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Synopsis in English

Optical frequency combs (OFC) constitute an array of phase-correlated equidistant spec-
tral lines with nearly equal intensities over a broad spectral range. The adaptations of
combs generated in mode-locked lasers proved to be highly efficient for the calibration
of high-resolution (resolving power > 50000) astronomical spectrographs. The obser-
vation of different galaxy structures or the studies of the Milky Way are done using
instruments in the low- and medium resolution range. To such instruments belong,
for instance, the Multi Unit Spectroscopic Explorer (MUSE) being developed for the
Very Large Telescope (VLT) of the European Southern Observatory (ESO) and the 4-
metre Multi-Object Spectroscopic Telescope (4MOST) being in development for the ESO
VISTA 4.1 m Telescope. The existing adaptations of OFC from mode-locked lasers are
not resolvable by these instruments.

Within this work, a fibre-based approach for generation of OFC specifically in the low-
and medium resolution range is studied numerically. This approach consists of three
optical fibres that are fed by two equally intense continuous-wave (CW) lasers. The
first fibre is a conventional single-mode fibre, the second one is an amplifying Erbium-
doped fibre with anomalous dispersion, and the third one is a low-dispersion highly
nonlinear optical fibre. The evolution of a frequency comb in this system is governed
by the following processes: as the two initial CW-laser waves with different frequencies
propagate through the first fibre, they generate an initial comb via a cascade of four-
wave mixing processes. The frequency components of the comb are phase-correlated
with the original laser lines and have a frequency spacing that is equal to the initial
laser frequency separation (LFS), i.e. the difference in the laser frequencies. In the time
domain, a train of pre-compressed pulses with widths of a few pico-seconds arises out
of the initial bichromatic deeply-modulated cosine-wave. These pulses undergo strong
compression in the subsequent amplifying Erbium-doped fibre: sub-100 fs pulses with
broad OFC spectra are formed. In the following low-dispersion highly nonlinear fibre,
the OFC experience a further broadening and the intensity of the comb lines are fairly
equalised. This approach was mathematically modelled by means of a Generalised
Nonlinear Schrödinger Equation (GNLS) that contains terms describing the nonlinear
optical Kerr effect, the delayed Raman response, the pulse self-steepening, and the
linear optical losses as well as the wavelength-dependent Erbium gain profile for the
second fibre. The initial condition equation being a deeply-modulated cosine-wave
mimics the radiation of the two initial CW lasers. The numerical studies are performed
with the help of Matlab scripts that were specifically developed for the integration of
the GNLS and the initial condition according to the proposed approach for the OFC
generation. The scripts are based on the Fourth-Order Runge-Kutta in the Interaction
Picture Method (RK4IP) in combination with the local error method.

Before the results are described, the reader is introduced into the theoretical frame-
work. So, an overview about OFC and their application in the Astronomy is given.
The fibre-based approach for the generation of OFC in the low- and medium-resolution



range is presented in detail. Then, a step-by-step derivation of the mathematical model
(GNLS + initial condition) is given. The GNLS describing the light propagation in opti-
cal fibres can have different solutions. The reader is introduced to the types of solutions
that are important to understand the performed studies and achieved results, namely to
solitary waves (fundamental and higher-order solitons) and to periodic waves (Akhme-
diev breathers, Kuznetsov-Ma solitons) as well as to soliton molecules. Then, adiabatic
and non-adiabatic soliton compression is briefly described.

The studies began with the numerical calculation of the optimum lengths of the first
and second fibre of the proposed fibre-based approach. At the optimum lengths, the
optical pulses exhibit maximal compression and, thus, broadest possible OFC, but also
the minimal level of intensity noise that characterises the pulse-to-pulse variation. The
optimum lengths were calculated for three different typical values of the group-velocity
dispersion (GVD) parameters of the first fibre, namely for−7.5 ps2/km,−15 ps2/km, and
−30 ps2/km as well as for three values of LFS (LSF = 40 GHz, 80 GHz, and 160 GHz). De-
pending on the GVD parameter of the first fibre and the initial laser power, the optimum
lengths of the first fibre varied from 180 m to 980 m, whereas of the second amplifying
fibre between 7.5 m and 37.5 m. For different values of LFS and different values of the
laser input power, the optimum lengths ranged between 150 m and 1100 m for the first
fibre and between 7 m and 35 m for the second fibre. The best system performance was
shown for the GVD parameter of −15 ps2/km, and a LFS of 80 GHz.

At low power values, the optimum lengths of the first fibre showed no variation
with the initial laser power. This gave rise to more detailed studies of the optical pulse
formation in the first fibre by means of the numerical technique called Soliton Radiation
Beat Analysis (SRBA). The understanding of the optical pulse formation is crucial for
the ability to control the OFC generation within the experiment. The SRBA was per-
formed for three different initial conditions (a single pulse, an Akhmediev breather, and
a bichromatic deeply-modulated cosine-wave). The GVD parameter was −15 ps2/km,
and the laser frequency separation LFS = 80 GHz. After a comparison of the different
results, it was found that a collective soliton crystal state appears for low input power
values. The soliton crystal continuously dissolves into separated optical solitons as the
laser input power increases. In the region where the soliton crystal exists, the optimum
lengths of the first fibre are independent of the initial laser power. According to the
SRBA results, it was predicted that the best OFC are formed in the first fibre for the
input powers between 1.0 W and 2.0 W.

Further SRBA studies showed that the pulse formation in the second amplifying
Erbium-doped fibre is critically dependent on the features of the pulses formed in the
first fibre. Thus, adiabatic soliton compression delivering low-noise OFC occurs in the
second fibre for low values of the input power. At these values, the pulses formed in
the first fibre have low soliton orders. At high values of the input power, the pulses in
the first fibre have more complicated structures which leads to the pulse break-up in the
second fibre with a subsequent degradation of the OFC noise performance. Best OFC
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in the second amplifying fibre are predicted for the input powers between 2.0 W and
2.8 W for LFS = 80 GHz and between 4.0 W and 4.5 W for LFS = 160 GHz.

The pulse intensity noise studies that were performed within the framework of this
thesis allow making statements about the noise performance of an OFC. Such studies
showed that the intensity noise of the whole system decreases with the increasing laser
frequency separation. Thus, the intensity noise goes up 10% for LFS = 40 GHz and can
be kept below 1% for LFS = 80 GHz and LFS = 160 GHz. So, higher values of the laser
frequency separation are preferable to obtain low-noise OFC.
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Synopsis in German

Optische Frequenzkämme (OFK) stellen ein diskretes optisches Spektrum mit phasen-
korrelierten Linien dar, die gleichen spektralen Abstand voneinander haben und fast
gleiche Intensität über einen größeren Spektralbereich aufweisen. In modengelock-
ten Lasern generierte Kämme haben sich als höchst effizient für die Kalibrierung von
hochauflösenden (Auflösungsvermögen > 50000) astronomischen Spektrografen er-
wiesen. Die astronomische Beobachtung von verschiedenen Galaxie-Strukturen oder
die Studien der Milchstraße werden jedoch mit Hilfe von nieder- bis mittelauflösenden
Instrumenten gemacht. Zu solchen Instrumenten gehören zum Beispiel der Multi-
Spectroscopic-Exproler (MUSE), der gerade für das Very-Large-Telescope (VLT) der
Europäischen Südsternwarte (ESO) entwickelt wird, und das 4-metre-Multi-Object-
Spectroscopic-Telescope (4MOST), das sich in der Entwicklung für das ESO-VISTA-
4,1m-Teleskop befindet. Die existierenden Anpassungen von OFK von modengelockten
Lasern sind für solche Instrumente nicht auflösbar.

Im Rahmen dieser Arbeit wird ein faserbasierter Ansatz für die Generierung von
OFK für den Bereich der nieder- bis mittelauflösenden Instrumente numerisch studiert.
Die experimentelle Umsetzung dieses Ansatzes besteht aus drei optischen Fasern, in
die das Strahlungsfeld von zwei Dauerstrichlasern mit gleicher Intensität eingespeist
wird. Die erste Faser ist eine konventionelle Monomodefaser, die zweite ist eine
Erbium-dotierte Verstärkerfaser mit negativer Dispersion, die dritte ist eine hochnicht-
lineare Faser mit niedriger Dispersion. Die Entwicklung eines OFKs in diesem System
geschieht auf folgende Art und Weise: als die Laserwellen mit verschiedenen Frequen-
zen sich durch die erste Faser ausbreiten, erzeugen sie einen Anfangskamm durch einen
Kaskadenprozess der Vier-Wellen-Mischung (VWM). Die neu entstandenen Frequenz-
komponenten des Kamms sind frequenzkorreliert und haben einen spektralen Abstand,
der der Laserfrequenzseparation (LFS) gleicht. Dies entspricht dem Entstehen von
einem Zug von prä-komprimierten optischen Impulsen mit Impulsbreiten von einigen
Pikosekunden in der Zeitdomäne. Diese Impulse werden strakt komprimiert in der
nachfolgenden Erbium-dotierten Faser: es entstehen Sub-100-Femtosekunden-Impulse
mit breiten OFK-Spektren. In der anschließenden hochnichtlinearen Faser wird das
Kamm-Spektrum weiter verbreitet, während seine Frequenzlinien in ihren Intensitäten
ausgeglichen werden. Dieser Ansatz wurde mathematisch mit Hilfe einer Verallgemein-
erten Nichtlinearen Schrödinger Gleichung (VNSG) modelliert, die die Terme für den
nichtlinearen optischen Kerr-Effekt, den Raman-Effekt, die Impuls-Selbstaufsteilung,
die optischen Verluste und das wellenlängenabhängigen Erbium-Verstärkungsprofil
für die zweite Faser enthält. Die Gleichung der Anfangsbedingung von der Form einer
bichromatischen tief durchmodulierten Kosinus-Welle repräsentiert das Strahlungsfeld
zweier Dauerstrichlaser. Die numerischen Studien sind mit Hilfe von Matlab-Skripten
durchgeführt, die speziell fr die numerische Integration der VNSG mit der bichroma-
tischen Kosinus-Welle als Anfangsbedingung entworfen worden sind. Diese Skripte
basieren auf dem numerischen Verfahren genannt Fourth-Order Runge-Kutta in the
Interaction Picture Method, das mit der Methode der Auswertung von lokalen nu-
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merischen Fehlern kombiniert wurde.

Bevor zu dem Teil mit den Ergebnissen übergegangen wird, wird die Leserin oder
der Leser mit den theoretischen Grundlagen dieser Arbeit vertraut gemacht. Als Erstes
wird ein Überblick über die OFK und deren Einsatz in der Astronomie gegeben. Dann
wird eine detaillierte Beschreibung des faserbasierten Ansatzes fr die Generierung von
OFK für den nieder- bis mittelauflsenden Bereich aufgeführt. Danach wird eine schrit-
tweise durchgeführte Herleitung der VNSG mit der bichromatischen Kosinus-Welle als
Anfangsbedingung präsentiert. Die VNSG, die die Ausbreitung der optischen Impulse
in optischen Fasern beschreibt, kann verschiedene Lösungen haben. Wir präsentieren
die Typen von Lösungen, die für das Verständnis dieser Arbeit relevant sind, nämlich
die solitären Wellen (fundamentale Solitonen und die Solitonen höherer Ordnung) und
die periodischen Wellen (die Akhmediev-Breather und die Kuznetsov-Ma-Solitonen).
Anschließend beschreiben wir den Prozess der adiabatischen und nichtadiabatischen
Solitonen-Kompression in optischen Fasern.

Unsere Studien begangen mit der Berechnung von optimalen Längen der ersten und
der zweiten Faser des präsentierten Ansatzes. Die optimalen Faserlängen sind durch
die maximale Impuls-Kompression und die breitesten OFK gekennzeichnet. Gleich-
zeitig ist das Intensitätsrauschen, das durch die Variation der Impuls-Spitzenleistung
beschrieben wird, bei optimalen Faserlängen minimal. Die optimalen Längen werden
für drei verschiedene Werte der Gruppengeschwindigkeitsdispersion (GGD) der ersten
Faser (−7.5 ps2/km, −15 ps2/km und −30 ps2/km) und für drei Werte der Laserfrequen-
zseparation (LSF = 40 GHz, 80 GHz und 160 GHz) berechnet. Abhängig von der GGD
der ersten Faser und der anfänglichen Laserleistung reichten die optimalen Längen der
ersten Faser von 180 m zu 980 m und der zweiten Faser von 7, 5 m zu 37, 5 m. Für
verschiedene Werte der LFS und der Laserleistung variierten die optimalen Längen der
ersten Faser zwischen 150 m und 1100 m und der zweiten Faser zwischen 7 m und 35 m.
Beste Systemleistung trat für die GGD von −15 ps2/km und die LFS von 80 GHz auf.

Die optimalen Längen der ersten Faser hängen nicht von der anfänglichen Laser-
leistung, wenn diese Leistung niedrig ist. Das hat uns zu detaillierten Studien der
Impulsformation in der ersten Faser mittels des Verfahrens der Soliton Radiation Beat
Analysis (SRBA) veranlasst, denn das Verständnis der Impulsformation ist entscheidend
für das Kontrollieren der OFK-Generierung ihm Rahmen eines Experiments. So wurde
die SRBA für drei verschiedene Typen der Anfangsbedingung (ein singulärer Impuls,
ein Akhmediev-Breather und eine bichromatische tief durchmodulierte Kosinus-Welle)
durchgeführt. Dabei wurde die GGD von−15 ps2/km für die erste Faser und die LFS von
80 GHz gewählt. Nach dem Vergleich der Resultate haben wir realisiert, dass ein kollek-
tiver Solitonenkristall bei niedrigen Eingangsleistungen entsteht, wenn eine bichroma-
tische tief durchmodulierte Kosinus-Welle als Anfangsbedingung gewählt wird. Mit
steigender Eingangsleistung löst sich der Solitonenkristall in einzelne freie Solitonen
kontinuierlich auf. Die optimalen Längen der ersten Faser zeigen genau dann ihre
Unabhängigkeit von der Eingangsleistung, solange so ein Solitonenkristall existiert.
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Entsprechend den SRBA-Resultaten sollen die besten OFK im Eingangsleistungsbe-
reich zwischen 1, 0 W und 2, 0 W entstehen.

Weitere SRBA-Studien haben gezeigt, dass die Impulsformation in der anschließen-
den Erbium-dotierten Verstärkerfaser stark von den Eigenschaften der Impulse in der
ersten Faser abhängt. Zum Beispiel findet adiabatische Solitonen-Kompression in der
zweiten Faser statt, wenn die Eingangsleistungen niedrig sind. Bei niedrigen Leistun-
gen sind auch die Solitonenordnungen in der ersten Faser niedrig, in der zweiten Faser
erfahren solche Solitonen daher keine Aufspaltung. Deswegen ist die adiabatische
Kompression mit der Generierung von rauscharmen OFK verbunden. Bei höheren Ein-
gangsleistungen weisen die optischen Impulse in der ersten Faser kompliziertere Struk-
turen und höhere Solitonenordnungen auf. Solche Impulse zerfallen in der zweiten
Faser in mehrere Subimpulse, was zu der Degradierung des Rauschverhaltens der OFK
führt. Wir erwarten die besten OFK für die Eingangsleistungen zwischen 2, 0 W und
2, 8 W für LFS = 80 GHz und zwischen 4, 0 W und 4, 5 W für LFS = 160 GHz in der
zweiten verstärkenden Faser.

Die Studien des Intensitätsrauschens der optischen Impulse, die wir im Rahmen
dieser Arbeit durchgeführt haben, erlauben uns die Aussagen über das Rauschverhal-
ten der OFK. Unsere Studien haben gezeigt, dass das Intensitätsrauschen des Gesamt-
systems (d.h. aller drei Fasern) mit steigender LFS nachlässt. So kann zum Beispiel das
Intensitätsrauschen unter 1% für LFS = 80 GHz und LFS = 160 GHz gehalten werden,
während es bis zu 10% für LFS = 40 GHz ansteigt. Deswegen sind höhere Laserfre-
quenzseparationen vorzuziehen, um rauscharme optische Frequenzkämme erzeugen
zu können.
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1 Optical Frequency Combs in
Astronomy: An Introduction

In this chapter, the reader is introduced into the general concept of optical frequency
combs. Further, she or he learns how frequency combs can be deployed within the
Astronomy.

1.1 Laser Optical Frequency Combs

Optical frequency combs (OFC) constitute an array of sharp equidistantly positioned
spectral lines with almost equal intensities over a broad spectral range. Frequency
combs were first realised as spectra of femto-second pulse trains generated in mode-
locked lasers in the groups of J. L. Hall (Boulder, USA) and T. W. Hänsch (Garching,
Germany) at the end of the 1990’s. Both scientist were awarded with the Nobel prize
for the discovery of OFC in 2005.

Figure 1.1: Time and frequency domain representation of a pulse train of a mode-locked
laser [1]

Fig. 1.1 shows the time and frequency domain representation of a pulse train generated
in a mode-locked laser. The pulse train is the result of a phase coherent superposition of
many continuous-wave (CW) longitudinal laser cavity modes. In the frequency domain,
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1 Optical Frequency Combs in Astronomy: An Introduction

these modes constitute a series of frequency lines that form an OFC. The nth frequency
line of the comb reads as:

ωn = nωr + ωCE, (1.1)

whereωr denotes the frequency separation between the lines that is given byωr = 2π/T
with T being the time between two neighbouring pulses (also called the pulse repetition
time). n is the cavity mode number of some 106 and ωCE, 0 < ωCE < ωr, is the off-set
frequency. The off-set frequency occurs because the carrier wave with the frequency ωc
propagates with the phase velocity (vp) that is different from the group-velocity of the
carrier-envelope (vg) which results in a pulse-to-pulse phase shift ∆ϕCE :

∆ϕCE = |1/vg − 1/vp|Lcωc, (1.2)

where Lc is the cavity round-trip length. The off-set frequency obeys the relation

ωCE = ∆ϕCE/T (1.3)

and shifts the OFC as a whole from the strict harmonics ofωr.To know absolute frequen-
cies of an OFC, one needs to measure the frequencies ωr and ωCE. The measurement of
ωr is done by detection of the pulse repetition rate with a fast photodiode. The value
of ωCE is determined by measuring the beating frequency that arises if some frequency-
doubled modes at the red side of the comb are superposed with modes at the blue side
[1, 2].

For his studies of frequency combs, T. W. Hänsch used a Kerr-lens-mode-locked
Ti:sapphire laser [3]. Also mode-locked fibre ring lasers [4], optical quantum-dot lasers
[5], microring resonators [6], monolithic microresonators [7], or parametric oscillators
[8] can be used for generation of OFC.

Since their inception, the OFC have induced the development of such fields of ap-
plication like the frequency synthesis [9], the supercontinuum generation [10, 11], the
component testing and the optical sampling in the telecommunication as well as the de-
velopment of ultra-high capacity transmission systems based on optical time-devision
multiplexing [12, 13, 14, 15, 16, 17]. The OFC can even be deployed for mimicking the
physics of an event horizon [18].

1.2 Optical Frequency Combs for Calibration of
Astronomical Spectrographs

Wavelength calibration of astronomical spectrographs is basically performed with the
help of spectral emission lamps (Th/Ar, He, Ne, Hg, etc.) or absorption cells, for
instance, iodine cells [19]. These techniques provide reliable and well characterised
emission and absoption spectra, respectively, but have limitations in the spectral cover-
age. Moreover, the spectral line spacings and the line intensities are irregular [20, 21, 22].
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High-resolution applications like the search for extra-solar planets via the observation
of the stellar radial velocities’ Doppler shifts and the measurement of the cosmological
fundamental constants require an accuracy of a few cm/s in terms of radial velocity
[23, 24, 25]. The resolution that typical Th/Ar lamps can provide is, however, limited to
a few m/s.

Optical frequency combs constitute an ideal spectrograph calibrator since they pro-
vide a high density of stable almost equally intense spectral lines with uniform spacing
[20, 26, 9, 27]. Filtered combs generated in mode-locked lasers have been proposed
and already successfully tested as high-precision calibrators on such high-resolution
instruments like the Ultra-High-Resolution Facility (UHRF) with resolving power of
R = λ

∆λ ≈ 106 at the 3.9 m Anglo-Australian Telescope [28], the High Accuracy Radial
Velocity Planet Searcher (HARPS) spectrograph with R = 115000 at the ESO 3.6 m tele-
scope at the La Silla observatory [29, 30], and at the 0.7 m solar German Vacuum Tower
Telescope (VTT) at the Canarian Observatories [31, 32]. It was shown that - compared
to the calibration lamp units - the tested broadband laser OFC improved the calibration
accuracy by almost three orders of magnitude down to the cm/s−level.

Figure 1.2: Experimental setup for the generation of OFC tested on the HARPS instru-
ment: an Yb-fibre laser generates combs with spacing of 250 MHz, a series
of Fabry-Perot cavities (FPC 1+2) filters this comb so that the resulting OFC
has the line spacing of 18 GHz [30]

Mode-locked lasers produce combs with frequency line spacings of only a few tens
to hundreds of MHz. Such spacings are too small to be resolvable by any astronomical
spectrograph. Even for high-resolution applications, the lines of the laser-based combs
need to be filtered by a set of stabilised Fabry-Perot cavities such that the line spacing
is increased to 1 − 30 GHz (Fig. 1.2.)

The instruments for the surveys of galaxy structures, the star observation, and the
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Milky Way characterisation operate in the low- to medium resolution range (resolving
power R < 50000). For instance, the spectrograph called the Multi Unit Spectroscopic
Explorer (MUSE) being in development for the Very Large Telescope (VLT) has the re-
solving power of R = 2000 at λ = 460 nm and R = 4000 at λ = 930 nm [33]. The 4-metre
Multi-Object Spectroscopic Telescope (4MOST) is a large-field multi-object spectrograph
proposed for the New Technology Telescope (NTT). It consists of one spectrograph
with the resolving power R > 20000 and several spectrographs with R = 5000 [34, 35].
For the OFC to be resolvable by such low- and medium-resolution instruments, the
comb frequency line spacings need to be increased up to hundreds of GHz. In case of
OFC produced in mode-locked lasers, this would require unfeasibly high-finesse stable
Fabry-Perot cavities.

The OFC generated in monolithic microresonators due to the optical Kerr effect can
be deployed specifically for the low-resolution applications. Such OFCs have frequency
line spacings lying between 100 GHz and 1 THz [7, 36]. However, the microresonator-
based combs suffer from the instabilities caused by the thermal effects due to the high
optical-power levels inside the resonators and need to be regulary adjusted.

An all over fibre-based approach for generation of OFC in the near-IR (NIR) was
proposed and experimentally realised by Dr. José M. Chavez Boggio, a member of
our research group innoFSPEC at the Leibniz Institute for Astrophysics Potsdam (AIP)
[37, 38, 39, 40]. This approach exploits the pulse compression in an amplifying Erbium-
doped fibre with anomalous dispersion. It is comparably stable over a long period of
time and has the advantage of a simple low-cost setup. Moreover, it allows to produce
combs with frequency line spacings that can be tuned between a few tens of GHz and
a few hundreds of GHz and so adjusted to the resolution features of a specific spec-
trograph. In this approach, the OFC evolves as the light from two lasers propagates
through the following fibre stages: a conventional single-mode fibre, an Erbium-doped
fibre, and a highly nonlinear low-dispersion fibre (Sec. 2.2).

Within this work, we1 numerically study the proposed setup for generation of OFC
in fibres. Before the reader gets to know the results of our numerical studies, she or he
is introduced to the theoretical framework we are in. In Sec. 2, the general concept of
the generation of OFC in optical fibres as well as the proposed fibre-based approach are
presented in more detail. The mathematical model that describes the OFC formation
in optical fibres is derived in Sec. 3. Different types of optical waves that exist in op-
tical fibres and that can be deployed for an effective OFC generation are discussed in
Sec. 4. The optical pulse compression techniques needed to obtain broadband OFC are
presented in Sec. 5.

The results on the optical pulse formation in the first and the second fibre stage are
analised in Sec. 6 and Sec. 7, respectively. In Sec. 8, the optimum fibre lengths are found

1In the following, ”we” is used in the sense of ”I”
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as functions of the group-velocity dispersion parameter of the first fibre stage and of
different values of the laser frequency separation. In Sec. 9, the pulse compression
effectiveness in the first and the second fibre stage is studied as a function of the laser
frequency separation. In Sec. 10, we present the studies on the pulse intensity noise and
pulse coherence characteristics in all three fibre stages of the proposed setup.
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2 Generation of Optical Frequency
Combs in Optical Fibres

In Sec. 1, the reader was introduced to the general concept of optical frequency combs
(OFC) and their application potential for calibration of astronomical spectrographs. The
reader got to know the deployment of laser-based OFC with frequency line spacings
reaching up to 30 GHz for high-resolution astronomical applications.

Specifically for low- and medium resolution applications, combs with frequency line
spacings reaching from a few tens to hundreds of GHz can be generated in optical fi-
bres starting from two continuous-wave (CW) lasers. In this case, the OFC generation is
based on nonlinear cascaded four-wave mixing (FWM) processes taking place in optical
fibres. Cascaded FWM-processes have been already extensively studied with the aim
to generate ultra-short pulses at high repetition rates, but not with the idea to elaborate
broadband OFC [13, 14, 16, 17]. In the recent past, however, some approaches target-
ing specifically the generation of OFC in highly nonlinear fibres were also reported
[41, 42, 43, 44].

In this chapter, we introduce the reader to the general concept of the four-wave mixing
in optical fibres. Moreover, we describe in detail the fibre-based approach for generation
of frequency combs that was proposed within our research group innoFSPEC (AIP). We
give a few experimental results proving the suitability of the proposed approach for
low- and medium resolution astronomical application. The OFC was tested using a
MUSE-type astronomical spectrograph [37, 38, 39, 40].

2.1 Four-Wave Mixing

The four-wave mixing (FWM) is a parametric nonlinear process relying on the third-
order susceptibility χ(3) of the material (cf. Sec. 3.1). During this process, photons from
one or more waves are annihilated and new photons are created at different frequencies
such that the net energy and momentum are conserved [45].

There are two types of this process: the non-degenerate FWM and the degenerate
FWM. The non-degenerate FWM process takes place when two photons at different
frequency ω1 and ω2 (coming from two pump beams) are annihilated with the simulta-
neous creation of two photons at frequenciesω3 andω4 such thatω1+ω2 = ω3+ω4. The
parametric gain that is responsable for the emergence of new frequency lines is given
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by

g =
√

4γ2P1P2 − (κ/2)2, (2.1)

where P1 and P2 denote the initial power of the pump beams with frequencies ω1 and
ω2, γ is the so-called nonlinear parmeter of the medium, γ ∝ χ(3) (for more details see
Sec. 3.2.4), and κ is the total phase mismatch given by

κ = ∆k + γ(P1 + P2) (2.2)

with k being the wave vector [46]. In the degenerate case, two photons at the same
frequency ω1 = ω2 (coming from the same pump) are annihilated and two photons at
different frequencies ω3 and ω4 are created: 2ω1 = ω3 + ω4. The parametric gain for the
degenerate case is the same as for the non-degenerate one [47].

The process during which the new generated waves create further photons at new
frequencies is called cascaded FWM [48]. A cascade of FWM processes leads to the
emergence of an OFC. The n-th tooth of such OFC is given by [44]:

ωn = n∆ω + ωoff , (2.3)

where ∆ω is the difference between two neighbouring frequency lines, ωoff is the offset
frequency that is determined by the frequencies of the lasers involved. The offset fre-
quency is by definition smaller than∆ω.n is an integer of a few powers of ten (cf. Eq. 1.1).

According to Eq. 2.1, the maximum parametric gain occurs ifκ = 0 or∆k = −γ(P1+P2).
In a more general case, in single-mode fibres, the phase-matching condition κ = 0 is
written in the form:

κ = ∆kD + ∆kNL = 0, (2.4)

where ∆kD is the mismatch that is caused by the material dispersion and the mismatch
∆kNL that is based on the nonlinear effects in the medium. The material contribution
can be expressed as follows:

∆kD ≈ β2(ω1 − ω3)2
(
= β2(ω2 − ω4)2

)
(2.5)

with β2 being the group-velocity dispersion (GVD) parameter, whereas ∆kNL reads as:

∆kNL = γ(P1 + P2). (2.6)

For κ to be zero, kD and kNL need to compensate each other:

∆kD = −∆kNL. (2.7)

In an experimental setup, ∆kNL can be adjusted by changing the powers P1 and P2,
whereas ∆kD can be effectively minimised in the anomalous, i.e. negative, dispersion
region close to the zero-dispersion wavelength [43]. Further, the FWM as a parametric
process is highly polarisation- and birefringence-dependent. Thus, to increase the effec-
tiveness of the formation of a FWM-based comb, one needs to control the polarisation
carefully within the experiment as well as minimise the birefringence effects [45].
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2.2 Approach for Generation of Optical Frequency Combs
for Astronomical Applications

Achieving the broadest possible frequency combs based on a cascade of FWM pro-
cesses in optical fibres is possible in two ways. The first way is to choose fibres that
are intrinsically highly nonlinear (HNLF: highly nonlinear fibres), i.e. fibres having a
nonlinear parameter of γ ≥ 10 W−1km−1 [41, 42, 43, 44]. The second way is to increase
the efficiency of the nonlinear interaction in the fibre glass by injecting highly intense
light into it. Intense light can be obtained, for instance, via the preceding amplification
in an Erbium-doped fibre (EDFA) into the testing fibre [49, 50].

LAS1

LAS2

ISOL PC

EOM

AMP1 F1 AMP2 F2

B CA

PUMP AUTOCOR

OSA

ESA

Figure 2.1: Experimental setup for the generation of OFC in fibres. ISOL: optical isolator,
PC: polarisation controller, EOM: electro-optical modulator, LAS1: fixed CW
laser, LAS2: tuneable CW laser, AMP1: Er-doped fibre amplifier 1, F1: optical
bandpass filter 1, AMP2: Er-doped fibre amplifier 2, F2: optical bandpass
filter 2, A: single-mode fibre, B: Er-doped fibre with anomalous dispersion,
C: highly nonlinear low-dispersion fibre, PUMP: pump laser for fibre B,
AUTOCOR: optical autocorrelator, OSA: optical spectrum analyser, ESA:
electrical spectrum analyser [40]

The setup for generation of OFC in fibres proposed by our group makes use of
both approaches: it contains an amplifying suitably pumped Erbium-doped fibre with
anomalous, i.e. negative, dispersion as the second stage and a highly nolinear fibre
as the final third stage. The first stage is a conventional single-mode fibre (Fig. 2.1)
[37, 38, 39, 40].

The evolution of a frequency comb in this system is governed by the following pro-
cesses: as the two initial CW-laser waves at ω1 and ω2 propagate through the fibre
A, they generate an initial comb via a cascade of FWM processes [49, 18]. The new
frequency components are phase-correlated with the original laser lines and have a fre-
quency spacing that is equal to the initial laser frequency separation LFS = |ω2 −ω1|/2π
(Fig. 2.3A). In the time domain, a train of pre-compressed pulses with widths of a few
pico-seconds arises out of the initial bichromatic deeply modulated cosine-wave [51, 52]
(Fig. 2.2A). These pulses undergo a further compression as they propagate through the
amplifying fibre B with anomalous dispersion [50, 53, 54, 55]: sub-100 fs pulses are
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2 Generation of Optical Frequency Combs in Optical Fibres

Figure 2.2: Optical pulse shapes after propagation in all three fibre stages obtained
through a numerical simulation for laser frequency separation LSF = 80 GHz
and initial power P0 = 2 W

Figure 2.3: Evolution of an optical frequency comb in all three fibre stages obtained
by means of numerical simulations for laser frequency separation LSF =
200 GHz and initial power P0 = 6.5 W

generated (Fig. 2.2B). The OFC formed in fibre A is broadened after the pulses passed
through fibre B (Fig. 2.3B). A low-dispersion HNLF is used as the last stage (Fig. 2.2C).
In this fibre, the OFC gets strongly broadened and the intensity of the comb lines fairly
equalised (Fig. 2.3C).

Fig. 2.4 shows the spectra of an optical frequency comb obtained with our experimen-
tal arrangement. The lasers that were used have equal intensity and feature relative
stability of 10−8 over 1-hour time frame. This stability is adequate for astronomical
applications in the low- and medium resolution range so that no additional stabilising
techniques (like, for instance, the phase-locking to a high-finesse cavity) are required.
The initial laser frequency separation is 200 GHz which is optimum for the resolu-
tion power of R = 3000. The cental wavelength is λc = (λ1 + λ2)/2 = 1552 nm. The
electro-optical modulator EOM carves the initial wave that arises after the combination
of both CW lasers into pulse trains with widths of 20 ns. The first amplifier AMP1
provides an average power of 12 mW. The second amplifier AMP2 raises the average
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power to a value of 100 mW. The first bandpass filter F1 has a bandwidth of 100 GHz,
the bandwidth of the second bandpass filter F2 is 30 GHz. A conventional single-
mode fibre with total length of LA = 350 m and dispersion and nonlinear parameters
βA

2 = −21 ps2/km and γA = 2 W−1km−1, respectively, was deployed as the first stage
(A). A double-clad Er/Yb-fibre with length of LB = 17 m was used as the second stage
(B). This fibre is pumped with a power of 3 W at 940 nm. The fibre parameters are
βB

2 = −15 ps2/km, γB = 2.5 W−1km−1. Fibre C has the length of LC = 3.5 m and parame-
ters βC

2 = −0.5 ps2/km, γB = 10 W−1km−1 at 1550 nm.

Figure 2.4: OFCs obtained after propagation through fibre stages A, B, and C with
LFS = 200 GHz [40]

As shown in Fig. 2.4, the spectrum of fibre A extends from 1546.2 nm to 1560.5 nm,
while the spectral bandwidth for fibre B is broadened from 1465 nm to 1645 nm. How-
ever, the OFC line intensities in fibre A and B differ in a few orders of magnitude. After
propagation through fibre C, the OFC spectrum is broadened to the range between

11



2 Generation of Optical Frequency Combs in Optical Fibres

1400 nm and 1700 nm and the line intensities are fairly equalised. The characterisation
beyond 1700 nm was not possible because the operational bandwidth of spectrometer
used in the experiment was exceeded [40].

Figure 2.5: The modified MUSE-type spectrograph (1), the input (2) and the output (3)
of the fibre bundle [40]

We show the suitability of the fibre-based OFC for calibration of astronomical spec-
trographs by testing it with a modified MUSE-type spectrograph (Fig. 2.5.1). Contrary
to the original MUSE spectrograph that deploys image splicing mirrors, the modified
version uses a 20 × 20−fibre-fed input (Fig. 2.5.2). The MUSE spectrograph itself op-
erates in the wavelength range between 465 nm to 930 nm with a 4096 × 4096 CCD
detector having 15 µm pixels. It exhibits the resolving power of R = 4000 at 930 nm.
The wavelength calibration is performed using the spectral lines from Ne and Hg lamps
[33]. The modified MUSE-type spectrograph exhibits the same features.
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For the fibre-based OFC to be detectable by a MUSE-type spectrograph, it needs to be
frequency-doubled from the NIR into the visible spectral range after fibre C. For that,
an OFC centred at 1560 nm and spanning over 350 nm is focused into a BBO crystal
with a thickness of 2 mm by means of a collimator and a focusing objective.

Figure 2.6: OFC obtained by means of the frequency-doubling of the output of fibre C
[40]

Figure 2.7: Comparison between calibration with a Ne lamp and an OFC in spectral
region 1 of the MUSE-type spectrograph [40]

Fig. 2.6 shows the frequency-doubled spectrum obtained with LFS = 708 GHz. The
OFC extends from 736 nm to 850 nm and exhibits ca. 80 narrow equidistantly positioned
lines. The lines have, however, different intensities which is caused by the inequality
of efficiency of the wavelength-dependent frequency-doubling process. The best per-
formance in terms of the equality of line intensities is achieved in the spectral range
between 780 nm and 800 nm [40].

Fig. 2.7 and Fig. 2.8 show the CCD images for two contiguous spectral regions (each
one with 19.5 nm width) covering the range of 780 − 820 nm. The time exposure for
both, the Ne and comb light, was 30 s,while different exposures were taken with a few
minutes of difference between them. Each comb line was sampled by 5 pixels. While
the comb spectra exhibit bright and uniformly spaced peaks, the Ne light shows only
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Figure 2.8: Comparison between calibration with a Ne lamp and an OFC in spectral
region 2 of the MUSE-type spectrograph [40]

three lines in the spectral region 1 and none in the other region [40].

Here, we showed that the proposed fibre-based approach for generation of optical
frequency combs is suitable for calibration of low- and medium resolution spectrographs
and exhibits the required characteristics to outperform the Ne lamp calibration source.
The 4MOST instrument would benefit from the deployment of the presented approach
[34, 35].
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3 Mathematical Model of Nonlinear Light
Propagation in Optical Fibres

In Sec. 2.2, we presented a fibre-based approach for generation of OFC for low- and
medium-resolution applications in Astronomy. Now, we focus ourselves on the deriva-
tion of the mathematical model that describes the optical pulse propagation in silica
fibres according to the proposed approach. The spectra of these pulses obtained via the
Fourier transform will constitute exactly the OFC we are interested in.

We begin with the description of the nonlinear optical effects that play an imporant
role in silica fibres. Those effects are the optical Kerr effect, the delayed Raman effect,
and the pulse self-steepening. Then, we derive the pulse-propagation equation. For
that, we start with the Maxwell’s equations. Having applied the well-known slowly
varying envelope approximation (SVEA), we end up with a Generalised Nonlinear
Schrödinger Equation (GNLS) in the co-moving frame that contains

• the group-velocity and the higher-order dispersion

• the nonlinear interaction terms (the optical Kerr effect, the Raman effect, and the
pulse self-steepening)

• the linear fibre losses

• the Erbium gain for the second fibre stage of the proposed setup.

This equation (Eq. 3.46) will be used in the further course of our studies. Here, we also
give a suitable initial condition equation (Eq. 3.47) that describes the radiation of two
CW lasers of the proposed setup. After the pulse-propagation equation is derived, we
briefly discuss the Fourth-Order Runge-Kutta Method in the Interaction Picture (RK4IP)
that is used for the numerical integration of Eq. 3.46 and Eq. 3.47.

3.1 Nonlinear Optical Effects in Fibres

A great part of optical fibres available on the market is fabricated out of silica glass. If
an optical plane wave with the electric field component E(z, t) = E0ei(ωt−kz) propagates
through this dielectric medium, it induces a charge displacement that yields formation
of electric dipoles p(E). The sum of these dipoles constitutes the dielectric polarisation
field:

P(E) =
1
V

∑
i

pi(E), (3.1)
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where V denotes the volume element. The dependence of the time-dependent dielectric
polarisation P(t) on the electric field E(t) can be expressed by means of a Taylor series
expansion [56]:

P(E) = ϵ0
(
χ(1)E + χ(2)|E|2 + χ(3)|E|2E + . . .

)
, (3.2)

where χ(n) is the n-th order component of the electric susceptibility of the medium.
The linear term in Eq. 3.2 describes the polarisation induced by the electric dipoles, the
nonlinear contributions denote the formation of the multipoles. Generally holds that
χ(n)E(n) ≫ χ(n+1)E(n+1), therefore the higher-order terms can be dropped if the intensity
of the electric field is not too high. In this part, we are more interested in the physical
meaning of the terms rather than in their time dependence, therefore the components
of χ(n) are assumed to be time-independent. Later on, we will take a closer look on the
time dependence of the susceptibility components.

The first-order susceptibility in Eq. 3.2, i.e. χ̂(1), describes the linear dispersion of light
inside the optical fibres. The third-order susceptibility χ̂(3) gives rise to the nonlinear
effects that play an important role in silica materials, namely the optical Kerr effect
and the Raman effect [45, 46]. The second-order susceptibility χ̂(2) is present only in
dielectric media without inversion symmetry. Due to the symmetry properties of silica,
the effects presented by χ̂(2) are not existent in optical fibres [57, 58]. Therefore, the
second-order term drops out and the resulting polarisation reduces to the following
form:

P(E) = ϵ0
(
χ(1)E + χ(3)|E|2E

)
. (3.3)

3.1.1 Optical Kerr Effect

The optical Kerr effect is a phenomenon associated with the change of the medium
refractive index due to the displacement of the electrons inside the material when an
electric field E(z, t) propagates through it. The self-phase modulation is a nonlinear
optical effect that is induced by the change of the refractive index due to the optical Kerr
effect.

The refractive index depends on the dielectric suscebility via n =
√

1 + χ.Accordingly,
the expression for polarisation presented in Eq. 3.3 implies the following form of the
refractive index:

n(I) = n0 + n2I(t), (3.4)

where n0 is the linear refractive index, whereas n2 is the second-order nonlinear refrac-
tive index, I(t) denotes the time-dependent light intensity, i.e. I(t) = |E(t)|2

Aeff
with Aeff being

the effective modal area. Note that both, n0 and n2, are frequency-dependent.

To understand the effect of the self-phase modulation, consider the phase of the
electric field E(t) propagating in z−direction in a medium that is subjected to the Kerr
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effect:
ϕ := ωt − kz = ωt − ωn

c
z = ω

(
t − n0

c
z
)
− BI(t), (3.5)

where B := n2ω
c z is proportional to the nonlinear part n2 of the refractive index. The

time derivative of the phase will give us the actual wave frequency:

ω =
dϕ
dt
= ω0 − B

dI
dt
.

Obviously, for the increasing intensity of a light pulse that propagates through the
medium, i.e. for dI

dt > 0, the effective frequency ω is smaller than the initial frequency
ω0. On the contrary, for dI

dt < 0, the value of the initial frequency increases. In other
words, the spectral profile of the light pulse broadens due to the appearance of new
frequency components. This broadening is symmetric for pulses that have symmetric
intensity profiles [56].

The self-phase modulation appears if a monochromatic wave propagates through
the material. If a polychromatic wave propagates through a nonlinear medium, the
processes of cross-phase modulation and the four-wave mixing (Sec. 2.1) can take place
due to the optical Kerr effect (Eq. 3.4) [45].

3.1.2 Raman effect

The displacement of the electrons inside the material due an electric field E(z, t) (the
optical Kerr effect) occurs almost instantaneously. The vibration of silica molecules
induced by E(z, t) also known as the (delayed) Raman effect is, however, time-dependent
since it involves the response of more heavy nuclei. According to that, the response
function R(t) that includes both, the electronic and the nuclear contributions, can be
written as [45, 46]:

R(t) = (1 − fR)δ(t) + fRhR(t), (3.6)

where the first term describes exactly the Kerr effect and the second one the delayed
Raman effect. In this equation, fR = 0.245 is the fractional contribution of the Raman
response to the nonlinear polarisation and hR(t) is the Raman response function. The
Fourier transform of hR(t) is connected with the Raman-gain spectrum via the third-
order susceptibility:

gR(∆ω) =
fRω0

cn(ω0)
χ(3) Im

(
h̃R(∆ω)

)
(3.7)

where ∆ω = ω − ω0 [45].

Due to the amorphous nature of silica glass, it is difficult to calculate the precise form
of the Raman response function hR(t). The spectrum of the Raman gain can be used to
find an analytical approximation of hR(t). One of such possible approximations is the
following one:

hR(t) = (1 − fb)ha(t) + fbhb(t), (3.8)
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with the functions

ha(t) =
τ2

1 + τ
2
2

τ1τ2
2

exp
(
− t
τ2

)
sin

( t
τ1

)
, (3.9)

hb(t) =

2τb − t
τ2

b

 exp
(
− t
τb

)
, (3.10)

where τ1 = 12.2 fs and τ2 = 32 fs are the characteristic times of the Raman response and
fb = 0.21 represents the vibrational instability of silica with τb ≈ 96 fs [46, 54, 37, 38, 39].
We will use this form of the Raman response function in the further course of our
studies.

3.1.3 Pulse Self-Steepening

The effect of the self-steepening plays an important role for optical pulses with widths
below 1 ps and has its origin in the intensity-dependence of the refractive index due
to the Kerr effect (Eq. 3.4). To get an idea about the self-steepening, let us consider the
pulse group velocity

vg =
c
n

(3.11)

with c being the speed of light in vacuum. If we put Eq. 3.4 into the definition of the
group velocity, we see that the centre of the pulse moves at lower speed than the wings:

vg(t) =
c

n0 + n2I(t)
. (3.12)

This yields that an initially symmetric pulse becomes asymmetric with its peak shift-

Figure 3.1: Demontration of the effect of self-steepening: a pulse at the input (dashed
line) vs. the same pulse at the output (solid line) of a nonlinear Kerr medium
[59]

ing towards the trailing edge, whereas the latter one becomes steeper and steeper with
increasing propagation distance (Fig. 3.1). The growing pulse asymmetry yields increas-
ing of the asymmetry of the spectrum: the steeper trailing edge of the pulse implies
spectral broadening on the blue side of the spectrum. Contrary to acoustic or water
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waves, the pulse shock in optical systems is prevented if GVD is present: the GVD
dissipates the shock by broadening the spectrum of the steepening trailing edge [45].

3.2 The Wave Equation

3.2.1 General Form of the Wave Equation

The propagation of light in fibres is governed by the well-known Maxwell’s equations
[45, 60, 61]:

divD = ρ

divB = 0
curlE = −∂tB
curlH = j + ∂tD,

where E and B denote the electric field and the magnetic field, respectively, whereas
D and H stand fot the electric displacement field and the magnetising field. Further, ρ
denotes the charge density and j the current density. In optical fibres, free charges are
absent. Thus, ρ and j can be set to 0.

Additionally to the Maxwell’s equations, we also consider the material equations.
They describe how different materials react to the applied electric and magnetic fields:

B = µ0(H +M)
D = ϵ0E + P.

In the material equations, P stands for the polarisation and M for the magnetisation of
the medium. Silica glass can be considered as a nonmagnetic medium. So, the magneti-
sation M can be set to 0.All remained quantities, i.e. D, E, B, and H are functions of the
space r and the time t.

To obtain the wave equation that describes the propagation of the electric field E
inside a silica fibre, we apply the curl differential operator on the Maxwell equation
curlE = −∂tB :

curl(curlE) = grad(divE)︸       ︷︷       ︸
=0

−∆E =

= −curl(∂tB) = ... = −µ0∂ttD,

and obtain the general form of the sought wave equation:

∆E = µ0∂ttD =
1
c2∂ttE + µ0∂ttP =

1
c2∂ttE +

1
ϵ0c2∂ttP (3.13)
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or also

∆E − 1
c2∂ttE =

1
ϵ0c2∂ttP, (3.14)

where c = 1√
ϵ0µ0

denotes the speed of light in vacuum.

3.2.2 Linear and Nonlinear Polarisation

As already mentioned, if an electric field of the form E = E0ei(βz−ωt) propagates through
a dielectric medium, it induces a displacement of charge carriers in atoms and molu-
cules which leads to the formation of electric multipoles p(E). The sum of all electric
multipoles per a unit volume V is the macroscopic dielectric polarisation P(E) (Eq. 3.1).

In silica, the dependence of the jth component of the dielectric polarisation on the
applied electric field can be written as follows [56, 61, 62]:

P j(r, t) = ϵ0
( ∫ τ

−∞
χ̂(1)

jk (t − τ1)Ek(r, τ1)dτ1 + (3.15)

+

∫ τ

−∞
χ̂(3)

jklm(t − τ1, t − τ2, t − τ3)Ek(r, τ1)El(r, τ2)Em(r, τ3)dτ1dτ2dτ3

)
,

where we used the Einstein notation that implies summation in case of the index dupli-
cation. The tensor χ̂(n) denotes the n-th order of the electric susceptibility (cf. Eq. 3.3).

The assumption of an instantaneous nonlinear response of the medium will help us
to simplify Eq. 3.15. With this assumption, the tensor χ̂(3) can be written as a product of
delta distributions:

χ̂(3)
jklm(t − τ1, t − τ2, t − τ3) =: χ(3)δ(t − τ1)δ(t − τ2)δ(t − τ3), (3.16)

where χ(3) is a scalar. The instantaneous response neglects the contribution of the mole-
cular vibrations to χ(3), it only takes the electronic (Kerr) response into account that is
generally much faster that the response of the nuclei. In silica fibres, the vibrational or
Raman response occurs over a time scale of 60 − 70 fs. Therefore, Eq. 3.16 is valid only
for optical pulses with widths > 1 ps [45]. A more precise consideration of the Raman
effect and its inclusion into the wave equation will be done later in this section.

According to previous considerations, the polarisation can be split into a linear and a
nonlinear part:

P j(r, t) = ϵ0

(∫ τ

−∞
χ̂(1)

jk (t − τ1)Ek(r, τ1)dτ1 + χ
(3)(E,E)E j

)
=: P j/LN + P j/NL, (3.17)

where (E,E) denotes the scalar product of the electric field with itself.
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3.2.3 Slowly Varying Envelope Approximation

Eq. 3.14 is a partial differential equation of the second order. It can be simplified using
the so called slowly varying envelope approximation (SVEA) that assumes the optical
field to be quasi-monochromatic with the central frequency ω0 of the carrier wave and
the spectral width ∆ω such that ∆ω/ω0 ≪ 1. This assumption is valid for optical pulses
as short as 0.01 ps and is applicable in our case [45].

Within the SVEA, the electric field can be written as:

E(r, t) = xE(r, t)ei(β0z−ω0t), (3.18)

the linear and the nonlinear polarisation as:

P(r, t) = xP(r, t)ei(β0z−ω0t) = x (PLN(r, t) + PNL(r, t)) ei(β0z−ω0t) (3.19)

where ω0 and β0 are the frequency and the propagation constant of the carrier wave,
x is the polarisation unit vector, E(r, t), PLN(r, t), and PNL(r, t) are the slowly varying
envelopes of the electric field and polarisation. If we assume the maintainance of the
polarisation along the fibre length, we can drop the polarisation vector from the consid-
eration and treat the fields as scalars. This assumption is not exact, unless polarisation-
maintaining fibres are used, because real fibres can not sustain perfect cylindrical shapes,
random variations of the shape are always present. This yields a random change of
the polarisation state. In practical terms, this effect will reduce the efficiency of the
nonlinear effects. The latter ones exhibit the highest level of efficiency when the waves
that propagate through an optical fibre have parallel and linear polarisation. However,
the assumption of the polarisation maintainance does not only simplify the derivation
of the mathematical model of the light propagation in optical fibres, but also works well
in practice [45].

The envelopes E(r, t) and P(r, t) can be written as:

E(r, t) =: F(x, y)A(z, t), (3.20)

P(r, t) =: F(x, y)P(z, t), (3.21)

where F(x, y) denotes the fields’ profiles in the x−y−plane transversal to the propagation
direction z. It describes the mode distribution in the fibre and is generally given in the
form of a Bessel function. Here, we consider the propagation of light through single-
mode fibres. In this case, the single fundamental mode can be approximated by a
Gaussian:

F(x, y) ∝ e−
x2+y2

w2 (3.22)

with the width parameter w that approximately equals the fibre core radius for stan-
dard telecommunication fibres [45]. The evolution of the field along the propagation
direction z is given by the envelope functions A(z, t) and P(z, t). Those are the functions,
we are mainly interested in. Therefore, we will drop the mode distribution from our
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consideration and focus ourselves on A(z, t) and P(z, t), instead.

Within the SVEA, the envelope functions A(z, t) and P(z, t) are assumed to have a slow
spatio-temporal dependence. Quantitatively, this means [61]:

|∂zzA(z, t)| ≪ β0|∂zA(z, t)| ≪ β2
0|A(z, t)|, |∂ttA(z, t)| ≪ ω0|∂tA(z, t)| ≪ ω2

0|A(z, t)| (3.23)

and similarly for P(z, t) :

|∂zzP(z, t)| ≪ β0|∂zP(z, t)| ≪ β2
0|P(z, t)|, |∂ttP(z, t)| ≪ ω0|∂tP(z, t)| ≪ ω2

0|P(z, t)|. (3.24)

Appliyng the SVEA to Eq. 3.14, we obtain:

∆E − 1
c2∂ttE =

(
∂zz −

1
c2∂tt

)
A(z, t)ei(β0z−ω0t) =

=
(
∂zzA + 2iβ0∂zA − β2

0A
)

ei(β0z−ω0t) −
 1

c2∂ttA − 2i
ω0

c2 ∂tA −
ω2

0

c2 A

 ei(β0z−ω0t) ≈

≈ 2iβ0

(
∂zA +

1
c
∂tA

)
ei(β0z−ω0t) (3.25)

and

∂ttP = ∂ttP(z, t)ei(β0z−ω0t) =
(
∂ttP − 2iω0∂tP − ω2

0P
)

ei(β0z−ω0t) ≈
≈ −ω2

0Pei(β0z−ω0t). (3.26)

Combining all terms, we get a more convenient form of the wave equation:(
∂z +

1
c
∂t

)
A(z, t) = i

β0

2ϵ0
P(z, t). (3.27)

This wave equation is a first-order partial differential equation. Further, the fields’
envelopes A and P are functions of only two variables, the propagation distance z and
the time t.

3.2.4 General Pulse-Propagation Equation

Now, after we obtained the wave equation for the slowly variyng fields’ envelopes
(Eq. 3.27), we proceed with the derivation of a more realistic wave equation. We will do
it in the frequency domain which will allow us to apply a few more assumptions for the
simplification of the derivation process. So, consider the following Fourier transforms:

A(z, t) =
∫ +∞

−∞
Ã(z, ω − ω0)ei(ω0−ω)td(ω − ω0), (3.28)

P(z, t) =
∫ +∞

−∞
P̃(z, ω − ω0)ei(ω0−ω)td(ω − ω0), (3.29)
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where ω0 denotes the frequency of the envelope’s carrier wave and ω is the frequency
of any other component of an optical pulse.

Applying the Fourier transforms to Eq. 3.27 and using the form of the polarisation
that we elaborated in Eq. 3.17, we get the wave equation in the frequency domain:

∂zÃ + i(β(ω) − β0)Ã = χ(1)(ω)Ã + i
β0

2
χ(3)|A|2Ã (3.30)

with the rewritten linear dielectric susceptibility χ(1) := iβ0
2 χ

(1). It is closely connected
with the effective refractive index of the medium via

χ(1)(ω) = n2
eff(ω) − 1, (3.31)

where neff is defined as
neff(ω) = β

c
ω
. (3.32)

For a single-mode propagation, the frequency-dependent effective refractive index can
be assumed to have a similar value as the refractive index at the frequency of the carrier
wave, i.e. neff(ω) ≈ neff(ω0). In this case, neff(ω0) is a constant. This assumption will
make the backward Fourier transform easier.

A precise expression for the propagation constant β(ω) is rarely known. Thus, it is
useful to perform a Taylor expansion of β(ω) around the carrier frequency ω0 [45]:

β(ω) = β0 + (ω − ω0)β1 +
1
2

(ω − ω0)2β2 +
1
6

(ω − ω0)3β3 + . . . , (3.33)

where the expansion parameters are defined as

βk =

(
dkβ

dωk

)
ω=ω0

(k = 1, 2, ...) (3.34)

and β0 is given by β0 =
n(ω0)
ω0

c with n0 being the linear refractive index at the carrier
frequency ω0. Using the βk coefficients, we obtain:

∂zÃ + i
K∑

k=1

βk

k!
(ω − ω0)kÃ = χ(1)Ã + i

β0

2
χ(3)|A|2Ã (3.35)

Note that the parameters βm are just constants and denote the order of the dispersion,
whereas the terms (ω − ω0)m result in the time derivatives im ∂

m

∂tm if Fourier-transformed
back into the time domain.

Performing the backward Fourier transform, we obtain the following equation for
the pulse propagation:

∂A
∂z
− i

K∑
k=1

ik
βk

k!
∂kA
∂tk
= (n2

eff(ω0) − 1)A + iγ|A|2A, (3.36)
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where the expression that contains the third-order susceptibility, i.e. β0
2 χ

(3), was substi-
tuted by the nonlinear parameter γ defined as follows:

γ =
ω0n2

cAeff
(3.37)

with n2 being the nonlinear refractive index (cf. Eq. 3.4) and Aeff the effective mode area,

Aeff =

(∫ ∫
|F(x, y)|2dxdy

)2∫ ∫
|F(x, y)|4dxdy

. (3.38)

According to the definition of the nonlinear parameter γ, the term γ|A|2A on the right-
hand side of Eq. 3.36 represents the optical Kerr effect.

A further simplification of Eq. 3.36 can be made if we ”sit down” on the top of a
pulse and ”travel” with it along the fibre. In this case, the formulation of the pulse-
propagation equation can be done in the co-moving frame. In the co-moving frame, the
linear dispersion is not noticeable. That means that the linear term on the equation’s
right-hand side can be dropped, whereas the summation on the left-hand side will start
up with k = 2 :

∂A
∂z
− i

K∑
k=2

ik
βk

k!
∂kA
∂tk
= iγ|A|2A. (3.39)

Note that Eq. 3.39 reduces to the form of a Nonlinear Schrödinger Equation (NLS) if the
sum goes only up to K = 2, i.e. if only β2, also often referred to as the group-velocity
dispersion (GVD) parameter, is kept:

∂A
∂z
+ i
β2

2
∂2A
∂t2 = iγ|A|2A. (3.40)

If other parameters like β3 called third-order dispersion (TOD) parameter and βk (k ≥ 4)
called higher-order dispersion parameters are taken into acount, Eq. 3.39 is referred to
as the Generalised Nonlinear Schrödinger Equation (GNLS).

The GNLS in the form as presented in Eq. 3.39 describes very well the dynamics of
optical pulses in fibres if they have widths that are larger than 1 ps. The assumption of
the instantaneous nonlinear response (Eq. 3.16) works quite well in this case. The spectra
of ultra-short pulses with widths < 1 ps are, however, broad enough (> 1000 GHz) to
be subjected to the intra-pulse Raman scattering: the Raman gain amplifies the low-
frequency components at an expense of the high-frequency componets of the pulse
spectrum. As a result, the pulse spectrum gets shifted towards the low-frequency (red)
side [45]. According to that, the third-order susceptibility needs to be time-dependent
in case of ultra-short pulses so that the intra-pulse Raman scattering can be properly
included into the model. The time-dependency of χ̂(3)

jklm can be expressed via the response
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function (Eq. 3.6):

χ̂(3)
jklm(t1, t2, t3) = χ(3) (R(t1)δ(t2)δ(t3 − t1) + R(t2)δ(t3)δ(t1 − t2) + R(t3)δ(t1)δ(t2 − t3)) .

(3.41)
The jth component of the nonlinear polarisation reads then as

P j/NL(r, t) = ϵ0χ(3)E j(r, t)
∫ t

−∞
R(t − τ)|E(r, τ)|2dτ. (3.42)

The fast change of the intensity profile of ultra-short pulses induces a fast change of
the intensity-dependent refractive index (Eq. 3.4). Taking this into account, we can
write down the pulse-propagation equation for the slowly varying envelope A(z, t)
[45, 54, 37, 38, 39]:

∂A
∂z
= i

K∑
k=2

ik

k!
βk
∂kA
∂tk
+ iγ

(
1 +

i
ω0

∂
∂t

)
A

∫ ∞

−∞
R(t′)|A(z, t − t′)|2dt′. (3.43)

Note that the function R(t) (Eq. 3.6) contains not only the response of the nuclei that
causes the Raman effect, but also the almost instantaneous electronic response that
induces the optical Kerr effect. According to this, the time derivative in the last term
on the right-hand side of Eq. 3.43 will imply not only the fast process of the intra-pulse
Raman scattering, but also the phenomenon of the pulse self-steepening (cf. Sec. 3.1.3).

3.2.5 Final Pulse-Propagation Equation

As the light propagates through a fibre, it experiences losses due to the absorption of
the medium:

P(z, t)
P(z = 0, t)

= e−αz (3.44)

where P(z, t) = |A(z, t)|2 is the optical power and α is the absorption coefficient [56].
The absorption coefficient is wavelength dependent. In silica fibres, the minimum of
optical losses (ca. 0.2 dB/km) is exhibited in the wavelength region near 1.55 µm [46].
Mathematically, the fibre losses are accounted for by the adding of a linear term to
Eq. 3.43 [45]:

∂A
∂z
= i

K∑
k=2

ik

k!
βk
∂kA
∂tk
+ iγ

(
1 +

i
ω0

∂
∂t

)
A

∫ ∞

−∞
R(t′)|A(z, t − t′)|2dt′ − α

2
A. (3.45)

As presented in Sec. 2.2, the second fibre stage of the proposed setup for generation
of OFC is an amplifying suitably pumped Er-doped fibre. Similar to the optical losses,
the optical amplification is mathematically treated as an additional term in the wave
equation:

∂A
∂z
= i

K∑
k=2

ik

k!
βk
∂kA
∂tk
+ iγ

(
1 +

i
ω0

∂
∂t

)
A

∫ ∞

−∞
R(t′)|A(z, t − t′)|2dt′ − α

2
A + F̃

(
g(ω)Ã(z, ω)

)
,

(3.46)
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Figure 3.2: Wavelength dependent Erbium gain profile

where g is the frequency- or wavelength-dependent Erbium gain (Fig. 3.2) with its maxi-
mum at 1531 nm and F̃ (·) denotes the backward Fourier transform from the frequency
to the time domain. Note that there is no Er-gain, i.e. g = 0, for the first (fibre A) and
third (fibre C) stage of the proposed setup!

Figure 3.3: Schematic representation of the initial condition

Eq. 3.46 constitutes the final pulse-propagation equation we were looking for. The
initial condition at z = 0 for this equation reads as

A0(t) =
√

P0 cos(ωct) +
√

n0(t) exp
(
iϕrand(t)

)
, (3.47)

where the first term describes the two-laser optical field with a peak power of P0
and a central frequency ωc = (ω1 + ω2)/2 that coincides with the central wavelength of
λc = 1531 nm.The second term in Eq. 3.47 describes the noise field and has an amplitude
varying between 0 and

√
n0 and a phase ϕrand randomly varying between 0 and 2π. The

deployment of optical filters within the experiment (Fig. 2.1) coincides mathematically
with the convolution of the randomly destributed noise floor with two Gaussians that
have the widths of 30 GHz and the depths of 20 dB. The maximum of each Gaussian is
positioned at the respective laser frequency line as shown in Fig. 3.3 [40].
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3.3 Numerical Methods

The numerical integration of Eq. 3.46 and Eq. 3.47 is performed by means of the Fourth-
Order Runge-Kutta in the Interaction Picture Method (RK4IP). To explain the RK4IP
algorithm, we start with the most commonly used numerical scheme for solving the
GLNS, namely with the split-step Fourier method. Within this picture, Eq. 3.46 is
formally viewed as

∂A
∂z
=

(
D̂ + N̂

)
A (3.48)

with the D̂ being the linear operator and N̂ the nonlinear operator. The operators are
defined as

D̂(·) = i
K∑

k=2

ik

k!
βk
∂k(·)
∂tk
− α

2
(·) + F̃

(
g(ω)(̃·)

)
, (3.49)

N̂(·) = i
γ

A

((
1 +

i
ω0

∂
∂t

)
A

∫ ∞

−∞
R(t′)|A(z, t − t′)|2dt′

)
(·). (3.50)

The linear dispersion operator is evaluated in the Fourier domain via the forward and
backward Fast Fourier Transform (FFT), whereas the nonlinear operator is treated in the
time domain. Within the symmetric split-step Fourier method, the solution of Eq. 3.48
over a step h reads then as [63]:

A(z + h,T) = A(z, t)exp
(

h
2

D̂
)

exp

∫ z+h

z
N̂(z′)dz′

 exp
(

h
2

D̂
)
. (3.51)

The global error of the symmetric split-step Fourier method is of the order of O(h2). It
can be reduced to the order of O(h4) if the Fourth-Order Runge-Kutta (RK4) method is
chosen [63, 64].

Within the RK4IP method, Eq. 3.46 is transformed into the interaction picture to
separate the effect of the dispersion contained in D̂ from the nonlinear nondispersive
terms in N̂. The optical field envelope A is transformed into the interaction picture
representation by

AIP = exp
(
−(z − z′)D̂

)
A, (3.52)

where z′ is the separation distance between the interaction picture and the normal one.
The evolution of AIP is given by

∂AIP

∂z
= N̂IPAIP, (3.53)

where
N̂IP = exp

(
−(z − z′)D̂

)
N̂exp

(
(z − z′)D̂

)
(3.54)

denotes the nonlinear operator in the interaction picture [63].
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The number of FFTs that is required for a straight-forward solution of Eq. 3.53 by
means of RK4 can be reduced from 16 to 8 by choosing z′ = z + h

2 . The solution of
Eq. 3.46 reads then as [63, 65, 66]:

A(z + h, t) = exp
(

h
2

D̂
) (

AIP +
k1

6
+

k2

3
+

k3

3

)
+

k4

6
(3.55)

with

AIP = exp
(

h
2

D̂
)

A(z, t), (3.56)

k1 = exp
(

h
2

D̂
) (

hN̂(A(z, t))
)

A(z, t), (3.57)

k2 = hN̂ (AIP + k1/2) (AIP + k1/2) , (3.58)
k3 = hN̂ (AIP + k2/2) (AIP + k2/2) , (3.59)

k4 = hN̂
(
exp

(
h
2

D̂
)

(AIP + k3)
) (

exp
(

h
2

D̂
)

(AIP + k3)
)
. (3.60)

The global error of the RK4IP method is of the order of O(h4) [63]. The local error can
be improved even to the order of O(h6) rather than O(h5) [65]. To achieve a highest
possible level of accuracy, the RK4IP method is combined with the local error method
within this work [49].

The original MATLAB code for integration of Eq. 3.46 and Eq. 3.47 by means of RF4IP
was provided by Andrés A. Rieznik. It calculates and visualises the optical fields as well
as the OCF spectra according to the proposed fibre-based approach for generation of
OFC for low and medium resolution applications in Astronomy (Sec. 2.2). Specifically,
it is possible to calculate the optimum fibre lengths using this code. In its original form,
this code was used to obtain the results presented in Sec. 8. It was extended, changed
or overworked to calculate the results presented in Sec. 6, Sec. 7, Sec. 9, and Sec. 10.
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In the previous section, we derived the Generalised Nonlinear Schrödinger Equation
(GNLS) (Eq. 3.46) for the description of the ultra-short pulse propagation in silica fibres.
This equation includes the higher-order dispersion terms, the optical Kerr effect, the
Raman effect, the self-steepening, and the optical losses. The wavelength-dependent
Erbium-gain profile is also included to describe the light amplification in the secon
fibre stage of the proposed fibre-based approach for the generation of OFC (Fig. 2.1).
However, the core of the pulse-propagation equation, i.e. the Nonlinear Schrödinger
Equation (Eq. 3.40) with the cubic nonlinearity that represents the optical Kerr effect, is
decisive for the pulse form and the way how the pulses propagate through the fibre:

∂A
∂z
+ i
β2

2
∂2A
∂t2 = iγ|A|2A. (4.1)

The higher-order dispersion terms, the Raman effect and the self-steepening can be
considered as rather small perturbations to the governing NLS. Basically, to be able to
predict the pulse dymanics, one needs to solve the NLS either numerically or analyti-
cally.

The exact solutions to the NLS are obtained via the usage of such mathematical meth-
ods like the Inverse Scattering Transform, the Darboux transformation, the Bäcklund
transformation, the bilinear Hirota method. For these methods to be applied, the equa-
tion needs to be integrable. This is exactly the case when the NLS is written as presented
in Eq. 4.1, any additional terms might destroy the integrability and make the usage of
the mentioned methods not possible. The analytical solutions of the NLS are often com-
plicated expressions that contain algebraic combinations of exponential, trigonometric,
and polynomial functions of the coordinates z and t [69, 70, 71].

However, only a few types of analytic solutions of the NLS are interesting for the
physics described within the framework of this thesis, namely the plane waves, the
solitary waves and the periodic solutions.

4.1 Solitons as Solutions of the Nonlinear Schrödinger
Equation

To the class of the exact solitary-wave solutions of the NLS belong the so called solitons
with their typical sech-profile (Fig. 4.1):

A(z, t) = NA0sech(t)eiγ|A0|2z/2, (4.2)
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Figure 4.1: Fundamental soliton for the normalised time coordinate t, the initial condi-
tion z = 0, A0 = 1, and N = 1

where t is a normalised coordinate and A0 is a constant amplitude. Later on, t will play
the role of the time coordinate and A0 will be connected with the input power P0 via
A0 =

√
P0. N is a scale factor. Solitons have the following properties [67, 61]:

• they are localised structures

• they preserve their form

• they can interact with other solitons and emerge from the collision unchanged,
except for a phase shift.

Due to these particle-like features, solitons obtained their name through Zabusky and
Kruskal in 1965. The Greek ending ”on” means ”particle” and underlines the peculiar
behaviour of these solitary waves [68].

The first recorded description of solitons was made by the Scottish scientist John Scott
Russel in 1834 after he saw ”a rounded smooth well-defined heap of water, which con-
tinued its course along the [Edinburgh-Glasgow] channel apparently without change
of form or diminution of speed” for over two miles [69]. Since then, the solitons have
been observed in a variety of physical systems, for instance in plasma physics, optical
waveguides, Bose-Einstein condensate, phase transitions, bimolecule dynamics, open
flow motions, spatially extended nonequilibrium systems [72, 73]. In particular, the soli-
tons have drawn tremendous attention in telecommunication, where they can be used
as ”information bits” for parallel information storage and processing [74, 75, 76, 77]:
the presence of an optical soliton in a nonlinear medium denotes an ”one”, the absence
a ”zero” within the frame of the binary alphabet. Not all these systems are described
only by means of the NLS equation. Depending on the features of a given system, dif-
ferent types of nonlinear partial differential equations having solitons as solutions are
deployed, for example the Korteweg-de Vries equation [68], the nonlinear Klein-Gordon
equation [78], the complex Ginzburg-Landau equation [61, 79], and the Lugiato-Lefever
equation [77, 80].
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Figure 4.2: Propagation of a fundamental soliton (a) and a higher-order soliton with the
order N = 2 (b) [83]

Depending on the features of a specific system, the localisation of solitons occurs
either temporally, or spatially, or both. In systems, where the solitons are temporally
localised, the localisation is due to a balance between the dispersion and the nonlinear-
ity of the medium. The physical effect behind the formation of such temporal solitons
is the self-phase modulation (cf. 3.1.1) [81]. In systems in which the solitons appear
as spatially localised structures, i.e. as spatial solitons, the formation of these waves is
given by the balance between the diffraction and the nonlinearity of the medium [61].

In Eq. 4.2, the scale factor N denotes the so-called soliton order. This number in-
corporates the important balance between the diffraction or the dispersion and the
nonlinearity of the medium. In the next section, we will see what is the exact expression
for N in case of optical fibres. It is important to know that solitons with N = 1 are called
fundamental solitons. In this case, the diffraction or the dispersion of the medium is
completely balanced by the nonlinearity which garantees extraordinary stability of the
fundamental solitons against perturbations. For N < 1, the dispersion or the diffration
of the medium dominates having the disintegration of the soliton as a result. For N > 1,
the nonlinearity of the medium prevails [45]. Solitons with the order N > 1 are often re-
ferred to as higher-order solitons. They constitute states of two or more N = 1−solitons
that propagate with nearly the same velocity and centre positions [82]. Contrary to
the fundamental solitons that preserve their form as they propagate, the shape of a
higher-order soliton evolves periodically with a period of π/2 (Fig. 4.2) [83, 84]. Within
a higher-order soliton, there is no binding energy that holds together the individual
N = 1−solitons. Thus, any perturbations of the NLS can lead to the break-up (fission)
of the solitons with N > 1 [82].

As already mentioned, the pulse-propagation equation needs to be integrable, i.e.
of the form of Eq. 4.1 to have solitons as solutions as presented above. An important
feature of the physical systems that are described by this pure NLS is that they preserve
energy, i.e. they are conservative. However, if any losses or some gain is added to a
system, it loses its conservative nature and becomes dissipative. The solitons that are
formed in such systems are often referred to as dissipative solitons. For them to be
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stationary objects, not only the balance between the dispersion and the nonlinearity or
the diffraction and the nonlinearity is crucial, but also the balance between the gain and
the loss: even a slightes prevailing of the gain will let the solitons grow indefinitely or
dissappear completely due to the losses [85].

4.2 Solitons in Optical Fibres

In the region of the anomalous (negative) dispersion, i.e. for wavelengths λ > 1300 nm
in conventional single-mode fibres, bright temporal solitons constitute stable NLS-
solutions:

A(z, t) = N
√

P0sech
( t
T0

)
eiγP0z/2 (4.3)

with T0 being the pulse width and P0 the initial optical peak power of the light source.
Note that the cordinates t and z are not normalised as they were in the previous section
(Eq. 4.2) and have now the meaning of time and propagation distance, respectively
[45, 81, 86]. The theoretical prediction of the existence of optical solitons in single-mode
fibres was made by A. Hasegawa et al. already in 1973. In 1980, L. F. Mollenauer et al.
reported the first experimental observation of solitons in fibres [51, 81]. Since then, the
solitons have been thoroughly studied to use them as information bits for telecommu-
nication applications [81, 86, 84, 77, 87].

In optical fibres, the soliton order N is given as a ratio between the dispersion and the
nonlinearity of the fibre glass:

N2 =
γP0T2

0

|β2|
, (4.4)

where the expression
T2

0
|β2| is the dispersion length LD and 1

γP0
the nonlinear length LNL.

Both lengths characterise the soliton dynamics in optical fibres. Thus, if the dispersion
length is shorter than the nonlinear length, the dispersive effects dominate. At the
distance LD, the linear dispersion causes the solitons to broaden to twice their initial
widths. On the contrary, the pulse compression due to the self-phase modulation
prevails if LNL < LD. At the distance LNL, the pulses achieve a nonlinear phase rotation
of π at their maxima [83]. The existence of fundamental solitons is given if both
characteristic lengths are equal, i.e LD = LNL [81, 85]. The periodic evolution of a higher-
order soliton occurs over the soliton period z0 that is expressed via the dispersion length
[45]:

z0 =
π
2

LD =
π
2

T2
0

|β2|
. (4.5)

All fibres are dissipative systems, because the glass material absorbes at least 0.2 dB/km
of the light optical power [45]. In fibres that are doped with such rare Earth ions like
Erbium or Ytterbium, the light gets amplified via the stimulated emission in the dopants
so that the optical gain is greater than the optical losses if the doped fibres are suitably
pumped [84, 87]. Therefore, the solitons (no matter if fundamental of higher-order) that
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propagate through optical fibres are always subjected either to the optical losses or to
the gain. As we discussed previously, such solitons are called dissipative solitons.

Any asymmetry in the temporal or spectral profile will cause an eventual fission of
higher-order solitons. The optical fibre loss is never symmetric for solitons with order
N > 1. The reason for that lies in the uncertainty effects: it is not possible to know the
central positions and velocities of the soliton components at the same time. Thus, the
components of a higher-order soliton will always have either slightly different velocities
or will not share the same central positions. The Raman effect causes the evolution of an
asymmetric soliton spectrum and, thus, leads to the break-up of higher-order solitons
[82].

Another perturbation that needs to be mentioned is the third-order dispersion (TOD)
in optical fibres. If the optical pulses propagate far from the zero-disperion wavelength
that lies at ca. 1300 nm in case of conventional single-mode fibres, the TOD shifts the
soliton peaks from their original positions. For a typical TOD-value of β3 = 0.1 ps3/km,
the solitons in the femto-second range are slowed down by the rate of 1.7 ps/km for the
pulse width of T0 = 100 fs. The impact of the TOD is even more severe, if the pulses
propagated near the fibre zero-dispersion wavelength such that β2 is nearly zero. In
this case, the TOD causes the fission of higher-order solitons [45].

4.3 Soliton Molecules in Optical Fibres

Firstly proposed in 1994 and since then numerically and experimentally studied, there
exist compound soliton states called soliton molecules. A soliton molecule consists
of two bright pulses with opposite phases, the phase jump of π occurs at the central
power zero (Fig. 4.3) [88]. Contrary to higher-order solitons, the components of a soliton
molecule are hold together by a non-zero amount of binding energy. There is a stable
equilibrium distance between the two pulses [89]. If they are brough together closer
than the equilibrium distance, they experience a repulsive force. If they are beyond
that distance, they get attracted to each other. This behaviour is reminiscent of the
equilibrim separation of the two constituents of a diatomic molecule - hence the name
”solion molecule” [81, 85]. Soliton compounds can contain more than only two solitons:
3(and more)-soliton molecules have been reported as well [90, 91, 92, 93], an extension
to a soliton train is also possible [115].

Generally, soliton molecules constitute weakly bound states. In fibres with a constant
dispersion, such compound states are unstable. Stable soliton molecules are formed if
they propagate in dispersion-managed fibres (DMF) that consist of segments with alter-
nate positive and negative group-velocity dispersion values [81, 83, 85]. In DMFs, soli-
ton molecules inherit their stability from fundamental solitons [89], whereas molecules
with odd number of components are more stable as the ones with even number [92].
However, the Raman effect causes the pulses to receive power-dependent frequency
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Figure 4.3: The input field, the output field, and the phase of a soliton molecule [90, 91]

shifts leading to a different peak heights of the components. This causes differential
phase shifts which distorts the soliton molecule [90].

As for the deployment of molecule solitons, they can be used for the extension of
the coding alphabet by further symbols like ”no pulse”, ”single pulse”, ”double pulse”,
etc., in the telecommunication [89].

4.4 Periodic Waves in Optical Fibres

4.4.1 Modulational Instability

The NLS equation (Eq. 4.1) has a stable plane-wave solution of the form

A(z, t) =
√

P0eiγP0z (4.6)

with P0 being the initial input power (coming from a CW laser with the frequency ω1)
if the GVD parameter is positive, i.e. β2 > 0. However, for silica fibres, this plane-wave
solution becomes unstable if the GVD parameter is negative, i.e. β2 < 0, which is the
case for wavelengths λ > 1300 nm [81].

Thus, if a periodic perturbation (for instance, a second CW laser beam with the fre-
quency ω2) is applied on the plane wave (Eq. 4.1), it gets amplified. The amplification
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of the perturbation goes along with the cascading generation of new frequency compo-
nents around the laser frequency ω1 based on FWM (Sec. 2.1). The spectral enrichment
leads to the modulation of the initial CW field and the subsequent break-up of the
CW radiation into a train of ultrashort pulses. This instability of a plane wave against
periodic perturbations is often referred to as modulational instability (MI). [47, 94].

Let us consider this in more detail. For that, Eq. 4.6 should be perturbed by means of
a small perturbation function a(z, t), |a(z, t)| ≪

√
P0 :

A(z, t) =
(√

P0 + a(z, t)
)

eiγP0z. (4.7)

Inserting Eq. 4.7 into Eq. 4.1 within the frame of the linear stability analysis, we get an
equation for the evolution of the perturbation function:

∂a
∂z
+ i
β2

2
∂2a
∂t2 = iγP0 (a + a∗) (4.8)

that is easily solved in the frequency domain. The solution is

a(z, t) = C1ei(Kz−Ωt) + C2e−i(Kz−Ωt), (4.9)

where K andΩ are associated with the wave vector and the frequency of the perturbation
function via K = |k1−k2| andΩ = |ω1−ω2|, respectively. The numbers C1 and C2 provide a
family of solutions, the nontrivial ones are given when the following dispersion relation
is fulfilled:

K = ±
|β2Ω|

2

(
Ω2 + sgn(β2)Ω2

c

)1/2
(4.10)

with the power-dependent critical frequency Ωc that is given by

Ωc = ±2

√
γP0

|β2|
. (4.11)

This dispersion relation shows that for normal GVD, i.e. for β2 > 0, K is real for any Ω
and the plane wave solution (Eq. 4.6) is stable against small perturbations. In the case
of anomalous dispersion, i.e. for β2 < 0, K becomes imaginary for |Ω| < Ωc and the
perturbation function grows exponentially with the propagation distance z (Eq. 4.9).
The frequency-dependent gain exists only if |Ω| < Ωc and is given by

gMI(Ω) = |β2Ω|
(
Ω2

c −Ω2
)1/2
. (4.12)

The gain has its maxima at two frequencies given by

Ωmax = ±
Ωc√

2
= ±

(
2γP0

|β2|

)1/2

. (4.13)

In other words, if a perturbing wave with the frequency ω2 = ω1 + Ω copropagates
with the CW beam with the frequency ω1, it experiences a net power gain according to
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Eq. 4.12 as long as |Ω| < Ωc. From the physical point of view, it means that the energy
of two photons from the intense pump beam with ω1 are used to create two photons,
one at the frequency ω2 and another one at the frequency ω1 −Ω. In the time domain,
this process coincides with the conversion of the initial CW beam (at ω1) into a periodic
pulse train with the pulse repetition period given by T = 2π

Ω [45, 46].

4.4.2 Akhmediev Breathers

In 1986, N. Akhmediev and V. Koneev published a paper reporting a familiy of analytic
periodic solutions of the NLS (Eq. 4.1) that describe the ”modulational instability, i.e.
the growth of long-wave periodic perturbations on the background of a continuous
wave of constant amplitude”. In particular, the amplitude of the initial small periodic
modulation of the plane wave experiences growth and a subsequent decrease over
time similar to the Fermi-Pasta-Ulam return in a system of coupled oscillators [95]. A
temporally periodic, but spatially confined train of pulses on a finite background with
the repetition period T = 2π/Ω called Akhmediev breather (AB) arises as a result. It
has the following form:

A(z, t) =
√

P0
(1 − 4ā)cosh(b̄z/LNL) − ib̄sinh(b̄z/LNL) +

√
2ācos(Ωt)√

2ācos(Ωt) − cosh(b̄z/LNL)
, (4.14)

where P0 is again the initial power and LNL is the nonlinear length, LNL = (γP0)−1.
The parameter ā varies in the interval 0 < ā < 1/2, the parameter b̄ is defined by
b̄ =
√

8ā − 16ā2 and governs the MI growth. Ω is the modulation frequency given by

Ω = Ωc
√

1 − 2ā (4.15)

withΩc being the critical frequency (Eq. 4.11). According to Eq. 4.13, the maximum MI
gain occurs for b̄ = 1 and ā = 1/4 [96].

As already mentioned, the amplitude of the individual pulses within an AB undergoes
temporally periodic evolution. The maximum amplitude coincides with the minimum
temporal pulse width at z = 0. The NLS solution at this point describes the maximally
compressed AB and is given by [10]:

A(z = 0, t) =
√

P0
(1 − 4ā) +

√
2ācos(Ωt)√

2ācos(Ωt) − 1
. (4.16)

Further, depending on the value of the parameter ā, a distinction is made between
three cases (Fig. 4.4):

• for 0 < ā < 1/2, the solution Eq. 4.14 describes Akhmediev breathers that are
temporally periodic, but spatially localised

• for ā = 1/2, one has the case of Peregrine solitons that are temporally and spatially
localised [97, 94]
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Figure 4.4: Comparison between an Akhmediev breather (A) with ā = 1/4, a Peregrine
soliton (B) with ā = 1/2, and a Kuznetsov-Ma soliton (C) with ā = 1[97, 99]

• for 1/2 < ā ≤ 1, Eq. 4.14 describes the case of Kuznetsov-Ma solitons that are
temporally localised, but spatially periodic [99, 100].

In the further course (Sec. 6), we will see that the initial condition given by Eq. 3.47 gener-
ates neither the Akhmediev breathers, nor the Peregrine solitons, nor the Kuznetsov-Ma
solitons if it is integrated by means of the pulse-propagation equation Eq. 3.46, but de-
livers an input-power dependent state that consists of a collective soliton crystal, an
intermediate state, and the state of free fibre solitons.

Now, after the reader was introduced to the solitary waves (fundamental and higher-
order solitons), the soliton molecules and the periodic waves (Akhmediev breathers,
Peregrine solitons, and Kuznetsov-Ma solitons) that all together are solutions of the
Nonlinear Schrödinger Equation (Eq. 4.1), we proceed with the last purely theoretical
chapter, namely the chapter ”Soliton Compression in Optical Fibres”, before we go over
to the chapters that contain results of our studies.

37





5 Soliton Compression in Optical Fibres

The soliton compression in optical fibres is based on the effect of self-phase modulation.
In Sec. 3.1.1, we mentioned that spectral profile of a pulse gets broadened due to the
intensity-dependence of the refractive index. In case of normal fibre group-velocity
dispersion (β2 positive), i.e. dispersion for wavelengths < 1.3 µm, the linear part of the
refractive index (Eq. 3.4) induces a chirp: the red components of the spectrum propagate
faster than the blue ones inside the fibre medium. The pulse gets spectrally broadened
due to the nonlinear part of the refractive index n2 and disperses in the time domain
due to the linear part n0.

In the regime of anomalous GVD (β2 negative) which appears for wavelengths >
1.3 µm, the blue components of the pulse spectrum travel faster than the red ones. The
spectral profile decreases in time, the pulse itself gets compressed [56]. The compression
factor describes the compression effectiveness after the propagation length L and is given
by

C =
TFWHM(z = 0)
TFWHM(z = L)

(5.1)

with TFWHM being the full pulse width at the half of the maximum intensity [46].

The compression of solitons (also called soliton-effect compression) in fibres is based
on the interplay between the self-phase modulation and the anomalous GVD. There are
two commonly considered techniques for the soliton-effect compression: the adiabatic
pulse compression method and the higher-order (non-adiabatic) soliton compression.
In case of adiabatic soliton compression, a fundamental soliton is propagated through
a map of fibres with monotonically decreasing dispersion or a fibre with steady ampli-
fication along its length (for instance, an Erbium-doped fibre as described in Sec. 2.2).
If the dispersion decreases sufficiently slow or the fibre gain is not too high, the fun-
damental soliton can adjust itself to maintain the balance between the fibre dispersion
and nonlinearity by reducing its pulse width [101, 102, 103]. The main drawback of this
technique is that the maximum compression factor is limited to ca. 20 [103].

Much higher compression factors can be achieved in case of the higher-order soliton
compression. Within the framework of this technique, a proper fibre length is chosen
at which a higher-order soliton (undergoing periodic evolution over the soliton period)
is maximally compressed. The compression factors in a conventional single-mode fibre
can be estimated by the relation

C ≈ 4.1N, (5.2)
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Figure 5.1: Example of a pulse pedestal after propagation through the amplifying fibre
B of the proposed approach for generation of fibre-based OFC (Sec. 2.2)

where N is the soliton order given by Eq. 4.4 [46, 54]. However, this technique suffers
from the build-up of big pulse pedestals (pulse flanks) (Fig. 5.1) that consist of dispersive
waves radiated from the soliton pulses and being subjected to the GVD [104]. The total
pulse energy is split between the desired compressed pulse and the undesired pedestal
background (cf. the difference between a mathematically perfect sech−profiled soliton
in red and a soliton that propagated through a fibre in black in Fig. 7.2). Up to 80% of
the pulse energy can be lost into the pedestal [103].

For pulse widths < 100 fs, one should take a closer look if such higher-order effects
like the self-steepening, the TOD, and the Raman intra-pulse scattering might affect
the compression efficiency. In our case, the pulses are compressed down to 50 − 100 fs
in the second amplifying fibre stage depending on the system parameters. For such
pulse widths, the effect of the self-steepening is negligible since it starts to play a role
for pulses in the range of ∼ 10 ps. The TOD can degrade the quality of the compressed
pulses if they propagate close to the zero-dispersion wavelength lying typically at ca.
1300 nm. Since, in our case, the pulses travel relatively far away way from the zero-
dispersion length (the central wavelength is λc = 1531 nm), the effect of the TOD will
also be negligible. This was also proved by our simulations that are beyond the scope
of this thesis.

The only effect that plays a (minor) role in the proposed setup is the intra-pulse Ram-
man scattering. It induced a soliton frequency-shift towards the lower (red) frequecies
that coincides with a delay of optical pulses because of a change in the group-velocity
of the pulse (Fig. 2.2B). This delay does not affect the quality of the pulse compression.
On the contrary, it helps to produce almost pedestal-free pulses: the narrow com-
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pressed spike travels slower that the pedestal and, eventually, separates from it because
of the change in the group-velocity induced by the Raman effect (well seen after the
propagation through the third highly-nonlinear fibre stage in Fig. 2.2C). If the pedestal
is removed by spectral filtering, one gets red-shifted, pedestal-free, well-compressed
pulses [46, 105, 106, 107].
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In Sec. 2.2, we introduced a setup for generation of optical frequency combs for the
purpose of the calibration of astronomical spectrographs in the low- and medium re-
solution range. To be able to control the quality and the bandwidth of the OFC, it is
crucial to understand the evolution of the optical pulses as they propagate through
the fibres. Especially, one needs to know what happens in the first fibre stage (fibre
A in Fig. 2.1) where the pulses arise out of the initial deeply-modulated bichromatic
cosine-wave (Eq. 3.47). However, the pulse-propagation equation (Eq. 3.46) is not
integrable. Therefore, it cannot be solved analytically. In this section, we use the
numerical technique called Soliton Radiation Beat Analysis (SRBA) to get more insight
into the pulse evolution.

6.1 Akhmediev Breather or Kuznetsov-Ma Solitons?

In Sec. 4.4.1, we discussed the impact of a small perturbation with the frequency ω2 on
a plane wave with the frequency ω1 that propagates through a fibre with anomalous
dispersion. In Sec. 4.4.2, Akhmediev breathers were introduced as analytic solutions of
the NLS for such a case. Depending on the parameter ā, Eq. 4.14 describes the evolution
of an Akhmediev breather, a Peregrine soliton, and a Kuznetsov-Ma soliton.

Due to the temporal periodicity of the initial condition (Eq. 3.47), it is reasonably to
expect this initial condition to evolve into an Akhmediev breather (AB) or a Kuznetsov-
Ma (KM) soliton in fibre A. In Ref. [99], B. Kibler et al. suggested and experimentally
proved the existence of KM solitons in optical fibres. In fact, the optical power in our
case looks similar to a train of temporally periodic KM solitons (Fig. 6.1). However, it
needs to be carefully proven if optical structures that arise by using a bichromatic cosine-
wave as initial condition (Eq. 3.47) have more similarities with Akhmediev breathers or
Kuznetsov-Ma solitons.

To find out what type of NLS solutions the pulses in our case are similar to, we
calculate the parameter ā according to Eq. 4.15:

ā =
1
2

(
1 − Ω

2

Ω2
c

)
. (6.1)

In case of KM solitons,Ω2 ≤ 0 (Ω2
c is positive per definition) which implies the temporal

localisation of these optical structures. In our case, the modulational frequency Ω is
given by Ω = 4πLFS = 4π (|ω1 − ω2|/2π) providing the same number of optical peaks
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Figure 6.1: Pulse evolution in fibre A for the initial power P0 = 2.5 W

as in the case of an AB. Obviously, this frequency is positive definite. So it is Ω2. That
means that, in our case, the initial bichromatic cosine-wave will definetively not evolve
into a temporally periodic train of KM solitons. Thus, we expect it to evolve into struc-
tures that are similar to a travelling Akhmediev breather.

Fig. 6.2 shows the calculated values of parameter the ā for three different values of the
initial laser frequency separation, LFS = 40 GHz, LFS = 80 GHz, and LFS = 160 GHz,
and different values of the input power, 0.0 W < P0 ≤ 6.0 W. As one can see, for any
values of LFS and P0, the parameter ā remains in the interval [0, 0.5) which is the condi-
tion for Akhmediev breathers. This supports our idea that, for any parameters of fibre
A, any values of the initial laser frequency separation LFS and the input power P0, a
bichromatic cosine-wave as initial condition is likely to evolve into optical structures
that are similar to a (travelling) AB. We claimed evolution of KM solitons in Ref. [39].
This is disproved by our considerations here.

Comparison between Fig. 6.1 with Fig. 4.4A reveals that the pulse evolution in our
case differs, however, from the evolution of an ideal AB. Thus, to find out what exactly
happens in fibre A, we apply the numerical technique of Soliton Radiation Beat Analysis
that will allow us to get a deeper insight into the pulse evolution in fibre A.

6.2 Soliton Radiation Beat Analysis of Pulses in the First
Fibre Stage

In Sec. 6.1, we showed that a bichromatic cosine-wave (Eq. 3.47) should evolve into
periodic structures that are close to travelling Akhmediev breathers. However, from
the mathematical point of view, the theory of Akhmediev breathers cannot be directly
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Figure 6.2: Parameter ā for different value of input power P0 and laser frequency sep-
aration LFS = 40 GHz (red curve), LFS = 80 GHz (green curve), and
LFS = 160 GHz (blue curve)

applied for the description of the pulse formation in fibre A. The reason is that the
perturbation of the initial CW field is not small any more. The Akhmediev solution
of the NLS is given, however, only for a small perturbation (Sec. 4.4.2). In our case,
the perturbing wave with the frequency ω2 = ω1 + 2πLFS has the same intensity as
the perturbed CW field with the frequency ω1. Moreover, the formation of the new
frequency components in the OFC spectrum occurs not around the frequency ω1, but
around both frequencies, ω1 and ω2. The new components have the same frequency
spacing as the initial waves, namely 2πLFS (Fig. 2.3A). Further, the pulses within an
Akhmediev breather undergo a periodic energy exchange via the finite background on
which the pulses are ”sitting”. In our case, however, the pulses are separated from each
other due to the fact that the initial wave is modulated down to zero, i.e. there is no
background through which the pulses can interact and exchange energy.

To analyse the pulse formation in fibre A, we take advantage of the soliton radiation
beat analysis (SRBA). The SRBA is a numerical technique that can answer the general
question if solitons arise in a specific system and if the answer is ”yes”, the SRBA is able
to provide the information about the energy, the velocity, the phase, and the position of
each soliton involved [108, 109]. Since Eq. 3.46 is formulated in the co-moving frame,
the velocity, the phase, and the position of solitons are not relevant because these can be
set by the boundary conditions. Thus, the only important parameter left is the energy
of solitons that can be related to the soliton order N (Sec. 4.1) [110].

6.2.1 Soliton Radiation Beat Analysis

The technique of SRBA should be introduced by a simple example. For that, the optical
field A(z, t) of fibre A is calculated by means of the numerical integration of Eq. 3.46
and Eq. 3.47. In Eq. 3.47, we set the noise amplitude to zero for the sake of simplic-
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Figure 6.3: Optical power at t = 0 (black) and apodised optical power at t = 0 (red) vs.
propagation distance for P0 = 3.3 W [111]

Figure 6.4: Spectral power of non-apodised optical power (black) and apodised optical
power (red) vs. spatial frequency [111]

ity. The fibre parameters are chosen to be βA
2 = −15 ps2/km, βA

3 = 0.1 ps3/km, and
γA = 2 W−1km−1. The optical losses are set to αA = 0 dB/km also for the sake of sim-
plicity. The total fibre length is LA = 20 km, the initial power P0 = 3.3 W, and the laser
frequency separation LFS = 80 GHz. The solution of Eq. 3.46 and Eq. 3.47 is calculated
within a temporal window of 128 ps that is sampled with 214 points.

After A(z, t) is obtained, the optical power is calculated via P̂(z, t) = |A(z, t)|2. Using
these data, we extract P̂(z) = P̂(z, t = 0). As can be seen in Fig. 6.3, the power function
P̂(z) (black curve) oscillates over the propagation distance z. This oscillation contains
information about the involved solitons and their features.

To decode the information that is imprinted into the optical power oscillation, we
perform a Fourier transform of the data P̂(z). The according Fourier spectral power
P̃(Z) is shown as the black curve in Fig. 6.4, where Z is the spatial frequency.

The oscillation of the optical power P̂(z) over the propagation distance results in peaks
in the spatial frequency domain. Additionally to the peaks, there is a background seen in
the spectrum. This background arises due to the discontinuity of P̂(z) at the boundaries
and is an artifact of the Fourier transform. To suppress this artificial background, we
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apodise P̂(z) by means of a Gaussian apodisation function that is presented as the red
curve in Fig. 6.3. This function has the following form:

f (m) = exp
(
−

(m −M/2
bM

)2)
, (6.2)

where 1/b is the apodisation strength and m ∈ {1, ...,M} with M being the total number
of distance sampling points [112].

As one can see in Fig. 6.4, the discontinuity of the apodised power P̂apo(z) is effectively
minimised at the boundaries compared to the non-apodised case. Accordingly, the
Fourier-transformed power, i.e. P̃apo(Z), shows less background and the peaks are more
visible (red curve in Fig. 6.4). Now, we can analyse the spectral-power peaks and draw
conclusions about the involved solitons. However, to get more precise information
about of the solitons and their beating frequencies, it is necessary to repeat the described
algorithm for different values of the input power P0 [113].

6.2.2 Initial Conditions

To find out what happens if a deeply-modulated bichromatic wave (Eq. 3.47) propagates
through fibre A, we first choose two types of initial conditions that have predictable
evolution known from literature, namely a single cosine-hump and a maximally com-
pressed Akhmediev breather, and perform the SRBA on them. Having studied these
two cases, we compare them with the SRBA results obtained using the bichromatic
wave as initial condition (Eq. 3.47).

Here are the types of initial condition we will consider in this section.

• A temporally localised single cosine-hump (Fig. 6.5A) is expected to evolve into a
soliton with a sech-profile in fibre A [45, 111, 114]:

A(z = 0, t) =

0, |t| > 1/LFS = 6.4 ps
N
√

P0 cos(ωct), |t| ≤ 1/LFS = 6.4 ps
(6.3)

where ωc =
(
ω1+ω2

2

)
such that ω2 = ω1 + 2πLFS.

• A temporally periodic maximally compressed Akhmediev breather (Fig. 6.5B) will
propagate further as an Akhmediev breather through fibre A [10, 83, 111, 95]:

A(z = 0, t) = N
√

P0
(1 − 4ā) +

√
2ācos(Ωt)√

2ācos(Ωt) − 1
, (6.4)

where Ω = 4πLFS due to reasons explained in Sec. 6.1.
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6 Pulse Build-up in the First Fibre Stage

Figure 6.5: Three types of initial condition with initial power of P0 = 3.3 W : A.
Single cosine-hump, B. Maximally compressed Akhmediev breather, C.
Deeply-modulated bichromatic cosine-wave according to the proposed
setup (Sec. 2.2) [111]

• An experimentally accessible deeply-modulated bichromatic cosine-wave (Fig. 6.5C)
that coincides with the initial condition of the proposed setup for generation of
OFCs (Sec. 2.2) will be studied after two previous cases:

A(z = 0, t) = N
√

P0 cos(ωct) (6.5)

with ωc =
(
ω1+ω2

2

)
and ω2 = ω1 + 2πLFS.

In all three equations (Eq. 6.3-6.5), N is the scale soliton order (further referred to as
soliton order) given by

N =

 γAP0

(2πLFS)2|βA
2 |

1/2

. (6.6)

The value of N correspods to the energy of the involved solitons. We use Eq. 6.6 rather
than the one presented in Eq. 4.4 as the definition of the soliton order because for ar-
bitrary pulses it is more practical to substitute the natural pulse width T0 by 1/2πLFS
[40, 113].

We use the following parameters for our studies: the input power is increased from
P0 = 0.03 W to P0 = 6.0 W in steps of ∆P0 = 0.03 W, the total length of the fibre is
LA = 20 km sampled with M = 20000 points. As for the apodisation strength, the
parameter b is set to b = 0.2. The time window is 128 ps sampled with 214 points. The
fibre parameters are again βA

2 = −15 ps2/km, βA
3 = 0.1 ps3/km, γA = 2 W−1km−1, and

αA = 0 dB/km. The laser frequency separation is chosen to be LFS = 80 GHz [111].
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6.2 Soliton Radiation Beat Analysis of Pulses in the First Fibre Stage

Figure 6.6: Spectral power for a single cosine-hump as initial condition and fibre length
LA = 20 km for different values of the input power P0 [111]

6.2.3 Results

In any SRBA-graphs presented below, a strong peak is visible for any values of the
initial power P0 and the spatial frequency Z = 0 km−1. This peak arises in the process of
the Fourier transformation and corresponds to the average value of the optical power
P̂(z). Since it constitutes a purely mathematical feature of the SRBA thechnique and,
accordingly, does not contain any pieces of information about the solitons themselves,
we will exclude it from consideration.

Single Cosine-Hump as Initial Condition

In Fig. 6.6 one can see the spectral power for different values of the input power P0 that
was obtained using a single cosine-hump as initial condition (Eq. 6.3). Typically, for a
single soliton to arise, a positive input-power threshold value, P0 > 0 W, is required
[108, 114]. After this threshold value is reached, the soliton will evolve depending
on
√

P0 according to Eq. 6.6. In our case, such threshold exists at P0 = 0.7 W and
Z = 0 km−1 denoting the beginning of branch S1 in Fig. 6.6. Thus, we can conclude that
S1 constitutes a beating of a single soliton with the dispersive-waves background (pulse
pedestals) which results in an oscillating behaviour of the optical power. According to
Eq. 6.6, the order of the soliton that is involved into the beating is N = 0.62 (calculated at
the input-power threshold). Since the soliton-order threshold for the creation of a fun-
damental soliton is N = 0.5, we can conclude that branch S1 constitutes a fundamental
soliton [114].

The branches O1, O2, and O3 in Fig. 6.6 are the overtones of S1. Generally, overtones
are a feature of the SRBA technique and contain no further information about the in-
volved solitons. So, we will not focus our attention on the overtones in the course of
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6 Pulse Build-up in the First Fibre Stage

Figure 6.7: Spectral power for a maximally compressed Akhmediev breather as initial
condition and fibre length LA = 20 km for different values of the input power
P0 [111]

further studies.

The next branch S2 arising due to the beating of a soliton with the dispersive-waves
background originates at P0 = 3.3 W and Z = 0 km−1. The soliton that is involved into
this beating has the order N = 1.35 (calculated at P0 = 3.3 W). Second-order solitons arise
for N ≥ 1.5 in a non-perturbed system [114]. Since the order of the S2−soliton is smaller
than 1.5, the branch S2 constitutes another fundamental soliton. The energy growth of
S1 with increasing input power starts decreasing as soon as S2 appears meaning that
the energy provided by the input beam is now split between the two solitons. This
manifests itself in the change of the slope of S1 that occurs at ca. P0 = 3.2 W [111].

Maximally Compressed Akhmediev Breather as Initial Condition

Fig. 6.7 shows the spectral power that was obtained by choosing a maximally com-
pressed Akhmediev breather as initial condition (Eq. 6.4). By looking at this graph, one
can distinguish three input-power dependent regions with different soliton behaviour,
namely 0.03 W ≤ P0 < 0.54 W, 0.54 W ≤ P0 < 2.3 W, and P0 ≥ 2.3 W.

In the low input-power region, i.e. for 0.03 W ≤ P0 < 0.54 W, three branches C1,
C2, and C3 are noticeable. Unfortunately, those are not well resolved. To increase the
resolution of the power spectrum, we performe the SRBA for the total fibre length of
LA = 50 km and the input power 0.01 W ≤ P0 ≤ 1.0W in steps of ∆P0 = 0.01 W (Fig. 6.8).
This is done because the resolution of spectral-power plots within the SRBA strongly
depends on the total fibre length chosen for simulation. More precisely, the resolution
goes with 1/LA [108, 113].
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Figure 6.8: Spectral power for a maximally compressed Akhmediev breather as initial
condition and fibre length LA = 50 km for different values of the input power
P0 [111]

In the more detailed Fig. 6.8, one can see that there is no thereshold of the input power
for the formation of the C-branches, i.e. the branches C1, C2, C3 and their overtones
arise directly at P0 = 0 W and Z = 0.3 km−1, Z = 1.2 km−1, and Z = 2.6 km−1, respec-
tively. As discussed previously, a power threshold is needed to form a soliton. In case
of a maximally compressed Akhmediev breather as initial condition, a collective soliton
state presented by the C−branches can be formed even at a very low input power, i.e.
for P0 → 0 W. The reason for that is the following: a maximally compressed Akhmediev
breather as initial condition delivers an infinite amount of energy for t → ±∞ since it
contains cos−functions in its definition (Eq. 6.4). A finite amount of the initial energy
is delivered if the Akhmediev breather is truncated in time. This energy is used to built
up the C−branches. By analogy to an electronic state in a crystal, the C-branches can be
referred to as a collective soliton crystal state [111, 115].

For input powers P0 > 0.54 W,we observe the emergence of significant branch groups
that arise out of the branches C1, C2, and C3. To be precise, the branch M1(A) originates
from C1, M1(B) from C2, and M3 from C3 (Fig. 6.7). The branches M1(A) and M1(B)
merge as the value of P0 increases. For the input powers P0 > 2.3 W, we see the
emergence of two soliton branches S1 and S2. Both solitons that are involved into the
evolution of S1 and S2 have the soliton order N = 1.13 and, thus, constitute fundamental
solitons. They are temporally well separated since their duration is small compared to
their temporal separation (cf. Ref. [96]). In the region P0 < 2.3 W, the soliton duration
increases as the input power decreases [114]. Eventually, the solitons overlap temporally
which makes their energies split having the emergence of branches M1(A) and M1(B)
as a result [114]. So, we can regard the branches M1(A) and M1(B) as a common soliton
molecule state in analogy to the energy splitting in molecules [88, 89, 90, 91, 92, 93].
The branch |M1(B)−M1(B)| represents the mixing frequency between M1(A) and M1(B)
[111].
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6 Pulse Build-up in the First Fibre Stage

Figure 6.9: Spectral power for a deeply modulated cosine-wave as initial condition for
different values of the input power P0 according to the proposed setup for
OFC generation. The chosen fibre length is LA = 20 km [111]

Deeply-Modulated Bichromatic Cosine-Wave as Initial Condition

Fig. 6.5 shows the spectral power that was obtained using a deeply-modulated bichro-
matic cosine-wave as initial condition which corresponds to the initial condition of the
system that we proposed for the generation of OFCs in fibres (Eq. 6.5). In this graph, the
most incisive soliton branch S1 starts at P0 = 0 W and Z = 0.65 km−1 meaning that no
power thereshold was needed to built up this branch. The reason for that is the same as
in case of the maximally compressed Akhmediev breather: the cosine in the definition
of this initial condition provides an infinite amount of energy for t→ ±∞. This energy
is used to form a collective soliton crystal state in the region 0 W < P0 < 1.3 W.

In case of a maximally compressed Akhmediev breather as initial condition, the
input-power region of the collective crystal state was separated from the molecule-state
region at P0 = 0.54 W. In case of a bichromatic cosine-wave as intial condition, the
region of the molecule state is missing, the transition from the soliton crystal to a state
of well-separated solitons occurs continuously. This is indicated by a smooth evolution
of the S1-branch as the value of the input power increases. The order of the soliton that
is involved into the emergence of branch S1 is N = 0.85 (calculated at P0 = 1.3 W). This
is the order of a fundamental soliton.

At P0 = 3.3 W and Z = 0 km−1, we observe the emergence of a second soliton
branch S2. It shows the behaviour of a single soliton beating with the background. The
order of this soltion is N = 1.35 meaning that S2 represents another fundamental soliton.
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Figure 6.10: Spectral power for a deeply modulated cosine-wave as initial condition for
different values of the input power P0 according to the proposed setup for
OFC generation. The chosen fibre length is LA = 50 km and the initial laser
frequency separation LFS = 125 GHz

The branches O1 at P0 = 0 W and Z = 1.2 km−1 and O2 at P0 = 0 W and Z = 1.8 km−1

are the overtones of S1,whereas the branches |S1− S2|, |S1+ S2|, |O1− S2|, and |O1+ S2|
constitute the frequencies emerged from the beating of solitons with each other or from
the beating between the solitons and their overtones [111].

To prove that the appearance of such mixed soliton behaviour is not a result of
numerical errors, we perform the SRBA for two additional values of laser frequency
separation, namely for LFS = 125 GHz and LFS = 160 GHz. The total fiber length is now
chosen to be LA = 50 km sampled with M = 50000 points. The apodisation strength is
given by b = 0.3. The input power increases from P0 = 0.1 W to P0 = 7.0 W in steps of
∆P0 = 0.1 W. The fibre parameters remain the same as previously.

Fig. 6.10 and Fig. 6.11 show the spectral power depending on the spatial frequency
and the input power for LFS = 125 GHz and LSF = 160 GHz, respectively. In both
graphs, we observe the appearance of branches S1 that constitute the beating of a soli-
ton and the dispersive-wave background. Since these branches were hardly visible in
the graphs, we emphasised them by the dark lines.

For LFS = 125 GHz, S1 starts at P0 = 0 W and Z = 1.5 km−1. In case of LFS = 160 GHz,
S1 begins at P0 = 0 W and Z = 2.3 km−1. In the low input-power region, the curves go to
the lower spatial frequecies as P0 increases for both, LFS = 125 GHz and LFS = 160 GHz,
following the pattern that is presented by C−branches for the case when an Akhmediev
breather was chosen as initial condition. In this region, the branches S1 represent soliton
crystal states. The decrease of the spatial frequency in the low input-power region is,
actually, also given in case when a bichromatic deeply-modulated cosine-wave with

53



6 Pulse Build-up in the First Fibre Stage

Figure 6.11: Spectral power for a bichromatic deeply-modulated cosine-wave as initial
condition for different values of the input power P0 according to the pro-
posed setup for OFC generation. The chosen fibre length is LA = 50 km and
the initial laser frequency separation LFS = 160 GHz

LFS = 80 GHz was used as initial condition. Unfortunately, this effect is hardly visible
due to the lower spatial resolution (Fig. 6.9).

Again, the transition from a soliton crystal state to the state of well-separated solitons
occurs continously for both, LFS = 125 GHz and LFS = 160 GHz. The order of the
soliton that is involved into the evolution of S1 is N = 0.78 (calculated at P0 = 2.8 W)
for LFS = 125 GHz and N = 0.71 (calculated at P0 = 3.8 W) for LFS = 160 GHz. So, S1
constitutes the beating of a fundamental soliton with the dispersive-waves background
in both cases.

In both graphs, we also see the branches [S1] that can be interpreted as reflections
of the branches S1. They arise due to the undersamping of our data: the number of
the output spectra over the propagation distance calculated by means of the RK4IP
and subsequently sampled (better to say interpolated) by M = 50000 equidistantly
positioned points is not sufficient, it only amounts to 150 for the graphs in Fig. 6.10 and
Fig. 6.11. This problem can be easily solved by increasing the number of the output
spectra to a higher value. Figs. 6.6-6.9, for example, were produced using 500 output
spectra sampled by M = 20000 points. Apparently, these graphs do not exhibit the
branch reflections in the considered spatial-frequency region [113].

6.3 Conclusion and Discussion

Let us now summarise the achieved results. First, in Sec. 6.1, we showed that the first
fibre stage (fibre A) of the proposed system for generation of optical frequency combs
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allows formation of Akhmediev breathers or optical structures that are similar to them.

Then, in Sec. 6.2.3, we studied the formation of solitons in fibre A when a bichro-
matic cosine-wave is chosen as initial condition by comparison of its SRBA result with
the SRBA results of well-known cases when a single-cosine hump and an Akhmediev
breather are used as initial condition. As we used a single cosine-hump as initial con-
dition, we observed the emergence of the first fundamental soliton at P0 = 0.7 W and
of the second one at P0 = 3.3 W. For a maximally compressed Akhmediev breather as
initial condition, we identified three input-power dependent regions in which different
kinds of solitons had arisen. Thus, for input powers 0.03 W ≤ P0 < 0.54 W,we observed
the formation of a (collective) soliton crystal. For 0.54 W < P0 < 2.3 W, the soliton
crystal dissolved into a soliton molecule. For P0 > 2.3 W, two fundamental solitons
arose. Note, the regime transition between the state of a soliton crystal and a soliton
molecule occurs at P0 = 0.54 W, whereas the transition between the molecule state and
the state of free (fundamental) solitons takes place at P0 = 2.3 W.

The case we are interested in the most, namely the deeply modulated cosine-wave as
initial condition, has shown the following features:

• we observe a collective soliton crystal state for P0 → 0 W which is similar to the
case when an Akhmediev breather is chosen as initial condition

• contrary to the case of an Akhmediev breather, the input-power region where
soliton molecules are formed is missing. Instead, the soliton crystal dissolves
into the state of free (fundamental) solitons as the value of P0 increases. The
free solitons exhibit similar behaviour as in the case of a single cosine-hump as
intitial condition. Note that the regime transition between the soliton crystal
state and the state of free solitons occurs continuously in the input-power region
1.0 W < P0 < 2.0 W.

• the continuous regime transition from a soliton crystal to the state of well-separated
solitons was observed for three values of the initial laser frequency separation,
LSF = 80 GHz, LSF = 125 GHz, and LSF = 160 GHz.

In other words, our system generates pulses that show features of Akhmediev breathers
for low input powers and free solitons for higher input powers.

To achive a best possible OFC and to be able to control it, we need pulses that are tem-
porally and spectrally periodic. The first option to have temporally periodic structures
is to generate higher-order solitons in fibre A which might be achievable for high input
powers using a bichromatic deeply modulated cosine-wave. In this case, however, it
is highly possible that the pulses would break up which would drastically increase the
intensity noise of the whole system. Moreover, after the fission the soliton components
will have different centroids as the mother-soliton before the break-up which would
lead to the increase of the timing jitter. However, the level of both, the intensity noise
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and timing jitter, should be kept as low as possible to achieve a stable and low-noise
OFC suitable for astronomical applications.

One also could go to another limit and generate pulses in the low input-power regime
(P0 → 0 W) where the pulses have many similarities to the temporally periodic Akhme-
diev breathers. However, this would not be efficient since the input power would be
too low to induce a sufficient level of fibre nonlinearity. The latter one, however, drives
the FWM process. In case of P0 → 0 W, the OFC would have narrow bandwidths
unsatisfactory for the requirements in the Astronomy.

Of course, one also could use proper Akhmediev breathers as initial condition and
not a deeply modulated cosine-wave as we proposed. To do so within the framework
of the proposed setup (Sec. 2.2), one would need to minimise the power of the second
(tuneable) laser to a fraction of the power of the first (fixed) laser or vice versa. In this
case, however, a great amount of the energy that gets provided by the lasers would get
lost into the background on which the pulses would sit. Again, this would negatively
affect the OFC bandwidth. Moreover, Akhmediev breathers have complex dymanics.
In the studied case, there are many frequencies additional to the actual free-soliton
branches S1 and S2 as shown in Fig. 6.7. The optical pulses that contain these additional
frequencies sensitive even to small perturbations and tend to break up which would
yield the increase of the system intensity noise.

Using a bichromatic cosine-wave as initial condition as we proposed in here, one
would achieve best possible OFC spectra after fibre A for 2 W < P0 < 3.5 W (LFS =
80 GHz), 3.5 W < P0 < 6 W (LFS = 125 GHz), and 4 W < P0 < 7 W (LFS = 160 GHz). In
these input-power regions,

• only fundamental solitons are generated and, so, there is no danger of soliton
fission

• the temporal and spatial periodicity coming from the soliton crystal state is still
imprinted into the pulses’ features

• the pedestal content that we will discuss in the following sections is still low and,
thus, a low amount of energy is lost into the pedestals.

To achieve a better understanding of the pulse build-up in fibre A, one should per-
form the SRBA for different fiber parameters (GVD βA

2 and the nonlinearity γA) to see
if the change of these parameters might affect the pulse build-up and, thus, the OFC
quality.

For the SRBA studies in this section, we excluded the optical fibre losses from con-
sideration. However, even a typical fibre loss of 0.2 dB/km might affect the soliton
dynamics in fibre A, especially, in the low input-power region. For instance, it is
expected that the soliton oscillations would slow down with increasing propagation
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length due to the energy loss [116]. It is also questionable if a soliton crystal state in the
low input-power region exists in the presence of an optical loss. Thus, to be aware of
the effect of optical losses, one needs to include them into the mathematical model and
repeat the SRBA.
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7 Pulse Build-up in the Second Fibre
Stage

In Sec. 6, we discussed the optical pulse formation in the first fibre stage of the proposed
setup for generation of OFC (Sec. 2.2) for different initial conditions (single cosine-hump,
Akhmediev breather, bichromatic deeply modulated cosine-wave) for a fixed laser fre-
quency separation of LFS = 80 GHz. In case when a bichromatic cosine-wave is chosen
as IC, we also investigated the pulse build-up for LFS = 125 GHz and LFS = 160 GHz.
The most interesting object for studies is, however, the second fibre stage within the
proposed setup, i.e. the Erbium-doped fibre. In this fibre, the optical pulses formed
in the first fibre stage are amplified due to the Erbium amplification process. Their
intensities invoke a strong nonlinearity that induces a strong pulse compression. For
example, the pulse widths are in the picosecond-range after the propagation through
fibre A in case when a bichromatic cosine-wave is chosen as IC. After fibre B, the pulses
are compressed down to a few tens of femtoseconds. Such strong pulse compression
leads to the formation of a broadband OFC.

7.1 Methods

To study the pulse build-up in the second fibre stage, we again make use of the SRBA
technique. However, a detailed analysis is difficult since the calculation time for the
second fibre drasticaly increases with the input power, the total fibre length as well
as with the number of the time sampling points. Thus, a balance needs to be found
between the sufficiency of the SRBA data (the resolution of the SRBA graphs depends
on the the total fibre length) and the calculation time. To do so, we will generate
data for three graphs depending on the input power: for the system input power
0.1 W ≤ P0 ≤ 2.0 W, the total fibre length will be LB = 40 m sampled with M = 4000
distance sampling points, for 2.1 W ≤ P0 ≤ 4.0 W, the length is LB = 35 m sampled
with M = 3500 points, and for 4.1 W ≤ P0 ≤ 7.0 W, LB = 30 m sampled with M = 3000
points. The input power will be changed in steps of ∆P0 = 0.1 W. The fibre parameters
are: βB

2 = −14 ps2/km, βB
2 = 0.1 ps3/km, and γB = 2.5 W−1km1. The optical losses are set

to zero, i.e. αB = 0 dB/km for the sake of simplicity. The SRBA will be peformed for
the values of initial laser frequency separation, LFS = 80 GHz and LFS = 160 GHz, in a
time window of 128 ps sampled with 214 time points.

The initial condition for the second fibre B is prepared as follows: as the optical pulses
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Figure 7.1: Definition of the optimum length of fibre A, LA
opt, using an example with

P0 = 3.5 W and the initial laser frequency separation LFS = 80 GHz [40]

travel through fibre A, they undergo a periodic modulation of their intensities over the
propagation distance (Fig. 7.1) if a bichromatic deeply modulated cosine-wave is chosen
as IC for fibre A (Eq. 3.47). This modulation coincides with a periodic change of the
temporal width: the pulse widths are minimal at the distance points where the pulse
intensities are maximal. We define the optimum length of fibre A, LA

opt, as the length from
the beginning of the fibre until the point of the first pulse’s intensity maximum. The
optical pulses at the optimum length have a profile that is very close to a sech−profile of
typical solitons (Fig. 7.2). So, we assume that almost perfect optical solitons are injected
into the second amplifying fibre. The parameters of the first fibre are chosen to be:
βA

2 = −15 ps2/km, βA
3 = 0.1 ps3/km, γA = 2.0 W−1km1, and αA = 0 dB/km.

7.2 Results

The Fig. 7.3 shows an example of the evolution of an IC prepared in fibre A. As can be
seen, some additional peaks arise as the pulse propagates through the amplifying fibre
B. This can be explained as follows: as the soliton with order N = 1 (Fig. 7.4) and chirped
due to self-phase modulation propagates through the amplifying fibre B, it adiabatically
tends to maintain its order by reducing its width (Eq. 4.4). Especially for higher-order
solitons, this process is, however, non-adiabatic: a part of the pulse energy is shed into
the dispersive waves that build up broad pulse pedestals. Due to the Erbium-gain and
the instability of the background, parts of the dispersive waves can grow and evolve
into additional chirped solitons. Each subsoliton, once it is stabilised, has nearly the
same width and ca. the same amplitude. The spacing between the subsolitons changes
during the formation of the subpulses, but becomes eventually nearly uniform. The
chirped profiles of new solitons can overlap with each other or/and with the chirped
profile of the main soliton. The interaction of chirped solitons via this overlap leads to
oscillatory structures in the pulse spectra [46, 117].

Figs. 7.5-7.7 present the soliton radiation beat analysis for LFS = 80 GHz. As one can
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7.2 Results

Figure 7.2: Temporal shape of a bichromatic pulse (black) after propagation in fibre A
with the input power P0 = 4.5 W and the initial laser frequency separation
LFS = 80 GHz and the shape of a sech−pulse with the same pulse width and
intensity (red)

Figure 7.3: Example of the pulse evolution in fibre B for the input power P0 = 4.5 W and
the initial laser frequency separation LFS = 80 GHz
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7 Pulse Build-up in the Second Fibre Stage

Figure 7.4: Soliton order of the pulses after the propagation through fibre A (correspond-
ing to branches S1 in Fig. 6.9 and Fig. 6.11) for the initial laser frequency
separation LFS = 80 GHz and LFS = 160 GHz calculated using Eq. 6.6

Figure 7.5: Spectral power in fibre B for the input powers 0.1 W ≤ P0 ≤ 2.0 W, the
total fibre length LB = 40 m, and the initial laser frequency separation LFS =
80 GHz

see, there are no visible branches in the SRBA-spectrum for input powers P0 < 2.8 W
(Fig. 7.5 and Fig. 7.6). In this input-power region, the soliton compression occurs
adiabatically, that means the soliton maintains its order by reducing its pulse width.
Although the soliton is not oscillating over the propagation distance, we still observe
a spatial frequency continuum. This continum consists of many frequencies that arise
due to the pulse amplification (a pulse oscillates faster and faster over the propagation
distance as it gains energy due to the Erbium amplification).

The situation changes for input powers P0 > 2.8 W. Already in fibre A, there appear
mixing frequencies of two solitons (|S1 − S2| and |S1 + S2| in Fig. 6.9). The comparably
high energy of the optical pulses in fibre A and the more complicated behaviour of them
due to the appearance of mixing frequencies lead to the build-up of big pulse pedestals
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7.2 Results

Figure 7.6: Spectral power in fibre B for the input powers 2.0 W < P0 ≤ 4.0 W, the
total fibre length LB = 35 m, and the initial laser frequency separation LFS =
80 GHz

Figure 7.7: Spectral power in fibre B for the input powers 4.0 W < P0 ≤ 7.0 W, the
total fibre length LB = 30 m, and the initial laser frequency separation LFS =
80 GHz

in fibre B which eventually ends up in the formation of additional subpulses. Such
behaviour indicates the non-adiabatic higher-order soliton compression (Sec. 5). The
branch S1(2F) in Fig. 7.6 and Fig. 7.7 emerges due to the beating between the central
soliton and the neighbouring subsolitons. The beating between the subsolitons with
each other manifests itself in the branches that are all together referred to as SF(2F).
The number of the subpulses increases with the input power. Also the number of the
branches SF(2F) goes up with the value of P0 : in Fig. 7.6, there is only one branch SF(2F),
whereas there are already three branches of that kind in Fig. 7.7.

Figs. 7.8-7.10 show the results of the soliton radiation beat analysis for the initial laser
frequency separation of LFS = 160 GHz. For input powers P0 < 4.5 W, the solitons
formed in fibre A propagate through fibre B adiabatically, they get amplified and well
compressed at the same time. Some subpulses arise for higher values of P0. Again, the
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7 Pulse Build-up in the Second Fibre Stage

Figure 7.8: Spectral power in fibre B for the input powers 0.1 W ≤ P0 ≤ 2.0 W, the
total fibre length LB = 40 m, and the initial laser frequency separation LFS =
160 GHz

Figure 7.9: Spectral power in fibre B for the input powers 2.0 W < P0 ≤ 4.0 W, the
total fibre length LB = 35 m, and the initial laser frequency separation LFS =
160 GHz

beating between the main soliton and the subpulses is represented by the branch S1(2F)
and the beating between the subsolitons is expressed by the branches SF(2F) (Fig. 7.10).

7.3 Conclusion and Discussion

In this section, we considered the pulse build-up in the second (amplifying) fibre stage
of our motivating setup for the initial laser frequency separation of LFS = 80 GHz and
LFS = 160 GHz. Clearly, more detailed and better resolved SRBA-graphs are needed to
get a deeper insight into the pulse behaviour in the Erbium-doped fibre. For that, longer
propagation lengths need to be chosen as well as the input-power steps minimised.
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7.3 Conclusion and Discussion

Figure 7.10: Spectral power in fibre B for the input powers 4.0 W < P0 ≤ 7.0 W, the
total fibre length LB = 30 m, and the initial laser frequency separation
LFS = 160 GHz

Further, the Erbium-amplification suffers from saturation [118, 119]. A more ela-
borated mathematical model including this important effect is required to describe the
pulse evolution in fibre B in a more accurate way. This can be done by the extension
of Eq. 3.46 by a saturable-absorber term [120, 121]. Actually, we have tried to do that,
but, unfortunately, the inserting of such saturable-absorber term extremely increased
the calculation time. So, we dropped it again for the efficiency’s sake.

By setting αB = 0 dB/km,we have not included the impact of the optical losses on the
SRBA-results. For the fibre lengths considered here, the neglection of the optical loss
is justified. As already mentioned, more profound studies require longer propagation
lengths for which the fibre losses should not be neglected anymore. Moreover, the
implementation of the Erbium-saturation and the inclusion of optical losses into the
model would lower the maximum peak power in fibre B. This might have a soliton
compression as a (numerical) result that takes place more adiabatically than in the cases
we considered here.

However, even using relatively poor data in this section, we have found that the
pulse build-up in the amplifying stage of our setup critically depends on the features
of the pulses formed in fibre A. So, adiabatic soliton compression occurs for low and
medium vaues of the input power. In this region, the pulses formed after propagation
through fibre A have low soliton orders and do not contain any additional mixing
frequencies. For high values of the input power, however, the pulses after fibre A
have more complicated structure featuring higher soliton orders or containing mixing
frequencies. This has the emergence of subpulses in the amplifying fibre B as a result.
The pulse compression process takes place non-adiabatically. The appearance of the
additional pulses can also be considered as soliton fission and should be prevented
since it increases the level of the intensity noise and degrades the OFC quality. The
soliton fission occurs for input power values P > 2.8 W for LFS = 80 GHz and P > 4.5 W
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7 Pulse Build-up in the Second Fibre Stage

for LFS = 160 GHz. According to the results obtained in this section and Sec. 6, the
best optical frequency combs are expected to evolve in fibre B for the input powers
2.0 W < P0 < 2.8 W for LFS = 80 GHz and 4.0 W < P0 < 4.5 W for LFS = 160 GHz.
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8 Optimum Lengths of the First and
Second Fibres

After we considered the pulse build-up in fibres A and B of our motivating setup
(Sec. 2.2) in Sec. 6 and Sec. 7, we now take a look at more practical issues. In this chapter,
we focus our attention on the optimisation of fibre lengths of the first two stages.

The actual aim of the propagation of the initial deeply-modulated bichromatic field
through fibre A and B is to generate maximally compressed pulses that exhibit mini-
mum level of intensity noise (IN). Such pulses would provide us with maximally broad
OFC that are hardly affected by noise. As the optical pulses propagate through fibre
A, they experience a periodical modulation of their intensity over the propagation dis-
tance. This modulation occurs due to the formation and the subsequent propagation
of optical solitons as described in Sec. 6. In fibre B, the changes in the pulse intensity
result from the radiation of the pulse energy into the dispersive-wave background and
a subsequent emergence of subpulses (Sec. 7). The optimum length of a fibre, Lopt, is
defined as the propagation distance from the beginning of the fibre and the first pulse
intensity maximum. At the optimum length, the pulses are maximally compressed and
exhibit a minimum of IN (Fig. 8.1 and Fig. 8.2) [40]. Specifically in fibre B, the optimum
length denotes the point from which on the formation of the subpulses begins.

The optimisation studies will be performed assuming negligible optical losses in
both fibres, i.e. αA = 0 dB/km and αB = 0 dB/km (Eq. 3.46). After we calculate the
optimum lengths, we will show that this assumption is valid and the inclusion of the
optical losses does not change the system performance significantly for the considered
optimum lengths since they are too short to let the optical absorption to play a role. For
the sake of simplicity, we set the amplitude of the initial noise to zero, i.e. n0 = 0 in
Eq. 3.47 The optimisation studies are done in a time window of 256 ps sampled with 216

time points. We calculate the optimum lengths of fibre A and B for different parameters
of the GVD parameter of fibre A, βA

2 , and the different values of the initial laser frequency
separation LFS. This is done because these parameters are easily changed within a real
experiment.

8.1 Optimum Lengths for Different Values of βA
2

Fig. 8.3 shows how the optimum lengths for fibre A (LA
opt) and B (LB

opt) depend on the
initial laser power P0 and three different values of the anomalous GVD parameter of
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8 Optimum Lengths of the First and Second Fibres

Figure 8.1: Peak power in W (upper graph) and intensity noise in % (lower graph) vs.
propagation distance in km for fibre A [40]

fibre A, i.e. βA
2 = −7.5 ps2/km, βA

2 = −15 ps2/km, and βA
2 = −30 ps2/km. The TOD

parameter is βA
3 = 0.1 ps3/km the nonlinear parameter is chosen to be γA = 2 W−1km−1.

These are the standard values for single-mode fibres [10, 122, 123].

As seen in Fig. 8.3, there is a plateau at low values of P0, where the optimum lengths
of fiber A are constant for each given value of the GVD parameter βA

2 . For these input-
power values, a collective soliton crystal state is formed in fibre A (cf. Sec. 6). In this
case, there is no well-defined optimum length LA

opt, any fibre length can be used within
an experiment. The edge of each plateau corresponds to an input-power value from
which the formation of separated solitons starts in fibre A. For the input powers beyond
the plateau region, the value of LA

opt decreases as P0 increases. This is because the soliton
order N (Eq. 6.6) increases with the input power. For increasing soliton orders, the
lengths of soliton cicles decrease and, so, the optimum lengths [114].

However, there is a strange behaviour of solitons in fibre A that we cannot explain at
this moment. The soliton order also depends on the value of βA

2 not only on the value
of P0 (Eq. 6.6). If we calculate the order, for instance, at P0 = 5 W, we get the following
values: NA = 2.3 for βA

2 = −7.5 ps2/km, NA = 1.6 for βA
2 = −15 ps2/km, and NA = 1.15

for βA
2 = −30 ps2/km. That means that, for a specific value of P0, the optimum lengths

LA
opt decreases with the soliton number, although it should be the other way around. To

understand this behaviour, more detailed studies are required.

The optimum lengths of fibre B decrease for increasing input powers which is the
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Figure 8.2: Peak power in W (upper graph) and intensity noise in % (lower graph) vs.
propagation distance in km for fibre B [40]

result of the formation and the propagation of higher-order solitons in fibre A: the cycle
of solitons with higher orders evolves over shorter distances also in fibre B meaning that
a soliton with a higher order would be compressed on a shorter optimum length. For
P0 ≤ 4.5 W, the value of the optimum length LB

opt decreases with the decreasing absolute
value of βA

2 suiting perfectly into the scheme of the higher-soliton compression.

At P0 = 4.5 W, it comes to a crossing between the curves for βA
2 = −7.5 ps2/km and

βA
2 = −15 ps2/km. The crossing of the curve for βA

2 = −7.5 ps2/km with the curve for
βA

2 = −30 ps2/km occurs at P0 = 6.5 W. This crossing is the result of the LB
opt−saturation

whereas the other curves still decrease with the increasing input power. The appearance
of such saturation is probably connected with the spectral evolution of the pulses in
fibre A. At the moment, however, the pulse build-up in fibre A is not fully understood.
Therefore, we cannot explain why the optimum-lentgh decrease saturates in fibre B [40].

8.2 Optimum Lengths for Different Values of LFS

Now we set the GVD of fibre A to βA
2 = −15 ps2/km and the nonlinear parameter to

γA = 2 W−1km−1, and study the dependence of optimum lengths on the initial laser
frequency separation (see Fig. 8.4). We choose LFS = 40 GHz, LFS = 80 GHz, and
LFS = 160 GHz.

Again, we observe plateaus of LA
opt for low and medium input powers that coincide

to the formation and the subsequent propagation of soliton crystal states in fibre A
(Fig. 8.4). After the plateau ends, which corresponds to the formation of separated soli-
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8 Optimum Lengths of the First and Second Fibres

Figure 8.3: Optimum lengths of fibres A and B, LA
opt and LB

opt, in m vs. input power P0

in W for different values of the GVD parameter of fibre A: βA
2 = −7.5 ps2/km

(circles), βA
2 = −15 ps2/km (rectangles), and βA

2 = −30 ps2/km (triangles) [40]

tons, the optimum lengths LA
opt decrease with the input power due to the increase of the

soliton order with P0. However, there appear, again, a disagreement with expectations
for a fixed value of P0, but different values of LFS: the optimum lengths decrease as
the LFS increases, i.e. as the soliton order decreases, although it should be vice versa
[114, 45]. For P0 = 5 W, the soliton orders are the following: NA = 3.2 for LFS = 40 GHz,
NA = 1.6 for LFS = 80 GHz, and NA = 0.81 for LFS = 160 GHz.

The soliton-compression scheme works perfectly for fibre B: the optimum lengths LB
opt

decrease with the input power as well as with the order of solitons formed in fibre A
[40].

8.3 Impact of the Optical Losses and the Characteristic
Lengths LD and LNL

Previously, we peformed our studies assuming that the optical losses are negligible in
fibre A and B and can be set to αA = 0 dB/km and αB = 0 dB/km, respectively. Now,
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Figure 8.4: Optimum lengths of fibres A and B, LA
opt and LB

opt, in m vs. input power
P0 in W for different values of the initial laser frequency separation LFS :
LFS = 40 GHz (circles), LFS = 80 GHz (rectangles), and LFS = 160 GHz
(triangles) [40]

using one specific example, we want to show that this assumption is correct since the
considered propagation lengths, LA

opt and LB
opt, are too short to let optical absorption

to change the system behaviour in an appreciable way. Moreover, we compare the
optimum lengths with the characteristic nonlinear (LNL) and dispersion (LD) lengths.
The nonlinear length for fibre A is defined as follows:

LA
NL =

1
P0γA , (8.1)

whereas for fibre B as
LB

NL =
1

P̂γB
(8.2)

with P̂ denoting the peak power of pulses after they propagated through fibre A [45, 46].
The dispersion length of fibre B obeys the classic definition:

LB
D =

(TA
0 )2

|βB
2 |
, (8.3)
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8 Optimum Lengths of the First and Second Fibres

where TA
0 is the natural width of pulses after they propagated through fibre A. It is ob-

tained via the determination of the FWHM and the expression TA
0 ≈ TA

FWHM/1.763 being
valid for solitonic structures [45, 46]. This definition is valid for chirp-free optical pulses
with well-formed spectra which contain many lines. The initial spectrum, however,
has only two frequency lines. Thus, the expression for the dispersion length of fibre A
needs to be written as

LA
D =

1
(2πLFS)2|βA

2 |
(8.4)

with LFS denoting, as previously, the initial laser frequency separation [113, 40].

Figure 8.5: Optimum lengths with and without optical losses of fibres A and B, LA
opt/α,

LB
opt/α (diamonds), and LA

opt, L
B
opt (rectangles) in comparison with characteristic

lengths, LA
D, L

B
D (circles), and LA

NL, L
B
NL (triangles), in m vs. input power P0 in

W.

In this section, we use the following parameters for our studies: βA
2 = −15 ps2/km,

γA = 2 W−1km−1, LFS = 80 GHz. As for the optical fibre losses, we set α = 0.2 dB/km
for both, fibre A and B, assuming that the Er-absorption in fibre B is compensated by
the pump (see Fig. 2.1) and only optical absorption plays a role [45, 46].
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As shown in Fig. 8.5, the difference between the optimum lengths for fibre A calcu-
lated with and without optical losses, i.e. LA

opt/α and LA
opt, is 0 m for P0 = 3.0 W and 15 m

for P0 = 10.0 W. In this region, the pulse shapes and the OFC spectra are similar. So,
the optical losses can be neglected for 3.0 W < P0 ≤ 10.0 W. However, for P0 ≤ 3.0 W,
the optical losses have influence on the formation of periodically modulated optical
pulses and, thus, optimum lengths. This feature is crucial especially for P0 ≤ 1.5 W,
where no opimum lengths LA

opt/α are possible. For these input-power values, the pulse
intensity decays exponentially due to the optical losses. This is, however, exactly the
region where we observed the formation of an soliton crystal state (cf. Sec. 6.2.3). The
absence of optimal lengths for P0 ≤ 1.5 W, makes us suspect that there is no soliton
crystal states in the presence of optical losses. However, to be sure about it, one needs
to perform further SRBA-studies that include the optical attenuation.

The nonlinear lengths of fibre A, LA
NL, are shorter than the optimum lengths LA

opt/α and

LA
opt for any input powers and shorter that the dispersion lengths LA

D for P0 > 1.8 W.
If characteristic lengths are compared with each other, the shortest length denotes the
dominating effect [113, 114]. That means that for input-power values P0 > 1.9 W the
fibre nonlinearity dominates the pulse dynamics in fibre A.

Both, LA
opt/α and LA

opt, are longer than the calculated dispersion length LA
D for P0 < 6.5 W

and P0 < 7.5 W, respectively. That means that the fibre dispersion has an important
effect on the pulse dynamics in fibre A for this input powers, although not as important
as the fibre nonlinearity for P0 > 1.9 W.The dispersion becomes negligible as the lengths
LA

opt/α and LA
opt get shorter than LA

D for higher values of P0.

For ca. P0 = 1.9 W, the curve for LA
NL crosses the curve for LA

D denoting the point
where the formation of a (fundamental) soliton with order N = 1 takes place (Eq. 4.4).
At this point, the balance between the fibre nonlinearity and dispersion is established.
Solitons with orders N > 1 are formed for higher values of the input power. This stands
in a good agreement with our previous studies (Sec. 6.2.3).

In case of fibre B, the curve for LB
NL overlaps with the curve for LB

D, i.e. LB
NL = LB

D, for
any values of P0. That means that the optical pulses propagate as fundamental solitons
through fibre B experiencing a balance between the nonlinearity and the dispersion
regardless whether the pulse were formed as fundamental or higher-order solitons in
fibre A. A part of the energy of the pulses that were formed as higher-order solitons in
fibre A is radiated into the the pedestal background in fibre B so that only an amount of
energy per pulse remains that is required to form a fundamental soliton.

As for the optimum lengths, they lie below the LB
NL − LB

D − overlap for P0 = 4.0 W
(LB

opt/α) and P0 = 5.0 W (LB
opt), respectively. That means that both, the fibre group-velocity

dispersion and the nonlinearity, have a negligible impact on the pulse dynamics in this
input-power region. The situation changes for higher values of P0 for which the opti-
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mum lengths are longer than the characteristic nonlinear and dispersion lengths. Here,
the influence of the fibre dispersion and nonlinearity is important. In this input-power
region, the very high pulse peak powers induce a high level of fibre nonlinearity that
drives the pulse compression which affects the dispersion length that depends on the
pulse widths.

As for the inpact of the optical losses, the difference between LB
opt/α and LB

opt is 8 m for
P0 = 3.0 W and only 1 m for P0 = 10.0 W. Again, the pulse shapes and the according
OFC spectra have barely changed after we included optical losses into consideration.
Therefore, we will proceed our studies assuming negligible optical losses, i.e. αA =
0 dB/km and αB = 0 dB/km.

8.4 Conclusion and Discussion

In this section, we calculated the optimum lengths for fibre A and fibre B of our motivat-
ing setup (Sec. 2.2) for different values of the GVD parameter βA

2 of fibre A and different
values of the initial laser separation LFS. Having excluded the optical losses, we found
that the optimum lengths of fibre A vary in the range of 180 m < LA

opt < 980 m depending
on the initial power P0 and the GVD parameter βA

2 . The corresponding optimum lengths
of fibre B take the values of 7.5 m < LB

opt < 37.5 m. For different values of LFS and P0,

the optimum lengths were 150 m < LA
opt < 1100 m for fibre A and 7 m < LA

opt < 35 m for
fibre B.

The best system performance in terms of optimum lengths was shown for βA
2 =

−15 ps2/km and LSF = 80 GHz.Using these values, we showed that typical optical fibre
losses of αA = 0.2 dB/km can be neglected for P0 > 3.0 W since they do not change
the system behaviour in a significant way. The optimum lengths for fibre A that are
calculated with optical losses are equal to the optimum lengths calculated without the
losses for P0 = 3.0 W and are only 15 m longer for P0 = 10.0 W. In case of fibre B, the
difference between LB

opt/α and LB
opt is 8 m for P0 = 3.0 W and only 1 m for P0 = 10.0 W.

The situation changes, however, in the input-power region P0 ≤ 3.0 W in which the
optical losses have an impact on the formation of optical pulses in fibre A. Especially
for P0 ≤ 1.5 W, the formation of temporally periodic optical pulses and, thus, of optical
lengths of fibre A and B is not possible due to the influence of the optical attenuation.
In Sec. 6, we observed the build-up of a soliton crystal state in this input-power region.
Now, due to the absence of optical lengths, we suspect that the formation of a soliton
crystal is not possible due to the influence of the optical losses.

In Sec. 7, we identified the input-power region 2.0 W < P0 < 2.8 W as one in which the
best possible OFC spectra are expected. These results were obtained without taking the
optical losses into account. Now, as we see that the optical attenuation has an impact on
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the pulse formation in fibre A for P0 ≤ 3.0 W,we need to state that some more extended
SRBA studies including the optical losses are required to thoroughly understand the
formation of optical pulses in fibre A for low input-powers.

Having compared the characteristic lengths for the case when βA
2 = −15 ps2/km and

LSF = 80 GHz, we found that the nonlinearity has the dominating effect on the pulse
dynamics in fibre A. In fibre B, the optical pulses propagate as fundamental solitons
for any values of P0 no matter if they were formed as fundamental or higher-order
solitons in fibre A. For low input-powers, neither the nonlinearity nor the dispersion
has a significant effect on the pulse dynamics in fibre B. For P0 > 4.5 W, the interplay
of the group-velocity dispersion and the nonlinearity plays a crucial role in the pulse
evolution in fibre B.
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9 Pulse Compression Effectiveness in the
First and Second Fibre

As briefly discussed in Sec. 5, during the process of pulse compression, a part of the pulse
energy is radiated into an undesired pedestal (Fig. 5.1). Especially in case of higher-
order soliton compression in amplifying or dispersion-decreasing fibres, the loss of the
pulse energy into the pedestal can go up to 80% [101, 102, 103]. This causes a reduction
of the pulse peak power which leads to the degradation of the pulse compression and,
so, the evolution of a broad OFC. Further, the pulse and pedestal interaction can be
amplified in fibre B which might result in the increase of the noise level due to the pulse
or pedestal break-up. Therefore, to achieve broad and low-noise OFC, it is advisable to
keep the pulse pedestal as small as possible.

We can calculate the pedestal energy content as the relative difference between the
total energy of one single pulse and the energy of an approximating soliton sech-profile
with the same peak power and the FWHM as it has the pulse itself (cf. Fig. 7.2)
[102, 103, 40]:

PED =
|Etotal − Esech|

Esech
· 100%, (9.1)

where
Esech = 2P̂

TFWHM

1.763
(9.2)

with P̂ being the peak power of the sech-profile soliton.

To describe the amount of energy that remains in the pulse and does not get radiated
into the pedestal, we introduce a figure of merit that is defined as:

FoM =
Pulse peak power

Pulse average power
. (9.3)

The maximum value of FoM will correspond to the best-quality optical pulses and, thus,
best-possible OFC.

The pulse compression effectiveness is described by the compression factor C that is
given by:

C =
TFWHM(z = 0)

TFWHM(z = Lopt)
(9.4)

with Lopt being the optimum length of fibre A or B, respectively (cf. Sec. 8).
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Considering three different values of the initial laser frequency separation, LFS =
40 GHz, LFS = 80 GHz, and LFS = 160 GHz,we address the following questions in this
section:

• How does the pedestal content of pulses formed in fibre A and B depend on the
the initial LFS and the initial input power P0?

• How does the FoM of fibre A and B change with LFS and P0?

• What are the compression factors C in fiber A and B for different values of LFS
and P0?

To carry out these studies, we choose the following parameters for fibre A: βA
2 =

−15 ps2/km, βA
3 = 0.1 ps3/km, γA = 2.0 W−1km1, and αA = 0 dB/km. The parameters of

fibre B are: βB
2 = −14 ps2/km, βB

3 = 0.1 ps3/km, γB = 2.5 W−1km1, and αB = 0 dB/km.
The simulations are performed in a time window of 256 ps sampled with 216 points
using optimised fibre lengths.

The dependence of the FoM, PED, and C on different values of the GVD parameter of
fibre A, βA

2 , is published in Ref. [40].

9.1 Results

Fig. 9.1 shows the pedestal content for fibre A and B. For fibre A, one can recognise the
input-power regions in which the collective soliton crystal states are built for different
values of LFS (cf. Sec. 6). Those are the regions where the respective PED−curves
decrease with P0 until they reach a minimum which is easily apparent specifically for
LFS = 80 GHz (minimum at ca. P0 = 1.5 W) and LFS = 160 GHz (minimum at ca.
P0 = 4.5 W). For LFS = 40 GHz, the soliton crystal is built for P0 < 1.0 W. In the input-
power regions of soliton crystals, the optical pulses have, actually, almost no visible
pedestals. The PED−values going up to 15% (at P0 = 0.5 W) come around because
the pulse form of a soliton crystal component significantly differs from an ideal sech-
profile typical for separated solitons. The minima in the PED−curves coincide with the
P0−values from which the formation of separated solitons is supported. The following
applies for separated solitons in fibre A: the further the pulses are from each other in the
time domain, i.e. the smaller the laser frequency separation, the higher is the pedestal
content. Further, the value of PED increases with P0 for any values of LFS. This is
because the solion order increases with P0 (according to Ref. [103], the pedestal content
grows with the order of fibre solitons). In the input-power region 5.0 W ≤ P0 ≤ 10.0 W,
the pulse pedestal content in fibre A varies between 40% and 55% for LFS = 40 GHz,
between 13% and 28% for LFS = 80 GHz, and between 4% and 14% for LFS = 160 GHz.

In fibre B, after decreasing of the PED−curves for low input powers, the values of
PED reach minima (PED = 48.5% at P0 = 3.0 W for LFS = 40 GHz and only PED = 30%
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9.1 Results

Figure 9.1: Pedestal content of optical pulses after propagation through fibre A and B
for different values of input power P0 and laser frequency separation LFS :
LFS = 40 GHz (circles), LFS = 80 GHz (rectangles), and LFS = 160 GHz
(triangles)

at P0 = 5.0 W for LFS = 80 GHz) and then increase with P0 again. For LFS = 160 W,
a minimum of the pulse pedestal content is expected to occur for P0 > 10.0 W. In the
region 5.0 W ≤ P0 ≤ 10.0 W, the pulse pedestal content in fibre B varies between 53%
and 65% for LFS = 40 GHz, between 30% and 38% for LFS = 80 GHz, and between 42%
and 22% for LFS = 160 GHz. The pedestal contents in our case are slightly higher than
the results presented in Ref. [103] for which the compression of higher-order solitons in
dispersion-decreasing fibres was investigated.

Fig. 9.2 shows the figure of merit, FoM, for fibre A and B. Both fibres behave simi-
larly: the less is the laser frequency separation, the better is the system performance
in terms of figure of merit. Thus, we have the following values for fibre A: FoM = 25
for LFS = 40 GHz, FoM = 13 for LFS = 80 GHz, and FoM = 9 for LFS = 160 GHz at
P0 = 5 W. The values of FoM are even higher in fibre B: FoM = 115 for LFS = 40 GHz,
FoM = 90 for LFS = 80 GHz, and FoM = 50 for LFS = 160 GHz at the same input power.

However, the evolution of pulse pedestals degrades the figure of merit in fibre B.
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9 Pulse Compression Effectiveness in the First and Second Fibre

Figure 9.2: Figure of merit in fibre A and B for different values of input power P0 and
laser frequency separation LFS : LFS = 40 GHz (circles), LFS = 80 GHz
(rectangles), and LFS = 160 GHz (triangles)

After the FoM−curves reach their maxima at P0 = 1.5 W (LSF = 40 GHz) and P0 = 4.0 W
(LSF = 80 GHz), they start to decrease because more and more energy is lost into the
pedestal and, thus, cannot be effectively transferred into the pulse peak power during
the compression process. The FoM−curve for LFS = 160 GHz has a broad maximum
of ca. FoM = 53 extending from P0 = 5.0 W to a input-power value that lies beyond
10.0 W. This curve is also expected to decrease.

In Sec. 7, we identified the following input-power regions for the generation of best-
possible OFC: 2.0 W < P0 < 2.8 W for LFS = 80 GHz and 4.0 W < P0 < 4.5 W for
LFS = 160 GHz. Those are the regions before the corresponding FoM− reach their
maxima. Transferring this knowledge to the case of LFS = 40 GHz, we expect such
input-power region to be 0.5 W < P0 < 1.0 W. Those input-power values are, however,
too low to induce the formation of a broad optical frequency comb.

Fig. 9.3 shows the compression factors for fibre A and B. For fibre A, the compression
factors increase with the input power and decrease with the laser frequency separation.
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9.2 Conclusion

Figure 9.3: Compression factor for fibre A and B for different values of input power P0
and laser frequency separation LFS : LFS = 40 GHz (circles), LFS = 80 GHz
(rectangles), and LFS = 160 GHz (triangles)

This is because the compression effectiveness increases with the soliton order: we have
C = 40 for LFS = 40 GHz (NA = 3.2), C = 31 for LFS = 80 GHz (NA = 1.6), and C = 19
for LFS = 160 GHz (NA = 0.81) at P0 = 5.0 W. The group-velocity dispersion, however,
limits the further compression in fibre B: the compression factors decrease with the
value of P0 and LFS. At P0 = 5.0 W, C = 6 for LFS = 40 GHz, C = 8.5 for LFS = 80 GHz,
and C = 17 for LFS = 160 GHz. In our case, higher compression factors are achieved
in the first fibre stage (fibre A), but lower ones in the second amplifying stage (fibre B)
than the factors presented in Ref. [103].

9.2 Conclusion

In this section, we considered three different values of the initial laser separation,
LFS = 40 GHz, LFS = 80 GHz, and LFS = 160 GHz, and calculated the relative en-
ergy pedestal content, PED, the figures of merit, FoM, and the compression factors, C,
in fibres A and B of our motivating setup as functions of these values of LFS and the
initial input power P0.

81



9 Pulse Compression Effectiveness in the First and Second Fibre

For fibre A, we found that there are higher values of PED in the input-power regions
of soliton crystal states. These values are, however, artificial and come around due
to the mathematical formulation of PED (Eq. 9.1), the pulses themselves have almost
no pedestals. In the P0−region of separated solitons, the pedestal content in fibre A
increases with P0 and decreases with LFS. The maximal pedestal content of PED = 55%
was observed for LFS = 40 GHz at P0 = 10.0 W. For fibre B, minima of PED−curves
were observed at P0 = 3.0 W for LFS = 40 GHz (PED = 48.5%) and at P0 = 5.0 W for
LFS = 80 GHz (only PED = 30%).

As for the figure of merit FoM,we found that it is better for both, fibre A and B, if the
value of LFS is small. At P0 = 5.0 W, the highest values were achieved for LFS = 40 GHz:
FoM = 25 in fibre A and FoM = 115 in fibre B. The evolution of pulse pedestals degrades,
however, the figure of merit in fibre B: the FoM−curves decrease with P0 after having
maxima at P0 = 1.5 W (LFS = 40 GHz) and P0 = 4.0 W (LFS = 80 GHz).

The compression factors increase with the soliton order in fibre A. That means the
value of C grows with P0 and decreases with LFS.The group-velocity limits the compres-
sion effectiveness in fibre B. Therefore, the value of C in fibre B decreases with P0 and LFS.

Altogether, the best performance in the considered input-power region was achieved
for LFS = 80 GHz [40].
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10 Intensity Noise and Optical Pulse
Coherence

The pulse intensity noise (IN) leads to the reduction of the optical signal-to-noise ra-
tio (OSNR) in the frequency domain and, so, degrades the quality of optical frequency
combs. In fibre A of the proposed setup for generation of OFC for low- and medium res-
olution applications in Astronomy (Fig. 2.1), the increase of the initial intensity noise that
comes from the two CW lasers can be caused by the modulational instability (Sec. 4.4.1)
[124]. In the amplifying Er-doped fibre B, there are three reasons for the increase of
the pulse intensity noise. First, any noise that comes from the first fibre stage and lies
spectrally within the Raman gain is amplified due to the Raman amplification. Second,
amplifying fibres generate additional noise due to the amplified spontaneous emission.
This kind of noise is not included into our model (Eq. 3.46). Third, the modulational
instability can also contribute to the increase of the IN−level in the second fibre stage
[46]. As for the third fibre C, the main source of IN is the high nonlinearity of the
fibre. It induces the soliton break-up with a subsequent emergence of subpulses. The
subpulses propagate with slightly different central frequencies than the mother-solitons
which constitutes a spectral noise floor additionally to the actual OFC.

The pulse intensity noise IN manifests itself in the pulse-to-pulse peak power variation
(cf. Fig. 10.1C). We define the (maximum) IN as the difference between the maximum
peak power within a pulse train at the end of each fibre, i.e. max(|Â|2), and the according
peak-power average, i.e. ⟨|Â|2⟩, in percentage terms [40]:

IN =
|max(|Â|2) − ⟨|Â|2⟩|

⟨|Â|2⟩
· 100%. (10.1)

First, we study the intensity noise evolution in fibre B as a function of the initial
laser frequency separation LFS and the input power P0,we choose the following values:
LFS = 40 GHz, LFS = 80 GHz, LFS = 160 GHz and 0.5 W ≤ P0 ≤ 10 W. The initial
intensity noise contribution is generated as a randomly distributed noise floor with the
maximal power of n0 = 2P010−8.

Then, we consider three cases of the initial IN−power (Eq. 3.47): the ideal case of
n0 = 2P010−10 that coincides with 90 dB OSNR, n0 = 2P010−8 that corresponds to 70 dB
OSNR, and n0 = 2P010−6 that corresponds to 50 dB OSNR. The first case is hardly fea-
sible in a real experiment, while two latter ones are, on the contrary, realistic [40].
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10 Intensity Noise and Optical Pulse Coherence

Figure 10.1: Optical pulse power (in W) as the function of time t (in ps) after propagation
through different fibre stages of the proposed setup for generation of OFC
for βA

2 = −15 ps2/km, LFS = 80 GHz, and P0 = 2.0 W. A: first fibre stage, B:
second amplifying stage, C: third highly nonlinear fibre stage

Figure 10.2: The coherence overlap function g̃ depending on the time t (in ps) made
out of 10 pulse trains after propagation through different fibre stages of the
proposed setup for generation of OFC for βA

2 = −15 ps2/km, LFS = 80 GHz,
and P0 = 2.0 W. A: first fibre stage, B: second amplifying stage, C: third
highly nonlinear fibre stage

The timing jitter of the optical pulses causes the broadening of the OFC lines. We
study the impact of the timing jitter by means of the pulse coherence time Tc that
we define as the FWHM of the pulses that arise by a pairwise overlapping of pulse
trains generated at two different times, i and i + 1, and that have, accordingly, different
randomly generated initial IN−level. The overlap function is given by [40]

g̃(t) =
⟨ A∗i (t)Ai+1(t)√
|Ai(t)|2max|Ai+1(t)|2max

⟩
(10.2)

where
|Ai|2max = max(|Ai|2) (10.3)

is the maximum norm (cf. [45]). For the calculation of g̃(t), we use 10 different pulse
trains, i. e. i ∈ (1, ..., 10) (compare Fig. 10.1 and Fig. 10.2). A high level of pulse coherence
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10.1 Intensity Noise in the Amplifying Fibre Depending on the Initial Laser Frequency Separation

corresponding to low timing jitter is given when Tc > Tp. Note, Tp is the pulse FWHM.

Afterwards, we show the effectiveness of the optical filtering technique in terms of the
noise minimisation and the improvement of the optical pulse coherence characteristics.
This filtering technique consists of two bandpass filters as described in Sec. 2.2 (Fig. 2.1)
[40].

The following parameters for fibre A are chosen for our studies: βA
2 = −15 ps2/km,

βA
3 = 0.1 ps3/km, γA = 2.0 W−1km1, and αA = 0 dB/km. The parameters of fibre B are

set to: βB
2 = −14 ps2/km, βB

3 = 0.1 ps3/km, γB = 2.5 W−1km1, and αB = 0 dB/km. The
simulations are performed in a time window of 256 ps sampled with 216 points using
optimised fibre lengths.

The dependence of the INB on different values of the GVD parameter of fibre A, βA
2 ,

is published in Ref. [40].

10.1 Intensity Noise in the Amplifying Fibre Depending on
the Initial Laser Frequency Separation

Here, we consider the IN−level in the amplifying Er-doped fibre B as function of the
laser frequency separation: LSF = 40 GHz, LSF = 80 GHz, and LSF = 160 GHz. The
initial intensity noise contribution is generated as a randomly distributed noise floor
with the maximal power of n0 = 2P010−8.

Fig. 10.3 shows that, for input powers for which fibre A has plateaus in its optimum
lengths (Fig. 8.4), the INB−level is very high. In this P0−region, the optical pulses are
not moulded into separated solitons yet when they propagate through fibre A, but con-
stitute a collective soliton crystal state (Sec. 6). This soliton crystal state seems to lack
the stability and the robustness of separated solitons to sustain the perturbation that
is caused by the fibre parameter change at the conjunction between fibre A and B (the
GVD parameter suddenly changes from βA

2 = −15 ps2/km to βB
2 = −14 ps2/km and the

fibre nonlinearity changes from γA = 2.0 W−1km1 to γB = 2.5 W−1km1). As a result,
the pulses break-up as they enter fibre B which yields a high level of INB for low input
powers.

In the P0−region in which an intermediate state between a soliton crystal and the
separated solitons exists in fibre A, the stability of the optical structures grows as the
input power increases, i.e. with the approaching of the P0−region of the separated
solitons. Here, the level of INB decreases until it reaches a minimum: INB ≤ 1% for any
considered values of LFS. The INB remains below 1% also for higher values of P0 for
LSF = 80 GHz and LSF = 160 GHz.
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10 Intensity Noise and Optical Pulse Coherence

Figure 10.3: Intensity noise in fibre B, INB, in % vs. input power P0 in W for different
values of the initial laser frequency separation LFS : LFS = 40 GHz (circles),
LFS = 80 GHz (rectangles), and LFS = 160 GHz (triangles) [40]

The soliton order is higher for smaller LFS (cf. Fig. 7.4). Higher-order solitons are
subjected to a break-up due to the parameter change at the conjunction between fibre
A and B. This leads to to the increase of the intensity noise. Therefore, the INB−level
increases up to ca. 38% for LFS = 40 GHz for high values of P0. An optimum system
performance is shown for LSF = 80 GHz [40].

10.2 Intensity Noise Level Depending on the Initial Noise
Power

Now, we choose LFS = 80 GHz to study the influence of the initial noise power on
the noise characteristics in all three fibre stages of the proposed setup for generation
of OFC for low- and medium resolution astronomical applications. We consider three
values of the initial IN−power generated as a randomly distributed floor (Eq. 3.47):
n0 = 2P010−10, n0 = 2P010−8 and n0 = 2P010−6.

Fig. 10.4 shows that the whole system is sensitive to the value of the initial noise
power. This dependence begins already in fibre A. Thus, INA takes the following va-
lues: ca. 0.1% for the ideal case of n0 = 2P010−10, ca. 1% for n0 = 2P010−8, and ca. 10%
for n0 = 2P010−6 [40].

As for fibre B, the INB−level is again very high for low input powers and any consi-
dered values of the initial intensity noises power. We assume, this is due to the fact that
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Figure 10.4: Intensity noise of fibres A, B, and C, INA, INB, and INC, in % vs. input
power P0 in W for different values of the initial noise power: n0 = 2P010−10

(solid line), n0 = 2P010−8 (dashed line), and n0 = 2P010−6 (dotted line). The
crosses present the intensity noise of the filtered signal [40]

the soliton crystal formed in fibre A in this input power region is unstable against per-
turbations based on the fibre parameter change. In the input-power region of separated
solitons, 2.5 W ≤ P0 < 8 W, the INB−level is almost the same as the level of INA in fibre
A. That means that the Raman amplification has a negligible role on the intensity-noise
evolution within the proposed approach for the OFC generation [40].

The nonlinearity of fibre C, however, induces the increase of a significant amount
of INC, especially if the initial condition is highly noisy. So, we have INC of < 1% for
n0 = 2P010−10, ca. 6% for n0 = 2P010−8, and ca. 40% for n0 = 2P010−6 for the values
of P0 for which separated solitons exist in fibre A. Thus, to keept the level of the in-
tensity noise as low as possible it is advisable to choose a low-noise initial condition [40].

Now we analyse the effectiveness of the proposed filtering technique. Two 20 dB−fil-
ters with 30 GHz bandwidth are used to filter the noise coming from the amplifiers
(AMP1 and AMP2 in Fig. 2.1). The filters are modelled by two Gauss functions as
described in Sec. 3.2.5. In our studies, the Gaussian-shaped filters reduce the amplifier
noise floor with n0 = 2P010−6 down to n0 = 2P010−8 (Fig. 3.3). The according results are
presented in Fig. 10.4 as crosses. As one can see, the crosses lie close to the curves that
present the IN−level for the situation when a noise floor with n0 = 2P010−8 is chosen as
initial condition. To be precise, the INA

filter is ca. 2%, INB
filter < 1%, and INC

filter is less than
12% for P0 > 2.5 W. That means that the proposed filtering technique is highly effective
in the suppression of intensity noise and should be deployed in a real experiment [40].

10.3 Optical Pulse Coherence in Fibres A, B, and C

Here, we consider the coherence time Tc for three different values of the input power
P0 and the initial noise IN with n0 = 2P010−8 generated as a randomly distributed floor.
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Fibre A
P0, [W] IN Tc, [ps] Tp, [ps]
2.0 floor 6.16 1.58

filtered 6.39
5.5 floor 6.14 0.67

filtered 6.28
9.0 floor 6.15 0.46

filtered 6.41

Table 10.1: Coherence time Tc and FWHM of optical pulses Tp in fibre A for a floor and
filtered initial noise with n0 = 2P010−8 [40]

Fibre B
P0, [W] IN Tc, [ps] Tp, [ps]
2.0 floor 1.56 0.06

filtered 1.61
5.5 floor 0.66 0.08

filtered 0.67
9.0 floor 0.46 0.09

filtered 0.47

Table 10.2: Coherence time Tc and FWHM of optical pulses Tp in fibre B for a floor and
filtered initial noise with n0 = 2P010−8 [40]

Afterwards, these results will be compared with the case when the initial noise level
with n0 = 2P010−6 is filtered down to n0 = 2P010−8 by means of Gaussian filters as
described above. The initial frequency separation is chosen to be LFS = 80 GHz [40].

As one notes from Tab. 10.1, the pulse width Tp decreases with the input power P0 in
fibre A due to the power-dependent compression process. Thus, we have Tp = 1.58 ps
for P0 = 2.0 W and Tp = 0.46 ps for P0 = 9.0 W. However, for any values of P0, the
coherence time Tc remains almost the same, it slightly varies around the average value
of ⟨Tc⟩ = 6.15 ps. This value is much larger than the pulse FWHM Tp which indicates a
high level of the pulse coherence and a low level of the timing jitter [40].

In fibre B (Tab. 10.2), the pulse widths Tp slightly increase with the input power P0
due to the dispersion effects. So, we have Tc = 0.06 ps for P0 = 2.0 W, Tc = 0.08 ps for
P0 = 5.5 W, and Tc = 0.09 ps for P0 = 9.0 W. Contrary to fibre A, the value of Tc strongly
depends on the initial power: Tc = 1.56 ps for P0 = 2.0 W, Tc = 0.66 ps for P0 = 5.5 W,
and finally Tc = 0.46 ps for P0 = 9.0 W. This occurs due to the pulse pedestal distortion
with the increasing input power. Nonetheless, the coherence time Tc is more than 5
times larger than the pulse width Tp meaning still a good coherence performance with
a low level of the timing jitter [40].
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Fibre C
P0, [W] IN Tc, [ps] Tp, [ps]
2.0 floor 0.07 0.06

filtered 0.08
5.5 floor 0.08 0.08

filtered 0.09
9.0 floor 0.09 0.09

filtered 0.10

Table 10.3: Coherence time Tc and FWHM of optical pulses Tp in fibre C for a floor and
filtered initial noise with n0 = 2P010−8 [40]

The optical pulses do not get compressed any further in fibre C (see Tab. 10.3). How-
ever, the values of the coherence time Tc drop after the pulses propagate through fibre
C and are only a bit higher than the pulse widths Tp: Tc = 0.07 ps for P0 = 2.0 W,
Tc = 0.08 ps for P0 = 5.5 W, and Tc = 0.09 ps for P0 = 9.0 W. The reason for low coher-
ence time is the break-up of the pulse pedestals into subpulses with irregular intensities
and repetition time. This break-up is driven by the high fibre nonlinearity [40].

For the performed studies, the coherence time Tc of the filtered signal lies slightly
below the Tc−values of the unfiltered (floor) noise. This has only a negligible reduction
of the coherent OFC bandwidths. Thus, the proposed filtering technique proved to be
effective once again [40].

10.4 Conclusion

In this section, we focused on the studies of the pulse intensity noise and the pulse cohe-
rence properties of different staged of the proposed fibre-based approach for generation
of optical frequency combs for the calibration of astronomical spectrographs in the low-
and medium resolution range (Sec. 2.2). For low-noise OFC with sharp frequency lines,
it is necessary to produce optical pulses with a low level of intensity noise and a high
level of coherence.

We considered the intensity noise INB in the second Er-doped amplifying fibre stage
of the proposed setup as a function of the initial laser frequency separation LFS. First, we
observed that the collective soliton crystal state formed in fibre A at low input powers
is unstable against the perturbation that arises due to the sudden fibre parameter (GVD
and fibre nonlinearity) change at the conjunction between fibre A and B. As a result,
the pulses break up in fibre B which leads to the increase of INB up to 95%. At the
current stage, we conclude that the input-power region of a pure collective soliton state
should be avoided within a real experiment. However, further studies are needed to test
the stability of the collective soliton state against different types of perturbations (fibre
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paramter change, optical fibre losses, varying laser intensities) to make more precise
statements about the source of the intensity noise in fibre B at low input powers. For
the moment, the best system performance in terms of intensity noise is shown in the
input-power region of separated solitons.

Further, the higher values of LFS yield lower values of INB for any values of the
input power P0 for which an intermediate state between a soliton crystal and separated
solitons or just separated solitons are formed in fibre A. So, INB < 1% for LSF = 160 GHz
and LSF = 80 GHz. For LFS = 40 GHz, the level of INB increased from INB ≈ 1% to
INB ≈ 38% with the value of P0. The reason for such increase of INB for a low value
of LFS is the break-up of higher-order solitons due to the fibre parameter change at
the conjunction between fibre A and B. Since the soliton order increases and, so, the
probability of the pulse break-up goes up with the decreasing LFS, it is advisable to
choose high LSF values to achieve low-noise OFC in the second fibre stage.

Having studied the influence of the initial intensity noise power n0 (Eq. 3.47) on the
system performance, we found that all three fibres are highly sensitive to the initial
noise. Thus, IN ≈ 0.1% for n0 = 2P010−10 (∝ 90 dB OSNR), IN ≈ 1% for n0 = 2P010−8

(∝ 70 dB OSNR), and IN ≈ 10% for n0 = 2P010−6 (∝ 50 dB OSNR) in fibre A and B.
The high level of the material nonlinearity in fibre C induces the pulse break-up and,
so, leads to the degradation of the IN−performance. Especially, if the initial condi-
tion is highly noisy. Thus, we have INC ≈ 1% for n0 = 2P010−10 and INC ≈ 40% for
n0 = 2P010−6. So, for low-noise OFC, the initial intensity noise is to be kept as low as
possible. For that, noise filtering techniques need to be deployed. Here, we showed
that the techique consisting of two 20 dB bandpass filters (Fig. 2.1) is highly efficient
in suppression of the initial intensity noise and should be used within a real experiment.

The studies of the coherence properties showed that the optical pulses exhibit a high
level of coherence in fibre A and B: their coherence time Tc was much larger than the
FWHM time Tp for the initial intensity noise power n0 = 2P010−8. This coincides with a
low level of the timing jitter. The coherence is degraded, i.e. the timing jitter is increased,
in fibre C due to the break-up of the pulse pedestals (Fig. 2.2C). Here, the coherence
time is the same as the pulse FWHM time which denotes a low level of the timing jitter.
Although fibre C is necessary to broaden the OFC and to equalise the comb frequency
lines, it degrades the OFC performance in terms of the optical-signal-to-noise ratio due
to the increase of the pulse intensity noise and also contributes to the broadening of the
frequecy lines due to the high level of the timing jitter. The proposed filtering technique
consisting of two bandpass filters slightly improves the coherence time in all three fibres.
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Within this work, we numerically studied the fibre-based approach for generation of
optical frequency combs for the purpose of calibration of astronomical spectrographs
in the low- and medium resolution range (Sec. 2.2). This approach consists of a con-
ventional single-mode fibre, a suitably pumped amplifying Erbium-doped fibre with
anomalous dispersion, and a subsequent low-dispersion highly nonlinear fibre. As a
light source, two continuous-wave equally intense lasers emitting in the near infrared
are used. The lasers are spectrally separated by an adjustable laser frequency separa-
tion LFS and generate a deeply-modulated cosine-wave with the central wavelength at
λc = 1531 nm (Fig. 2.1).

The pulse-propagation equation that models this approach mathematically is a Gen-
eralised Nonlinear Schrödinger Equation (Eq. 3.46) that includes the group-velocity and
the higher-order dispersion, the nonlinear interaction terms (the optical Kerr effect, the
Raman effect, and the pulse self-steepening), the linear fibre losses, the wavelength-
dependent Erbium gain profile for the second fibre of the proposed setup. A suitable
initial condition equation that describes the radiation of two continuous-wave lasers
is given in Eq. 3.47. The Fourth-Order Runge-Kutta Method in the Interaction Picture
(RK4IP) is used for the numerical integration of Eq. 3.46 and Eq. 3.47.

To be able to control the quality and the bandwidth of the optical frequency combs,
it is crucial to understand the pulse build-up in the first fibre of the proposed ap-
proach. For that, we used the Soliton Radiation Beat Analysis and found out that the
deeply-modulated cosine-wave evolves into a collective soliton crystal state for input
peak powers P0 → 0 W and a state of free, i.e. temporally well-separated, solitons
for high input powers (P0 → 6 W). There is a continuous regime transition from the
soliton crystal to free solitons with increasing input power denoting an intermediate
state. Best possible optical frequency combs are achieved when the optical pulses are
temporally and spectrally periodic. The intermediate state fulfills these requirements
because, within this input-power region, only (well-behaving) fundamental solitons are
generated, the temporal and spatial periodicity coming from the soliton crystal state is
still imprinted into the pulses’ features, and the energetic pulse pedestal content is low.
With this knowledge, we determined the following input-power regions in which best
possible optical frequency combs are achievable: 2.0 W < P0 < 3.5 W for LFS = 80 GHz,
3.5 W < P0 < 6.0 W for LFS = 125 GHz, and 4.0 W < P0 < 7.0 W for LFS = 160 GHz
(Sec. 6).

In the second fibre of the proposed approach, the optical pulses (solitons) are am-
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plified due to the Erbium amplification and, at the same time, extremely compressed.
We again apply the Soliton Radiation Beat Analysis to determine if the compression
process is adiabatic or non-adiabatic. We found that the pulse build-up in the Erbium-
doped amplifying fibre critically depends on the features of the pulses formed in the
first fibre of the proposed approach. So, adiabatic soliton compression occurs for low
and medium vaues of the input power. For high values of the input power, the pulses
undergo a non-adiabatic compression that goes along with the emergence of subpulses
(soliton fission) which should be prevented since it increases the level of the intensity
noise and degrades the frequency comb quality. The soliton fission occurs for input
power values P > 2.8 W for LFS = 80 GHz and P > 4.5 W for LFS = 160 GHz. The best
optical frequency combs are expected to evolve in the second fibre for the input powers
2.0 W < P0 < 2.8 W for LFS = 80 GHz and 4.0 W < P0 < 4.5 W for LFS = 160 GHz (Sec. 7).

Optimum fibre lengths denote propagation points at which the optical pulses are max-
imally compressed and, so, provide, the broadest possible optical frequency combs, and
exhibit the minimum level of pulse intensity noise. Such optimum lengths should be
used within a real experiment. Having excluded the optical losses, we found that the
optimum lengths of the first fibre vary in the range of 180 m < LA

opt < 980 m depending
on the initial power P0 and the group-velocity dispersion parameter βA

2 .The correspond-
ing optimum lengths of the second fibre take the values of 7.5 m < LB

opt < 37.5 m. For
different values of LFS and P0, the optimum lengths were 150 m < LA

opt < 1100 m for the
first fibre and 7 m < LA

opt < 35 m for the second fibre. The best system performance in
terms of optimum lengths was shown for βA

2 = −15 ps2/km and LSF = 80 GHz. Using
these values, we showed that the typical optical fibre losses of αA = 0.2 dB/km can be
neglected for P0 > 3.0 W since they do not change the system behaviour in a significant
way. In the input-power region P0 ≤ 3.0 W, the formation of temporally periodic optical
pulses is strongly affected by the optical attenuation. Therefore, the determination of
the optimum lengths is not possible (Sec. 8).

As the optical pulses propagate through the fibres, their total energy gets split be-
tween the pulses and the broad pedestals. The energy lost into the pedestals cannot be
effectively used for pulse the compression process and the increase of the pulse peak
power. Therefore, it is advisable to keep the pedestal content PED as low as possible
by a proper choice of the system parameters. To describe the amount of energy that
remains in the pulse and does not get lost into the pedestal, we introduce a figure of
merit FoM that is defined as the ratio between the peak power of a pulse and its average
power. The pulse compression effectiveness is described by the compression factor C
that is given as the ratio between the pulse width at the beginning of a fibre and the pulse
width at the optimum length. For the first fibre of the proposed approach for generation
of optical frequency combs, we found that the pulses have almost no pedestals in the
input-power region of soliton crystal states. In the P0−region of separated solitons, the
pedestal content in the first fibre increases with P0 and decreases with LFS. The maximal
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pedestal content of PED = 55% was observed for LFS = 40 GHz at P0 = 10.0 W. For the
second fibre, minima of PED−curves were observed at P0 = 3.0 W for LFS = 40 GHz
(PED = 48.5%) and at P0 = 5.0 W for LFS = 80 GHz (only PED = 30%). As for the figure
of merit FoM, we found that it is better for both fibres if the value of LFS is small. At
P0 = 5.0 W, the highest values were achieved for LFS = 40 GHz: FoM = 25 in the first
fibre and FoM = 115 in the second fibre. The evolution of pulse pedestals degrades,
however, the figure of merit in the second fibre: the FoM−curves decrease with P0 after
having maxima at P0 = 1.5 W (LFS = 40 GHz) and P0 = 4.0 W (LFS = 80 GHz). The com-
pression factors increase with the soliton order in the first fibre meaning that the value
of the compression factor grows with P0 and decreases with LFS. The group-velocity
limits the compression effectiveness in the second fibre. Therefore, the compression
factor value in fibre B decreases with P0 and LFS. The best system performance in the
considered input-power region was achieved for LFS = 80 GHz (Sec. 9).

The optical frequency noise leads to the reduction of the optical signal-to-noise ratio
of the frequency combs, whereas the timing jitter yield the broadening of the comb
lines. Therefore, to obtain low-noise optical frequency combs with sharp frequency
lines, it is necessary to produce optical pulses with a low level of intensity noise and
a high level of coherence. Here, we found that higher values of the laser frequency
separation LFS yield lower values of the intensity noise INB in the second amplifying
fibre for any values of the input power P0 for which an intermediate state between a
soliton crystal and separated solitons or just separated solitons are formed in the first
fibre. So, INB < 1% for LSF = 160 GHz and LSF = 80 GHz. For LFS = 40 GHz, the
level of INB increased from INB ≈ 1% to INB ≈ 38% with the value of P0. Therefore,
it is advisable to choose high LSF values to achieve low-noise OFC in the second fibre
stage. Having studied the influence of the initial intensity noise power n0 (Eq. 3.47) on
the system performance, we found that all three fibres are highly sensitive to the initial
noise. Thus, IN ≈ 0.1% for n0 = 2P010−10 (∝ 90 dB OSNR), IN ≈ 1% for n0 = 2P010−8

(∝ 70 dB OSNR), and IN ≈ 10% for n0 = 2P010−6 (∝ 50 dB OSNR) in the first and
second fibre. In the third fibre, we have INC ≈ 1% for n0 = 2P010−10 and INC ≈ 40%
for n0 = 2P010−6. So, for low-noise OFC, the initial intensity noise is to be kept as low
as possible. We showed that the techique consisting of two 20 dB bandpass filters is
highly efficient in suppression of the initial intensity noise and should be used within a
real experiment. The studies of the coherence properties showed that the optical pulses
exhibit a high level of coherence in the first and second fibre which coincides with a low
level of the timing jitter. The coherence is degraded, i.e. the timing jitter is increased,
in fibre C due to the break-up of the pulse pedestals. The proposed filtering technique
consisting of two bandpass filters slightly improves the coherence time in all three fibres
(Sec. 10).

A better understanding of the pulse build-up in the first fibre and the second fibre is
needed to be able to gain a full control of the proposed approach for generation of optical
frequency combs for the purpose of the calibration of the astronomical low- and medium
resolution spectrographs. For the first fibre, one should perform the Soliton Radiation
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11 Overall Conclusion and Outlook

Beat Analysis for different fibre parameters (the group-velocity dispersion and the fibre
nonlinearity) as well as to include the typical optical fibre losses of 0.2 dB/km to see if
the change of these parameters might affect the pulse build-up and, thus, the frequency
comb quality. To gain a better understanding of the pulse build-up in the second fibre,
one should include an Erbium-saturation term into the pulse-propagation equation
Eq. 3.46 as well as take the optical losses into account and perform the Soliton Radiation
Beat Analysis with longer propagation lengths as chosen here, i.e. with lengths > 40 m.
Within a real experiment, it might be difficult to achieve the absolute equality of the
laser intensities. Therefore, the effect of the laser intensity variations on the formation
of the soliton crystal and an intermediate state in the first fibre should be thoroughly
studied by means of the Soliton Radiation Beat Analysis as well. Further, studies on
the stability of the soliton crystal state agains perturbations that arise due to the fibre
parameter change as the optical pulses enter the second fibre should be performed to
see if the (in)stability of the soliton crystal might lead to the increase of the intensity
noise in the second fibre.
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Acronyms

In the order of appearance:

OFC optical frequency comb / optical frequency combs

CW continuous wave

LFS laser frequency separation

GNLS Generalised Nonlinear Schrödinger Equation

GVD group-velocity dispersion

NIR near IR (infra-red)

AIP Institute for Astrophysics Potsdam (AIP)

FWM four-wave mixing

HNLF highly nonlinear fibre

EDFA Erbium-doped fibre amplifier

CCD charge-coupled device

BBO beta barium borate

SVEA slowly varying envelope approximation

RK4IP Fourth-Order Runge-Kutta Method in the Interaction Picture

NLS Nonlinear Schrödinger Equation

TOD third-order dispersion

RK4 Fourth-Order Runge-Kutta Method

FFT fast Fourier transform

DMF dispersion-managed fibre

MI modulational instability

AB Akhmediev breather

KM Kuznetsov-Ma soliton
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Acronyms

SRBA Soliton Radiation Beat Analysis

IC initial condition

IN intensity noise

Lopt optimum fibre length

FWHM full width at half maximum

PED pulse pedestal

FoM figure of merit

C compression factor
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[39] M. Zajnulina, M. Böhm, K. Blow, J. M. Chavez Boggio, A. A. Rieznik, R.
Haynes, M. M. Roth, Proceedings of SPIE 9151 (2014)

[40] M. Zajnulina, J. M. Chavez Boggio, M. Böhm, A. A. Rieznik, T. Fremberg,
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