, t,x′, t+)

From this, we finally get:

E0 = 〈G|T̂H(t) + V̂H(t)|G〉

=
1
2
µNB +

1
2

∫
d3x lim

x′→x

[(
ih̄

∂

∂t
− h̄2∇2

2mB

)
iG′B(x, t,x′, t+)

−
(

ih̄
∂

∂t
− h̄2∇2

2mF

)]
iGF (x, t,x′, t+), (A.5)

where we have used∇2G′B(x, t,x′, t′) = ∇′2G′B(x, t,x′, t′) and ∂
∂tG

′
B(x, t,x′, t′) = − ∂

∂t′G
′
B(x, t,x′, t′)

(since in space and time homogeneous systems the Green functions can only depend on
x− x′ and t− t′).
If we use the Fourier transforms for the Green functions and pass to the limit V → ∞
where

∑
k . . . → V

(2π)3

∫
d3k . . .:

E0

V
=

1
2
µnB +

1
2(2π)4

∫ ∫
d3kdω

[(
h̄ω +

h̄2k2

2mB

)
iGB(k, ω)

−
(

h̄ω +
h̄2k2

2mF

)
iGF (k, ω)

]
(A.6)
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Appendix B

Evaluation of the integrals in
the T - Matrix

B.1 Evaluation of the T -Matrix and coupling constant
renormalization

B.1.1 The first integral I
We define

I =
∫

d3k
θ(|P/2− k| − kF )

h̄P 0 − h̄2(P/2 + k)2/2mB − h̄2(P/2− k)2/2mF + µ + iν
. (B.1)

Transforming the integration variables to P/2− k gives:

I =
∫

d3k
θ(|k| − kF )

h̄2k2/2m− h̄2P · k/mB − h̄P 0 + h̄2P2/2mB − µ− iν
. (B.2)

Setting a = h̄2/2m, b = h̄2P/mB and E = −h̄P 0 + h̄2P 2/2mB − µ and transforming to
spherical coordinates we get:

I = 2π

∫ kc

kF

dkk2

∫ π

0

dφ sin φ
1

ak2 − bk cos φ + E − iν

=
2π

b

∫ kc

kF

dkk ln
ak2 − bk + E − iν

ak2 + bk + E − iν
, (B.3)

where we will ultimately consider the limit kc → ∞. Using D = (b/2a)2 − E/a =
− m

mB+mF
P 2 + 2mP 0

h̄ + 2mµ
h̄2 we can approximate for small ν (if D 6= 0; the case D = 0

can be treated similarly and gives the same answer as taking the limit D → 0 at the very
end):

ak2 − bk + E − iν = a

(
k − mP

mB
−
√

D − iν

2a
√

D

)(
k − mP

mB
+
√

D +
iν

2a
√

D

)

and

ak2 + bk + E − iν = a

(
k +

mP

mB
−
√

D − iν

2a
√

D

)(
k +

mP

mB
+
√

D +
iν

2a
√

D

)

v
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and integrate the logarithms of these factors separately to get:

I = −2πmB

h̄2P

∫ kc

kF

dkk

×
(

ln
k + mP/mB +

√
D + iν/2a

√
D

k −mP/mB −
√

D − iν/2a
√

D

+ ln
k + mP/mB −

√
D − iν/2a

√
D

k −mP/mB +
√

D + iν/2a
√

D

)
. (B.4)

The integral can be solved [141] to give

lim
kc→∞

I = −8πmkc

h̄2 +
4πmkF

h̄2

+
π

h̄2

(
mBk2

F

P
− m2P

mB
− 2m

√
D − mBD

P

)

× ln
kF + mP/mB +

√
D + iν/2a

√
D

kF −mP/mB −
√

D − iν/2a
√

D

− π

h̄2

(
mBk2

F

P
− m2P

mB
+ 2m

√
D − mBD

P

)

× ln
kF −mP/mB +

√
D + iν/2a

√
D

kF + mP/mB −
√

D − iν/2a
√

D
, (B.5)

where outside the logarithms we have taken the limit ν → 0 (simply setting ν = 0), and
we have made use of the identity

lim
x→∞

x2 ln
1 + α/x

1− α/x
= 2αx, (B.6)

for the limit kc → ∞. There remains an ultraviolet divergent term; the Boson-Fermion
T -matrix [Eqn. (3.7)] is however ultimately renormalized by the second integral.

The real part of I is readily evaluated in the limit ν → 0 by setting ν = 0 and using
the absolute values inside the logarithms:

lim
ν→0

ReI = −8πmkc

h̄2 +
4πmkF

h̄2

+
π

h̄2

(
mBk2

F

P
− m2P

mB
− mBD

P

)

× ln
∣∣∣∣
(kF + mP/mB)2 −D

(kF −mP/mB)2 −D

∣∣∣∣

−2πm

h̄2

√
D ln

∣∣∣∣∣
(kF +

√
D)2 − (mP/mB)2

(kF −
√

D)2 − (mP/mB)2

∣∣∣∣∣ .

(B.7)

Using the identity (easily evaluated by polar decomposition)

lim
ν→0+

Im ln
a + iν

b− iν
=

{
0 : sgn(a) = sgn(b)
π : sgn(a) 6= sgn(b) , (B.8)
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the imaginary part of I in the limit ν → 0 can be evaluated to be:

lim
ν→0

ImI =
π2

h̄2

(
mBk2

F

P
− m2P

mB
− 2m

√
D − mBD

P

)
, (B.9)

if D > 0 and kF < |mP/mB −
√

D|;

lim
ν→0

ImI = −4π2m
√

D

h̄2 , (B.10)

if D > 0 and |mP/mB −
√

D| < kF < mP/mB +
√

D; and

lim
ν→0

ImI = 0, (B.11)

if D ≤ 0 or kF > mP/mB +
√

D.

B.1.2 The second integral J
We define

J = −
∫

d3k
1

h̄2k2
1/2m− h̄2k2/2m + iν

=
4π

a

∫ kc

0

dk

(
1− k2

1 + iν/a

k2 − k2
1 − iν/a

)
, (B.12)

where as before a = h̄2/2m, and we have transformed to polar coordinates and integrated
over the angle variables. The integral can be evaluated [141] to give

J =
4πkc

a
− 2π

a

√
k2
1 − iν/a ln

kc +
√

k2
1 − iν/a

kc −
√

k2
1 − iν/a

+
2π

a

√
k2
1 − iν/a ln

√
k2
1 − iν/a

−
√

k2
1 − iν/a

. (B.13)

We then use

lim
kc→∞

ln
kc +

√
k2
1 − iν/a

kc −
√

k2
1 − iν/a

= 0 (B.14)

to get

lim
ν→0

J =
8πmkc

h̄2 + i
4π2mk1

h̄2 . (B.15)

If we now take the sum of Eqns. (B.5) and (B.15), the ultraviolet divergent terms cancel
exactly. The resulting expression for I + J can then be substituted into Eqn. (3.7) to
get Eqn. (3.8) for the renormalized Boson-Fermion T -matrix.
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Appendix C

Evaluation of the ground state
energy with Green’s functions

We start with the Fermionic contribution to the ground state energy given in Eqn. (A.6):

EF

V
= − 1

2(2π)4

∫ ∫
d3pdp0

(
h̄p0 +

h̄2p2

2mF

)
iGF (pµ) (C.1)

In order to perform the time integration, we have to close the contour in the upper
half plane. As we have seem from the solution to the pole equation (3.29), there is no
pole in the upper half plane if p > kF . So there is no contribution to the integral for
p > kF . For p < kF , we have a pole above the real axis at the value given by (3.28). If
we use the residue theorem we get:

EF

V
=

1
(2π)2

∫ kF

0

dpp2

(
h̄2p2

mF

+
2πh̄2

m
anB +

2a2h̄2kF nB

m
+

a2h̄2n0mB

2m2p

(
k2

F − p2
)
ln

kF + p + iν
2a
√

D

kF − p− iν
2a
√

D

− a2h̄2nBmB

2m2p

(
k2

F − (δ)2 p2
)

ln
kF − δp + iν

2a
√

D

kF + δp− iν
2a
√

D

)
, (C.2)

which is up to prefactors exactly the same expression a the one for ΣB(0) found from
Eqn. (3.11).

So we can use this result to obtain:

EF

V
=

3
5

h̄2k2
F

2mF
nF +

πh̄2aBF nBnF

m

(
1 +

aBF kF

π
f(δ)

)
., (C.3)

with f(δ) defined as in Eqn. (3.14).
We can also calculate the Boson contribution to Eqn. (A.6), which is:

EB

V
=

1
2
µnB +

1
2(2π)4

∫ ∫
d4pµ

(
h̄p0 +

h̄2p2

2mB

)
iGB(pµ) (C.4)

We now use first-order GB(pµ) from (3.18) to get[58]:

1
2(2π)4

∫ ∫
d4pµ

(
h̄p0 +

h̄2p2

2mB

)
iGB(pµ) = −64

√
π(nBaB)

5
2 h̄2

15mB
.
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Using also (3.16) we get:

EB

V
=

2πaBh̄2

mB
n2

B +
πh̄2aBF nBnF

m

(
1 +

aBF kF

π
f(δ)

)
, (C.5)

where we have neglected terms of the order of the Bose gas parameter. Adding (C.3)
and (C.5) gives the same result as Eqn. (3.35).
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Fermions in a one-dimensional harmonic atom trap: exact one-particle properties
at zero temperature, Phys. Rev. A 62, 063602 (2000).

[67] P. Bloom, Two-dimensional Fermi gas, Phys. Rev. B 12, 125 (1974).

[68] M. D. Girardeau, Relationship between systems of impenetrable bosons and fermions
in one dimension, J. Math. Phys. 1, 516 (1960).

[69] E. H. Lieb and W. Lininger, Exact analysis of an interacting Bose gas. I. The
general solution and the ground state, Phys. Rev. 130, 1605 (1963).

[70] V. Dunjko, V. Lorent, and M. Olshanii, Bosons in cigar-shape traps: Thomes-
Fermi regime, Tonks-Girardeau regime, and between, Phys. Rev. Lett. 86, 5413
(2001).

[71] M. Schick, Two-dimensional system of hard-core bosons, Phys. Rev. A 3, 1067
(1970).

[72] D. F. Hines and N. E. Frankel, Hard-disc Bose gas, Phys. Lett. 68A, 12 (1978).

[73] D. S. Petrov, M. Holzmann, and G. V. Shlyapnikov, Bose-Einstein condensation
in quasi-2d trapped gases, Phys. Rev. Lett. 84, 2551 (2000).

[74] J. O. Andersen and H. Haugerud, Ground state of a trapped Bose-Einstein conden-
sate in two dimensions: Beyond the mean-field approximation, Phys. Rev. A 65,
033615 (2002).

[75] M. Olshanii, Atomic scattering in the presence of an external confinement and a
gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998).

[76] D. S. Petrov and G. V. Shlyapnikov, Interatomic collisions in a tightly confined
Bose gas, Phys. Rev. A 64, 012706 (2001).

[77] N. Bogolubov, On the theory of superfluidity, J. Phys. 11, 23 (1947).

[78] C. W. Gardiner, Particle-number-conserving Bogoliubov method which demon-
strates the validity of the time-dependent Gross-Pitaevskii equation for a highly
condensed Bose gas, Phys. Rev. A 56, 1414 (1997).

[79] M. D. Girardeau, Comment on Particle-number-conserving Bogoliubov method
which demonstrates the validity of the time-dependent Gross-Pitaevskii equation
for a highly condensed Bose gas, Phys. Rev. A 58, 775 (1997).

[80] Y. Castin and D. R, Low-temperature Bose-Einstein condensates in time-dependent
traps: Beyond the U(1) symmetry-breaking approach, Phys. Rev. A 57, 3008 (1998).

[81] N. M. Hugenholtz and D. Pines, Ground-State Energy and Excitation Spectrum of
a System of Interacting Bosons, Phys. Rev. 116, 489 (1959).

[82] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinsk, Methods of Quantum Field
Theory in Statistical Physics (Dover Publications, New York, 1963).

[83] S. T. Beliaev, Energy-spectrum of a non-ideal Bose gas, Sov. Phys. JETP 34, 299
(1958).

[84] V. M. Galitskii and A. B. Migdal, Application of quantum field theory methods to
the many body problem, Sov. Phys. JETP 34(7), 96 (1958).



xvi

[85] F. Matera, Fermion pairing in Bose-Fermi mixtures, cond-mat/0305609 (2003).
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