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VARIATIONAL PRIMITIVE OF A DIFFERENTIAL FORM

AMMAR ALSAEDY

This paper is dedicated to my teacher N. Tarkhanov on the occasion of his 60 th birthday.

Abstract. In this paper we specify the Dirichlet to Neumann operator re-
lated to the Cauchy problem for the gradient operator with data on a part of

the boundary. To this end, we consider a nonlinear relaxation of this prob-

lem which is a mixed boundary problem of Zaremba type for the p-Laplace

equation.
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Introduction

The classical Cauchy problem for the gradient operator has attracted consider-
able attention both in geometry and analysis of the last century. It reads as follows.
Let X be a bounded domain with smooth boundary in R

n and S a non empty open
piece of the boundary surface ∂X . (The case S = ∂X is included as well.) Consider
the Cauchy problem { ∇u = f in X ,

u = u0 at S (0.1)

in X with data f ∈ Lp(X ,Rn) and u0 ∈ W 1/p′,p(S), where 1 < p < ∞ and
p′ = p/(p−1),

This problem fails to be solvable in general, unless f satisfies some compatibility
conditions and u0 belongs to a “thin” set of Cauchy data at S, [Tar95]. Since
the problem (0.1) is overdetermined, we relax it to the problem of minimising the
Lp -norm

I(u) :=

∫
X
|∇u− f |p dx
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over the set A of all functions u ∈ W 1,p(X ) satisfying u = u0 at S. A direct
computation shows that the Euler-Lagrange equations for the variational problem
I(u) �→ min are⎧⎨

⎩
div (|∇u− f |p−2(∇u− f)) = 0 in X ,

u = u0 at S,
|∇u− f |p−2 (∇u− f, ν) = 0 at ∂X \ S,

(0.2)

which actually constitute a mixed boundary value problem of Zaremba type [Zar10].
For f = 0, this mixed problem was investigated in [She13]. The p-Laplace oper-
ator is a quasilinear operator that generalises the linear Laplace operator which
corresponds to p = 2. The p-Laplace operator plays an important role in nonlinear
potential theory and appears often in physics, [AH96, p. 166].

Our purpose in this paper is to show that the variational problem I(u) �→ min
has a unique solution for all data f ∈ Lp(X ,Rn) and u0 ∈ W 1−1/p,p(S).

When having granted the unique solvability of the problem (0.2), we are in a
position to introduce a Dirichlet to Neumann operator for problem (0.1).

The Dirichlet to Neumann operator Ψ is intended to describe the set of all data
u0 for which the Cauchy problem is solvable, cf. [LT11]. More precisely, Ψ is an
operator acting in function spaces on S, such that the range of the Cauchy problem
coincides with the zero set of Ψ . The relevance of the Dirichlet to Neumann operator
to the inverse problem of impedance tomography was understood at least as far as
[Cal80]. Nowadays a considerable number of papers are devoted to this operator
which study, in particular, its symbol, spectrum, etc.

This paper can be thought of as development to a part of the results of [She13]
and [AT14].

1. The Cauchy problem

We now return to Cauchy problem (0.1). To this end we identify ∇u with the
exterior derivative of the function u, which is denoted by du. If u ∈ W 1,p(X )
satisfies the equation du = f in X , then df = 0 weakly in X , for d2 = 0. In other
words, the differential equation in (0.1) is solvable only for those differential forms
f which are closed. Since the set of closed differential forms in X is “thin” in an
appropriate sense, we pass to a variational formulation of the Cauchy problem. To
wit, we look for a solution of the extremal problem I(u) �→ min for the functional

I(u) :=

∫
X
|∇u− f |p dx

over the set A of all functions u ∈ W 1,p(X ) satisfying u = u0 at S. Obviously,
every solution of (0.1) minimises the variational problem. The converse assertion
is not true.

We mention here that this problem was proved to be solvable for specific choice of
the function f , see [AT14]. More precisely, for the solvability of the inhomogeneous
system du = f in X it is necessary that

(f, g)L2(X ,Cn) = 0

for all functions g ∈ W 1,p′
(X ,Rn) satisfying div g = 0 in X and (ν, g) = 0 at ∂X ,

where ν(x) is the unit outward normal vector to the boundary at x ∈ ∂X . Choosing
g = d∗v, where v is a smooth differential form of degree 2 with compact support in
the interior of X and d∗ the formal adjoint of the exterior derivative, we conclude
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that df = 0 in X . If the de Rham cohomology of X at step 1 is zero (e.g., if
the domain X is contractible), then the condition df = 0 is also sufficient for the
existence of a function U0 ∈ W 1,p(X ) satisfying dU0 = f in X . This is a consequence
of the ellipticity of the Neumann problem for the de Rham complex, see Section
4.1.3 of [Tar95] and elsewhere. The change of dependent variables U = u − U0

reduces then the variational problem I(u) �→ min over A to the problem treated
in [She13]. This proves the unique solvability of the variational problem under the
above additional condition. In particular, the mixed problem (0.2) has a unique
solution.

In Section 7 of [AT14] we introduced the Dirichlet to Neumann operator to
describe those f and u0 for which the Cauchy problem (0.1) is solvable.

In this paper we develop the techniques of both [She13] and [AT14] to show that
the variational problem I(u) �→ min has a unique solution for all data f ∈ Lp(X ,Rn)

and u0 ∈ W 1/p′,p(S), not only for those satisfying df = 0 in X .

2. The Euler equations

Write m for the infimum of I(u) over u ∈ A. In order that u ∈ A may satisfy
I(u) = m, it is necessary that u would fulfill the so-called Euler-Lagrange equations.
These latter could be described as follows.

Pick an arbitrary function δ ∈ C∞(X ) vanishing on S. For all t ∈ R, the
variation u+ tδ does not go beyond A for any u ∈ A. Therefore, if I(u) = m, then
the function F (t) = I(u + tδ) takes on a local minimum at t = 0. It follows that
t = 0 is a critical point of F .

Computing F ′(0), using the Gauss formula, and applying the main lemma of
calculus of variations yields

⎧⎨
⎩

div (|∇u− f |p−2(∇u− f)) = 0 in X ,
u = u0 at S,

|∇u− f |p−2 (∇u− f, ν) = 0 at ∂X \ S,
(2.1)

where ν refers to the outward unit normal vector of the boundary surface. Equations
(2.1) constitute a mixed boundary value problem of Zaremba type [Zar10]. The
nonlinear differential equation of (2.1) reveals the well-known p-Laplace equation,
however, it can be reduced to this latter only in the case where f is closed.

For p = 2 we just recover the usual Laplacian. For p > 2 the p-Laplace equation
is degenerate elliptic and for 1 < p < 2 singular at the points where ∇u− f = 0.

As mentioned in Section 1, this mixed problem was treated for specific choice of
the 1 -form f . More precisely, if df = 0 in X and the first de Rham cohomology
of X vanishes, then problem (2.1) possesses a unique solution u ∈ W 1,p(X ), see
[AT14].

By a weak solution u ∈ W 1,p(X ) of (2.1) is meant any solution of the variational
problem I(u) → min over u ∈ A. Even if u takes on its minimum m for some
u ∈ A, the function u need not satisfy (0.1) unless m = 0. Hence, if (2.1) possesses
a weak solution, then for the solvability of the Cauchy problem it is necessary and
sufficient that m = 0. From the construction above, one sees immediately that the
Zaremba problem arises naturally in the calculus of variations.
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3. Existence of variational solution

In this section we show the unique solvability of the variational problem. To this
end we prove some crucial properties of the functional I(u).

We start with the following lemma which elucidates the behaviour of the func-
tional I(u) for large functions u.

Lemma 3.1. The functional I(u) is weakly coercive on the space A, i.e., I(u) → ∞
as ‖u‖W 1,p(X ) → ∞.

Proof. We first estimate the functional I(u). To wit,
(∫

X
|∇u− f |pdx

)1/p

= ‖∇u− f‖Lp(X )

≥ ‖∇u‖Lp(X ) − ‖f‖Lp(X )

= ‖∇u‖Lp(X ) −Q

(3.1)

where Q is a constant independent of u. According to Lemma 1.9.2 of [Mor66],
there is a constant C depending only on X , p and n, such that

‖u‖W 1,p(X ) ≤ C (‖∇u‖Lp(X ,Rn) + ‖u‖L1(X )) (3.2)

for all u ∈ A. (Such estimates are usually referred to as Korn estimates.) It follows
that ‖∇u‖Lp(X ) → ∞ as ‖u‖W 1,p(X ) → ∞.

This implies I(u) → ∞ as ‖u‖W 1,p → ∞, which precisely means that I(u) is
coercive. �

In order to prove the lower semicontinuity of I(u) and uniqueness later, we need
first to show that I(u) is strictly convex.

Lemma 3.2. The functional I(u) is strictly convex on A.

Proof. It is obvious that A is convex. If we take two different functions u, v ∈ A,
then tu+ (1− t)v = u0 at S. Hence tu+ (1− t)v ∈ A. We have to show that

I(tu+ (1− t)v) < tI(u) + (1− t)I(v)

for any t ∈ (0, 1). The strict convexity of the function |x|p for p > 1 implies

I(tu+ (1− t)v) =

(∫
X
|∇(tu+ (1− t)v)− f |pdx

)

=

(∫
X
|t(∇u− f) + (1− t)(∇v − f)|pdx

)

< t

(∫
X
|∇u− f |pdx

)
+ (1− t)

(∫
X
|∇v − f |pdx

)

= tI(u) + (1− t)I(v)

(3.3)

for any u 
= v and t ∈ (0, 1). The equality here is a consequence of the fact that
∇u − f and ∇v − f differ from each other on a subset of X of positive measure.
For if they coincide almost everywhere in X , then the difference u − v is constant
in X , and so it is actually zero, since u− v vanishes at the nonempty set S. �

As already mentioned, this lemma is used in [Mor66] to deduce the lower semi-
continuity of the functional I(u).
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Lemma 3.3. The functional I(u) is weakly sequentially lower semicontinuous on
A, i.e.,

I(u) ≤ lim
ν→∞ inf I(uν)

for any sequence {uν}∞ν=1 ⊂ A converging weakly in W 1,p(X ) to u.

Proof. See Theorem 4.1.1 of [Mor66]. �

We are now in a position to prove the main result of this section.

Theorem 3.4. The variational problem

I(u) �→ min

over the set A of all functions u ∈ W 1,p(X ) satisfying u = u0 at S is uniquely
solvable.

Proof. Since the functional I(u) is bounded from below by 0, it has infimum m over
A. By the definition of infimum, there is a sequence {uν} in A, such that I(uν) ↘
m. Any such sequence is called minimising. Each subsequence of a minimising
sequence is also a minimising sequence. Were it possible to extract a subsequence
{uνι} converging to an element u ∈ A in the W 1,p(X ) norm, then I(uνι) would
converge to I(u) = m, and so u would be a desired solution of our variational
problem. It is possible to require the convergence of a minimising sequence in a
weaker topology than that of W 1,p(X ). However, the functional I should be lower
semicontinuous with respect to correspondingly more general types of convergence.

In order to find a convergent subsequence of a minimising sequence, one uses a
compactness argument. The space W 1,p(X ) is reflexive. Hence, each bounded se-
quence in W 1,p(X ) has a weakly convergent subsequence. Thus, any bounded min-
imising sequence {uν} has a subsequence {uνι

} which converges weakly in W 1,p(X )
to some function u. By a theorem of Mazur, see [Yos65] and elsewhere, any convex
closed subset of a reflexive Banach space is actually weakly closed. As we have seen
in the proof of Lemma 3.2, the set A is convex and obviously closed, thus it follows
that the limit function u satisfies u = u0 on S, i.e., it belongs to A. Moreover,
Theorem 3.4.4 of [Mor66] says that the subsequence {uνι

} converges also strongly
in L2(X ) to u. In view of Lemma 3.3

I(u) ≤ lim
ν→∞ inf I(uν) = m

Since u ∈ A, it follows that

I(u) = m = inf
u∈A

I(u).

To prove the uniqueness of the solution, consider two different minimizers u and
v, then u+v

2 ∈ A and by Lemma 3.2

I

(
u+ v

2

)
<

1

2
I(u) +

1

2
I(v) = m,

a contradiction. �

Corollary 3.5. The mixed boundary value problem (2.1) has a unique solution
u ∈ W 1,p(X ).
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Proof. The existence of a solution to the mixed boundary problem (2.1) follows
from Theorem 3.4. In general, the Euler equations can have solutions which do not
provide minima of the functional I(u). However, in our case the correspondence
between solutions of the Zaremba problem (2.1) and solutions of the variational
problem is one-to-one.

Let u be a solution to the mixed boundary problem (2.1). We would like to show
that u is a minimiser for the functional I(u). We use a convexity argument. If q is
a convex differentiable function on R

n and x ∈ R
n fixed, then the inequality

q(x̃) ≥ q(x) +∇q(x)(x̃− x)

holds for all x̃ ∈ R
n. It says that the graph of q lies above each tangential hyper-

plane. For the convex function q(x) = |x|p, where p > 1, we get

|∇w − f |p ≥ |∇u− f |p + p |∇u− f |p−2
(∇u− f,∇w −∇u).

for all w ∈ A. Integrating over X we obtain∫
X
|∇w − f |p dx ≥

∫
X
|∇u− f |p dx+

∫
X
p|∇u− f |p−2(∇u− f,∇(w − u)).

As the difference w−u vanishes on S and u is a solution of problem (2.1), we obtain∫
X
|∇w − f |p dx ≥

∫
X
|∇u− f |p dx.

Finally, this shows that I(w) ≥ I(u) for all w ∈ A, i.e., u is a solution of our
variational problem. �

4. The Dirichlet to Neumann operator

In this section we describe the solvability of the Cauchy problem (0.1) using the
so-called Dirichlet to Neumann operator, cf. [LT11]. The Dirichlet to Neumann

operator is introduced to describe those Cauchy data u0 ∈ W 1/p′,p(S), where 1 <
p < ∞ and p′ = p/(p−1), for which the Cauchy problem (0.1) has at least one
solution u ∈ W 1,p(X ). As mentioned in Section 1, this operator was introduced
under additional assumptions (including df = 0) in ([AT14]), see Lemma 7.1 there.
Now, using Corollary 3.5 we may introduce the Dirichlet to Neumann operator also
in the case where f fails to be closed.

Having granted the unique solvability of problem (2.1), we can introduce a Dirich-

let to Neumann operator for the Cauchy problem (0.1). Pick u0 ∈ W 1/p′,p(S). By
Corollary 3.5, there is a unique function u ∈ W 1,p(X ) satisfying (2.1). Set

Ψ(u0) := |∇u− f |p−2 (∇u− f, ν)

at S, the restriction on S being understood in an appropriate sense clarified in
[Tar95, 1.1.3]. Then, we get Ψ(u0) ∈ W−1/p′,p′

(S).
The following lemma gives a necessary condition for the solvability of the equa-

tion ∇u = f in X .

Lemma 4.1. In order there might exist a function u ∈ W 1,p(X ) satisfying ∇u = f
in X it is necessary that

(f, g)L2(X ,Rn) = 0 (4.1)

for all g ∈ W 1,p′
(X ,Rn) satisfying div g = 0 in X and ν(g) = 0 at the boundary.
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Proof. The proof of this lemma is based on the Green formula of [Tar90, 2.4.2]. We
still identify the gradient operator with exterior derivative d and the adjoint of the
gradient operator (which is the divergence operator) with the adjoint d∗ of d on
differential forms. This implies that

(f, g)L2(X ,Rn) = (du, g)L2(X ,Rn)

= (u, d∗g)L2(X ) + (t(u), ν(g))L2(∂X )

= 0

(4.2)

for each g ∈ W 1,p′
(X ,Rn) satisfying d∗g = 0 in X and ν(g) = 0 at the boundary. �

Having a proper condition for the solvability of du = f in X , we use the Dirichlet
to Neumann operator Ψ(u0) to describe the set of corresponding Cauchy data at
S.
Corollary 4.2. Let f ∈ Lp(X ) and u0 ∈ W 1/p′,p(S), where 1 < p < ∞. The
Cauchy problem (0.1) has a solution u ∈ W 1,p(X ) if and only if f satisfies condition
(4.1) and Ψ(u0) = 0.

Proof. Necessity. If the Cauchy problem has a solution u ∈ W 1,p(X ), then u
satisfies ∇u = f , and so (4.1) is fulfilled for f . Moreover, u is a solution of problem
(2.1), hence the definition of the Dirichlet to Neumann operator yields Ψ(u0) = 0,
as desired.

Sufficiency. Suppose f ∈ Lp(X ,Rn) satisfies the condition (f, g)L2(X ,Rn) = 0 for

all g ∈ W 1,p′
(X ,Rn), such that div g = 0 in X and (ν, g) = 0 at ∂X , and Ψ(u0) = 0

at S.
By definition, there exists u ∈ W 1,p(X ) such that{

div (|∇u− f |p−2(∇u− f)) = 0 in X ,
|∇u− f |p−2 (∇u− f, ν) = 0 at ∂X ,

(4.3)

When identifying the gradient operator ∇ with exterior derivative d, we think of
div as formal adjoint d∗ of d on differential forms. Consider g = |du−f |p−2(du−f),
then (4.3) yields {

d∗g = 0 in X ,
ν(g) = 0 at ∂X ,

whence

(f, g)L2(X ,Rn) = (f − du, g)L2(X ,Rn) + (du, g)L2(X ,Rn)

= (f − du, |du− f |p−2(du− f))L2(X ,Rn)

= −‖du− f‖pLp(X )

= 0,

which implies that du = f and u = u0 at S, i.e., the Cauchy problem has a
solution. �

Note that there is a trick related to a special choice of g which allows one to
reduce the proof of Corollary (4.2) to the corresponding result of Section 7 of [AT14].
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313–344.

(Ammar Alsaedy) Universität Potsdam, Institut für Mathematik, Karl-Liebknecht

Str. 24/25, 14476 Potsdam, Germany

E-mail address: alsaedy@math.uni-potsdam.de

Department of Mathematics, College of Science, Alnahrain University, Baghdad,

Iraq

E-mail address: ajm@sc.nahrainuniv.edu.iq


	Title
	Imprint

	Abstract
	Contents
	Introduction
	1. The Cauchy problem
	2. The Euler equations
	3. Existence of variational solution
	4. The Dirichlet to Neumann operator
	References



