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Preface

The research for the present work began in the spring of 2011. As a diploma student
of the University of Potsdam, I was introduced to the concept of quasicomplexes, i.e.
the sequences with “small” curvature, by my supervisor N. Tarkhanov. The topic
of my diploma thesis was to introduce the Euler characteristic for elliptic sequences
of smoothing curvature. Afterwards, the results were published in [Wal12] where,
in particular, the question was posed how the Lefschetz number can be defined in
the context of quasicomplexes. It became the central point of my PhD studies to
understand and to solve this problem. The basic ideas for the solution were given
in the joint paper [TW12]. Then, in the paper [Wal14] this approach was developed
and the results were used to generalise the Lefschetz fixed point formula of Atiyah
and Bott [AB67]. In this thesis, the results of the three cited papers are summarised,
which results in a unified presentation. Furthermore, we present several unpublished
generalisations and examples.

In addition to the aforementioned results, this work gives a summary of the
theory of Fredholm quasicomplexes, which has been developed since the 1980s and
provides a natural extension of the well known theory of Fredholm complexes. Dur-
ing the compilation of the results, I tried to find an approach as direct as possible
to avoid nonnecessary redundancies in the development, which would be caused by
simply connecting the cited papers. I clearly separate my own contribution from the
results of others, by giving exact references and integration into the historical con-
text. Particularly, no proofs of basic theorems are listed. Moreover, all important
facts for the development of the theory are summarised in a thorough basic chapter,
containing all necessary aspects for performing this research. Hopefully, this will
allow us to introduce the present theory to a large number of interested mathemati-
cians, while giving the advanced reader the opportunity to reach the relevant results
quickly without having to filter out of a swamp of familiar material.

I would greatly like to thank to my supervisor for the detailed and patient men-
toring during all this years. He has deeply influenced not only my view on mathe-
matics but also on other aspects of my life. My research was also encouraged by my
colleagues of the University of Kassel, where I have been working for the last two
years. Finally, many thanks to my family who always supported me and my studies.

Kassel
July, 2015

Daniel Wallenta
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Introduction

The concept of (cochain) complexes arises in different fields of modern mathematics.
In mathematical analysis one normally investigates sequences (also called cochain
complexes) of the form

{V ·, D} : 0→ V 0 D0

−→ V 1 D1

−→ . . .
DN−1

−→ V N → 0 ,

where V 0, . . . , V N are topological vector spaces (for instance function spaces on a
manifold) and D0, . . . , DN−1 are continuous linear mappings. Such a sequence is
called a complex, if Di+1Di = 0 is satisfied for all i = 0, 1, . . . , N . In this case the
cohomology H i can be defined. Those form vector spaces as well, and it turns out
that it is possible to draw conclusions from the investigation of the cohomologies for
the whole object and for the solvability of equations with the operators involved.

In general a complex of Hilbert spaces is called Fredholm, if it has finite dimen-
sional cohomology. This is satisfied if and only if there is a sequence of operators
P i : V i → V i−1, such that

Di−1P i + P i+1Di = IdV i

holds modulo compact operators. Such a P = (P 1, . . . , PN ) is called parametrix of
the complex. For any Fredholm complex the Euler characteristic is defined to be

χ :=
N∑
i=0

(−1)i dimH i,

which generalises the index of Fredholm operators. This characteristic number is
a special case of a more abstract number defined for each endomorphim E of a
Fredholm complex {V ·, D}. Such an endomorphism is a family of linear selfmappings
Ei : V i → V i fulfilling Ei+1Di = DiEi. Then the induced mappings HEi : H i → H i

are endomorphisms of the finite-dimensional spaces H i, and so the alternating sum

L :=
∑
i

(−1)i trHEi ,

the Lefschetz number of the endomorphism, is well defined.
To each complex the differential D is associated by Dv = Div for v ∈ V i.

One may ask what happens with complexes under “small” perturbations of their
differentials. Note that it depends on the structure of the underlying spaces whether

1



Introduction 2

or not an operator is “small.” This leads to a magical mix of perturbation and
regularisation theory. In the general setting of Hilbert spaces compact operators
are “small.” Thus, we may perturb the differential D by a compact operator K.
Formally we find

(D +K)(D +K) = D2 +DK +KD +K2 = DK +KD +K2.

Hence, the product is a compact operator, too. This leads us to the theory of
quasicomplexes introduced by Putinar in [Put82]. More precisely, a quasicomplex
with Hilbert spaces is a sequence

{V ·, A} : 0→ V 0 A0

−→ V 1 A1

−→ . . .
AN−1

−→ V N → 0

where the composions Ai+1Ai are compact operators. Note that such objects were
called “essential complexes” by Putinar. In [Tar07] the name “quasicomplexes” was
suggested, which we will use in this work. For quasicomplexes the cohomology is no
longer defined, since the image of Ai−1 fails in general to lie in the null-space of Ai.
However, in order to define Fredholm quasicomplexes we may use the parametrix,
where the parametrix of a quasicomplex is defined in the same way as that of a
complex.

Obviously, we obtain Fredholm quasicomplexes by perturbing the differential of a
Fredholm complex by compact operators. The inverse theorem is also true, i.e. each
Fredholm quasicomplex can be obtained by compact perturbations of a Fredholm
complex. The proof is much more difficult and it was first shown in [EP96] for more
general parametrised quasicomplexes of Banach spaces. In order to define the Euler
characteristic of a Fredholm quasicomplex, a proof which uses special Hilbert space
methods was given in [Tar07].

An open problem was to introduce reasonably the Lefschetz number in the
context of quasicomplexes, see [Wal12]. To highlight the problem, we consider a
Fredholm quasicomplex {V ·, A} of Hilbert spaces and an endomorphism E, i.e.
Ei+1Ai = AiEi. The idea is now to use any reduced complex {V ·, D} for {V ·, A}
to define the Lefschetz number. Since Di = Ai + Ci implies Ei+1Di = DiEi mod-
ulo K(V i, V i+1), the sequence E fails to determine an endomorphism of {V ·, D}.
So nothing changes if we deal with quasiendomorphisms of {V ·, A} from the very
beginning, i.e. with those sequences which satisfy Ei+1Ai = AiEi modulo com-
pact operators from V i to V i+1. However, these latter don not act naturally on
the cohomology of reduced complexes. Moreover, it turns out that in the gen-
eral case of compact curvature no Lefschetz number is available. In particular, for
quasicomplexes the Euler characteristic is in general no special Lefschetz number.
Nevertheless, it was shown in [TW12] that it makes sense to introduce the Lefschetz
number for Fredholm quasicomplexes with trace class curvature and endomorphisms
modulo trace class operators by

L :=
N∑
i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai) ,
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where P is an arbitrary “regularising” parametrix of {V ·, A}. As shown in [Wal14],
this definition does not depend on the particular choice of parametrix and the stan-
dard properties of Lefschetz number hold true in this more general context. Those
results were obtained at the same time independently by J. Eschmeier in the context
of Banach spaces, see [Esc13]. Furthermore, the cited paper contains an interesting
example concerning Toeplitz operators.

As is well known, many geometric problems lead to elliptic complexes of dif-
ferential and pseudodifferential operators, which are studied since the 1930s by W.
Hodge, G. de Rham, A. Grothendieck, D. C. Spencer, M. F. Atiyah, I. Singer, and
others. Namely, let F i be smooth vector bundles over a compact closed manifold
X, for i = 0, .., N . We consider complexes of classical pseudodifferential operators
Ai on spaces of smooth sections

E(X,F ·) : 0→ E(X,F 0)
A0

−→ E(X,F 1)
A1

−→ . . .
AN−1

−→ E(X,FN )→ 0 .

To such a complex we assign a complex of principal symbols defined on the cotangent
bundle of the manifold. E(X,F ·) is called elliptic, if the associated symbol complex
is exact away from the zero section. The standard example is the familiar de Rham
complex.

It is well known that an elliptic complex has finite dimensional cohomology. In
order to show this, one uses the fact that any elliptic complex extends to a complex
of Sobolev spaces. This is a complex of Hilbert spaces and the Fredholm theory can
be applied. Even the theory of elliptic complexes could be extended in the sense
of quasicomplexes. In general, it suffices to claim that the symbol sequence is a
complex. A natural example is the connection quasicomplex

Ω ·(X,F ) : 0→ C∞(X,F )
∂0→ Ω1(X,F )

∂1→ . . .
∂n−1

→ Ωn(X,F )→ 0,

where ∂ is a connection of a vector bundle F over X, cf. [Wel80]. This is an analogue
of the de Rham complex in the case of sections instead of differential forms. Note that
(∂)2 is called the curvature, what inspired us to use this name for the composition
of operators in a sequence in general.

Elliptic quasicomplexes on compact manifolds without boundary have been stud-
ied in [Wal12] where a generalisation of the Atiyah-Singer index formula was proved.
The more difficult case of quasicomplexes on compact manifolds with boundary was
studied before in [KTT07]. Another application of the theory can be found in
[Wal14], where a generalisation of the Atiyah-Bott-Lefschetz fixed point formula for
geometric quasiendomorphisms of elliptic quasicomplexes was proved.

It should be noted that elliptic quasicomplexes of differential operators (of the
same order) were already studied by Gilkey in [Gil94]. In particular, for some cases
the index of the corresponding block operator (A+ A∗)e was computed, what is in
fact the Euler characteristic of the quasicomplex. During a talk at a conference in
Potsdam some participants suggested to use this index of the block operator as a
definition of the Euler characteristic. However, on the one hand, this seems not to
be a good definition because no cohomology is used, and on the other hand, this
does not work very well in the abstract Hilbert space setting because the Fredholm



Introduction 4

property of the block operator follows from the fact that a reduced complex can be
found.

To some extent the theory of elliptic complexes is a highlight of mathematics in
the 20 th century. Consequently, to formulate and understand the central concepts
used in this field, we have to do some preliminary work. Namely, many elements of
diverse mathematical disciplines, such as functional analysis, differential geometry,
partial differential equation, homological algebra and topology have to be combined.
All essential basics are summarised in the first chapter of this thesis. This contains
classical elements of index theory, such as Fredholm operators, elliptic pseudodiffer-
ential operators and characteristic classes, which can be found for instance [Wel80].
Moreover we study the de Rham complex [War83] and introduce Sobolev spaces of
arbitrary order as well as the concept of operator ideals from [Pie78].

In the second chapter, the abstract theory of (Fredholm) quasicomplexes of
Hilbert spaces will be developed. From the very beginning we will consider qua-
sicomplexes with curvature in an ideal class, as it was suggested in [TW12]. We
introduce the Euler characteristic, the cone of a quasiendomorphism and the Lef-
schetz number. In particular, we generalise Euler’s identity, which will allow us to
develop the Lefschetz theory on nonseparable Hilbert spaces.

Finally, in the third chapter the abstract theory will be applied to elliptic qua-
sicomplexes with pseudodifferential operators of arbitrary order. We will show that
the Atiyah-Singer index formula holds true for those objects and, as an example, we
will compute the Euler characteristic of the connection quasicomplex. In addition
to this we introduce geometric quasiendomorphisms and prove a generalisation of
the Lefschetz fixed point theorem of [AB67].

This is a work in pure mathematics. Namely, we give some abstract definitions
and prove theorems, where we focus on mathematical correctness. Any examples
and applications are of inner mathematical nature. Possible physical applications
are far from being studied. In general, abstract mathematical material like that
done in this work will be applied at the earliest 50 years after it has been developed.



Chapter 1

Basics

The topics explained in this chapter contain some classical elements of modern
analysis and can be only sketched. Accordingly, mere basic definitions and theorems
are summarised and no proofs are given.

We use the following standard notation:

• N := {1, 2, 3, . . .}, N0 := N ∪ {0} and K is R or C.

• ı denotes the imaginary unit in C, i.e. ı2 = −1.

• M ⊂ N means that x ∈ N for any x ∈M .

• im f denotes the image and ker f the null-space of a (linear) mapping f .

• IdM denotes the identical mapping on a set M .

1.1 Elements of functional analysis

In this section we summarise some basic facts and results of functional analysis.
For this we assume that the reader has elementary knowledge of linear algebra and
abstract algebraic structures, as well as analysis. This includes in particular metric
spaces and measure and integration theory.

1.1.1 Topological vector spaces

Let X be a nonempty set and τ a family of subsets of X. Then τ is called topology
on X, if

i) ∅, X ∈ τ ;

ii) U ∩ V ∈ τ , if U, V ∈ τ ;

iii)
⋃
i∈I

Ui ∈ τ , if Ui ∈ τ for all i ∈ I.

5



CHAPTER 1. BASICS 6

In this case X, or more precisely the pair {X, τ}, is called a topological space. If M
is a nonempty subset of X, then by the relative topology on M is meant the family
τM := {U ∩M |U ∈ τ}.

In a metric space the family of open subsets forms a topology. Motivated by this
example the elements of an arbitrary topology are called open sets. Analogously to
metric spaces, a subset M ⊂ X is said to be closed if X \M is open. The intersection
of all closed subsets of X containing M is called the closure of M and denoted by
M . Furthermore, a subset is said to be dense in X, if its closure coincides with X. A
topological space X is called separable if there is a countable subset which is dense
in X.

The concept of topological vector spaces arose in the 20s of the past century, cf.
[CR96]. A central point in this theory is perhaps the idea of abstract compactness.
Namely, a topological X space is called compact if every open covering {Uj}j∈J of
X possesses a finite subcovering, i.e. there are Uj1 , . . . , UjN with j1, . . . , jN ∈ J ,
such that X = Uj1 ∪ . . . ∪ UjN . A subset M of X is called compact if it is compact
with respect to the relative topology on M , and relatively compact if its closure in
X is compact. The relative compactness is usually denoted by M b X.

It should be noted that each topological space can be compactified by adding
a symbolic point ∞. For this purpose, we set X+ := X ∪ {∞} and call U ⊂ X+

open if U is an open subset of X or if X+ \ U is closed and compact in X. When
endowed with this topology X+ becomes compact. This construction goes back to
P. Alexandrov.

Let X and Y be topological spaces with topologies τX and τY . A mapping
f : X → Y is said to be continuous if f−1(V ) ∈ τX for all V ∈ τY . The image of a
compact subset of X by a continuous mapping f proves to be a compact subset of
Y .

Write τX×Y for the family of all subsets O of X × Y with the property that for
each (x, y) ∈ O there are open sets Ux ⊃ x and Vy ⊃ y in X and Y , respectively,
such that Ux × Uy ⊂ U . Then τX×Y defines a topology on the Cartesian product
X × Y .

A vector space V over a field K is called a topological vector space if V is given
a topology which is compatible with the vector structure in V , i.e. if the mappings

+ : V × V → V, (v1, v2) 7→ v1 + v2 ,
· : K× V → V, (λ, v) 7→ λ · v

are continuous. If W is another topological vector space over the same field K, then
the vector space consisting of all continuous linear maps acting from V to W is
denoted by L(V,W ).

A mapping f ∈ L(V,W ) is called a topological isomorphisms if f is bijective and
its inverse is continuous. We set V ′ := L(V,K) and often write f(v) as 〈f, v〉 for
f ∈ V ′ and v ∈ V .

Given any A,B ∈ L(V ) := L(V, V ), we denote by

[A,B] := AB −BA



CHAPTER 1. BASICS 7

the commutator of A and B. This operation gives a Poisson algebra structure to
L(V ).

To endow the space L(V,W ) with a meaningful topology, we have to specify the
structur of V and W . We restrict ourselves to the case of normed spaces. If ‖ · ‖ is
a norm on V , then on setting d(u, v) := ‖u− v‖ for u, v ∈ V we get a metric on V .
If we endow the vector space with the topology induces by this metric, it becomes
a topological vector space. If W is another normed space over the same field, then
L(V,W ) is a normed space under the operator norm ‖A‖ := sup‖v‖≤1 ‖Av‖ for
A ∈ L(V,W ).

Example 1.1.1 Let U be an open set in Rn. We consider the space C∞(U,Km)
consisting of all smooth functions on U with values in Km. Choose an enlarging
sequence of compact sets {Kj}j∈N in U converging to U , i.e. Kj+1 ⊂ Kj and the
union of Kj is all of U . Set

pj(u) := sup
x∈Kj
|α|≤j

|∂αu(x)|

for u ∈ C∞(U,Km). Here, α = (α1, . . . , αn) is a multi-index, |α| = α1 + . . . + αn
and ∂αu = ∂α1

1 · · · ∂αnn u. On setting

d(u, v) =

∞∑
j=0

2−j
pj(u− v)

1 + pj(u− v)

for u, v ∈ C∞(U,Km) we obtain a metric on C∞(U,Km). One can show that any
bounded subset of C∞(U,Km) is relatively compact (this is often referred to as the
Heine-Borel property).

On the contrary, a ball in a normed space is relatively compact if and only if the
space is finite dimensional.

Theorem 1.1.2 A normed space V is finite dimensional if and only if the identity
mapping IdV is compact.

The complete normed vector spaces are called Banach spaces. Note that a finite-
dimensional normed space is automatically a Banach space. If W is a Banach space,
then the space L(V,W ) is a Banach space, too. In this case any continuous mapping
A ∈ L(U,W ), whose domain is a dense subspace U of V , can be uniquely extended
to a continuous mapping A ∈ L(V,W ) of all V by

Av = lim
k→∞

Avk

for v ∈ V , where {vk} is any sequence in U converging to v.
If a vector space V is endowed with a scalar product (·, ·)V , the scalar product

induces a norm on V through ‖v‖V :=
√

(v, v)V for v ∈ V . Such a space is called
unitary. Another designation is a pre-Hilbert space or Hilbert space, if it is com-
plete. These spaces have a very rich structure, which can not be explained here in
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all aspects. For details on the geometry of Hilbert spaces we refer the reader to text-
books in functional analysis, such as [DS88] or [Hal74]. We only mention that if U is
an subspace of a Hilbert space V , then the orthogonal decomposition V = U ⊕ U⊥
holds, where the orthogonal complement U⊥ is the subspace of V consisting of all
v ∈ V satisfying (v, u)V = 0 for each u ∈ U . Note that the space U⊥ is always
closed.

Theorem 1.1.3 Let U be a closed subspace of a Hilbert space V . Then there exists
an orthogonal projection PU of V onto U , i.e. a linear selfmapping of V satisfying
PUv = v, if v ∈ U , and PUv = 0, if v ∈ U⊥.

Example 1.1.4 Let X be a compact topological space and V a Banach space. The
space of all continuous functions on X with values in V is denoted by C(X,V ). This
space becomes a Banach space, if we endow it with the supremum norm

‖u‖sup := sup
x∈X
‖u(x)‖V

for u ∈ C(X,V ).

Examples 1.1.1 and 1.1.4 present the so-called function spaces, i.e. the vectors
in this spaces are functions with values in a Banach space and both addition and
multiplication by scalars are defined pointwise. The classical function spaces of
integration theory are the Lebesque spaces Lp(X,µ), where p ∈ [1,∞] and {X,A, µ}
is a measure space, i.e. X is a topological space, A a σ -algebra of subsets of X and
µ a σ -additive measure on A. As usual these are separable Banach spaces and even
Hilbert spaces, if p = 2, with scalar product

(u, v)L2(X,µ) :=

∫
X
u(x)v(x) dµ

for u, v ∈ L2(X,µ). In the sequel we set C∞(U) := C∞(U,C) and write simply
Lp(X) := Lp(X,µ), if the measure µ is evident from the context (a surface area
measure as a rule).

The standard Hilbert spaces are separable, still, since later we will investigate
sequences of arbitrary, not necessarily separable, Hilbert spaces, we should give an
example of such a space.

Example 1.1.5 Consider the functions of x ∈ R of the form uλ(x) = eıλx, where
λ ∈ R. Let V be the vector space of all finite linear combinations of such functions.
We define a scalar product on V by

(u, v) := lim
T→∞

1

2T

∫ T

−T
u(x)v(x) dx

for u, v ∈ V and denote the completion of V with respect to the corresponding norm
by AP2(R). The elements of the Hilbert space AP2(R) are called almost periodic
functions on R.

It is worth pointing out that the space AP2(R) does not contain any function
u ∈ L2(R) except for the zero one.
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1.1.2 Tempered distributions

For u ∈ L1(Rn) the Fourier transform û is defined as a function on Rn by

û(ξ) =

∫
Rn
e−ı〈ξ,x〉u(x) dx

for any ξ ∈ Rn, where 〈ξ, x〉 = ξ1x1 + . . . + ξnxn stands for the standard pairing
(Rn)′ × Rn → R of ξ and x.

The Fourier transform exhibits a very interesting behavior, if we apply it to
differentiable functions. To this end, we set

〈x〉s := (
√

1 + |x|2)s

for x ∈ Rn and s ∈ R and call a function u ∈ C∞(Rn) rapidly decreasing , if

pj,k(u) := sup
x∈Rn
|α|≤j

〈x〉k|∂αu(x)| <∞

holds for all multi-indices α = (α1, . . . , αn) in Nn0 and each k ∈ N0. The Schwartz
space S(Rn) is the topological vector space consisting of all rapidly decreasing func-
tions. The topology on S(Rn) is induced by the metric

d(u, v) =
∑
j,k∈N0

2−(j+k) pj,k(u− v)

1 + pj,k(u− v)
.

It is well known that the Fourier transform provides a topological isomorphism
F : S(Rn)→ S(Rn) with the inverse

F−1(v)(x) = (2π)−n
∫
Rn
eı〈x,ξ〉v(ξ) dξ

for x ∈ Rn and v ∈ S(Rn). On setting

Dj =
1

ı

∂

∂xj

and Dα = Dα1
1 . . . Dαn

n we obtain

F (Dαu)(ξ) = ξαFu(ξ),

F (xβu)(ξ) = (−1)|β|DβFu(ξ)

for all u ∈ S(Rn) and multi-indices α, β.

Example 1.1.6 Consider the Gauß function u : R → R with u(x) = e−x
2
. Then

u ∈ S(R) holds and the Fourier transform is given by û(ξ) =
√
πe−ξ

2/4.

Let U be open in Rn and V be a vector space. For f : U → V the closure of
the subset of U where f does not vanish is called the support of f and denoted by
supp f . As usual, we write D(U) for the vector space of all smooth functions on U
with compact support.

The following important lemma is known as the stationary phase method, cf. for
instance [Dui95].
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Lemma 1.1.7 Assume that ϕ is a C4 function on Rn with real values and x0 ∈ Rn
any simple stationary point of ϕ, i.e. ϕ′(x0) = 0 and detϕ′′(x0) 6= 0. Then, for any
C2 function f with compact support on Rn, such that ϕ′ 6= 0 on supp f \ {x0}, we
have

1

(2π~)n/2

∫
Rn
e
ı
~ϕ(x)f(x) dx =

e
ı
~ϕ(x0)√

|detϕ′′(x0)|
eı
π
4

sgnϕ′′(x0) (f(x0) +O(~))

as ~ → 0, where sgnϕ′′(x0) is the signature of ϕ′′(x0), i.e. the number of positive
eigenvalues minus the number of negative eigenvalues of the matrix.

The space D(U) is equipped with a locally convex topology, such that a sequence
{ϕk} converges to ϕ ∈ D(U) if and only if there is a compact set K ⊂ U with the
property that suppϕk ⊂ K for all k and ∂α(ϕk−ϕ) converges to zero uniformly on K
for all multi-indices α. The elements of the dual space D′(U) are called distributions
on U .

Example 1.1.8 The Cauchy principal value integral

ϕ 7→ p.v

∫
R

ϕ(x)

x
dx := lim

ε↘0

∫
R\(−ε,ε)

ϕ(x)

x
dx

is a distribution on the real axis.

Consider f ∈ L1
loc(U), i.e. f : U → C is measurable and the integral of |f |

over each compact set K ⊂ U is finite (such a f is called locally integrable on U).
As usual, f is thought of as a representative of an equivalence class of functions
coinciding with f almost everywhere. Then f provides a linear form f : D(U)→ C
by

〈f, ϕ〉 :=

∫
U
f(x)ϕ(x)dx

for ϕ ∈ D(U). On using Lebesque’s theorem of dominated convergence we see that
f ∈ D′(U). Moreover, the fundamental lemma of the calculus of variations states
that 〈f, ϕ〉 = 0 holds for each ϕ ∈ D(U) if and only if ϕ = 0. Hence, we can
specify the locally integrable functions within distributions and regard distributions
as “generalised functions.” The distributions of this type are called regular. Given
any f, g ∈ C∞(U), one verifies readily

〈∂αf, ϕ〉 = (−1)|α| 〈f, ∂αϕ〉,
〈gf, ϕ〉 = 〈f, gϕ〉

for all test functions ϕ. On using these equalities one defines the generalised
derivatives and multiplication with a smooth function for an arbitrary distribution
f ∈ D′(U).

Example 1.1.9 Pick x0 ∈ R. Consider the functional δx0 on D(R) given by
〈δx0 , ϕ〉 := ϕ(x0) for ϕ ∈ D(R). It is easy to see that this functional is continu-
ous. The distribution δx0 ∈ D′(R) called the delta function supported at x0. If
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x0 = 0, one writes δx0 simply δ. The Heavyside function θ(x) = (1/2)(sgn(x)+1) is
locally integrable on R. Since

〈θ, ϕ′〉 =

∫ ∞
0

ϕ′(x) dx = −ϕ(0)

is fulfilled for all ϕ ∈ D(R), we conclude that θ′ = δ.

Let U and V be open sets in Rn. Distributions K ∈ D′(U × V ) are said to be
kernels or, more precisely, Schwartz kernels on U × V . Each kernel gives rise to a
continuous linear operator T : D(V )→ D′(U) by the formula

〈Tψ, ϕ〉U = 〈K,ϕ⊗ ψ〉U×V

for ϕ ∈ D(U) and ψ ∈ D(V ). L. Schwartz proved that this correspondence leads
actually to a topological isomorphism

D′(U × V )
top∼= L(D(V ),D′(U)),

the space L(D(V ),D′(U)) is endowed by the topology of uniform convergence on
bounded subsets of D(V ). This result admits also a global formulation for sections
of vector bundles.

The elements of the dual space S ′(Rn) := (S(Rn))′ are called tempered dis-
tributions on Rn. If a sequence converges in D(Rn), then it converges in S(Rn),
too. Thus, if f is a continuous linear functional on S(Rn), then its restriction to
D(Rn) is continuous. Since D(Rn) proves to be dense in S(Rn), it follows that
S ′(Rn) ↪→ D′(Rn), i.e. tempered distributions are specified within distributions on
Rn.

Given any f ∈ S ′(Rn), the Fourier transform is defined by

〈f̂ , ϕ〉 = 〈f, ϕ̂〉

for all ϕ ∈ S(Rn). The Fourier transform is known to be a topological isomorphism
of S ′(Rn) onto S ′(Rn) itself.

Example 1.1.10 Since

〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) =

∫
Rn
ϕ(x) dx

holds for all ϕ ∈ S(Rn), the Fourier transform δ̂ just amounts to the constant
function 1.

Denote by 〈ξ〉 the function on Rn given by ξ 7→ (1 + |ξ|2)1/2. For any s ∈ R, the
Sobolev space Hs(Rn) is the vector space of all temperated distributions f ∈ S ′(Rn)
with the property that 〈ξ〉sf̂ ∈ L2(Rn). This is a Hilbert space with the scalar
product

(f, g)Hs(Rn) = (〈ξ〉sf̂ , 〈ξ〉sĝ)L2(Rn)

for f, g ∈ Hs(Rn).
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1.1.3 Ideals of compact operators

Let V and W be Banach spaces over the same vector field K. An operator in L(V,W )
is said to be compact if it maps a ball in V onto a relativly compact subset of W .
The vector space of all compact linear mappings acting from V to W is denoted
by K(V,W ). This is a closed subspace of the Banach space L(V,W ), and thus a
Banach space under the induced norm.

The composition of a compact operator and a bounded operator is always com-
pact. In particular, K(V ) := K(V, V ) is an ideal in L(V ).

More generally, a class of operators I ⊂ L is said to be an operator ideal, if
I is a vector subspace of L and both BA and AB belong to I for all A ∈ L and
B ∈ I. The zero operators form the trivial ideal classes which will be denoted by
O. Another ideal classes are given by the operators of finite rank F . It should be
noted that if V is a Banach space then the only closed ideals in L(V ) are O(V ) and
K(V ).

Let us recall some essential properties of compact operators on Hilbert spaces.
To this end, let V , W be complex Hilbert spaces. We start with the observation
that each operator A ∈ L(V,W ) possesses an adjoint operator A∗ ∈ L(W,V ) which
is uniquely defined by

(Av,w)W = (v,A∗w)V

for all v ∈ V and w ∈ W . Then, the orthogonal complement of the range of
A is easily seen to be the kernel of A∗, i.e. the orthogonal sum decomposition
W = kerA∗ ⊕ imA holds. Note that an operator A is compact if and only if so is
A∗.

If A ∈ L(V ) satisfies A∗ = A, then A is said to be selfadjoint, and A is called
normal if [A,A∗] = 0. The eigenvectors of a normal operator corresponding to
different eigenvalues are orthogonal. Suppose A ∈ K(V ) is normal. Then there are
an orthonormal system e1, e2, . . . in V and a sequence λ1, λ2, . . . in C\{0} converging
to zero, such that

Av =
∞∑
k=1

λk (v, ek) ek

for all v ∈ V . In the case K = C, the numbers λk are actually the eigenvalues of
A, counted with their multiplicity. This spectral theorem is a generalisation of the
principal axis theorem from linear algebra. There is a more general representation
theorem for arbitrary compact operators.

Theorem 1.1.11 Let V and W be Hilbert spaces and A ∈ K(V,W ). Then, there
are orthonormal systems e1, e2, . . . and f1, f2, . . . in V and W , respectively, and a
decreasing sequence of nonnegative numbers s1 ≥ s2 ≥ . . . converging to zero, such
that

Av =

∞∑
k=1

sk (v, ek) fk

for all v ∈ V .
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The so-called singular numbers sk = sk(A) in the theorem above are the eigen-
values of the operator (A∗A)1/2 in V counted with their geometric multiplicativity.
Note that A∗A is compact and selfadjoint. For any p ≥ 1, we denote by Sp(V,W )
the set of all A ∈ K(V,W ) with the property that

( ∞∑
k=1

|sk(A)|p
)1/p

<∞.

The so-called Schatten classes Sp are ideals of compact operators. The classes S1

and S2 are of particular interest. As before we set Sp(V ) := Sp(V, V ). Then S1(V )
is the set of trace class operators and S2(V ) is the set of Hilbert-Schmidt operators
on V . For a trace class operator A ∈ S1(V ) the trace is defined by

trA :=
∞∑
k=1

sk(A)(fk, ek).

Example 1.1.12 As usual, we denote by `∞(K) the vector space of all bounded
sequences x = (x1, x2, . . .) in K. On setting ‖x‖∞ := sup |xk| we get a norm which
makes `∞(K) a Banach space. This space is nonseparable. For p ∈ [1,∞), we write
`p(K) for the space of all x ∈ `∞(K) satisfying

‖x‖p :=
( ∞∑
k=1

|xk|p
)1/p

<∞.

The space `p(K) is a separable Banach space and even a Hilbert space, if p = 2.
Classical linear operators on these spaces are multiplication operators of the form
A(x1, x2, . . .) = (a1x1, a2x2, . . .), where a = (a1, a2, . . .) ∈ `∞(K). Such an operator
is compact if and only if a converges to 0. Moreover, for A ∈ Sp(`

2(K)) it is
necessary and sufficient that a ∈ `p(K). For p = 1, the trace of A is given by the
formula

trA =
∞∑
k=1

ak.

Let X ⊂ Rn and Y ⊂ Rm be Lebesgue measurable sets. For a kernel function
K ∈ L2(X × Y ), the associated integral operator A : L2(Y )→ L2(X) given by

Au(x) :=

∫
Y
K(x, y)u(y) dy

is compact. The Hilbert-Schmidt operators on L2[a, b] are the integral operators
with kernels K ∈ L2([a, b]×[a, b]). For those K which are smooth on [a, b] × [a, b],
the induced integral operator is of trace class and the trace is given by the integral
of K(x, x) over [a, b]. This formula can be also used if K is merely continuous.
However, it should be noted that the mere continuity of the kernel does not imply
the trace class property.



CHAPTER 1. BASICS 14

Example 1.1.13 Let D = {z ∈ C : |z| < 1} be the unit disk in C and S its boundary.
For any p ≥ 1, the Hardy space Hp(S) is defined to consist of all Lp -functions on S
which are weak limit values of holomorphic function in D. This is a closed subspace
of Lp(S) and, in particular, a Hilbert space, if p = 2. By Theorem 1.1.3, there is
an orthogonal projection P : L2(S)→ H2(S). For f ∈ L∞(S), the Toeplitz operator
Tf ∈ L(H2(S)) is given by Tf := PMfP , where Mf ∈ L(L2(S)) is the operator of
multiplication with f . Assume that f and g are smooth functions on S. Then the
difference Tfg − TfTg proves to be of trace class operator on H2(S) and the trace
formula

tr [Tf , Tg] =
1

2πı

∫
S
f dzg

holds.

If V is separable, the trace of an operator A ∈ S1(V ) can be evaluated using the
formula

trA =

∞∑
k=1

(Aek, ek),

where {ek}k∈N is an arbitrary orthonormal basis of V , see [Fed96, p. 98]. Further-
more, the trace of A can be expressed in terms of the eigenvalues. Indeed, for any
A ∈ K(V ), there is an orthonormal system e1, e2, . . ., such that λk(A) = (Aek, ek)
are the eigenvalues of A. It follows that

trA =
∞∑
k=1

λk(A).

This property of the trace is known as Lidskij’s theorem. It has a very important
consequence. Namely, by A. Pietsch’s principle of related operators, if A ∈ L(V,W )
and B ∈ L(W,V ) are operators on Hilbert spaces, such that BA ∈ K(V ), then
AB ∈ L(W ) admits the same eigenvalues as BA ∈ L(V ). Applying Lidskij’s theorem
yields

Theorem 1.1.14 Let V , W be Hilbert spaces and A : V → W , B : W → V linear
operators (may be unbounded), such that BA ∈ S1(V ) and AB ∈ S1(W ). Then
tr (AB) = tr (BA) holds.

1.1.4 Fredholm operators

Suppose that V and W are Banach spaces. An operator A ∈ L(V,W ) is called
Fredholm, if both kerA and cokerA := W/imA are of finite dimension. In this case,
the integer

indA := dim kerA− dim cokerA

is called the (Fredholm) index of A. Note that the image of a Fredholm operator is
always closed. This was first shown by T. Kato.

Topological isomorphisms between Banach spaces are Fredholm operators with
index 0. Roughly speaking, Fredholm operators behave like linear operators in
finite-dimensional vector spaces.
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Example 1.1.15 Choose m,n ∈ N and p ∈ [1,∞]. Let A : `p(K)→ `p(K) be given
by

(x1, x2, . . .) 7→ (0, . . . , 0︸ ︷︷ ︸
m times

, xn+1, xn+2, . . .).

Then A is a bounded linear operator with

kerA = {(x1, x2, . . .) ∈ `p(K) : xk = 0 for k > n},
cokerA ∼= {(x1, x2, . . .) ∈ `p(K) : xk = 0 for k > m}.

Hence, A is Fredholm with indA = n−m.

The index of an operator provides statements on the solvability of equations. For
instance, if the index is positive, then there are nontrivial solutions of the equation
Av = 0.

Example 1.1.16 Consider a linear ordinary differential equation of order m with
smooth variable coefficients in an interval (a, b),

u(m)(x) + am−1(x)u(m−1)(x) + . . .+ a0(x)u(x) = f(x).

It is well known from the general theory that the corresponding homogeneous equa-
tion possesses precisely m linearly independent solutions and the inhomogeneous
equation is solvable for each right-hand side f ∈ C[a, b]. Write A : Cm[a, b]→ C[a, b]
for the associated bounded linear operator in Banach spaces. We conclude readily
that the kernel of A is m -dimensional and the cokernel of A trivial. Thus, A is
Fredholm with index m.

Example 1.1.17 Let V and W be Hilbert spaces, and suppose A ∈ L(V,W ) is
Fredholm. Since the image of A is closed, we get

kerA ∼= cokerA∗,
cokerA ∼= kerA∗.

Hence, A∗ is Fredholm and indA∗ = −indA. In particular, any selfadjoint operator
has index zero.

In the more general context of Banach space there is a statement similar to
that of Example 1.1.17. More precisely, each operator A ∈ L(V,W ) possesses a
transposed operator AT ∈ L(W ∗, V ∗) given by

〈ATw, v〉 := 〈w,Av〉

for v ∈ V and w ∈W ∗.

Theorem 1.1.18 Suppose that A ∈ L(V,W ) and B ∈ L(W,X) are Fredholm and
K ∈ K(V,W ). Then

i) AT is Fredholm and indAT = −indA;
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ii) A+K is Fredholm and ind (A+K) = indA;

iii) BA is Fredholm and indBA = indA+ indB.

Assume that A ∈ L(V,W ) is a Fredholm operator with index 0. Then, either
dim kerA = 0 and thus imA = W , or dim kerA = n ∈ N and the equation Av = w
is solvable if and only if 〈f, w〉 = 0 holds for all f ∈ kerAT . Since dim kerAT = n,
we obtain n solvability conditions for w. For A of the form A = λ IdV − K with
K ∈ K(V ) and λ ∈ C \ {0}, we arrive at the Fredholm alternative in its classical
form.

Example 1.1.19 ForK ∈ L1(R), the convolution operator C : L2[0,∞)→ L2[0,∞)
defined by

Cu(x) =

∫ ∞
0

K(x− y)u(y) dy

is compact. The Fredholm operators of the form A := Id−C are called Wiener-Hopf
operators.

A linear map P ∈ L(W,V ) is called a parametrix for A ∈ L(V,W ) if

IdV − PA ∈ K(V ),
IdW −AP ∈ K(W )

is satisfied. In other words, by a parametrix of A is meant an inverse modulo
compact operators. This property can be described by using a familiar construction
with quotient spaces which goes back as far as [Cal41]. Given a Banach space Σ ,
we set

φΣ (V ) := L(Σ , V )/K(Σ , V ),
φΣ (W ) := L(Σ ,W )/K(Σ ,W ).

Furthermore, for A ∈ L(V,W ), we introduce a map φΣ (A) : φΣ (V )→ φΣ (W ) by

φΣ (A)[O] := [A ◦O]

for O ∈ L(Σ , V ). This defines a functor φΣ from the category of Banach spaces to
the category of ‘Banach algebras’, such that

i) φΣ (A) = 0, if A is compact;

ii) φΣ (BA) = φΣ (B)φΣ (A) for all A ∈ L(V,W ) and B ∈ L(W,Z);

iii) φΣ (IdV ) = IdφΣ (V ).

If Σ = V , then the quotient space φΣ (V ) = L(V )/K(V ) is a Banach algebra,
indeed.

Let A ∈ L(V,W ). The operator φΣ (A) proves to be invertible for each Banach
space Σ if and only if there is an operator P ∈ L(W,V ) with the property that

φΣ (P )φΣ (A) = IdφΣ (V ),

φΣ (A)φΣ (P ) = IdφΣ (W )

for all Banach spaces Σ .
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Theorem 1.1.20 Let V and W be Banach spaces and A ∈ L(V,W ). The following
are equivalent:

i) A is Fredholm.

ii) A possesses a parametrix.

iii) φΣ(A) is invertible for each Banach space Σ.

The equivalences above are known as theorem of Th. Atkinson.

Example 1.1.21 Suppose f ∈ C(S) is a nonvanishing complex-valued function on
the unit circle. Then the Toeplitz operator Tf is Fredholm and the Gokhberg-Krein
index formula gives

indTf = −deg(f, 0),

where

deg(f, 0) =
1

2πı

∫
S

dzf

f

is the winding number of f . Note that a parametrix of Tf is given by T1/f .

If A is the Wiener-Hopf operator with kernel K = F−1(f ◦ C − 1), where

C(ξ) =
ξ − ı
ξ + ı

is the Caley transform, then indA = indTf holds.

1.2 Analysis on manifolds

In this section we describe some concepts and results of differential geometry. We
assume the reader is familiar with the concept of smooth manifolds.

1.2.1 Vector bundles

Let F and X be smooth manifolds. A smooth map π : F → X is called a smooth
K -vector bundle of rank k , if

i) Fp := π−1(p) is a K -vector space of dimension k for all p ∈ X (Fp is called the
fibre of F at p).

ii) For any p ∈ X there is an open set U containing p and a diffeomorphism

t : π−1(U)→ U ×Kk, such that t(Fp) ⊂ {p} ×Kk and Fp
t→ {p} ×Kk proj→ Kk

is an isomorphism.

The pair {U, t} is said to be a local trivialisation of the bundle F close to the
point p.

The manifold F itself is sometimes also called smooth vector bundle over X
and a map s ∈ C(∞)(X,F ) is called a (smooth) section if s(p) ∈ Fp holds for all
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p ∈ X. The topological vector space of smooth sections will be denoted by E(X,F ).
The (vector) subspace of E(X,F ) consisting of all sections with compact support
is denoted by D(X,F ). However, it is given another topology analogous to that
described in Section 1.1.2, which makes it complete. Obviously, if X is compact, we
obtain D(X,F ) = E(X,F ).

Example 1.2.1 Let X be a smooth manifold. The map π : X×Kn → X projecting
the Cartesian product onto the first factor is obviously a smooth vector bundle. It
is called trivial.

Let X be a smooth manifold and TX the disjunct union of tangent spaces TpX
over all p ∈ X. Define π : TX → X by π(p, v) = p for p ∈ X and v ∈ TpX. This
is a smooth vector bundle over X called the tangent bundle. On passing to the
dual spaces in fibres we obtain the so-called cotangent bundle T ∗X, which is also a
smooth vector bundle over X.

Example 1.2.2 Let F be a smooth vector bundle over X. Suppose that Y is
another manifold and f a smooth mapping of Y to X. The vector bundle over Y
whose fibre over y ∈ Y is Ff(y) is called the induced bundle (or “pull-back”) of
F by f and denoted by f∗F . The vector bundle structure is straightforward. For
instance, if π : T ∗X → X is the cotangent bundle, then π∗F denotes the induced
bundle over T ∗X.

In order to construct more bundles we turn ourselves to classical operations
with vector spaces. To this end, suppose that V and W are vector spaces over the
same field. Their direct sum V ⊕W is known to be a vector space of dimension
dimV +dimW . We get another vector space if we endow V ⊕W with the equivalence
relation “(v1, w1) ∼ (v2, w2) if and only if v1−v2 = 0 or w1−w2 = 0.” The quotient
space obtained in this way is called the tensor product of V and W and it is denoted
by V ⊗W . The dimension of V ⊗W just amounts to the product of the dimensions
of V and W .

Let V be a vector space of dimension n and k ∈ N. We denote by SiV ∗ the
vector space of all symmetric k -linear forms on V . Its dimension is the binomial
coefficient Ckn+k−1. The space of all alternating k -linear forms on V is denoted by

ΛkV ∗, its dimension is Ckn. The exterior product of linear forms f1, . . . , fk on V is
the element of ΛkV ∗ given by

(f1 ∧ . . . ∧ fk) (v1, . . . , vk) := det (〈fi, vj〉) i=1,...,k
j=1,...,k

for v1, . . . , vk ∈ V .

Example 1.2.3 The classical operations with vector spaces extend naturally to
operations with vector bundles. In particular, given any vector bundles E and F
over a manifold X, the direct sum E⊕F , the tensor product E⊗F , the dual bundle
F ∗, the symmetric product SkF ∗ and the exterior product ΛkF ∗ are well defined.
If E and F are vector bundles over different manifolds X and Y , then the exterior
tensor product E � F of E and F is the vector bundle over X × Y whose fibre over
(x, y) ∈ X × Y is Ex ⊗ Fy.
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Suppose that πE : E → X and πF : F → X are smooth vector bundles over the
same manifold. A map h ∈ C∞(E,F ) is called a smooth bundle homomorphism if
h maps the fibre Ep into the fibre Fp for all p ∈ X and the restriction h : Ep → Fp
is a linear map of vector spaces for any p ∈ X. In other words, by a bundle
homomorphism is meant a family of linear mappings in fibres smoothly depending
on the point of the base. The bundle homomorpisms constitute a vector bundle over
X denoted by Hom(E,F ).

Example 1.2.4 Let X be a smooth manifold and X1, X2 be open subsets of X
whose union is X. Suppose F1 and F2 are smooth bundles over X1 and X2, re-
spectively, such that there is a bundle isomorphism h : F1 �Y→ F2 �Y , where
Y = X1 ∩ X2. In particular, F1 and F2 are of the same rank. We obtain a vec-
tor bundle F1 ∪h F2 over X by identifying F1 and F2 over Y under h. To this
end, consider the bundle F1 �Y ⊕F2 �Y and endow it with the equivalence relation
“(f1, f2) ∼ 0 if and only if f2 = h(f1)” in the fibres.

A Riemannian metric on a manifold X is a smooth section gX of the bundle
S2T ∗X, such that gX(p) is a scalar product on TpX for any p ∈ X. A Riemannian
metric allows us to measure length and angles on X, and so to integrate functions
over the manifold. In order to integrate sections of vector bundles, we introduce the
concept of Hermitian metric in a bundle F . This is a family of scalar products 〈·, ·〉x
in the fibres of F , which is smooth in x ∈ X in the sense that, for any open set
U ⊂ X and sections f, g ∈ E(U,F ), the function x 7→ 〈f(x), g(x)〉x is smooth in U .
This enables us to define the spaces Lp(X,F ). Any smooth vector bundle admits a
Hermitian metric, cf. [Wel80].

1.2.2 Complexes and cohomology

By a sequence {V ·, D} of topological vector spaces of length N ∈ N is meant any
object of the form

{V ·, D} : 0 −→ V 0 D0

−→ V 1 D1

−→ . . .
DN−1

−→ V N −→ 0 (1.2.1)

where V 0, V 1, . . . , V N are K-vector spaces and D0, D1, . . . , DN−1 continous linear
mappings. For simplicity we set V i = 0 for i ∈ Z \ {0, 1, . . . , N} as well as Di = 0
for i ∈ Z \ {0, 1, . . . , N − 1}.

The sequence (1.2.1) is called a (cochain) complex , if

Di+1Di = 0

for all i = 0, 1, . . . , N − 1. For each complex, the differential D is associated by
Dv = Div for v ∈ V i. Since D2 = 0 the differential is nilpotent.

A differential operator D0 on an open subset U ⊂ Rn is called overdetermined,
if there is a differential operator D1 with D1D0 = 0, i.e. if the sequence

0 −→ C∞(U,Ki0)
D0

−→ C∞(U,Ki1)
D1

−→ C∞(U,Ki2) −→ 0

is a complex. In this case D1f = 0 is a necessary condition for the inhomogeneous
equation D0u = f to be solvable.
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Example 1.2.5 Let for example U ⊂ R2 and consider the sequence

0 −→ C∞(U,R)
D0

−→ C∞(U,R2)
D1

−→ C∞(U,R) −→ 0

with D0u = gradu = (∂xu, ∂yu)T and D1(f1, f2)T = ∂yf2 − ∂xf1. Then we obtain

D1D0u = (∂y∂x − ∂x∂y)u = 0

due to the Schwarz lemma. Hence, the sequence is a complex.

Example 1.2.6 Similarly, in the case U ⊂ R3 the standard differential operators
of vector analysis lead to the complex

0 −→ C∞(U,R)
grad−→ C∞(U,R3)

curl−→ C∞(U,R3)
div−→ C∞(U,R) −→ 0.

Obviously, if {V ·, D} is a complex, then imDi−1 ⊂ kerDi is satisfied, i.e. imDi−1

is a subspace of kerDi. Hence, the quotient space

H i(V ·) := kerDi/imDi−1,

the cohomology of the complex at step i, is well defined. Moreover, a complex
{V ·, D} is called exact if its cohomology vanishes at each step.

Example 1.2.7 Let A : V 0 → V 1 be a continuous linear map between topological
vector spaces. Then A defines the so-called short complex

{V ·, A} : 0 −→ V 0 A−→ V 1 −→ 0

whose cohomology is

H0(V ·) = kerA/{0} = kerA,
H1(V ·) = W/imA =: cokerA.

Consequently, if A is Fredholm, we obtain indA = dimH0(V ·)− dimH1(V ·).

Suppose that {V ·, D} is a complex with finite dimensional cohomology. Then
the Euler characteristic of the complex is defined by

χ(V ·) :=
∑
i

(−1)i dimH i(V ·).

Obviously, this is a generalisation of the index of an operator.

Example 1.2.8 Let {V ·, D} be a complex whose spaces V 0, V 1, . . . , V N are of finite
dimension. Then a familiar formula of linear algebra (sometimes called the Euler
formula) implies

χ(V ·) =

N∑
i=0

(−1)i dimV i.
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Let X be a smooth manifold of dimension n and i ∈ {0, 1, . . . , n}. We denote
by Ω i(X) := E(X,ΛiT ∗X) the space of all differential forms of degree i on X with
smooth coefficients. It should be noted that in order to consider differential forms
with complex coefficients one complexifies the cotangent bundle T ∗CX = T ∗X ⊗ C
and sets

Ω i(X) = E(X,ΛiT ∗CX).

Locally any ω ∈ Ω i(X) looks like

ω(x) =
∑

J=(j1,...,ji)
1≤j1<...<ji≤n

ωJ(x) dxJ

for x = (x1, . . . , xn) in a coordinate patch U of X, where dxJ = dxj1 ∧ . . .∧dxji and
ωJ ∈ C∞(U).

Remark 1.2.9 A manifold is said to be orientable, if there is an ω ∈ Ωn(X,R) such
that ω(p) 6= 0 for all p ∈ X.

The differential of a function f ∈ C∞(X) is an element of Ω1(X) given in local
coordinates by df := ∂1fdx1 + . . . + ∂nfdxn. It extends to a sequence of linear
mappings d : Ω i(X)→ Ω i+1(X), for i = 1, . . . , n, satisfying the product rule

d(υ ∧ ω) = dυ ∧ ω + (−1)iυ ∧ dω

whenever the degree of υ is i.
The map d is called the exterior or Cartan derivative. In a local chart x = h(p)

with h : U → Rn this map is given by

dω(x) =
∑

J=(j1,...,ji)
1≤j1<...<ji≤n

dωJ(x) ∧ dxJ

for a differential form ω of degree i. It is easy to verify that d is nilpotent, i.e.
d ◦ d = 0. A form ω is said to be closed, if dω = 0 holds. Suppose that there is a
υ ∈ Ω i−1(X), such that dυ = ω. Then ω is said to be exact. From what has been
said it follows that the sequence

Ω ·(X) : 0 −→ Ω0(X)
d−→ Ω1(X)

d−→ . . .
d−→ Ωn(X) −→ 0

is actually a complex. It is called the de Rham complex whose cohomology at step
i is

H i
dR(X) := H i(Ω ·(X)).

The de Rham complex is a classical example of a complex and we will come
back to this example frequently. For this reason let us study some properties of this
complex.
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Example 1.2.10 Suppose that X has m connected components. If f ∈ C∞(X)
satisfies df = 0 in X, then this function is constant on each connected component
of X. Hence,

H0
dR(X) ∼= Km,

where K is the corresponding field.

Obviously the dimension of de Rham cohomology H i
dR(X) is determined by

certain topological properties of the underlying manifold X. Let us specify this fact a
bit more precise. To this end suppose that Y is another manifold and f ∈ C∞(X,Y )
is a smooth map. Then there is a linear map Txf : TxX → Tf(x)Y which induces a
natural linear map

T ∗xf : L(Tf(x)Y,R)→ L(TxX,R).

The pull back f∗ : Ωq(Y )→ Ωq(X) is defined pointwise by

(f∗ω)(x) := (T ∗xf)ω(f(x))

for ω ∈ Ωq(Y ) and x ∈ X.
The pullback operator satisfies

f∗(dω) = d(f∗ω). (1.2.2)

Furthermore, Id∗X = IdΩ ·(X) and f∗(υ ∧ ω) = f∗υ ∧ f∗ω hold. If Z is another
manifold and g ∈ C∞(Y,Z), we obtain (g ◦ f)∗ = f∗ ◦ g∗.

From (1.2.2) we deduce that each smooth map f : X → Y induces a homomor-
phism of de Rham cohomology

Hf∗ : H i
dR(Y )→ H i

dR(X)

given by [ω] 7→ [f∗ω]. The properties of the pullback operator on forms extend
to the pullback operator on cohomology. In particular, Hf∗ is an isomorphism,
if f is a diffeomorphism. Hence, the diffeomorphic manifolds posssess isomorphic
cohomology.

Two maps f, g ∈ C∞(X,Y ) are said to be homotopic, if there is a family of maps
h ∈ C∞([0, 1] × X,Y ) with the property that h(0, ·) = f and h(1, ·) = g. In this
case we write f ' g. The manifold X is called contractible, if the identity map IdX
is homotopic to a constant map c : X → X. Note that Hf∗ = Hg∗ holds if f and g
are homotopic.

Example 1.2.11 Let X be contractible (e.g. X = Rn). Then Example 1.2.10 and
the Poincaré lemma imply

H i
dR(X) ∼=

{
R, if i = 0,
{0}, if i 6= 0,

and thus χ(Ω ·(X)) = 1. Defining ι : R→ E(X) by ι(c)(x) := c, we obtain the exact
sequence

0 −→ R ι−→ Ω0(X)
d−→ Ω1(X)

d−→ . . .
d−→ Ωn(X) −→ 0.
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Two manifolds X and Y are said to be homotopically equivalent, if there are
maps f ∈ C∞(X,Y ) and g ∈ C∞(Y,X), such that f ◦ g ' IdY and g ◦ f ' IdX is
satisfied.

Theorem 1.2.12 Homotopically equivalent manifolds possess isomorphic de Rham
cohomology.

Example 1.2.13 We consider the punctured plane R2\{0}. Example 1.2.10 implies
H0

dR(R2 \ {0}) ∼= K. In order to find the remaining cohomology groups we first
mention that S1 and R2 \ {0} are homotopically equivalent, which can be easily
verified by using

f : S1 → R2 \ {0}, x 7→ x,
g : R2 \ {0} → S1, x 7→ x/|x|,
h : [0, 1]× (R2 \ {0}) → R2 \ {0}, (t, x) 7→ x/|x|t.

Since S1 is of dimension 1, we obtain H2
dR(R2 \ {0}) ∼= H2

dR(S1) ∼= {0}. Now, we
consider the differential form ω ∈ Ω1(R2 \ {0}) given by

ω(x, y) =
x

x2 + y2
dy − y

x2 + y2
dx.

Since ω is closed, the cohomology class [ω] is well defined. Using the parametrisation
ϕ 7→ (cosϕ, sinϕ) of the unit circle with ϕ ∈ [0, 2π] we get∫

S1
ω = 2π,

hence, ω is not exact, for the integral does not vanish. The pullback f∗ω coincides
with the restriction of ω to S1, which is dϕ in the above coordinate ϕ. Let υ ∈ Ω1(S1)
be another 1 -form. In the local coordinate the form υ looks like υ(ϕ) = c(ϕ)dϕ,
where c is a smooth periodic function on R. Setting

m =
1

2π

∫ 2π

0
c(ϕ)dϕ

we define a smooth function u on [0, 2π] by

u(ϕ) =

∫ ϕ

0
c(t)dt−mϕ

for ϕ ∈ [0, 2π]. Obviously, u(0) = u(2π) = 0 and du = υ −mω, i.e. the difference
υ −mω is exact. Hence, [υ] = m[ω] whence H1

dR(R2 \ {0}) ∼= R. On summarising
we find

χ(Ω ·(R2 \ {0})) = 1− 1 + 0 = 0

for the Euler characteristic of the punctured plane.
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Let us clarify the origin of the Euler characteristic. For this purpose we consider
a polyhedron P with c corners, e edges and f faces. Then the integer

χ(P ) = c− e+ f

is called the Euler characteristic of the polyhedron. Note that if P is convex then
the well-known polyhedron formula of Euler χ(P ) = 2 holds. Further, let S be a
compact closed surface of genus g. The Euler characteristic of S is given by

χ(S) =

{
c− e+ f − 2g, if S is orientable,
c− e+ f − g, if S is not orientable,

where c, e and f stand for the numbers of corners, edges and surfaces of an arbitrary
triangulation of S, respectively, cf. [CR96]. It turns out that this definition does
not depend on the particular choice of triangulation. Moreover,

χ(S) = χ(Ω ·(S)),

which is due to the Hodge theorem. For instance, we get χ(Ω ·(S2)) = 2, where S2

is the 2 -dimensional sphere in R3.

1.2.3 Characteristic objects

Let V be a K-vector space of dimension n and A ∈ L(V ). Then, all essential
properties of A are encoded in the characteristic polynomial

pA(λ) := det(λ IdV −A) =

n∑
k=0

(−1)n−kakλ
k

with a0 = 1. The numbers ak are certain characteristic numbers of the map A. In
particular, an = detA and a1 = trA hold. Further examples of such numbers are the
trace of an operator A ∈ S1(V ) on a Hilbert space V and the Euler characteristic
of a complex. Moreover, the winding number of Example 1.1.19 is a characteris-
tic number. This is a very particular case of the more abstract mapping degree,
which can be defined for different types of functions. We refer the reader to [Nir74]
for explanations of the mapping degree of Leray and Schauder and local degree of
selfmappings on a manifold.

Let F be a smooth complex vector bundle over a manifold X. By a connection
on F is meant a first order differential operator

∂F : E(X,F )→ E(X,F ⊗ T ∗X)

satisfying the Leibniz rule

∂F (fu) = df u+ f ∂Fu

for all u ∈ E(X,F ) and f ∈ C∞(X). The Leibniz rule allows one to extend the
connection to the differential forms of arbitrary degree q with coefficients in F on
X by requiring that

∂F (f ∧ u) = (df) ∧ u+ (−1)pf ∧ ∂Fu
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holds for all u ∈ Ωq(X,F ) := E(X,F ⊗ ΛqT ∗X) and f ∈ Ωp(X). We thus arrive at
the sequence

Ω ·(X,F ) : 0 −→ Ω0(X,F )
∂F−→ Ω1(X,F )

∂F−→ . . .
∂F−→ Ωn(X,F ) −→ 0.

The operator Ω = ∂2
F is a differential operator of order 0 and is called the curvature

of the connection ∂F . More precisely, this is a matrix with entries in differential
forms of degree 2 on X.

If f(z) is an analytic function in a neighbourhood of z = 0 then it expands in
powers of z. On substituting z = Ω we define f(Ω), provided that the power series
converges. This is the case, indeed, for Ωk vanishes if 2k exceeds the dimension of X,
and so the power series breaks. The characteristic classes of the bundle F are defined
by using a curvature of F . They are actually independent modulo cohomology on
the particular choice of the curvature ∂F .

Example 1.2.14
ch (F ) = tr expω,

T (F ) = det
( ω

1− exp(−ω)

)
with

ω = − Ω

2πı

are the Chern character and the Todd class of F , respectively, see for instance
[Pal65], [Wel80].

The set of all equivalence classes of isomorphic vector bundles over X form
an Abelian semigroup with operation [F1] + [F2] := [F1 ⊕ F2]. Since from the
equality [E] + [F1] = [E] + [F2] it follows that [F1] = [F2], which is sometimes
referred to as cancelation rule, this semigroup can be extended to a group which
is denoted by K(X). This group forms actually a ring under the second operation
[E] · [F ] := [E ⊗ F ]. By setting

ch ([F1]± [F2]) = ch (F1)± ch (F2)

the Chern character extends to K(X). In particular, ch (E ⊗ F ) = ch (E) ∧ ch (F )
is satisfied.

Next, let X be an arbitrary (not necessarily compact) manifold. We consider the
compactification X+ = X ∪ {∞} and set Kcomp(X) = ker ι∗, where ι : {∞} → X+

is the inclusion of the point ∞. Suppose F1 and F2 are vector bundles of the
same rank over X and h : F1 �X\K→ F2 �X\K a bundle isomorphism away from
a compact set K ⊂ X. Choose a relative compact neighbourhood X1 of K in X
and define X2 := X \ K and Y := X1 ∩ X2. Let F be a vector bundle over X1,
such that F1 �X1 ⊕F is trivial. Then F2 �Y ⊕F �Y is trivial. Pick a trivialisation
t2 : (F2 ⊕ F ) �Y→ Y ×CN and set t1 := t2 ◦ (h⊕ Id). In this manner we obtain the
vector bundles

G1 := X1 × F ∪t1 (X+ \K)× CN ,
G2 := X1 × F ∪t2 (X+ \K)× CN
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over X+. This allows us to introduce the difference bundle

d(h) := [G1]− [G2] ∈ Kcomp(X)

with the Chern character ch (d(h)) = ch (G1)− ch (G2).

1.3 Pseudodifferential operators

In this section we sketch a calculus of pseudodifferential operators on a compact
manifold without boundary. We will follow the presentations of the books [Hoe85]
and [Shu87].

1.3.1 Classical pseudodifferential operators

Let m ∈ R. As usual, a function f ∈ C∞(Rn \ {0}) is called positively homogeneous
of degree m, if

f(λξ) = λm f(ξ)

is satisfied for all ξ ∈ Rn \ {0} and all λ > 0. This holds if and only if Euler’s
equation 〈f ′(ξ), ξ〉 = mf(ξ) is satisfied for all ξ ∈ Rn \ {0}.

Let U be an open set in Rn. We denote by Sm(U ×Rn) the space of all smooth
functions a ∈ C∞(U × Rn) with the property that for each multi-indices α, β ∈ Nn0
and any compact set K ⊂ U there exists a constant cα,β,K > 0, such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ cα,β,K 〈ξ〉m−|β|

for all (x, ξ) ∈ K × Rn. The elements of Sm(U × Rn) are called symbols and those
of

S−∞(U × Rn) =
⋂
m

Sm(U × Rn)

smoothing symbols.
To any symbol a ∈ Sm(U ×Rn) we assign the canonical pseudodifferential oper-

ator A = a(x,D) by

Au (x) = (2π)−n
∫
Rn
eı〈x,ξ〉a(x, ξ)û(ξ)dξ

for u ∈ D(U), where û is the Fourier transform of u. Note that A maps D(U)
continuously into C∞(U). The function σ(A) := a is called the symbol of A.

We now want to consider classical pseudodifferential operators. They form an
important subclass of canonical pseudodifferential operators which is closed under
basic operations. Classical pseudodifferential operators were introduced in 1965
by J. J. Kohn and L. Nirenberg who reinforced the theory of S. G. Michlin, A. P.
Calderon, etc. The main property of this class is the existence of a principal symbol.
More precisely, a symbol a ∈ Sm(U × Rn) is said to be classical (or multihomoge-
neous) if there is a sequence {am−j}j=0,1,... of functions am−j ∈ C∞(U × (Rn \ {0}))
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positively homogeneous of degree m− j in ξ, such that

a− χ
N∑
j=0

am−j ∈ Sm−N−1(U × Rn)

for all N = 0, 1, . . ., where χ ∈ C∞(Rn) is a cut-off function with respect to ξ = 0.
Obviously, all the components am−j are uniquely determined by a. A canonical
pseudodifferential operator A on U is called classical if its symbol σ(A) is classical.
The set of all classical pseudodifferential operators of degree m on U is denoted by
Ψm

cl (U). The component
σm(A) := am

is called the principal symbol of A. The set of all (classical) pseudodifferential
operators will be denoted by Ψm

(cl)(U).

Example 1.3.1 Any linear partial differential operator A of order m on U has the
form

A(x,D) :=
∑
|α|≤m

Aα(x)Dα,

where Aα ∈ C∞(U). This is a classical pseudodifferential operator with symbol
σ(A)(x, ξ) = A(x, ξ). The principal symbol of A is

σm(A)(x, ξ) =
∑
|α|=m

Aα(x)ξα.

Now, let us consider pseudodifferential operator that act on vector valued func-
tions. An operator A ∈ L(D(U,Ck), C∞(U,Cl)) is called (classical) pseudodifferen-
tial operator of order m, if there are pseudodifferential operators Ai,j ∈ Ψm

(cl)(U),
such that

Au = (Ai,j) i=1,...,l
j=1,...,k

u

for all u ∈ D(U,Ck). The principal symbol of A is defined to be the (l × k)-
matrix σ(m)(A) =

(
σ(m)(Ai,j)

)
and the set of (classical) operators will be denoted

by Ψm
(cl)(U ;Ck,Cl). Note that the elements of Ψ−∞(U ;Ck,Cl) are called smoothing

operators.
Suppose U and V are open sets in Rn and f : U → V a diffeomorphism. For an

operator A ∈ Ψm
cl (U ;Ck,Cl) the pushforward of A under f is given by

f∗A (u) := f∗(Af
∗u) = (A(u ◦ f)) ◦ f−1

for u ∈ D(V,Ck).

Theorem 1.3.2 Let f : U → V be a diffeomorphism and A ∈ Ψm
cl (U ;Ck,Cl). Then

f∗A ∈ Ψm
cl (V ;Ck,Cl) holds and

σm(f∗A)(f(x), η) = σm(A)(x, (f ′(x))T η)

for any x ∈ U and η ∈ Rn \ {0}, where f ′(x) is the Jacobi matrix of f at x.
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Since U × Rn ∼= T ∗U , the principal symbol of a classical pseudodifferential op-
erator can be thought of as a matrix-valued function away from the zero section of
T ∗U . The transformation rule of Theorem 1.3.2 shows that the principal symbol
can be actually defined for pseudodifferential operators on a manifold as a function
on the cotangent bundle with values in the bundle homomorphisms, see for instance
[Shu87].

1.3.2 Pseudodifferential operators on manifolds

Let E and F be smooth vector bundles over a smooth manifold X and m ∈ R. A
map A : D(X,E) → E(X,F ) is called a (classical) pseudodifferential operator of
order m, if for each coordinate patch U ⊂ X over which E and F are trivial, each
choice of local trivialisations and each set V b U , the operator AV given by the
commutative diagram

D(X,E) �V
A // E(X,F ) �V

⊂
��

D(V,E) //

⊂

OO

E(V, F )

∼=
��

D(V,Ck)

∼=

OO

AV // E(V,Cl)

is a canonical pseudodifferential operator AV ∈ Ψm
(cl)(V ;Ck,Cl). The space of all

(classical) pseudodifferential operator between sections of vector bundles E and F on
X is denoted by Ψm

(cl)(X;E,F ). The elements of Ψ−∞(X;E,F ) are called smoothing
operators.

Let π : T ∗X → X be the canonical projection and π∗E, π∗F the induced bundles
over T ∗X. In local coordinates we obtain

AV u =

 A1,1 . . . A1,k

. . .
Al,1 . . . Al,k

u.

This allows us to define σm(A)(x, ξ) in local coordinates by σm(AV )(x, ξ). From
what is said after Theorem 1.3.2 we deduce that σm(A) is a well-defined homogeneous
function of degree m on T ∗X \ {0} with values in Hom(E,F ),

σm(A) : π∗E → π∗F.

Note that A possesses a kernel KA ∈ D′(X ×X,F �E′) and the operators with
smooth kernels are precisely the smoothing operators on X.

Example 1.3.3 Pseudodifferential operators on the unit circle S1 can be easily de-
scribed using the Fourier series. Consider A ∈ Ψm

(cl)(S
1) and pick a smooth function

u on S1. As mentioned in Example 1.2.13 we can think of u as a smooth 2π -periodic
function on R. Setting

cn(u) :=

∫ 2π

0
e−ınxu(x) dx
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we find

Au(x) :=
1

2π

∞∑
n=−∞

eınxa(x, n)cn(u)

for x ∈ R, where a ∈ Sm(R × R) is 2π -periodic in x. The smoothing operators on
D(S1) look like

Au(x) =

∫ 2π

0
K(x, y)u(y) dy

with a smooth function K ∈ C∞(R×R) which is 2π -periodic in both variables. For
examples of pseudodifferential operators on other manifolds like higher-dimensional
tori see for instance [Agr97].

Let A ∈ Ψm
cl (X;E,F ). On endowing the bundles E and F by Riemannian met-

rics we introduce the formal adjoint operator A∗ : D(X,F )→ E(X,E) by requiring

(Au, g)L2(X,F ) = (u,A∗g)L2(X,E)

for all u ∈ D(X,E) and g ∈ D(X,F ). A priori it is by no means clear if any A∗

exists.

Theorem 1.3.4 Each pseudodifferential operator A ∈ Ψm
cl (X;E,F ) possesses a for-

mal adjoint A∗ ∈ Ψm
cl (X;F,E) and σm(A∗) = (σm(A))∗ holds.

On combining duality arguments and Theorem 1.3.4 one readily sees that any
pseudodifferential operator A ∈ Ψm

cl (X;E,F ) extends by continuity to a continuous
mapping A : E ′(X,E) → D′(X,F ) of spaces of distribution sections, E ′ meaning
distribution sections of compact support. Each section u ∈ E ′(X,E) proves to be of
finite order. Hence it follows that the space E ′(X,E) is exhausted by the scale of
Sobolev spaces Hs(X,E) with s ∈ R, but not D′(X,F ) unless X is compact. Pick
a formally selfadjoint operator ΛE ∈ Ψ2

cl(X;E) which is nonnegative and invertible
on smooth sections of E. For example, one can choose ΛE = ∂∗E∂E + IdE where ∂E
is a connection on the bundle E. For s ∈ R, the Sobolev space Hs(X,E) is defined

to consist of all u ∈ E ′(X,E), such that Λ
s/2
E u ∈ L2(X,E). This is a Hilbert space

with scalar product

(u, v)Hs(X,E) := (Λ
s/2
E u,Λ

s/2
E v)L2(X,E)

for u, v ∈ Hs(X,E).

Theorem 1.3.5 Let X be a compact closed manifold. For each s ∈ R, any operator
A ∈ Ψm

cl (X;E,F ) maps Hs(X,E) continuously into Hs−m(X,F ).

Suppose X is a compact closed smooth manifold of dimension n (e.g. X is a
sphere in Rn+1). In this case pseudodifferential operators on X can be composed
with each other thus giving rise to the simplest operator algebra⋃

m∈R
Ψm

cl (X).
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Theorem 1.3.6 Suppose X is a compact closed manifold and A ∈ Ψ l
cl(X;E,F )

and B ∈ Ψm
cl (X;F,G). Then BA ∈ Ψ l+m

cl (X;E,G) and σl+m(BA) = σm(B)σl(A)
holds.

On combining Theorem 1.3.5 with the Rellich-Kondrashov theorem on compact
embeddings of Sobolev spaces we obtain the first defining property of the principal
symbol mapping. Together with the multiplicativity property of Theorem 1.3.6 this
allows one to identify the principal symbol mapping with the functor φΣ of Section
1.1.4.

Theorem 1.3.7 Any operator A ∈ Ψm
cl (X;E,F ) on a compact closed manifold X

is a compact operator from Hs(X,E) to Hs−m(X,F ) if σm(A) = 0 and it belongs
to Sp(H

s(X,E), Hs(X,F )) if p ≥ 1 and m < −n/p.

By the above, each smoothing operator A ∈ Ψ−∞cl (X,E) extends to a trace class
operator in Hs(X,E). The corresponding trace is given by

tr(A) =

∫
X

trKA(x, x) dx,

i.e. it does not depend on the particular choice of s.

1.3.3 Ellipticity

A pseudodifferential operator A ∈ Ψm
cl (X;E,F ) is said to be elliptic (in the classical

sense), if
σm(A)(x, ξ) : Ex → Fx

is invertible for all x ∈ X and ξ ∈ T ∗xX \ {0}. In particular, a canonical pseudodif-
ferential operator A ∈ Ψm

cl (U ;Ck,Ck) is elliptic if and only if detσm(A)(x, ξ) 6= 0 is
satisfied for all (x, ξ) ∈ U × (Rn \ {0}).

Example 1.3.8 In order to clarify the origin of this definition, we consider a linear
differential operator A of order 2 with smooth real-valued coefficients on an open
set U ⊂ R2, i.e.

A =
∑
|α|≤2

Aα(x)∂α.

The principal symbol is given by

σ2(A)(x, ξ) = −A(2,0)(x)ξ2
1 −A(1,1)(x)ξ1ξ2 −A(0,2)(x)ξ2

2 = − (MA(x)ξ, ξ)

for each (x, ξ) ∈ U × (R2 \ {0}), where

MA(x) =

 A(2,0)(x)
1

2
A(1,1)(x)

1

2
A(1,1)(x) A(0,2)(x)

 .
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Linear algebra shows that the symmetric matrix MA(x) satisfies (MA(x)ξ, ξ) 6= 0
for all ξ 6= 0 if and only if detMA(x) > 0 holds. But this is fulfilled if and only if
the set

{ξ ∈ R2| (MA(x)ξ, ξ) = 1}

is an ellipse.

Let ∆ := ∂2
1 + . . . + ∂2

n be the Laplace operator in Rn. Its principal symbol is
given by

σ2(∆)(x, ξ) = −|ξ|2 (1.3.1)

for all (x, ξ) ∈ Rn × Rn. Hence, the Laplace operator is elliptic. The Cauchy-
Riemann operator (1/2)(∂1 + ı∂2) is elliptic in R2, while the heat operator ∂1− c2∂2

2

and the d’Alembert operator ∂2
1 − c2∂2

2 are not.

Example 1.3.9 Recall that di : Ω i(X) → Ω i+1(X) stands for the exterior deriva-
tive on a Riemannian manifold X. Since di are differential operators of first order,
the formal adjoints di∗ are differential operators of first order as well. The operators

∆i := di−1(di−1)∗ + (di)∗di (1.3.2)

of Ψ2
cl(X; ΛiT ∗X) are called the Hodge-Laplace operators. For i = 0, the operator

∆0 is usually referred to as the Laplace-Beltrami operator on X. In the case X = Rn
the Hodge-Laplace operators take especially simple form

∆i =

 −∆ . . . 0
. . .

0 . . . −∆


(a (Cin × Cin) -matrix) and (1.3.1) yields

σ2(∆i)(x, ξ) = |ξ|2 ECin .

We thus deduce that the Hodge-Laplace operators are elliptic. This is still the case
for arbitrary Riemannian manifolds, see [Wel80].

Assume that A : D(U,Ck) → C∞(U,Ck) is a pseudodifferential operator on an
open set U ⊂ Rn of the form

Au = (Ai,j) i=1,...,k
j=1,...,k

u

with entries Ai,j ∈ Ψ
li+mj
cl (U). Then A is said to be elliptic in the sense of Douglis-

Nirenberg if the matrix of principal symbols(
σli+mj (Ai,j)(x, ξ)

)
i=1,...,k
j=1,...,k

is invertible for each (x, ξ) ∈ U × (Rn \ {0}). This is a definition of ellipticity which
is more general than the classical one. It may be extended to pseudodifferential
operators acting on sections of vector bundles.
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Example 1.3.10 The operator A ∈ L(D(R2,C3), E(R2,C3)) given by

Au =

 0 ∂1 ∂2

∂1 −1 0
∂2 0 −1

 u

is elliptic in the sense of Douglis-Nirenberg but not in the classical one.

From now on we assume that X is compact and closed. A pseudodifferential
operator P ∈ Ψ−m(X;F,E) is called a parametrix for A ∈ Ψm(X;E,F ), if

Id− PA ∈ Ψ−1(X;E),
Id−AP ∈ Ψ−1(X;F )

holds.

Theorem 1.3.11 For each elliptic operator A ∈ Ψm
cl (X;E,F ) there is an operator

P ∈ Ψ−mcl (X;F,E), such that

Id− PA ∈ Ψ−∞(X;E),
Id−AP ∈ Ψ−∞(X;F ).

(1.3.3)

A parametrix P ∈ Ψ−mcl (X;F,E) satisfying the equalities (1.3.3) is sometimes
called a regulariser of A, cf. [Fed91]. Theorem 1.3.11 gains in interest if we realise
that any formal parametrix is actually a parametrix in the sense of Hilbert spaces.
In order to show this we first mention the so-called property of spectral invariance
of the classical algebra of pseudodifferential operators on a compact closed smooth
manifold.

Theorem 1.3.12 Let A ∈ Ψm
cl (X;E,F ) be elliptic and invertible on smooth sec-

tions. Then A−1 ∈ Ψ−mcl (X;F,E).

Suppose A ∈ Ψm
cl (X;E,F ) is an elliptic operator invertible on smooth sections.

Then the extension A : Hs(X,E) → Hs−m(X,F ) is invertible, too. This follows
from the fact that the inverse A−1 on smooth sections is actually a pseudodifferential
operator in Ψ−mcl (X;F,E), which is due to Theorem 1.3.12.

Theorem 1.3.13 Suppose that A ∈ Ψm
cl (X;E,F ) is elliptic. Then, for each s ∈ R,

the operator A : Hs(X,E)→ Hs−m(X,F ) is Fredholm and its null-space belongs to
C∞(X,E).

Let A ∈ Ψm
cl (X;E,F ) be elliptic. By the above, the extension of A to Sobolev

spaces is a Fredholm operator and its index does not depend on s, cf. the arguments
in Section 3.2.1. Thus, we can define the Fredholm index of an elliptic pseudodiffer-
ential operator to be the index of the corresponding Fredholm operators in Sobolev
spaces. Moreover, the principal symbol induces an isomorphism of vector bundles
σm(A) : π∗E → π∗F over T ∗X \{0}. In this way A determines an element d(σm(A))
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of the functor with compact support Kcomp(T ∗X). One can define the topological
index indtop(A) of A by

indtop(A) =

∫
T ∗X

ch (d(σm(A))) T (TCX),

where the orientation of T ∗X is given by the differential form dξ1∧dx1∧. . .∧dξn∧dxn.

Theorem 1.3.14 For an elliptic operator A on a compact closed manifold X the
Fredholm and the topological indices coincide, i.e. ind (A) = indtop(A).

See [Pal65] for details on this important index formula of Atiyah-Singer, which
is one of the most famous results of mathematics in the 20 th century.



Chapter 2

Sequences of compact curvature

This main chapter deals with quasicomplexes in the context of functional analysis,
i.e. sequences of Hilbert spaces with compact curvature. We will introduce the
Fredholm theory and characteristic numbers. The proofs are mostly algebraic and
use the ideal structures. Note that we will introduce the theory of Fredholm comlexes
not separately but obtain it as a special case of a more general theory. Moreover,
the corresponding behavior of quasicomplexes in Banach spaces will be described in
some remarks respectively.

2.1 Fredholm quasicomplexes

2.1.1 The concept of quasicomplexes

Let

{V ·, A} : 0 −→ V 0 A0

−→ V 1 A1

−→ . . .
AN−1

−→ V N −→ 0 (2.1.1)

be a sequence of Hilbert spaces with operators Ai ∈ L(V i, V i+1).

Definition 2.1.1 The sequence (2.1.1) is called quasicomplex, if its curvature is
compact at each step, i.e.

Ai+1Ai ∈ K(V i, V i+2)

for each i = 0, 1, . . . , N − 2.

For quasicomplexes the cohomology is no longer defined, since the image of Ai−1

fails to lie in the null-space of the operator Ai in general. However, in order to define
Fredholm quasicomplexes we may use the construction with the Calkin quotient
spaces of Section 1.1.4. We choose an arbritrary Hilbert space Σ and consider the
sequence

φΣ (V ·) : 0 −→ φΣ (V 0)
φΣ (A0)−→ φΣ (V 1)

φΣ (A1)−→ . . .
φΣ (AN−1)−→ φΣ (V N ) −→ 0,

which actually proves to be a complex. Indeed, since Ai+1Ai is compact, we get

φΣ (Ai+1)φΣ (Ai) = φΣ (Ai+1Ai) = 0.

34
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Definition 2.1.2 A quasicomplex V · is said to be Fredholm, if φΣ (V ·) is exact for
each Hilbert space Σ .

Note that each (finite) sequence of linear maps between finite-dimensional Hilbert
spaces is a Fredholm quasicomplex.

Definition 2.1.3 By a parametrix of a quasicomplex {V ·, A} is meant any sequence
of linear maps P i ∈ L(V i, V i−1) satisfying

P i+1Ai +Ai−1P i = IdV i −Ki (2.1.2)

with Ki ∈ K(V i) for all i = 0, 1, . . . , N .

It is easily seen that Definition 2.1.3 coincides with the definition of a parametrix
to a single operator A in Section 1.1.4 if {V ·, A} is a short complex.

Theorem 2.1.4 A quasicomplex is Fredholm if and only if it possesses a parametrix.

Proof. We proceed in a standard way, cf. for instance [AV95].
Necessity. Let {V ·, A} be Fredholm. If i = N , then from the exactness of

φV N (V ·) at step N it follows that there are operators PN ∈ L(V N , V N−1) and
KN ∈ K(V N ), such that

AN−1PN = IdV N −KN

holds. We now proceed by induction. Suppose we have already found mappings
P i, P i+1, . . . and Ki,Ki+1, . . ., such that the equality (2.1.2) is satisfied. Note that

Ai−1(IdV i−1 − P iAi−1) = Ai−1 − (IdV i −Ki − P i+1Ai)Ai−1

= KiAi−1 + P i+1AiAi−1

∈ K(V i−1, V i)

by (2.1.2). From the exactness of φV i−1(V ·) at step i − 1 it follows that there are
operators P i−1 ∈ L(V i−1, V i−2) and Ki−1 ∈ K(V i−1), such that

P iAi−1 +Ai−2P i−1 = IdV i−1 −Ki−1

is satisfied.
Sufficiency. Assume {V ·, A} admits a parametrix. Then the identity mapping

IdV i vanishes on the cohomology H i(φΣ (V ·)), hence φΣ (V ·) is exact for each Hilbert
space Σ .

�
As is shown in [TW12], it also makes sense to consider sequences whose cur-

vatures belong to some operator ideal I ⊂ K, where K is the class of all compact
operators. Let us first prove that the operators of finite rank form the smallest
nontrivial ideal, i.e. F ⊂ I if I 6= O, cf. [Pie78].

Lemma 2.1.5 Let I 6= O be an operator ideal in the context of Hilbert spaces. Then
F(V,W ) ⊂ I(V,W ) is satisfied for arbitrary Hilbert spaces V and W .
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Proof. Since I 6= O, there is an operator A ∈ I(V,W ) satisfying Av 6= 0 for an
element v ∈ V . Assume F ∈ F(V,W ) is an arbitrary operator of finite rank. Since
F induces an isomorphism of V/ kerF onto imF , it follows that we can find bases
{v1, . . . , vn} of the orthogonal complement (kerF )⊥ of kerF and {w1, . . . , wn} of
imF . Define the operators Pj ∈ L(V ) and Qj ∈ L(W ) by

Pjvk = δj,kv,

Qj Av = wj

and Pj ≡ 0 on kerF , Qj ≡ 0 on (Av)⊥, respectively. It is easy to see that the
operator

T :=
n∑
j=1

QjAPj

belongs to I(V,W ) and has the same range as F . Hence it follows that

F = T
(
T �(kerF )⊥

)−1
F

belongs to I(V,W ), as desired.
�

Definition 2.1.6 The sequence (2.1.1) is called an I -quasicomplex if the equality
Ai+1Ai ∈ I(V i, V i+2) is fulfilled for all i = 0, 1, . . . , N − 2.

An O -quasicomplex is obviously a complex and a K -quasicomplex is just called
a quasicomplex.

Lemma 2.1.7 On perturbing the operators of a Fredholm I -quasicomplex {V ·, A}
by operators Ki ∈ I(V i, V i+1) we obtain a Fredholm I -quasicomplex.

Proof. Let {P i} be a parametrix of {V ·, A}, i.e.

P i+1Ai +Ai−1P i = IdV i − Ci

with Ci ∈ K(V i). Setting Bi := Ai +Ki we obtain Bi+1Bi ∈ I(V i, V i+2) and

P i+1Bi +Bi−1P i = P i+1Ai +Ai−1P i + P i+1Ki +Ki−1P i

= IdV i − (Ci − P i+1Ki −Ki−1P i)︸ ︷︷ ︸
∈K(V i)

,

hence {P i} is a parametrix of {V ·, B}. This implies that {V ·, B} is Fredholm.
�

All the above statements remain still valid in the case of Banach spaces. The only
difference is that one has to replace the arbitrary Hilbert space Σ in the definition
of Fredholm property by a Banach space.
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2.1.2 Hodge theory

Let {V ·, A} be an I -quasicomplex. Then

{V ·, A∗} : 0←− V 0 A0∗
←− V 1 A1∗

←− . . . A
N−1∗
←− V N ←− 0

is called the adjoint quasicomplex of {V ·, A}. Since

Ai∗Ai+1∗ = (Ai+1Ai)∗

belongs to K(V i+2, V i), the sequence {V ·, A∗} is a quasicomplex indeed.
The operators

∆i := Ai∗Ai +Ai−1Ai−1∗

are said to be the Laplacians of the quasicomplex. These are obviously selfadjoint
operators in V i and it is easy to see that

Ai∆i −∆i+1Ai ∈ I(V i, V i+1) (2.1.3)

is satisfied. The following lemma describes the null-space of the Laplacians. Note
that the elements of ker ∆i are generally called harmonic sections, cf. [Wel80].

Lemma 2.1.8 The null-space of the Laplacian ∆i is the intersection of the null-
spaces of Ai and Ai−1∗, i.e. ker ∆i = kerAi ∩ kerAi−1∗.

Proof. Assume h ∈ V i is such that Aih = Ai−1∗h = 0. Then by definition
∆ih = 0, and so h ∈ ker ∆i. On the other hand, if h ∈ ker ∆i is fulfilled, then

0 = (∆ih, h)

= (Ai−1Ai−1∗h+Ai∗Aih, h)

= (Ai−1∗h,Ai−1∗h) + (Aih,Aih)

= ‖Ai−1∗h‖2 + ‖Aih‖2

and thus Aih = Ai−1∗h = 0, as desired.
�

Suppose that the Laplacian ∆i at step i is Fredholm. In this case, we denote by
H i ∈ F(V i) the orthogonal projection of V i onto the null-space of ∆i and introduce
the Green operator by

Gi := (∆i �(ker∆i)⊥)−1(IdV i −H i). (2.1.4)

Then IdV i = H i + ∆iGi holds.
By Theorem 1.1.20, an operator A ∈ L(V 0, V 1) is Fredholm if and only if the

short complex

{V ·, A} : 0 −→ V 0 A−→ V 1 −→ 0

is Fredholm, which is satisfied if and only if the cohomology is finite dimensional.
The next lemma shows that this property holds true for complexes, see [RS82] and
elsewhere. In particular, the Euler characteristic is well defined for any Fredholm
complex.
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Lemma 2.1.9 Suppose {V ·, D} is a complex. Then, the following statements are
equivalent:

i) {V ·, D} is Fredholm.

ii) The cohomology H i(V ·) is of finite dimension at each step.

iii) Each Laplacian ∆i of {V ·, D} is Fredholm.

Proof.
i)⇒ ii) Suppose {V ·, D} is Fredholm. By Theorem 2.1.4, the complex possesses

a parametrix P . For h ∈ kerDi we find

Di−1P ih = (1−Ki)h, (2.1.5)

i.e. imDi−1 ⊃ (IdV i−Ki) kerDi. The equality (2.1.5) implies that the restriction of
Ki to kerDi is a selfmapping of kerDi. Hence, (IdV i−Ki) kerDi is a closed subspace
od finite codimension in kerDi. Consequently, imDi−1 is a closed subspace od finite
codimension in kerDi, i.e. H i(V ·) is finite dimensional.

ii) ⇒ iii) Suppose the cohomology is of finite dimension at each step. Since
imDi has finite codimension in kerDi+1 and kerDi+1 is a closed subspace of V i+1,
it follows that the image of Di is closed in V i+1. By duality, the image of Di∗ is
closed in V i and we obtain the strong orthogonal decomposition

V i = kerDi ⊕ imDi∗.

Obviously, the orthogonal complement of imDi−1 in kerDi consists of all h ∈ V i

satisfying Dih = 0 and Di−1∗h = 0. This implies

kerDi = ker ∆i ⊕ imDi−1

and thus, ker ∆i ∼= H i(V ·) is finite dimensional. Since ∆i is selfadjoint, we obtain

V i = ker ∆i ⊕ im ∆i∗ = ker ∆i ⊕ im ∆i.

Hence, im ∆i has finite codimension in V i, and thus ∆i is Fredholm.
iii) ⇒ i) Let Gi be the Green operator for ∆i. Since I = O holds in our case,

the relation (2.1.3) implies ∆i+1Di = Di∆i. Multiplying this equation by Gi+1 from
the left and by Gi from the right we obtain

DiGi = Gi+1Di,

since H i+1Di = DiH i = 0. Hence it follows that the operators

P i := Di−1∗Gi

constitute a parametrix P for {V ·, D}.
�
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An inspection of the proof above shows that the cohomology of a Fredholm
complex {V ·, D} satisfies ker ∆i ∼= H i(V ·). Thus we obtain the formula

χ(V ·) =
N∑
i=0

(−1)i dim ker ∆i,

which for a single Fredholm operator A transforms into

ind(A) = dim kerA− dim kerA∗.

Remark 2.1.10 The proof of the implication i) ⇒ ii) still works in the case of
Banach spaces. However, ii) ⇒ i) is no longer true. On may consult [EP96] about
an example of a Koszul complex which has finite-dimensional cohomology, however,
no parametrix can be found.

Example 2.1.11 The complex

0 −→ `2(K)
D0

−→ `2(K)
D1

−→ `2(K) −→ 0

with
D0 (x1, x2, x3, x4, . . .) := (0, x1, 0, x2, . . .) ,
D1 (x1, x2, x3, x4, . . .) := (x1, x3, x5, x7, . . .)

is an exact sequence of Hilbert spaces and consequently Fredholm. The adjoint
operators are given by

D0∗ (y1, y2, y3, y4, . . .) := (y2, y4, y6, y8, . . .) ,
D1∗ (y1, y2, y3, y4, . . .) := (y1, 0, y2, 0, . . .) .

The Laplacians and Green operators are the identity operators on `2(K). Hence, a
parametrix is given by P = {D0∗, D1∗}.

If {V ·, D} is a Fredholm complex, then the associated Laplace operators are
Fredholm and from DiGi = Gi+1Di we get immediately the Hodge decomposition

v = H iv +Di−1Di−1∗Giv +Di∗Gi+1Div (2.1.6)

for each v ∈ V i. Note that the summands are pairwise orthogonal.

Corollary 2.1.12 Let {V ·, D} be a Fredholm complex. Given a w ∈ V i, the equa-
tion Di−1v = w has a solution v ∈ V i−1 if and only if Diw = 0 and H iw = 0.

Proof. Assume v ∈ V i−1 is a solution of the equation. Then

Diw = DiDi−1v = 0,
H iw = H iDi−1v = 0.

Conversely, suppose that Diw = 0 and H iw = 0 is satisfied. Then, the Hodge
decomposition shows that w = Di−1Di−1∗Giw and the desired assertion follows by
setting v := Di−1∗Giw.

�
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2.1.3 Reduction to complexes

Theorem 2.1.13 For every Fredholm I -quasicomplex {V ·, A} there exist operators
Di ∈ L(V i, V i+1) satisfying Di −Ai ∈ I(V i, V i+1) and Di+1Di = 0 for all i.

Proof. We follow the sheme suggested in [Tar07] where the case I = K was
considered. By Theorem 2.1.4, the quasicomplex possesses a parametrix P . We
start at step N and mention first that PN is a left parametrix of the last operator
DN−1. Set DN−1 = AN−1 and consider the Laplacian

∆N = DN−1DN−1∗.

Using the same arguments as in the proof of Lemma 2.1.9, we see that ∆N is
a Fredholm operator. By the abstract Hodge theory, there is a Green operator
GN ∈ L(V N ) satisfying

IdV N = HN + ∆NGN ,

where HN : V N → ker ∆N is the orthogonal projection. In particular, the operator
ΦN = DN−1∗GN is a special right parametrix for DN−1 in L(V N , V N−1).

We now show that ΠN−1 = IdV N − ΦNDN−1 is an orthogonal projection onto
the kernel of DN−1. Indeed, ΠN−1 is the identity operator on kerDN−1 and

DN−1ΠN−1 = DN−1 −∆NGNDN−1

= DN−1 − (IdV N −HN )DN−1

= HNDN−1

= (DN−1∗HN )∗

= 0.

From this the desired conclusion follows.
In order to construct DN−2 we consider the last fragment of the sequence, namely

V N−2 AN−2

−→ V N−1 DN−1

−→ V N .

Set
DN−2 = ΠN−1AN−2,

then DN−2 satisfies

DN−1DN−2 = DN−1ΠN−1AN−2

= 0

and

DN−2 = (IdV N−1 − ΦNAN−1)AN−2

= AN−2

modulo operators in I(V N−2, V N−1).



CHAPTER 2. SEQUENCES OF COMPACT CURVATURE 41

To construct DN−3 we can argue in the same way as in the construction of DN−2.
Namely, we consider the sequence

V N−3 AN−3

−→ V N−2 DN−2

−→ V N−1 DN−1

−→ V N

and the Laplacian

∆N−1 = DN−1∗DN−1 +DN−2DN−2∗.

Since DN−1 −AN−1 and DN−2 −AN−2 belong to K, we find

DN−2PN−1 − PNDN−1 = IdV N−1 −RN−1

mit RN−1 ∈ K(V N−1). Using the same arguments as in the proof of lemma 2.1.9, we
see that ∆N−1 is a Fredholm operator. This implies that the orthogonal projection
HN−1 : V N−1 → ker ∆N−1 has finite rank. With a Green operatorGN−1 ∈ L(V N−1)
we find

IdV N−1 = HN−1 + ∆N−1GN−1.

Set ΦN−2 = DN−2∗GN−1, then the pair {ΦN−2,ΦN−1} is a special parametrix
of the sequence at step N − 1. We now show that

ΠN−2 = IdV N−1 − ΦN−1DN−2

is an orthogonal projection onto the kernel of DN−2. Indeed, ΠN−2 is the identity
operator on kerDN−2 and

DN−2ΠN−2 = DN−2 −DN−2ΦN−1DN−2

= DN−2 − (IdV N−1 −HN−1 − ΦNDN−1)DN−2

= 0

for HN−1DN−2 = (DN−2∗HN−1)∗ = 0.
Set DN−3 = ΠN−2AN−3, then

DN−2DN−3 = DN−2ΠN−2AN−3

= 0

and

DN−3 = (IdV N−2 − ΦN−1DN−2)AN−3

= (IdV N−2 − ΦN−1AN−2)AN−3

= AN−3

modulo operators in I. We now proceed by induction, thus completing the proof.
�

The theorem holds true in the context of Banach spaces, cf. [EP96] for a proof.
The advantage of using the Hilbert space method lies in the fact that we obtain
explicit formulas to construct the reduced complex.
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Theorem 2.1.14 A quasicomplex {V ·, A} is Fredholm if and only if the Laplacians
are Fredholm operators at each step.

Proof.
Necessity. Assume {V ·, A} is Fredholm. We reduce the quasicomplex to a Fred-

holm complex {V ·, D}. The associated Laplacians ∆i
D are Fredholm due to Lemma

2.1.9. Since ∆i
A and ∆i

D differ merely by a compact operator, we conclude that ∆i
A

is Fredholm.
Sufficiency. Assume the Laplacians ∆i are Fredholm. For I = O the assertion

follows from Lemma 2.1.9. Let I 6= O and consider the Green operators Gi. Mul-
tiplying the operator in (2.1.3) by Gi+1 from the left and by Gi from the right we
obtain

AiGi −Gi+1Ai ∈ I(V i, V i+1),

for H i ∈ I(V i), if I 6= O. Hence it follows that the operators

P i := Ai−1∗Gi

yield a parametrix P for {V ·, A}.
�

Remark 2.1.15 Since the Laplacians of a Fredholm I -quasicomplex are Fredholm,
we can construct a special parametrix P i = Ai−1∗Gi of the quasicomlex as men-
tioned. If I = O, this is an F -parametrix of the complex. If I 6= O, then F ⊂ I
implies that P is a special I -parametrix of the quasicomplex.

2.1.4 Euler characteristic

By the above, every Fredholm complex has finite-dimensional cohomology at each
step and thus its Euler characteristic is well defined. In order to define the Euler
characteristic of a Fredholm quasicomplex we use Theorem 2.1.13.

Definition 2.1.16 The Euler characteristic of a Fredholm quasicomplex {V ·, A} is
defined to be

χ(V ·, A) := χ(V ·, D),

where {V ·, D} is a complex, such that Ai −Di ∈ K(V i, V i+1).

We have to show that the definition does not depend on the particular choice of
the reduced complex. Since the complex {V ·, D} is Fredholm, the Laplacians ∆i

D

are Fredholm, too. We split V = ⊕V i into the sum

V = V even ⊕ V odd

where V even = ⊕V 2i, V odd = ⊕V 2i+1 and consider

(D +D∗)e : V even → V odd
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given by the block operator
D0 D1∗ 0 0 . . .
0 D2 D3∗ 0 . . .
0 0 D4 D5∗ . . .
. . . . . . . . . . . . . . .

 .

The Laplacians of this operator (D +D∗)e satisfy

(D +D∗)∗e(D +D∗)e =


∆0
D 0 0 0 . . .

0 ∆2
D 0 0 . . .

0 0 ∆4
D 0 . . .

. . . . . . . . . . . . . . .

 ,

(D +D∗)e(D +D∗)∗e =


∆1
D 0 0 0 . . .

0 ∆3
D 0 0 . . .

0 0 ∆5
D 0 . . .

. . . . . . . . . . . . . . .

 .

Hence, the Laplacians of (D + D∗)e are Fredholm. This implies that the block
operator is Fredholm as well and satisfies

ind (D +D∗)e = dim ker(D +D∗)∗e(D +D∗)e − dim ker(D +D∗)e(D +D∗)∗e

=
N∑
i=0

(−1)i dim ker ∆i
D

=

N∑
i=0

(−1)i dimH i(V ·, D)

= χ(V ·, D).

Since (A+A∗)e and (D+D∗)e differ by a mere compact operator, we conclude that

χ(V ·, A) = χ(V ·, D) = ind (D +D∗)e = ind (A+A∗)e.

This shows the independence of {V ·, D}, as desired.

Corollary 2.1.17 Assume {V ·, A} is a Fredholm quasicomplex. Then the associ-
ated block operator (A+A∗)e is Fredholm and satisfies ind(A+A∗)e = χ(V ·, A).

Theorem 2.1.18 Let {V ·, A} be a Fredholm quasicomplex of length N . Then the
adjoint quasicomplex {V ·, A∗} is also Fredholm and its Euler characteristic is eval-
uated by

χ(V ·, A∗) = (−1)N χ(V ·, A).

Proof. We reduce {V ·, A} to a Fredholm complex {V ·, D}. Since

Ai∗ −Di∗ = (Ai −Di)∗
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belongs to K(V i+1, V i) for each i, the adjoint complex {V ·, D∗} is a reduced complex
for {V ·, A∗}. Hence, {V ·, A∗} is Fredholm, for the complex {V ·, D} and its adjoint
{V ·, D∗} have the same Laplacians. Since

H i(V ·, D) ∼= ker ∆i
D
∼= Hi(V

·, D∗)

holds, the sub i being due to the chain structure of {V ·, D∗}, the assertion for the
Euler characteristics follows immediately.

�

2.2 Quasimorphisms

2.2.1 Reduction to morphisms

Definition 2.2.1 An I -quasimorphism of two sequences {V ·, A} and {W ·, B} is a
sequence of linear maps Li ∈ L(V i,W i), such that

Li+1Ai −BiLi ∈ I(V i,W i+1)

is fulfilled for all i = 0, 1, . . . , N − 1.

In other words, an I -quasimorphism is a collection of selfmappings that makes
the diagram

0 → V 0 A0

→ V 1 A1

→ . . .
AN−1

→ V N → 0
↓ L0 ↓ L1 ↓ LN

0 → W 0 B0

→ W 1 B1

→ . . .
BN−1

→ WN → 0

commutative modulo operators of I. As above, the K -quasimorphisms are called
quasimorphisms and O -quasimorphisms are called morphisms. Note that the mor-
phisms are also said to be cochain mappings.

Suppose L is a morphism from {V ·, DA} to {W ·, DB}, i.e. Li+1Di
A = Di

BL
i. It

is well known that L induces a sequence of homomorphisms HLi : H i(V ·)→ H i(W ·)
on the cohomology by

HLi[v] := [Liv]

for any [v] ∈ H i(V ·).
Let us show that the homomorphisms HLi are well defined. To this end we

choose v ∈ kerDi
A. Then Di

B(Liv) = Li+1(Di
Av) = Li+10 = 0 is satisfied and thus

[Liv] ∈ H i(W ·) is well defined. In order to show that the map does not depend on
the particular choice of representatives, we pick v1, v2 ∈ kerDi

A satisfying [v1] = [v2],
i.e. v1− v2 ∈ imDi−1

A . Since Li is linear, we obtain v1− v2 = Di−1
A w with w ∈ V i−1

and thus
Li(v1 − v2) = Li(Di−1

A w) = Di−1
B (Li−1w) ∈ imDi−1

B .

Hence, [Liv1] = [Liv2 + Li(v1 − v2)] = [Liv2] is satisfied. Moreover, the linearity of
HLi is obvious.
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Theorem 2.2.2 Let {V ·, A} and {W ·, B} be Fredholm I -quasicomplexes, L be an
I -quasimorphism of these quasicomplexes and {V ·, DA}, {W ·, DB} any complexes
with the property that Di

A − Ai ∈ I(V i, V i+1) and Di
B − Bi ∈ I(W i,W i+1). Then,

there is a morphism L̃ of {V ·, DA} and {W ·, DB} satisfying L̃i − Li ∈ I(V i,W i).

Proof. The case I = 0 is trivial. For I 6= 0, let P be an I -parametrix of
{V ·, A}, i.e. P i+1Ai + Ai−1P i = IdV i − Ri with Ri ∈ I(V i). Then it is easy to see
that

L̃i := Di−1
B Li−1P i + LiP i+1Di

A

is a morphism of {V ·, DA} and {W ·, DB}.
Setting

T i := Li+1Di
A −Di

BL
i

= Li+1Ai −BiLi + Li+1(Di
A −Ai)− (Di

B −Bi)Li

∈ I(V i,W i+1)

we obtain

Li − L̃i = Li − (Di−1
B Li−1P i + LiP i+1Di

A)

= Li − Li(Di−1
A P i + P i+1Di

A) + T i−1P i

= LiRi + T i−1P i

∈ I(V i,W i),

as desired.
�

Assume L1 and L2 are quasimorphisms of sequences {V ·, A} and {W ·, B}. Then
we obtain a new quasimorphism by setting

L1 + L2 := (L0
1 + L0

2, . . . , L
N
1 + LN2 ).

Moreover, L1 and L2 are said to be homotopic if there exists a sequence {h1, . . . , hN}
of bounded linear operators hi : V i →W i−1 with the property that

Li1 − Li2 = Bi−1hi + hi+1Ai

for all i = 0, 1, . . . , N .
Obviously, an I -parametrix of a quasicomplex {V ·, A} is a homotopy between

the identity mappings {IdV 0 , . . . , IdV N } and a sequence {R0, . . . , RN}, such that
Ri ∈ I(V i).

Lemma 2.2.3 Assume L1 and L2 are homotopic morphisms of complexes {V ·, DA}
and {W ·, DB}. Then the induced maps HLi1 and HLi2 coincide.

Proof. We find

[Li1v] = [Li2v] + [Di−1
B hiv] + [hi+1Di

Av] = [Li2v]

for all v ∈ kerDi
A, and the desired assertion follows.

�
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2.2.2 The cone of a quasimorphism

If {V ·, A} and {W ·, B} are I-quasicomplexes we may use an I -quasimorphism L of
them to construct a new I -quasicomplex

V 0 V 1 V N 0

C(L) : 0 → ⊕ C0

→ ⊕ C1

→ . . .
CN−1

→ ⊕ CN→ ⊕ → 0

0 W 0 WN−1 WN

,

where we set

Ci =

(
−Ai 0
Li Bi−1

)
.

Indeed, since

Ci+1Ci =

(
Ai+1Ai 0

BiLi − Li+1Ai BiBi−1

)
is satisfied, C(L) is an I -quasicomplex called the cone of the quasimorphism L, cf.
[Spa66].

Theorem 2.2.4 The cone C(L) associated to a quasimorphism L of Fredholm qua-
sicomplexes is Fredholm.

Proof. Suppose PA and PB are parametrices of {V ·, A} and {W ·, B}, respec-
tively, i.e.

P i+1
A Ai +Ai−1P iA = IdV i −RiA,

P i+1
B Bi +Bi−1P iB = IdW i −RiB

with RiA ∈ K(V i) and RiB ∈ K(W i). Setting

P i =

(
−P iA 0

P i−1
B Li−1P iA P i−1

B

)
we obtain

Ci−1P i + P i+1Ci

=

(
IdV i −RiA 0

(Ri−1
B − P iBBi−1)Li−1P iA + P iBL

i(Ai−1P iA +RiA) IdW i−1 −Ri−1
B

)
= IdV i⊕W i−1 −Ri,

where

Ri :=

(
RiA 0

−(Ri−1
B − P iBBi−1)Li−1P iA − P iBLi(Ai−1P iA +RiA) Ri−1

B

)
=

(
RiA 0

−Ri−1
B Li−1P iA + P iB(Bi−1Li−1 − LiAi−1)P iA + P iBL

iRiA Ri−1
B

)
∈ K(V i ⊕W i−1).

Hence, P is a parametrix of C(L), as desired.
�

An inspection of the proof shows that the constructed parametrix P is a special
regulariser as in Remark 2.1.15, if we start with special regularisers PA, PB of the
I -quasicomlexes and if L is an I -quasimorphism.
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2.2.3 Quasiendomorphisms

We now turn to quasiendomorphisms of a sequence {V ·, A}, i.e. sequences of linear
operators Ei ∈ L(V i) which make the diagram

0 → V 0 A0

→ V 1 A1

→ . . .
AN−1

→ V N → 0
↓ E0 ↓ E1 ↓ EN

0 → V 0 A0

→ V 1 A1

→ . . .
AN−1

→ V N → 0

commutative modulo operators of I, i.e. Ei+1Ai −AiEi ∈ I(V i, V i+1) holds for all
i = 0, 1, . . . , N − 1.

Example 2.2.5 Assume L = {L0, . . . , LN} is an I -quasimorphism of {V ·, A} and
{W ·, B} and M = {M0, . . . ,MN} is an I -quasimorphism of {W ·, B} and {V ·, A}.
Then,

ML := {M0L0, . . . ,MNLN}
yields an I -quasiendomorphism of {V ·, A}.

The reduction Theorem 2.2.2 has the following simple form in the case of quasi-
endomorphisms.

Theorem 2.2.6 Suppose E is an I -quasiendomorphism of a Fredholm I -quasi-
complex {V ·, A} and {V ·, D} is any complex satisfying Di−Ai ∈ I(V i, V i+1). Then
there is an endomorphism Ẽ of {V ·, D} satisfying Ẽi − Ei ∈ I(V i).

In order to reduce {Ei}, we can choose an arbitrary I -parametrix P of {V ·, A}
and set

Ẽi := Di−1Ei−1P i + EiP i+1Di.

Before studying an interesting example, we state a simple lemma of functional anal-
ysis.

Lemma 2.2.7 Assume A ∈ L(V ) is a selfadjoint operator on a Hilbert space V .
Then kerAn = kerA is satisfied for all n ∈ N.

Proof. If n = 1, nothing is to show. Hence, we consider n ≥ 2 and set A0 := IdV .
Obviously kerA ⊂ kerAn is satisfied. Indeed, if Av = 0 holds for some v ∈ V , then
we get Anv = An−1(Av) = 0. On the other hand, consider v ∈ kerAn, i.e. Anv = 0.
If w ∈ V then

0 = (Anv, w)V = (An−1v,Aw)V ,

for A is selfadjoint. In particular,

‖An−1v‖2 = (An−1v,AAn−2v)V = 0

and hence v ∈ kerAn−1. In the case n = 2 we are ready. Otherwise, we proceed by
induction and find v ∈ kerAn−2, etc., v ∈ kerA, as desired.

�
Assume E = {E0, . . . , EN} is an I -quasiendomorphism of an I -quasicomplex

{V ·, A}. On setting Bi := AiEi we obtain a new I -quasicomplex {V ·, B}, as is easy
to check.
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Example 2.2.8 The sequence of Laplacians {∆0, . . . ,∆N} of an I -quasicomplex
{V ·, A} constitutes an I-quasiendomorphism. We set Bi := Ai∆i and obtain an
I -quasicomplex {V ·, B}. Suppose {V ·, A} is Fredholm. Then {V ·, B} is Fredholm,
too. To see this, we write ∆i

A for the Laplacians of {V ·, A} and reduce {V ·, A} to
a complex {V ·, D} with Laplacians ∆i

D. It is easy to verify that {V ·, D∆D} is a
reduced complex for {V ·, B} and

∆i
D∆D

= (∆i
D)3

holds. Since ∆i
D is a selfadjoint Fredholm operator, we get ker ∆i

D∆D
= ker ∆i

D

whence
χ(V ·, B) = χ(V ·, D∆D) = χ(V ·, A).

One may ask if for any I -quasiendomorphism E of an I -quasicomplex {V ·, A}
there is a reduced complex {V ·, DA}, such that E is an endomorphism of the com-
plex, cf. [TW12]. This question was answered in [Esc13] by the following counterex-
ample.

Example 2.2.9 The Toeplitz operators Tz and Tz̄ on the unit circle are Fredholm
and satisfy

0 6= [Tz̄, Tz] ∈ S1(H2(S)).

Suppose there exists an operator C ∈ S1(H2(S)) such that

(Tz̄ + C)Tz = Tz (Tz̄ + C) .

Since the commutant of Tz consists of all Toeplitz operators Tg with g ∈ H∞(S), we
deduce that

Tz̄ + C = Tg

with some g ∈ H∞(S). On the other hand, there are no nontrivial compact Toeplitz
operators, i.e. C = 0. We thus arrive at the contradiction z̄ = g ∈ H∞(S).

2.3 The Lefschetz number for quasicomplexes

2.3.1 Eulers identity

Suppose E = {E0, . . . , EN} is an endomorphism of a Fredholm complex {V ·, D}.
Then the mapping

HEi : H i(V ·)→ H i(V ·),

given by [v] 7→ [Eiv], is an endomorphism of the finite-dimensional space H i(V ·),
and so the trace trHEi is well defined, for each i. The alternating sum

L (E,D) :=
N∑
i=0

(−1)i trHEi

is called the Lefschetz number of the endomorphism.
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Example 2.3.1 Set Ei = IdV i for i = 0, 1, . . . , N . Then trHEi = dimH i(V ·) is
satisfied and we obtain

L (E) =

N∑
i=0

(−1)i dimH i(V ·) = χ(V ·).

If E and F are homotopic endomorphisms of a Fredholm complex {V ·, D} then
Lemma 2.2.3 implies L (E,D) = L (F,D).

It turns out that the Lefschetz number can be extended to S1-quasiendomorphims
of S1 -quasicomplexes. To show this we need an auxiliary result which is usually
referred to as Euler’s identity, see [AB67] or Theorem 19.1.15 in [Hoe85]. In order
to show this for nonseparable Hilbert spaces, we prove an additional result.

Lemma 2.3.2 Let U be a closed subspace of a Hilbert space V . Assume A ∈ S1(V )
satisfies U⊥ ⊂ kerA. Then

trA = tr (PUA �U ) ,

where PU is the orthogonal projection onto U .

Proof. Without loss of generality we assume K = C, otherwise we complexify
the space V . Set Ã := PUA �U . Then (λIdV − A)nv = 0 is satisfied for some
v ∈ V \ {0} and some λ ∈ C \ {0} if and only if v ∈ U and (λIdU − Ã)nv = 0 holds.
Hence, λ 6= 0 is an eigenvalue of A with algebraic multiplicity m if and only if λ is
an eigenvalue of Ã with algebraic multiplicity m. This implies readily trA = tr Ã,
as desired.

�

Lemma 2.3.3 Let E be an endomorphism of a Fredholm complex {V ·, D} satisfying
Ei ∈ S1(V i) for all i = 0, 1, . . . , N . Then

L (E) =

N∑
i=0

(−1)i trEi.

Proof. Using the Hodge decomposition (2.1.6), we find

Ei = H iEi +Di−1Di−1∗GiEi +Di∗Gi+1DiEi

= H iEi +Di−1Di−1∗GiEi +Di∗Gi+1Ei+1Di,

where all summands are trace class operators. The second and the third summands
cancel each other in the alternating sum of traces. We thus obtain

N∑
i=0

(−1)i trEi =
N∑
i=0

(−1)i trH iEi =
N∑
i=0

(−1)i trH iH iEi =
N∑
i=0

(−1)i trH iEiH i.

We have to show that trH iEiH i = trHEi holds, where HEi is the linear map in
H i(V ·), which is induced by Ei. We set T i := H iEiH i. Then (ker ∆i)⊥ ⊂ kerT i
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holds and Lemma 2.3.2 implies that trT i = tr
(
H iEi �ker∆i

)
is satisfied. Since

ker ∆i ∼= H i(V ·) holds, the traces of the operators HEi and H iEi �ker∆i coincide,
as desired.

�
Note that Lemma 2.3.3 is valid not only for the trace class operators Ei but

also for those operators Ei, for which the wave front calculus allows one to define
the trace by restricting the Schwartz kernel to the diagonal, see Theorem 19.4.1 of
[Hoe85].

2.3.2 Definition of Lefschetz number

The following definition is of crucial importance in this work. It stems from [TW12]
by direct calculation.

Definition 2.3.4 Let {V ·, A} be a Fredholm S1 -quasicomplex and E a S1 -quasi-
endomorphisms of this quasicomplex. Then the Lefschetz number is defined as

L (E,A) = L (Ẽ,D) +
N∑
i=0

(−1)i tr (Ei − Ẽi),

where {V ·, D} is a complex, such that Di − Ai ∈ S1(V i, V i+1), and Ẽ is an endo-
morphism of {V ·, D}, such that Ẽi − Ei ∈ S1(V i).

Obviously, L (E,A) coincides with the classical Lefschetz number, if {V ·, A} is
a Fredholm complex and E is an endomorphism of {V ·, A}.

We have to show that the definition is independent of the particular choice of D
and Ẽ. For this purpose we choose an arbitrary S1 -parametrix P . Then Ẽ and

Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di ∈ S1(V i)

are homotopic endomorphisms of {V ·, D}. By Lemma 2.3.3,

L (Ẽ,D) =
N∑
i=0

(−1)i tr (Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di)

and therefore

L (E,A) =

N∑
i=0

(−1)i tr (Ei −Di−1Ẽi−1P i − ẼiP i+1Di)

=
N∑
i=0

(−1)i tr (Ei −Di−1Ei−1P i − EiP i+1Di)

=
N∑
i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai),
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the second and third equalities being due to Theorem 1.1.14. Indeed, the differences
of the right-hand sides and the left-hand sides of these equalities just amount to

N−1∑
i=0

(−1)i tr ((Ei − Ẽi)P i+1Di −Di(Ei − Ẽi)P i+1),

N−1∑
i=0

(−1)i tr (EiP i+1(Ai −Di)− (Ai −Di)EiP i+1),

respectively, where each summand vanishes by Theorem 1.1.14. This shows the
independence of Ẽ and D.

Corollary 2.3.5 Let {V ·, A} be a Fredholm S1 -quasicomplex and E a S1 -quasi-
endomorphism of this quasicomplex. Then

L (E,A) =
N∑
i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)

for each S1 -parametrix P of {V ·, A}.

The corollary above can also be used as a definition of the Lefschetz number.
This was precisely our approach in [TW12].

Choosing Ẽi := Di−1Ei−1P i + EiP i+1Di as in the proof of Theorem 2.2.6, we
get L (Ẽ,D) = 0, for Ẽ and 0 are homotopic endomorphisms of {V ·, D}. Hence it
follows that

L (E,A) =
N∑
i=0

(−1)i tr (Ei − Ẽi)

in this special case.

Remark 2.3.6 The equivalence of Definition 2.3.4 and Corollary 2.3.5 was shown
recently by J. Eschmeier in [Esc13]. Moreover, he proved Theorem 2.2.6 in the case
of Sp-quasicomplexes in Banach spaces.

Let {E0, E1} be a S1 -quasiendomorphism of a Fredholm operatorA ∈ L(V 0, V 1).
Then

L (E,A) = tr (E0 − E0PA)− tr (E1 −AE0P )

holds. Here, P is a S1 -parametrix (regulariser) of the operator A. As far as we know,
this formula was first suggested (in the case of endomorphisms) by B.V. Fedosov in
[Fed91], who mentioned that the trace class perturbations of the operatorA could not
influence the Lefschetz number and so the formula made it possible to consider S1 -
quasiendomorphisms. Inspired by this, we decided to use the formula of Corollary
2.3.5 to define the Lefschetz number in the context of quasicomplexes. Note that
the independence of the particular choice of a parametrix is much more transparent
for a single operator, for any two parametrices differ merely by an operator of the
class S1(V 1, V 0).

In [Esc13] the formula above was applied to Toeplitz operators in order to gen-
eralise the Gokhberg-Krein index formula.
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Example 2.3.7 Let f, g ∈ C∞(S). Suppose g 6= 0 on S. Then the Toeplitz operator
Tg is Fredholm. Moreover,

IdH2(S) − Tg−1Tg ∈ S1(H2(S)),

IdH2(S) − TgTg−1 ∈ S1(H2(S))

is satisfied. Hence, E := {Tf , Tf} yields a S1 -quasiendomorphism of the Fredholm
operator Tg. The Lefschetz number fulfills

L (E, Tg) = tr (Tf − TfTg−1Tg)− tr (Tf − TgTfTg−1)

= tr [Tg, TfTg−1 ]

= tr [Tg, Tfg−1 ]

=
1

2πı

∫
S
g dz(fg

−1)

=
1

2πı

∫
S
dzf + gf dz(g

−1)

= − 1

2πı

∫
S
f
dzg

g
.

In particular, for f = 1 we obtain L (1, Tg) = −deg(g, 0).

Example 2.3.8 We consider Hilbert-Schmidt operators S and E0, E1 in S2(V )
and set A := IdV −S and E = {E0, E1}. Assume E0−E1 ∈ S1(V ) is satisfied. We
find

AE0 − E1A = (E0 − E1 + E0S − SE1) ∈ S1(V ),

and thus E is a S1 -quasiendomorphism of the short complex {V ·, A}. Moreover, A
is a Fredholm operator and a S1 -parametrix of A is given by P := IdV + S. We
obtain the formula

L (E,A) = tr (E0 − E0PA)− tr (E1 −AE0P )

= tr (E0 − E1).

2.3.3 Properties

It turns out that all essential properties of the classical Lefschetz number, which is
defined for endomorphisms of complexes, survive if we consider quasiendomorphisms
and quasicomplexes. This displays once again the canonical nature of our definition.

Theorem 2.3.9 Let E, F be S1 -quasiendomorphisms of a Fredholm S1 -quasicomp-
lex {V ·, A}. The following assertions hold:

i) L (E + F,A) = L (E,A) + L (F,A) (additivity).

ii) L (E,A) = L (F,A), if E and F are homotopic (homotopy invariance).

iii) L (IdV · , A) = χ(V ·, A) (normalisation).
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Proof. Since the trace is additive, the first assertion follows directly by Corollary
2.3.5.

We use the same corollary to show ii). Namely, choose a complex {V ·, D}, such
that T i := Ai −Di ∈ S1(V i, V i+1). Set

Gi := Ei − F i − T i−1hi − hi+1T i

= Di−1hi + hi+1Di.

Then G is an endomorphism of the complex {V ·, D} homotopic to 0, and we find

L (E,A)−L (F,A) = L (E,D)−L (F,D)

=
N∑
i=0

(−1)i tr (Ei − F i −Di−1(Ei−1 − F i−1)P i − (Ei − F i)P i+1Di)

=

N∑
i=0

(−1)i tr (Gi −Di−1Gi−1P i −GiP i+1Di)

= L (G,D)

= 0,

the third equation being a consequence of Theorem 1.1.14.
Definition 2.3.4 implies in particular that L (E,A) = L (E,D), and so we obtain

immediately

L (IdV · , A) = L (IdV · , D) = χ(V ·, D) =: χ(V ·, A).

�

Example 2.3.10 Let {V ·, A} be a Fredholm S1 -quasicomplex. Then the sequence
of Laplacians ∆ = {∆0, . . . ,∆N} is a S1 -quasiendomorphism of {V ·, A} homotopic
to 0 = {0V 0 , . . . , 0V N } and we obtain L (∆, A) = 0.

Assume {V ·, A} is a Fredholm S1 -quasicomplex. Then Theorem 2.3.9 and Corol-
lary 2.3.5 imply the trace formula

χ(V ·, A) =

N∑
i=0

(−1)i tr (IdV i −Ai−1P i − P i+1Ai)

for the Euler characteristic, cf. [Tar07]. In particular,

indA = tr (IdV 0 − PA)− tr (IdV 1 −AP )

for a Fredholm operator A ∈ L(V 0, V 1) and indA = tr [A,P ], if V 0 = V 1, where P
is a S1 -parametrix of the quasicomplex {V ·, A} and of the operator A, respectively.
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Example 2.3.11 Let {V ·, A} and {W ·, B} be Fredholm quasicomplexes and let L
be a quasimorphism of these quasicomplexes. We are going to compute the Eu-
ler characteristic of the associated cone C(L). To this end, we choose complexes
{V ·, DA} and {W ·, DB} with the property that

Di
A −Ai ∈ K(V i, V i+1),

Di
B −Bi ∈ K(W i,W i+1),

respectively. Then there is a morphism L̃ of {V ·, DA} and {W ·, DB} satisfying
L̃i − Li ∈ K(V i,W i). We obtain a new cone

V 0 V 1 V N 0

C(L̃) : 0 → ⊕ C̃0

→ ⊕ C̃1

→ . . .
C̃N−1

→ ⊕ C̃N→ ⊕ → 0

0 W 0 WN−1 WN

where

C̃i =

(
−Di

A 0

L̃i Di−1
B

)
.

Suppose PA, PB are S1 -parametrices of {V ·, DA} and {W ·, DB}, respectively, i.e.

P i+1
A Di

A +Di−1
A P iA = IdV i −RiA,

P i+1
B Di

B +Di−1
B P iB = IdW i −RiB

with RiA ∈ S1(V i) and RiB ∈ S1(W i). For

P i =

(
−P iA 0

P i−1
B L̃i−1P iA P i−1

B

)
,

we get
IdV i⊕W i−1 − C̃i−1P i − P i+1C̃i = Ri

where

Ri =

(
RiA 0

−Ri−1
B L̃i−1P iA + P iBL̃

iRiA Ri−1
B

)
∈ S1(V i ⊕W i−1).

Hence it follows that

χ(C(L)) = χ(C(L̃))

=

N+1∑
i=0

(−1)i trRi

=

N+1∑
i=0

(−1)i (trRiA + trRi−1
B )

=

N∑
i=0

(−1)i trRiA −
N∑
i=0

(−1)i trRiB

= χ(V ·, DA)− χ(W ·, DB)

= χ(V ·, A)− χ(W ·, B).
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Theorem 2.3.12 Let Li : V i →W i and M i : W i → V i, with i = 0, 1, . . . , N , be S1 -
quasimorphisms of Fredholm S1 -quasicomplexes {V ·, A} and {W ·, B}, respectively.
Then

L (FE,A) = L (EF,B)

holds.

Proof. Choose reduced complexes {V ·, DA}, {W ·, DB} and morphisms L̃ and

M̃ of them, such that

T iL := L̃i − Li ∈ S1(V i,W i),

T iM := M̃ i −M i ∈ S1(W i, V i).

Then M̃L̃ is an endomorphism of {V ·, DA} and L̃M̃ is an endomorphism of {W ·, DB}
satisfying

M̃ iL̃i −M iLi ∈ S1(V i),

L̃iM̃ i − LiM i ∈ S1(W i).

The equality

trH(M̃L̃)i = trH(M̃)iH(L̃)i = trH(L̃)iH(M̃)i = trH(L̃M̃)i

implies
L (M̃L̃,DA) = L (L̃M̃ ,DB).

Moreover, using

tr (M iLi − M̃ iL̃i) = tr (M iLi − (M i + T iM )(Li + T iL))

= −tr (T iML
i)− tr (M iT iL)− tr (T iMT

i
L)

= −tr (LiT iM )− tr (T iLM
i)− tr (T iLT

i
M )

= tr (LiM i − (Li + T iL)(M i + T iM ))

= tr (LiM i − L̃iM̃ i)

we obtain

L (ML,A) = L (M̃L̃,DA) +

N∑
i=0

(−1)i tr (M iLi − M̃ iL̃i)

= L (L̃M̃ ,DB) +
N∑
i=0

(−1)i tr (LiM i − L̃iM̃ i)

= L (LM,B),

as desired.
�



Chapter 3

Applications

In this chapter we apply the theory developed above to sequences of pseudodifferen-
tial operators acting in spaces of smooth sections of vector bundles. Note that these
spaces are (Fréchet-Schwartz spaces and hence) no longer Banach, hence compact
operators fail to be “small” in this context, for all bounded operators are compact.
Following [KTT07] we call a pseudodifferential operator “small” if its principal sym-
bol vanishes. According to this, we elaborate the theory of elliptic quasicomplexes
and prove that the concept of ellipticity can be extended naturally to quasicom-
plexes of pseudodifferential operators. Unless otherwise stated we assume in the
sequel that X is a smooth compact closed manifold and F i smooth vector bundles
over X.

3.1 Sequences of pseudodifferential operators

3.1.1 Elliptic quasicomplexes

We start with some pretty natural definitions.

Definition 3.1.1 By a quasicomplex of pseudodifferential operators on X is meant
any sequence of the form

E(X,F ·) : 0→ E(X,F 0)
A0

→ E(X,F 1)
A1

→ . . .
AN−1

→ E(X,FN )→ 0 (3.1.1)

with Ai ∈ Ψmi
cl (X;F i, F i+1) satisfying Ai+1Ai ∈ Ψmi+1+mi−1(X;F i, F i+2).

To any quasicomplex one assigns the sequence of principal symbols

π∗F · : 0→ π∗F 0 σm0 (A0)→ π∗F 1 σm1 (A1)→ . . .
σmN−1 (AN−1)→ π∗FN → 0

which is actually a complex of bundle homomorphisms, for

σmi+1(Ai+1)σmi(Ai) = σmi+1+mi(Ai+1Ai)

= 0.

56
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Locally, we obtain the complex

F ·x : 0 −→ F 0
x
σm0 (A0)(x,ξ)−→ F 1

x
σm1 (A1)(x,ξ)−→ . . .

σmN−1 (AN−1)(x,ξ)−→ FNx −→ 0.

Definition 3.1.2 A quasicomplex E(X,F ·) is called elliptic if its symbol complex
F ·x is exact (away from the zero section of T ∗X).

It should be noted that the principal symbol mapping plays actually the role of
a functor.

As usual, by a parametrix of a quasicomplex E(X,F ·) is meant any sequence of
pseudodifferential operators P i ∈ Ψ−mi−1(X;F i, F i−1) satisfying

P i+1Ai +Ai−1P i = IdE(X,F i) − Si (3.1.2)

with Si ∈ Ψ−1
cl (X;F i) for all i = 0, 1, . . . , N .

Let us first study the case where the orders of the operators Ai in sequence
(3.1.1) are the same, that is mi = m for all i = 0, 1, . . . , N − 1.

Assume E(X,F ·) is a quasicomplex of pseudodifferential operators of the same
order Ai ∈ Ψm

cl (X;F i, F i+1). The operators

Li = Ai−1Ai−1∗ +Ai∗Ai

in Ψ2m
cl (X;F i) are called (formal) Laplacians of the quasicomplex.

Lemma 3.1.3 A quasicomplex E(X,F ·) with operators of the same order is elliptic
if and only if all the formal Laplacians Li are elliptic.

Proof. We consider the complex of principal symbols

F ·x : 0 −→ F 0
x
σm(A0)(x,ξ)−→ F 1

x
σm(A1)(x,ξ)−→ . . .

σm(AN−1)(x,ξ)−→ FNx −→ 0

for (x, ξ) ∈ T ∗X \ {0}. This is a complex of Hilbert spaces. By the Hodge theory,
F ·x is exact if and only if the Laplacians

σm(Ai−1)(x, ξ)(σm(Ai−1)(x, ξ))∗ + (σm(Ai)(x, ξ))∗σm(Ai)(x, ξ)

are isomorphisms. Since

σ2m(Li)(x, ξ) = σ2m(Ai−1Ai−1∗ +Ai∗Ai)(x, ξ)

= σm(Ai−1)(x, ξ)(σm(Ai−1)(x, ξ))∗ + (σm(Ai)(x, ξ))∗σm(Ai)(x, ξ),

this holds if and only if the (formal) Laplacians Li are elliptic.
�

Example 3.1.4 We consider the de Rham complex

Ω ·(X) : 0 −→ Ω0(X)
d−→ Ω1(X)

d−→ . . .
d−→ Ωn(X) −→ 0,
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where n is the dimension of X. Since the operators di are of the same order, the
(formal) Laplacians Li ∈ Ψ2

cl(X,Λ
iT ∗CX) are elliptic of order 2. In fact, these are the

Hodge-Laplace operators which are elliptic due to Example 1.3.9. Applying Lemma
3.1.3 we deduce that the de Rham complex is elliptic, i.e.

0 −→ C σ1(d0)(x,ξ)−→ Cn σ1(d1)(x,ξ)−→ . . .
σ1(dN−1)(x,ξ)−→ C −→ 0

is exact away from the zero section of T ∗X.

As mentioned, the differential d should be replaced by a connection ∂ if we
consider differential forms with values in sections of a vector bundle over F . This
leads to a natural example of an elliptic quasicomplex.

Example 3.1.5 Let F be a smooth vector bundle of rank k on X. Pick a connection
∂ on F . Consider the sequence

Ω ·(X,F ) : 0→ E(X,F )
∂0→ Ω1(X,F )

∂1→ . . .
∂n−1

→ Ωn(X,F )→ 0.

Since ∂i+1∂i is a differential operator of order 0, the sequence is a quasicomplex.
The principal symbols of the (formal) Laplacians Li∂ are given by

σ2(Li∂)(x, ξ) = IdFx ⊗ σ2(Lid)(x, ξ),

where Lid are the Hodge-Laplace operators. We thus conclude that σ2(Li∂)(x, ξ) is
invertible for all (x, ξ) ∈ T ∗X \ {0}. Hence, Ω ·(X,F ) is elliptic.

Note that the quasicomplex of connections is a complex if and only if the asso-
ciated bundle is trivial, cf. [Wel80].

3.1.2 Order reduction

We now turn to quasicomplexes with pseudodifferential operators of different orders
mi, in which case the formal Laplacians fail to be relevant to the study. To get rid of
this irrelevance we use a familiar construction with order reduction isomorphisms.
More precisely, for a fixed s ∈ R, we choose invertible operators

Ri ∈ Ψ
s−(m0+...+mi−1)
cl (X;F i)

(m−1 = 0) and set Ãi = Ri+1A
iR−1

i . Then Ãi ∈ Ψ0
cl(X;F i, F i+1) holds and we

obtain a quasicomplex

{E(X,F ·), Ã} : 0→ E(X,F 0)
Ã0

→ E(X,F 1)
Ã1

→ . . .
ÃN−1

→ E(X,FN )→ 0

of operators of order 0.

Lemma 3.1.6 A quasicomplex {E(X,F ·), A} is elliptic if and only if the reduced
quasicomplex {E(X,F ·), Ã} is elliptic.



CHAPTER 3. APPLICATIONS 59

Proof. Set
si = s− (m0 + . . .+mi−1) (3.1.3)

for i = 0, 1, . . . , N , so that s0 := s and si+1 = si − mi. Since Ri ∈ Ψ si
cl (X;F i) is

invertible, the inverse operator is available in Ψ−sicl (X;F i), which is a consequence
of spectral invariance of Theorem 1.3.12. Moreover, we get σ−si(R−1

i ) = (σsi(Ri))
−1

whence
σ0(Ãi) = σsi+1(Ri+1)σmi(Ai) (σsi(Ri))

−1.

On using this equality we establish the assertion by a straightforward computation,
as desired.

�

Lemma 3.1.7 A family {P i} is a parametrix of E(X,F ·), if and only if {Qi} with
Qi = R−1

i−1P
iRi is a parametrix of the reduced quasicomplex {E(X,F ·), Ã}.

Proof. By

Ãi−1Qi +Qi+1Ãi = R−1
i Ai−1Ri−1R

−1
i−1P

iRi +R−1
i P i+1Ri+1R

−1
i+1A

iRi

= R−1
i (Ai−1P i + P i+1Ai)Ri

the desired assertion follows.
�

Theorem 3.1.8 Each elliptic quasicomplex E(X,F ·) possesses a parametrix.

Proof. We reduce the elliptic quasicomplex E(X,F ·) to an elliptic quasicomplex
(E(X,F ·), Ã) with operators of order 0. By Lemma 3.1.3, the (formal) Laplacians
∆i are elliptic. Applying Lemma 1.3.11 we deduce that there exists a parametrix
Gi ∈ Ψ0

cl(X;F i) for ∆i. We now proceed as in the proof of Theorem 2.1.14 and

obtain that the operators P i = Gi−1Ãi−1∗ constitute a parametrix of {E(X,F ·), Ã}.
Hence, E(X,F ·) possesses a parametrix due to Lemma 3.1.7.

�
An inspection of the proofs above shows that an elliptic quasicomplex with

smoothing curvature admits a special parametrix satisfying (3.1.2) with smooth-
ing operators Si ∈ Ψ−∞cl (X,F i). Similar to the operator case, we will call such a
parametrix a regulariser of the quasicomplex.

3.1.3 Extension to Sobolev spaces

We may extend the quasicomplex E(X,F ·) to a quasicomplex with Sobolev spaces,
i.e.

Hs·(X,F ·) : 0→ Hs0(X,F 0)
A0

→ Hs1(X,F 1)
A1

→ . . .
AN−1

→ HsN (X,FN )→ 0

where si are given by (3.1.3). From Theorem 1.3.7 it follows that Hs·(X,F ·) is a
quasicomplex in the context of Hilbert spaces. Particularly, it is a Sp-quasicomplex
if p > n.
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Theorem 3.1.9 Assume that E(X,F ·) is an elliptic quasicomplex. Then the ex-
tended quasicomplex Hs·(X,F ·) is Fredholm.

Proof. Since E(X,F ·) is elliptic, this quasicomplex possesses a (formal) para-
metrix. The extension of this parametrix to Sobolev spaces is a genuine parametrix
ofHs·(X,F ·) in the sense of Hilbert spaces, for the smoothing operators are compact.

�
Note that there is no canonical choice for the scalar products in Hsi(X,F i)

while the norms are eqivalent. Let ΛF i ∈ Ψ2
cl(X;F i) be those invertible operators

which define the norm in Hs(X,F i). We denote by (Ai)adj the adjoint operator for
Ai : Hsi(X,F i)→ Hsi+1(X,F i+1) in the sense of Hilbert spaces.

Theorem 3.1.10 If A ∈ Ψm
cl (X;E,F ) then Aadj = Λ−sE A∗Λs−mF . In particular,

Aadj ∈ Ψ−mcl (X;F,E).

Proof. Since Λ−sE ∈ Ψ−2s
cl (X;E) and Λs−mF ∈ Ψ

2(s−m)
cl (X;F ), it suffices to

establish the equality Aadj = Λ−sE A∗Λs−mF only. By the definition of Hilbert adjoint
we obtain

(Au, g)Hs−m(X,F ) = (Λ
(s−m)/2
F Au,Λ

(s−m)/2
F g)L2(X,F )

= (Au,Λs−mF g)L2(X,F )

= (u,A∗Λs−mF g)L2(X,E)

= (Λ
s/2
E u,Λ

s/2
E Λ−sE A∗Λs−mF g)L2(X,E)

= (u,Λ−sE A∗Λs−mF g)Hs(X,E)

for all u ∈ E(X,E) and g ∈ E(X,F ). So the assertion follows by a familiar density
argument.

�
Theorem 3.1.10 shows readily that the Laplacians ∆i := Ai−1Ai−1adj + AiadjAi

of this quasicomplex belong to Ψ0
cl(X;F i).

Theorem 3.1.11 A quasicomplex E(X,F ·) is elliptic if and only if the Laplacians
∆i are elliptic.

Proof. Set
Ri := Λ

si/2

F i

and Ãi := Ri+1A
iR−1

i . By definition, the diagram

0 → Hs0(X,F 0)
A0

→ Hs1(X,F 1)
A1

→ . . .
AN−1

→ HsN (X,FN ) → 0
↓ R0 ↓ R1 ↓ RN

0 → L2(X,F 0)
Ã0

→ L2(X,F 1)
Ã1

→ . . .
ÃN−1

→ L2(X,FN ) → 0

is commutative. With

Aiadj = Λ−si
F i

Ai∗ Λ
si+1

F i+1

= R−2
i Ai∗R2

i+1
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and Ai∗ = Ri Ã
i∗R−1

i+1 we find

∆i = (R−1
i Ãi−1Ri−1) (R−1

i−1 Ã
i−1∗Ri) + (R−1

i Ãi∗Ri+1) (R−1
i+1Ã

iRi)

= R−1
i ∆̃iRi,

where ∆̃i = Ãi−1Ãi−1∗ + Ãi∗Ãi are the Laplacians of the reduced quasicomplex.
Since

σ0(∆i) = (σsi(Ri))
−1 σ0(∆̃i)σsi(Ri),

the pseudodifferential operator ∆i is elliptic if and only is so is ∆̃i. On applying
Theorem 3.1.6 we get the desired assertion.

�

3.1.4 Reduction to complexes

Theorem 3.1.12 For each elliptic quasicomplex {E(X,F ·), A} there is an elliptic
complex {E(X,F ·), D}, such that Di ∈ Ψmi

cl (X;F i, F i+1) and Di = Ai modulo
Ψmi−1(X;F i, F i+1).

Proof. Since the differential A of the quasicomplex is given by pseudodifferential
operators on X, we can turn to the quasicomplex {Hs·(X,F ·), A} of Hilbert spaces,
where s ∈ R is any fixed number. Arguing as in the proof of Theorem 8.1 in [KTT07]
we modify the quasicomplex {Hs·(X,F ·), A} into a complex {Hs·(X,F ·), D} whose
differential D differs from A by a operator of order −1.

We start from the end of the quasicomplex

. . .
AN−2

→ HsN−1(X,FN−1)
DN−1

→ HsN (X,FN )→ 0,

setting DN−1 = AN−1. Since σmN−1(AN−1) is surjective, it follows that the Lapla-
cian ∆N = DN−1(DN−1)adj is a selfadjoint elliptic pseudodifferential operator of
order 0 in HsN (X,FN ). By the Hodge theory for single operators, there is an
operator GN ∈ Ψ0(X;FN ) satisfying

IdFN = HN + ∆NGN = HN +DN−1PN ,

where HN stands for the orthogonal projection onto the finite-dimensional space
ker ∆N = ker(DN−1)adj and PN = (DN−1)adjGN . We set

ΠN−1 = IdFN−1 − PNDN−1

thus obtaining a pseudodifferential operator in Ψ0(X;FN−1). We claim that ΠN−1

is a projection onto kerDN−1. Indeed, ΠN−1 = IdFN−1 is valid on kerDN−1 and

ΠN−1ΠN−1 = (IdFN−1 − PNDN−1)(IdFN−1 − PNDN−1)

= IdFN−1 − 2PNDN−1 + PN (DN−1PN )DN−1

= IdFN−1 − 2PNDN−1 + PN (IdFN −HN )DN−1

= ΠN−1,
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for HNDN−1 = ((DN−1)adjHN )adj = 0.
Next we set DN−2 = ΠN−1AN−2. Then DN−2 ∈ ΨmN−2(X;FN−2, FN−1) and

DN−1DN−2 = 0, for ΠN−1 is a projection onto kerDN−1. Furthermore, we get

DN−2 = AN−2 − PNAN−1AN−2

= AN−2

modulo ΨmN−2−1(X;FN−2, FN−1), for the composition AN−1AN−2 is an operator
of order mN−1 +mN−2 − 1.

Consider now a slightly modified quasicomplex

. . .
AN−3

→ HsN−2(X,FN−2)
DN−2

→ HsN−1(X,FN−1)
DN−1

→ HsN (X,FN )→ 0.

Since the symbol complex of the initial quasicomplex is exact and the operators Di

and Ai have the same principal symbol for i = N − 2, N − 1, the Laplacian

∆N−1 = DN−2(DN−2)adj + (DN−1)adjDN−1

is a selfadjoint elliptic operator of order 0 on HsN−1(X,FN−1). Using the Hodge
theory for complexes, we deduce that there is an operator GN−1 ∈ Ψ0(X;FN−1),
such that

IdFN−1 = HN−1 +DN−2(DN−2)adjGN−1 + (DN−1)adjGNDN−1

= HN−1 +DN−2PN−1 + PNDN−1

where HN−1 is the orthogonal projection onto the null-space of ∆N−1 which is
ker(DN−2)adj ∩ kerDN−1, and PN−1 = (DN−2)adjGN−1. Then, we claim that

ΠN−2 = IdFN−1 − PN−1DN−2

is the orthogonal projection onto kerDN−2. Indeed, ΠN−2 is the identity operator
on kerDN−2. Moreover,

(ΠN−2)2 = ΠN−2 − PN−1DN−2 + PN−1(DN−2PN−1)DN−2

= ΠN−2 − PN−1DN−2 + PN−1(IdFN−1 −HN−1 − PNDN−1)DN−2

= ΠN−2 − PN−1HN−1DN−2

= ΠN−2,

since HN−1DN−2 = ((DN−2)adjHN−1)adj vanishes. Introducing DN−3 = ΠN−2AN−3

we thus obtain DN−2DN−3 = 0 and

DN−3 = AN−3 − PN−1DN−2AN−3

= AN−3

modulo ΨmN−3−1(X;FN−3, FN−2), for

DN−2AN−3 = AN−2AN−3 + (DN−2 −AN−2)AN−3
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is a operator of order mN−2 +mN−3 − 1.
Continuing in this fashion, in a finite number of steps we obtain a complex of

operators Di ∈ Ψmi(X;F i, F i+1), such that Di − Ai ∈ Ψmi−1(X;F i, F i+1) for all
i = 0, 1, . . . , N − 1.

�
An inspection of the proofs above shows that for each elliptic quasicomplex

{E(X,F ·), A} with smoothing curvature there is an elliptic complex {E(X,F ·), D},
such that Di ∈ Ψmi

cl (X;F i, F i+1) and Di = Ai modulo Ψ−∞(X;F i, F i+1).
It is worth pointing out that the desired complex {E(X,F ·), D} is constructed

within the framework of pseudodifferential calculus on X. I.e. Di are pseudodif-
ferential operators even in the case if the initial sequences of symbols stem from
differential operators.

3.2 Characteristic numbers

3.2.1 The index formula

Definition 3.2.1 Let E(X,F ·) be an elliptic quasicomplex. We define the Euler
characteristic of this quasicomplex by

χ(E(X,F ·), A) := χ(Hs·(X,F ·), D),

where (Hs·(X,F ·), D) is any complex with the properties listed in Theorem 3.1.12.

As defined above, the Euler characteristic is independent neither of s ∈ R nor
of the choice of the differential D with (D)2 = 0. To prove this it suffices to show
that the cohomology of {Hs·(X,F ·), D} is independent of the choice of s and D.
Since the Laplacians ∆i = Di−1(Di−1)adj + (Di)adjDi are elliptic pseudodifferential
operators, Theorem 1.3.13 implies that the null-space of ∆i belongs to E(X,F i), i.e.
is independent of s. Finally, the abstract Hodge theory yields

H i(Hs(X,F ·), D)
top∼= ker ∆i.

The proof is completed by observing that the Euler characteristic of an elliptic
complex {E(X,F ·), D} is uniquely determined by the principal symbols of Di.

Using the Atiyah-Singer index formula [Pal65] we are able to evaluate the index
of an elliptic quasicomplex.

Theorem 3.2.2 Let E(X,F ·) be an elliptic quasicomplex. Then

χ(E(X,F ·)) =

∫
T ∗X

ch (d(A⊕A∗)e) T (TCX)

holds.

Proof. Since the analytical index does only depend on the principal symbols,
the assertion follows immediately from the Atiyah-Singer index theorem for elliptic
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operators. Namely, if {E(X,F ·), A} is an elliptic complex over X, we split the space
V = ⊕E(X,F i) into the sum

V = V even ⊕ V odd

with V even = ⊕E(X,F 2i) and V odd = ⊕E(X,F 2i+1) and consider the block operator

(A⊕A∗)e : E(X,⊕F 2i)→ E(X,⊕F 2i+1)

given by 
A0 A1∗ 0 0 . . .
0 A2 A3∗ 0 . . .
0 0 A4 A5∗ . . .
. . . . . . . . . . . . . . .

 .

Then (A⊕A∗)e is elliptic and for the Euler characteristic of the complex we find

χ(E(X,F ·)) =

∫
T ∗X

ch (d(A⊕A∗)e) T (TCX).

�
It should be noted that for elliptic quasicomplexes of pseudodifferential operators

of different order the ellipticity of (A ⊕ A∗)e is understood in the sense of Douglis-
Nirenberg.

Example 3.2.3 We consider the connection quasicomplex of Example 3.1.5

Ω ·(X,F ) : 0→ E(X,F )
∂0→ Ω1(X,F )

∂1→ . . .
∂n−1

→ Ωn(X,F )→ 0.

Since the quasicomplex is elliptic, there is an elliptic complex of pseudodifferential
operators

(Ω ·(X,F ), D) : 0→ E(X,F )
D0

→ Ω1(X,F )
D1

→ . . .
Dn−1

→ Ωn(X,F )→ 0

satisfying ∂i−Di ∈ Ψ0
cl(X;F i, F i+1) for all i = 0, 1, . . . , n. The Euler characteristic

of Ω ·(X,F ) is defined by

χ(Ω ·(X,F )) := χ(Ω ·(X,F ), D).

Moreover, χ(Ω ·(X,F )) = ind (∂ + ∂∗)e, where

(∂ + ∂∗)e : E(X,⊕(F ⊗ Λ2iT ∗X))→ E(X,⊕(F ⊗ Λ2i+1T ∗X))

is the block operator 
∂0 ∂1∗ 0 0 . . .
0 ∂2 ∂3∗ 0 . . .
0 0 ∂4 ∂5∗ . . .
. . . . . . . . . . . . . . .

 .



CHAPTER 3. APPLICATIONS 65

Let A be defined by the commutative diagram

E(X,⊕(F ⊗ Λ2iT ∗X))
(∂+∂∗)e−→ E(X,⊕(F ⊗ Λ2i+1T ∗X))

↑∼= ↑∼=
E(X,F ⊗ (⊕Λ2iT ∗X))

A−→ E(X,F ⊗ (⊕Λ2i+1T ∗X))

where the isomorphisms are canonical. We obtain

ind(∂ + ∂∗)e = ind(A),

and the Atiyah-Singer index formula yields

χ(Ω ·(X,F )) =

∫
T ∗X

ch (d(A)) T (TX) =

∫
T ∗X

ch (F ) ch (d(d⊕ d∗)e) T (TX).

We thus find

χ(Ω ·(X,F )) = k

∫
T ∗X

ch (d(d⊕ d∗)e) T (TX)

= k χ(Ω ·(X))

which is k χ(X) by the Gauß-Bonnet theorem, see for instance [Pal65, Ch. V, § 2]
and elsewhere. We have used the fact that the only nontrivial cohomology class of
ch (d(d⊕ d∗)e) T (TX) is that at degree 2n, and the summand of degree 0 in chF is
k = rankF .

3.2.2 Geometric quasiendomorphisms

Suppose that {E(X,F ·), A} is a quasicomplex with smoothing curvature. By a
quasiendomorphism of {E(X,F ·), A} is meant a family E = {Ei} of bounded lin-
ear selfmappings Ei of E(X,F i), such that Ei+1Ai = AiEi is satisfied modulo
smoothing operators Ψ−∞(X;F i, F i+1) for all i = 0, 1, . . . , N − 1. As mentioned,
there is a perturbation D of the differential A by smoothing operators, such that
{E(X,F ·), D} is a complex. Moreover, a slight change in the proof of Lemma 2.2.6
shows that there is an endomorphism Ẽ = {Ẽi} of {E(X,F ·), D} with the property
that Ẽi − Ei ∈ Ψ−∞(X;F i) for all i = 0, 1, . . . , N . For a quasiendomorphism E of
an elliptic quasicomplex {E(X,F ·), A} we introduce the Lefschetz number L (E,A)
by Definition 2.3.4, where the traces are evaluated in Sobolev spaces, as clarified
above.

Clearly, this definition is independent of the particular choice of s. For the
cohomology of the elliptic complex {Hs·(X,F ·), D} does not depend on s and it
just amounts to that of {E(X,F ·), D}. Hence, if every map Ei ∈ L(E(X,F i))
extends to a bounded linear selfmap of Hsi(X,F i) for s large enough, then the same
is true for Ẽi and so the Lefschetz number L (Ẽ,D) can be also evaluated for the
complex {Hs·(X,F ·), D} of Hilbert spaces.

Let f be a smooth selfmap of the manifold X and f∗F i the induced bundles. The
maps f∗ : E(X,F i)→ E(X, f∗F i) given by (f∗u)(x) = u(f(x)) are linear. Moreover,
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we consider smooth bundle homomorphisms hi : f∗F i → F i. By abuse of notation,
we use the same letter hi to designate the induced maps hi : E(X, f∗F i)→ E(X,F i)
of sections. Then the compositions Ei := hi ◦ f∗ are obviously selfmaps of E(X,F i).
More precisely, we define

Eiu(x) = hi(x)u(f(x))

for any u ∈ E(X,F i).

Definition 3.2.4 The family E = {hi◦f∗} is called a geometric quasiendomorphism
of {E(X,F ·), A} if the equality AiEi = Ei+1Ai holds modulo smoothing operators
for all i = 0, 1, . . . , N − 1.

Obviously, the geometric quasiendomorphisms E to be considered fail to be of
trace class, hence the Euler identity of Lemma 2.3.3 no longer applies. However,
using the facts that Ẽi and

Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di ∈ L(E(X,F i))

are homotopic and Id − Di−1P i − P i+1Di ∈ Ψ−∞(X;F i) holds, we can exploit
Theorem 19.4.1 of [Hoe85] and obtain

L (Ẽ,D) = L (Ẽ −DẼP − ẼPD,D)

=
N∑
i=0

(−1)i tr (Ẽi −Di−1Ẽi−1P i − ẼiP i+1Di)

=
N∑
i=0

(−1)i tr (Ẽi −Ai−1Ei−1P i − EiP i+1Ai),

where the traces are evaluated by restricting the (not necessarily smooth) kernels.
Hence, we can compute the Lefschetz number by the explicit formula of Corollary
2.3.5

L (E,A) :=

N∑
i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)

where P is a parametrix of the quasicomplex {E(X,F ·), A}, cf. Lemma 7.2 of [ST00].

3.2.3 The fixed point formula

Denote by Fix (f) := {p ∈ X : f(p) = p} the set of fixed points of a smooth self-
mapping f of X. An isolated fixed point is said to be simple, if det(1 − f ′(p)) 6= 0
is fulfilled. The following theorem presents a natural generalisation of the Lef-
schetz fixed point formula for elliptic complexes on a compact closed manifold due
to [AB67].

Theorem 3.2.5 Assume E = {hi ◦ f∗}i=0,1,...,N is a geometric quasiendomorphism
of an elliptic quasicomplex {E(X,F ·), A} with smoothing curvature and f has only
simple fixed points. Then

L (E,A) =
∑

p∈Fix(f)

ι(p),
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where

ι(p) =

∑
(−1)i trhi(p)

| det(Id− f ′(p))|
.

Proof. The proof follows the scheme suggested by Fedosov in [Fed91]. We pick
a partition of unity {φν} on X with the property that each φν either vanishes or is
equal to 1 in a neighbourhood of any fixed point of f .

Let further ψ0 be a function of compact support on T ∗X, such that ψ0(ξ) ≡ 1
near ξ = 0, and let ψ∞ = 1−ψ0. In local coordinates on X, we introduce operators
Ψ0,ν and Ψ∞,ν by

Ψ0,νu = F−1
ξ 7→xψ0(~ξ)Fx 7→ξ (φνu) ,

Ψ∞,νu = F−1
ξ 7→xψ∞(~ξ)Fx 7→ξ (φνu) ,

F being the Fourier transform and ~ an arbitrary positive constant. These operators
decompose the identity operator. Moreover, the operators Ψ0,ν are smoothing and
hence of trace class on each Sobolev space. We can assert, by the Lidskii theorem,
that

trAiEiP i+1Ψ0,ν = trEiP i+1Ψ0,νA
i

whence

N∑
i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)

=
∑
ν

N∑
i=0

(−1)i trEiΨ0,ν

+
∑
ν

N∑
i=0

(−1)i tr (Ei −Ai−1Ei−1P i − EiP i+1Ai)Ψ∞,ν

−
∑
ν

N−1∑
i=0

(−1)i trEiP i+1
[
Ai,Ψ0,ν

]
, (3.2.1)

[
Ai,Ψ0,ν

]
being the commutator of Ai and Ψ0,ν .

In a local chart close to a fixed point of f , the operator EiΨ0,ν is given by the
iterated integral

EiΨ0,νu (x) =
1

(2π~)n

∫ ∫
e
ı
~ 〈ξ,f(x)−y〉 hi(x)ψ0(ξ)φν(y)u(y) dydξ,

and consequently

trEiΨ0,ν =
1

(2π~)n

∫ ∫
e
ı
~ 〈ξ,f(x)−x〉 trhi(x)ψ0(ξ)φν(x) dξdx.

For ~ → 0, the limit of the integral on the right hand side of this equality can
be evaluated by the method of stationary phase. For this purpose we consider the
phase function

ϕ(x, ξ) = 〈ξ, f(x)− x〉.
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The stationary points are just the points where ξ = 0 and f(x)− x = 0. Moreover,
the gradient of ϕ has the form

ϕ′(x, ξ) =
(
〈ξ, f ′(x)− Id〉, f(x)− x

)
,

where Id stands actually for the unity (n× n) -matrix. An easy computation shows
that the Hesse matrix of ϕ at a stationary point (p, 0) just amounts to

ϕ′′(p, 0) =

(
0 f ′(p)− Id

f ′(p)− Id 0

)
.

We thus obtain √
| detϕ′′(p, 0)| = | det(f ′(p)− Id)|.

Since λ ∈ R is an eigenvalue of ϕ′′(p, 0) if and only if −λ is an eigenvalue, the
signature of this matrix is zero. Now, we apply Lemma 1.1.7 to the integral above.
In the principal part independent of ~ the contribution of a fixed point p is equal to

trhi(p)

| det(Id− f ′(p))|
.

On the other hand, the remaining terms on the right side of (3.2.1) are oscillatory
integrals whose phase function has no critical points. Indeed,[

Ai,Ψ0,ν

]
=

[
Ai,Ψ0,ν − Id

]
= −

[
Ai,Ψ∞,ν

]
close to each fixed point and the function ψ∞ vanishes in a neighbourhood of ξ = 0.
Hence it follows that the remaining summands in (3.2.1) are rapidly decreasing as
~→ 0. Since the left hand side of (3.2.1) is actually independent of ~, we arrive at
the desired formula.

�

Example 3.2.6 Assume X is oriented and E(X,F ·) := Ω ·(X) is the de Rham
complex of X. Then ι(p) proves to be the topological degree of the (local) mapping
x 7→ x− f(x) at p, i.e.

ι(p) =
det(Id− f ′(p))
|det(Id− f ′(p))|

= ±1.

3.3 Outlook

We have studied elliptic quasicomplexes on compact closed manifolds. The paper
[KTT07] treats elliptic quasicomplexes on compact manifolds with boundary. The
underlying theory of operators in the Boutet de Monvel calculus is much more tech-
nical, cf. [dM71]. The theory of quasicomplexes is of great interest also on other
singular spaces like the stratified manifolds. As but one familiar example we mention
the Dolbeaux complex on a complex manifold. Depending on context there might
exist diverse index and Lefschetz fixed point formulas, see for instance [Gil79] and
[BS91].
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