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Introduction

In Mathematics and its applications there exist operations that when inputting

some values no outputs exist. Those operations are called partial operations and

operations where the output exists for every input are called total operations. Let

On(A) be the set of all n-ary total operations on the set A and let P n(A) be the set of

all n-ary partial operations on A. Let O(A) :=
∞⋃

n=1

On(A) and let P (A) :=
∞⋃

n=1

P n(A).

We have O(A) ⊆ P (A). A partial algebra A := (A; (fA
i )i∈I) is a pair consisting of a

set A and a sequence of partial operations (fA
i )i∈I which assigns to every element

of the index set I an ni-ary partial operation fA
i defined on A. To every i ∈ I we

assign a natural number ni which we call arity of fA
i . Let (ni)i∈I be the sequence

of arities where fA
i is ni-ary. The sequence τ = (ni)i∈I is called type of the partial

algebra A. Let Alg(τ) be the set of all total algebras of type τ and let PAlg(τ) be

the set of all partial algebras of type τ . We have Alg(τ) ⊆ PAlg(τ).

The concepts of a strong identity and a strong regular identity were introduced

by B. Staruch and B. Staruch in [48]. An equation s ≈ t of type τ is called a strong

identity in the partial algebra A (in symbols A |=
s
s ≈ t) if the right hand side is

defined whenever the left hand side is defined and conversely and both are equal.

An equation s ≈ t of type τ is called a strong regular identity in the partial algebra

A (in symbols A |=
sr
s ≈ t) if the equation s ≈ t is a strong identity in A and the

variables occurring in the term s are equal to the variables occurring in the term t.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and let Σ ⊆ Wτ (X)2 be

a set of equations. Consider the connection between PAlg(τ) and Wτ (X)2 given by

the following two operators:

Idsr : P(PAlg(τ)) → P(Wτ (X)2) and

Modsr : P(Wτ (X)2) → P(PAlg(τ)) with

IdsrK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈K (A |=
sr

s ≈ t)} and

ModsrΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
sr

s ≈ t)}.

Let V ⊆ PAlg(τ) be a class of partial algebras. The class V is called a strong

regular variety of partial algebras if V = ModsrIdsrV .
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B. Staruch and B. Staruch proved in [48] that a class K is a strong regular variety

of partial algebras of type τ iff K is closed under closed homomorphic images, initial

segments, closed subalgebras, direct products and the pin operator which describes

the one-point extension of partial to total algebras.

The concept of a strong regular equational theory was introduced by B. Staruch

and B. Staruch in [48]. A set of regular equations Σ ⊆ Wτ (X)2 is called a strong

regular equational theory if there is a class of partial algebras K ⊆ PAlg(τ) such

that Σ = IdsrK.

A strong identity s ≈ t in the partial algebra A of type τ is called a strong

hyperidentity of A if, for every substitution of terms of appropriate arity for the

operation symbols in s ≈ t, the resulting strong identity holds in A. This leads

to the definition of a map σ : {fi|i ∈ I} → Wτ (X) such that σ(fi) is an ni-ary

term of type τ . Any such mapping σ is called a hypersubstitution of type τ . This

concept was first introduced by K. Denecke, D. Lau, R. Pöschel and D. Schweigert

in [30]. Any hypersubstitution σ uniquely determines a mapping, denoted by σ̂,

on the set of all terms of type τ . Using such induced maps the binary operation

◦h can be defined by (σ ◦h σ
′)(fi) := σ̂[σ′(fi)] for all i ∈ I. Let Hyp(τ) be the

set of all hypersubstitutions of type τ . Indeed, (Hyp(τ); ◦h, σid) forms a monoid

where σid maps fi to fi(x1, . . . , xni
). Regular hypersubstitutions were defined in [34]

as hypersubstitutions with the property that for every fundamental operation fi

of arity ni, all the variables x1, . . . , xni
occur in the term σ(fi) for all i ∈ I. Let

HypR(τ) be the set of all regular hypersubstitutions of type τ . Then HypR(τ) :=

(HypR(τ); ◦h, σid) forms a monoid.

As D. Welke proved in [49] a necessary condition for σ̂[s] ≈ σ̂[t] to be a strong

regular identity in a partial algebra A whenever s ≈ t is a strong regular identity in

A is that σ is regular. So, to define strong regular hyperidentities we will consider

only regular hypersubstitutions.

Let M be a submonoid of HypR(τ) and let A be a partial algebra of type τ . Then

a strong regular identity s ≈ t ofA is called a strong regular M-hyperidentity ofA (in

symbols A |=
srMh

s ≈ t) if for every regular hypersubstitution σR ∈ M the equation

σ̂R[s] ≈ σ̂R[t] is also a strong regular identity of A. In the case, if M = HypR(τ),
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strong regular M -hyperidentities are called strong regular hyperidentities.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and let Σ ⊆ Wτ (X)2

be a set of equations. Consider the connection between PAlg(τ) and Wτ (X)2 given

by the following two operators:

HMId
sr : P(PAlg(τ)) → P(Wτ (X)2) and

HMModsr : P(Wτ (X)2) → P(PAlg(τ)) with

HMId
srK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈K (A |=

srMh
s ≈ t)} and

HMModsrΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
srMh

s ≈ t)}.

The concept of a strong regular M -hyperequational theory was introduced by D.

Welke in [49]. A set of regular equations Σ ⊆ Wτ (X)2 is called a strong regular

M-hyperequational theory if there is a class of partial algebras K ⊆ PAlg(τ) such

that Σ = HMId
srK.

For M = HypR(τ) we speak of strong regular hyperequational theories, HIdsrK.

One of the most interesting concepts in this area is the concept of a solid strong

regular variety. Let A = (A; (fA
i )i∈I) be a partial algebra of type τ and σR ∈

HypR(τ). We let

σR(A) := (A; (σR(fi)
A)i∈I),

which is called derived algebra of type τ .

Let M be a submonoid of HypR(τ). We introduce two operators χE
M and χA

M .

Let Σ ⊆ Wτ (X)×Wτ (X) be a set of regular equations, s ≈ t ∈ Σ, we let

χE
M [s ≈ t] := {σ̂R[s] ≈ σ̂R[t] | σR ∈M} and

χE
M [Σ] :=

⋃
s≈t∈Σ

χE
M [s ≈ t].

For any partial algebra A of type τ and K ⊆ PAlg(τ), we let

χA
M [A] := {σR(A) | σR ∈M} and

χA
M [K] :=

⋃
A∈K

χA
M [A].

A strong regular variety V of type τ is called M-solid if V = χA
M [V ] and if

M = HypR(τ), then V is called solid.
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One of the aims of this thesis is to study M -solid strong regular varieties of

partial algebras for different submonoids and subsemigroups M of HypR(τ).

Our work goes in two directions. At first we want to transfer definitions, concepts

and results of the theory of hyperidentities and solid varieties from the total to the

partial case.

1) The concept of an n-full term of type τ was considered in [18]. Using n-full terms

we define strong regular n-full identities in partial algebras of type τ . We use the

concept of strong regular n-full satisfaction to define the relation Rrnf which is a

subrelation of the relation Rs defined by strong satisfaction. As a subrelation of Rs

the relation Rrnf is Galois-closed (see e.g. [28]). All n-ary n-full terms of type τ

form with respect to superposition of terms an algebraic structure n − clonenF (τ)

which satisfies the axioms of a Menger algebra of rank n and the set of all strong

regular n-full identities of a strong regular variety forms a congruence relation on

n− clonenF (τ). The concept of an n-full hypersubstitution of type τ was considered

in [18]. We give the definition of a regular n-full hypersubstitution of type τ and

define the concept of a strong regular n-full hyperidentity for partial algebras. We

use the concept of a regular n-full hypersubstitution of type τ to define the operators

χA
RNF and χE

RNF and prove that (χA
RNF , χ

E
RNF ) forms a conjugate pair of additive

operators. These operators are in general not closure operators. Therefore the fixed

points under χA
RNF are characterized only by three instead of four equivalent condi-

tions in the case of closure operators ([27]).

2) We consider strongly full varieties as a special case of strong regular n-full vari-

eties. Using strongly full terms we define the concept of a strongly full identity in

a partial algebra of type τn = (ni)i∈I with ni = n for all i ∈ I. All strongly full

terms of type τn form with respect to superposition of terms an algebraic structure

cloneSF (τn) which satisfies the axioms of a Menger algebra of rank n and the set of all

strongly full n-ary identities IdSF
n V of a strongly full variety V forms a congruence

relation on cloneSF (τn). We give the definition of a strongly full hyperidentity. This

concept is a special case of a strong regular n-full hyperidentity. Then we consider

the quotient algebra cloneSFV := cloneSF (τn)/IdSF
n V and study the relationship

between strongly full hyperidentities in V and identities in cloneSFV . A strongly
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full variety V of partial algebras of type τn is called n−SF − solid if every identity

s ≈ t ∈ IdSF
n V is satisfied as a strongly full hyperidentity in V . In [19] the concept

of an O-solid variety and of i-closedness for total algebras were defined. Now we

define an OSF -solid strongly full variety and of ISF -closedness for partial algebras.

3) The concepts of unsolid and fluid varieties were considered in [46], [20], [21], and

[22]. We will be interested in unsolid and fluid strong varieties of partial algebras. In

[40] an equivalence relation ∼V on Hyp(τ) with respect to a variety V was defined

by σ1 ∼V σ2 iff σ1(fi) ≈ σ2(fi) ∈ IdV for all operation symbols fi, i ∈ I, and in [22]

an equivalence relation ∼V−iso on Hyp(τ) with respect to a variety V was defined by

σ1 ∼V−iso σ2 iff ∀A ∈ V (σ1(A) ∼= σ2(A)). We will be also interested in equivalence

relations ∼V and ∼V−iso on HypC
R(τ) (the set of all regular C-hypersubstitutions of

type τ).

4) The concepts of M -solid quasivarieties and M -hyperquasi-equational theories

were considered in [14]. We will be interested in M -solid strong quasivarieties of

partial algebras and strong M -hyperquasi-equational theories for partial algebras.

The second direction of our work is to follow ideas which are typical for the partial

case.

1) The collection of all clones of partial operations defined on a fixed set A, |A| > 1,

forms a complete atomic and dually atomic lattice. The maximal elements of this

lattice were determined in [43] and [44]. The minimal clones are determined in [16],

[37], [38] and [45] modulo to the knowledge of minimal total clones. But, the de-

termination of all minimal total clones is yet open. Here we determine all minimal

partial clones with a special property which is called a strong solidifyability.

2) A hypersubstitution of type τ is a total mapping σ : {fi|i ∈ I} → Wτ (X). Then

we extend the concept of a hypersubstitution of type τ to a partial hypersubstitution

of type τ and we define the concept of a regular partial hypersubstitution of type τ .

On the basis of regular hypersubstitutions we develop the whole theory of conjugate

pairs of additive closure operators.

This work consists of nine chapters.

Chapter 1 presents some basic concepts on partial algebras and some basic con-

cepts from Universal Algebra which are needed.



xii CONTENTS

In Chapter 2, we give an example that the set Wτ (Xn)A (the set of all n-ary

term operations on the partial algebra A) is different from the set of all partial

operations generated by {fA
i |i ∈ I} using superposition and we introduce another

kind of terms, so-called C-terms. In Section 2.2, the concept of a strong identity

(by usual terms) which was introduced in [48] is used to define model classes and

the corresponding Galois connection. In [5], it was proved that a class K is a strong

variety iff K = HcScPfiltK ∪ {∅} where ∅ is the empty algebra. The concept of a

strong identity (by C-terms) which was introduced in [2] is used to define model

classes and the corresponding Galois connection. In [2], it was proved that a class

K is a strong variety iff K = HcScPfiltK. In Section 2.3, the concept of a strong

regular identity (by usual terms) which was introduced in [48] is used to define

model classes and the corresponding Galois connection. We show that in the case of

C-terms strong identities can be replaced with strong regular identities.

In Chapter 3, the concept of a regular hypersubstitution which was introduced

in [49] is used to define strong regular M -hyperidentities and M -solid strong regular

varieties where M is a submonoid of the monoid of all regular hypersubstitutions.

In Section 3.2, the concept of a regular C-hypersubstitution which was introduced

in [49] is used to define strong M -hyperidentities and M -solid strong varieties where

M is a submonoid of regular C-hypersubstitutions.

In Chapter 4, we prove that the relation Rrnf is a Galois-closed subrelation

of Rs and we show that the set of all strong regular n-full identities of a strong

regular variety is a congruence relation on the Menger algebra n − clonenF (τ) of

rank n. Further, we define the operators χA
RNF and χE

RNF which are only monotone

and additive and we show that the set of all fixed points of these operators are

characterized only by three instead of four equivalent conditions for the case of

closure operators.

In Chapter 5, we prove that the algebra (P n(A);Sn,A) is a Menger algebra of

rank n where Sn,A is the superposition operation of partial operations and we show

that IdsF
n V is a congruence relation on the Menger algebra clonesF (τn) of rank n.

Using this result, we consider the quotient algebra cloneSFV := cloneSF (τn)/IdSF
n V

and we prove that s ≈ t is a strongly full hyperidentity in V iff s ≈ t is an identity in
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cloneSFV where V is a strongly full variety of partial algebras. We define the concept

of an n − SF − solid strongly full variety and we prove that V is n − SF − solid

iff cloneSFV is free with respect to itself, freely generated by the independent set

{[fi(x1, . . . , xn)]IdSF
n V | i ∈ I}. At the end of this chapter, we define the concepts

of ISF − closedness and OSF − solid strongly full variety and we prove that V is

ISF − closed iff it is OSF − solid where V = ModSF IdSF
n V .

In Chapter 6, we show that∼V and∼V−iso are right congruences on HypC
R(τ). We

use the concept of a V -proper hypersubstitution and of an inner hypersubstitution

to define the concepts of unsolid and fluid strong varieties and we prove that if V is

a fluid strong variety and [σid]∼V
= [σid]∼V−iso

, then V is unsolid. Furthermore, we

generalize unsolid and fluid strong varieties to n-fluid and n-unsolid strong varieties

and we show that if V is n-fluid and ∼V |P (V ) =∼V−iso |P (V ) then V is k-unsolid for

k ≥ n where P (V ) is the set of all V -proper hypersubstitutions of type τ . Finally,

we give an example of an n-unsolid strong variety of partial algebras.

In Chapter 7, we prove that an M -solid strong quasivariety satisfies four equiva-

lent conditions and we prove that a strong M -hyperquasi-equational theory satisfies

four equivalent conditions.

In Chapter 8, we prove that strong varieties of different types are equivalent

if and only if their clones of all term operations of different types are isomorphic.

We study minimal partial clones (see [3]) and we define the concept of a strongly

solidifyable partial clone. After this, we characterize minimal partial clones which

are strongly solidifyable.

Finally in Chapter 9 we prove that the set of all regular partial hypersubstitutions

forms a submonoid of the set of all partial hypersubstitutions. Next, we consider

only regular partial hypersubstitutions of type τ = (n), n ∈ N+ and we prove that

the extension of a partial hypersubstitution is injective if and only if the partial

hypersubstitution is a regular partial hypersubstitution of type τ = (n) when n ≥ 2.

At the end of this chapter, we define the concept of a PHypR(τ)-solid strong regular

variety of partial algebras and we prove that a PHypR(τ)-solid strong regular variety

satisfies four equivalent conditions.
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Chapter 1

Basic Concepts

In this chapter, certain basic notions and results are presented. In Section 1.1, we

recall the definition of partial algebras, homomorphisms, subalgebras and different

kinds of products. For more details we refer to [2], [4], [5]. In Section 1.2 and Section

1.3, we recall the definition of Galois connections, conjugate pairs of additive closure

operators and give a brief discussion about their properties (see [1], [24], [27], [28]).

1.1 Partial Algebras and Superposition of Partial

Operations

Let A be a non-empty set and n ∈ N, where N = {0, 1, 2, . . .} is the set of natural

numbers. We define A0 = {∅}, and An = {(a1, . . . , an) | a1, . . . , an ∈ A} if n ∈ N+

(N+ := N \ {0}). Let P n(A) := {fA : An (→ A} be the set of all n-ary partial

operations defined on the set A. If n = 0, then we suppose that A 6= ∅. Let P (A) :=
∞⋃

n=1

P n(A) be the set of all partial operations on A.

If fA ∈ P n(A) is a partial operation, then

domfA := {(a1, . . . , an) | ∃a ∈ A (fA(a1, . . . , an) = a)} ⊆ An,

ImfA := {a ∈ A | ∃(a1, . . . , an) ∈ domfA (a = fA(a1, . . . , an))} ⊆ A

and

graphfA := {(a1, . . . , an, a) | (a1, . . . , an) ∈ domfA (fA(a1, . . . , an) = a)} ⊆ An+1.

1
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Let O(A) ⊂ P (A) be the set of all total operations defined on A, i.e. O(A) :=
∞⋃

n=1

On(A) with On(A) := {fA ∈ P n(A) | domfA = An}.
If f : A (→ B and g : B (→ C, then the composition g ◦ f of f and g is the

partial function:

g ◦ f : A (→ C

dom g ◦ f := {a ∈ A | a ∈ domf and f(a) ∈ domg}.

Special n-ary (total) operations are the projections to the i-th argument, where

1 ≤ i ≤ n:

en,A
i : An → A

en,A
i (a1, . . . , an) := ai.

Let D ⊆ An be an n-ary relation on A. Then for every positive integer n and

each 1 ≤ i ≤ n we denote by en,A
i,D the n-ary i-th partial projection defined by

en,A
i,D (a1, . . . , an) = ai

for all (a1, . . . , an) ∈ D.

Let JA := {en,A
i,D | 1 ≤ i ≤ n and D = An} be the set of all total projections defined

on A and let Jn
A be the set of all total n-ary projections defined on A.

For n,m ∈ N+ we define the superposition operation

Sm,A
n : Pm(A)× (P n(A))m → P n(A)

Sm,A
n (fA, gA

1 , . . . , g
A
m)(a1, . . . , an) := fA(gA

1 (a1, . . . , an), . . . , gA
m(a1, . . . , an)).

Here (a1, . . . , an) ∈ domSm,A
n (fA, gA

1 , . . . , g
A
m) iff (a1, . . . , an) ∈

m⋂
j=1

domgA
j and for

bj = gA
j (a1, . . . , an), we have (b1, . . . , bm) ∈ domfA, i.e. domSm,A

n (fA, gA
1 , . . . , g

A
m) :=

{(a1, . . . , an) ∈ An | (a1, . . . , an) ∈
m⋂

j=1

domgA
j and (b1, . . . , bm) ∈ domfA}.

A partial clone C on A is a superposition closed subset of P (A) containing JA.

A proper partial clone is a partial clone C containing at least an n-ary operation fA

with domfA 6= An. If C ⊆ O(A) then C is called a total clone.
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Partial clones can be regarded as subalgebras of the heterogeneous algebra

((P n(A))n∈N+ ; (Sm,A
n )m,n∈N+ , (Jn

A)n∈N+)

where N+ is the set of all positive integers.

This remark shows that the set of all partial clones on A, ordered by inclusion,

forms an algebraic lattice LP (A) in which arbitrary infimum is the set-theoretical

intersection. For F ⊆ P (A) by 〈F 〉 we denote by the least partial clone containing

F .

Any mapping ϕ = (ϕ(n))n∈N+ : C → C ′ from a clone C ⊆ P (A) into C ′ ⊆ P (B)

is a clone homomorphism if

(i) arity (f)= arity ϕ(f) for f ∈ C,

(ii) ϕ(en,A
i ) = en,B

i (1 ≤ i ≤ n ∈ N+),

(iii) ϕ(Sn,A
m (fA, gA

1 , . . . , g
A
n )) = Sn,B

m (ϕ(fA), ϕ(gA
1 ), . . . , ϕ(gA

n )) for fA ∈ C(n) and

gA
1 , . . . , g

A
n ∈ C(m).

(Here ϕ(fA) means ϕ(n)(fA) where fA is n-ary).

Let (fi)i∈I be a sequence of operation symbols, where I is an index set. To each

fi we assign an integer ni > 0 as its arity . A type τ is the sequence of arities of fi

for all i ∈ I. We always write τ := (ni)i∈I .

Let τ = (ni)i∈I be a type with the sequence of operation symbols (fi)i∈I . A partial

algebra of type τ is an ordered pair A := (A; (fA
i )i∈I), where A is a non-empty set

and (fA
i )i∈I is a sequence of partial operations on A indexed by a non-empty index

set I such that to each ni−ary operation symbol fi there is a corresponding ni−ary

operation fA
i on A. (If ni > 0 for all i ∈ I, we can also consider the empty algebra,

i.e. A = ∅).
The set A is called the universe of A and the sequence (fA

i )i∈I is called the

sequence of fundamental operations of A. We sometimes write A := (A; (fA
i )i∈I).

We denote by PAlg(τ) the class of all partial algebras of type τ .

Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be partial algebras and let B ⊆ A. A

partial algebra B is called a weak subalgebra of the partial algebra A, if

graphfB
i ⊆ graphfA

i .

A partial algebra B is called a relative subalgebra of the partial algebra A, if
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graphfB
i = graphfA

i ∩Bni+1.

A partial algebra B is called a closed subalgebra of the partial algebra A, if

graphfB
i = graphfA

i ∩ (Bni × A).

A relative subalgebra B of a partial algebra A is an initial segment in A iff for

all i ∈ I and for all (a1, . . . , ani
) ∈ Ani if fA

i (a1, . . . , ani
) ∈ B then aj ∈ B for all j

with 1 ≤ j ≤ ni.

Let A = (A; (fA
i )i∈I) and B = (B; (fB

i )i∈I) be partial algebras. A function h :

A → B is called a homomorphism of A into B iff for all fi, i ∈ I and for all

(a1, . . . , ani
) ∈ Ani and a ∈ A the following holds:

if fA
i (a1, . . . , ani

) = a, then fB
i (h(a1), . . . , h(ani

)) = h(a).

A homomorphism h : A → B is called a full homomorphism of A into B iff for all

fi, i ∈ I and for all (a1, . . . , ani
) ∈ Ani and a ∈ A the following holds:

if (h(a1), . . . , h(ani
)) ∈ domfB

i and fB
i (h(a1), . . . , h(ani

)) = h(a), then there ex-

ists (a′1, . . . , a
′
ni

) ∈ Ani , such that (h(a′1), . . . , h(a′ni
)) = (h(a1), . . . , h(ani

)) and

(a′1, . . . , a
′
ni

) ∈ domfA
i .

A homomorphism h : A→ B is called a closed homomorphism of A into B iff for all

fi, i ∈ I and for all (a1, . . . , ani
) ∈ Ani the following holds:

if (h(a1), . . . , h(ani
)) ∈ domfB

i , then (a1, . . . , ani
) ∈ domfA

i .

Let (Aj)j∈J be a family of partial algebras of type τ , then the direct product∏
j∈J

Aj is a partial algebra with
∏
j∈J

Aj as its universe and the operations f

∏
j∈J

Aj

i

defined for every i ∈ I as follows

f

∏
j∈J

Aj

i ((a1j)j∈J , . . . , (anij)j∈J) := (f
Aj

i (a1j, . . . , anij))j∈J .

This means, the left hand side is defined iff for all j ∈ J , we have (a1j, . . . , anij) ∈
domf

Aj

i .

Let (Aj)j∈J be a family of partial algebras of type τ where J = {1, . . . , n}.

A =
∏
j∈J

∣∣∣∣
F

Aj is called filter product of (Aj)j∈J if

([a1]θF
, . . . , [an]θF

) ∈ domfA
i iff (a1j, . . . , anj) ∈ domf

Aj

i where {j ∈ J} ∈ F

and
∏
j∈J

∣∣∣∣
F

Aj := {[a]θF
| a ∈

∏
j∈J

Aj}.
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1.2 Closure Operators and Galois Connections

Lattices form important examples of universal algebras (see [25]).

An ordered pair (L,≤) is called a partially ordered set if L is a non-empty set

and ≤ is a partial order on L, i.e. a relation ≤ satisfying the reflexive law, the anti-

symmetric law and the transitive law. A partially ordered set (L,≤) is called a lattice

if for every a, b ∈ L both sup{a, b} (supremum of a and b) and inf{a, b} (infimum of

a and b) exist in L. Let M be a non-empty subset of L. Then M := (M,≤) is called

sublattice of L := (L,≤) if a, b ∈ M implies sup{a, b} ∈ M and inf{a, b} ∈ M , a

partially ordered set (L,≤) is called a complete lattice if for every nonempty subset

A of L both supA and infA exist in L.

Note that the lattice (L,≤) can be considered as an algebra of type τ = (2, 2).

Indeed, we define two binary operations, denoted by ∨ and ∧, the so-called join and

meet, respectively, by: a∨ b := sup{a, b} and a∧ b := inf{a, b} for all a, b ∈ L. This

algebra satisfies a list of axioms containing the associative laws, the commutative

laws, the idempotent laws for both operations and the absorption laws, i.e. for all

a, b ∈ L, we get a ∨ (a ∧ b) = a = a ∧ (a ∨ b). Conversely every algebra of type

τ = (2, 2) satisfying these axioms is a lattice in the first sense.

Let A be a non-empty set and P(A) be the power set of A. A mapping γ :

P(A) → P(A) is called a closure operator on A if for any X, Y ∈ P(A), the following

conditions hold:

(i) X ⊆ γ(X) (extensivity);

(ii) X ⊆ Y ⇒ γ(X) ⊆ γ(Y ) (monotonicity);

(iii) γ(γ(X)) = γ(X) (idempotency).

A subset X of A is called a closed set with respect to the closure operator γ

if γ(X) = X. Let Hγ denote the set of all closed sets with respect to the closure

operator γ, the so-called closure system with respect to γ. In fact, Hγ forms a

complete lattice.

Proposition 1.2.1 ([6]) Let γ : P(A) → P(A) be a closure operator on A. Then

Hγ is a complete lattice with respect to set inclusion. For any set {Hi ∈ Hγ | i ∈ I},
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the meet and join operators are defined by∧
{Hi ∈ Hγ | i ∈ I} :=

⋂
i∈I

Hi,∨
{Hi ∈ Hγ | i ∈ I} :=

⋂
{H ∈ Hγ | H ⊇

⋃
i∈I

Hi} = γ(
⋃
i∈I

Hi).

The concept of a closure operator is closely connected to the next concept of a

Galois connection.

A Galois connection between sets A and B is a pair (µ, ι) of mappings µ : P(A) →
P(B) and ι : P(B) → P(A) such that for any X,X ′ ∈ P(A) and Y, Y ′ ∈ P(B) the

following conditions are fulfilled:

(i) X ⊆ X ′ ⇒ µ(X) ⊇ µ(X ′) and Y ⊆ Y ′ ⇒ ι(Y ) ⊇ ι(Y ′);

(ii) X ⊆ ιµ(X) and Y ⊆ µι(Y ).

Proposition 1.2.2 ([27]) Let (µ, ι) with µ : P(A) → P(B) and ι : P(B) → P(A)

be a Galois connection between sets A and B. Then

(i) µιµ = µ and ιµι = ι;

(ii) ιµ and µι are closure operators on A and B, respectively;

(iii) the closed sets under ιµ are exactly the sets of the form ι(Y ) for Y ⊆ B and

the closed sets under µι are exactly the sets of the form µ(X) for X ⊆ A;

(iv) µ(
⋃
i∈I

Xi) =
⋂
i∈I

µ(Xi), where Xi ⊆ A for all i ∈ I;

(v) ι(
⋃
i∈I

Yi) =
⋂
i∈I

ι(Yi), where Yi ⊆ B for all i ∈ I.

Note that any relation R ⊆ A × B between sets A and B induces a Galois

connection (µR, ιR) between A and B as follows:

We can define the mappings µR : P(A) → P(B) and ιR : P(B) → P(A) by

µR(X) := {y ∈ B | ∀x ∈ X((x, y) ∈ R)},

ιR(Y ) := {x ∈ A | ∀y ∈ Y ((x, y) ∈ R)}.

Conversely, for any Galois connection (µ, ι) between sets A and B, we define a

relation Rµ,ι by
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Rµ,ι =
⋃
{X × µ(X) | X ⊆ A}.

In fact, there is a one-to-one correspondence between Galois connections and rela-

tions between sets A and B.

Now we want to describe a way starting from a relation R ⊆ A × B and the

induced Galois connection (µ, ι) to obtain a certain subrelation of R which induces

a new Galois connection.

Let R and R′ be relations between sets A and B. Let (µ, ι) and (µ′, ι′) be the

Galois connections between A and B induced by R and R′, respectively. The relation

R′ is called a Galois-closed subrelation of R if,

(i) R′ ⊆ R and

(ii) ∀T ⊆ A,∀S ⊆ B (µ′(T ) = S ∧ ι′(S) = T ) ⇒ (µ(T ) = S ∧ ι(S) = T ).

The following are equivalent characterizations of Galois-closed subrelations.

Proposition 1.2.3 ([28]) Let R′ ⊆ R be relations between sets A and B. Then the

following are equivalent:

(i) R′ is a Galois-closed subrelation of R;

(ii) For any T ⊆ A, if ι′µ′(T ) = T then µ(T ) = µ′(T ), and for any S ⊆ B, if

µ′ι′(S) = S then ι(S) = ι′(S);

(iii) For all T ⊆ A and for all S ⊆ B the equations ι′µ′(T ) = ιµ′(T ) and µ′ι′(S) =

µι′(S) are satisfied.

From this definition, we can prove the following characterization of complete sub-

lattices of a complete lattice.

Theorem 1.2.4 ([1]) Let R ⊆ A × B be a relation between sets A and B, with

the induced Galois connection (µ, ι). Let Hιµ be the corresponding lattice of closed

subsets of A .

(i) If R′ ⊆ A× B is a Galois-closed subrelation of R, then the class UR′ := Hι′µ′

is a complete sublattice of Hιµ, where (µ′, ι′) is the Galois connection induced

by the relation R′.
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(ii) If U is a complete sublattice of Hιµ, then the relation

RU := ∪{T × µ(T ) | T ∈ U}

is a Galois-closed subrelation of R.

(iii) For any Galois-closed subrelation R′ of R and any complete sublattice U of

Hιµ we have URU = U and RUR′
= R′.

Let A be a non-empty set and P(A) be the power set of A. A mapping κ :

P(A) → P(A) is called a kernel operator on A if for any M,N ∈ P(A), the following

conditions hold:

(i) κ(M) ⊆M (intensivity);

(ii) M ⊆ N ⇒ κ(M) ⊆ κ(N) (monotonicity);

(iii) κ(κ(M)) = κ(M) (idempotency).

A kernel system on A is defined as a subset K ⊆ P(A) with the property that for

all B ⊆ K, the set
⋂
B is in K.

1.3 Conjugate Pairs of Additive Closure Opera-

tors

In this part we will define a particular pair γ := (γ1, γ2) of closure operators with

respect to a given relation R ⊆ A×B and after this we define a subrelation Rγ ⊆ R

of R via γ and study the interconnections between Galois connections induced by

Rγ and by R.

A closure operator γ : P(A) → P(A) on a set A is said to be additive if for all

subsets T of A

γ(T ) =
⋃
a∈T

γ(a)

(here we write γ(a) instead of γ({a})).
Let γ1 : P(A) → P(A), γ2 : P(B) → P(B) be closure operators on a set A and

on a set B, respectively. Let R ⊆ A×B be a given relation between A and B. Then
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(γ1, γ2) is called a conjugate pair with respect to R if for any t ∈ A and for any

s ∈ B
γ1(t)× {s} ⊆ R⇔ {t} × γ2(s) ⊆ R.

If (γ1, γ2) is a conjugate pair of additive closure operators with respect to a relation

R ⊆ A×B then for any T ⊆ A and for any S ⊆ B we have

γ1(T )× S ⊆ R⇔ T × γ2(S) ⊆ R.

Let γ := (γ1, γ2) be a conjugate pair of additive closure operators, with respect

to a relation R ⊆ A×B. Let Rγ be the following relation between A and B:

Rγ := {(t, s) ∈ A×B | γ1(t)× {s} ⊆ R}.

Theorem 1.3.1 ([24]) Let γ := (γ1, γ2) be a conjugate pair of additive closure

operators with respect to a given relation R ⊆ A × B. Let (µ, ι), (µγ, ιγ) be the

Galois connections between A and B induced by R and by Rγ, respectively.

Then for any T ⊆ A and for any S ⊆ B we have

(1) µγ(T ) = µγ1(T ), (1′) ιγ(S) = ιγ2(S),
(2) µγ(T ) ⊆ µ(T ), (2′) ιγ(S) ⊆ ι(S),
(3) γ2µγ(T ) = µγ(T ), (3′) γ1ιγ(S) = ιγ(S),
(4) γ1ιµγ(T ) = ιµγ(T ), (4′) γ2µιγ(S) = µιγ(S),
(5) µγιγ(S) = µιγ2(S), (5′) ιγµγ(T ) = ιµγ1(T ),
(6) µγιγ(S) = µιγ(S), (6′) ιγµγ(T ) = ιµγ(T ).

Theorem 1.3.2 ([24]) Let γ := (γ1, γ2) be a conjugate pair of additive closure op-

erators with respect to a given relation R ⊆ A × B, and let (µ, ι), (µγ, ιγ) be the

Galois connections between A and B induced by R and by Rγ, respectively. Then

I. For any T ⊆ A with ιµ(T ) = T and for any S ⊆ B with µι(S) = S the

following conditions (1)-(4) and (1′)-(4′), respectively, are equivalent:

(1) T = ιγµγ(T ), (1′) S = µγιγ(S),
(2) γ1(T ) = T , (2′) γ2(S) = S,
(3) µ(T ) = µγ(T ), (3′) ι(S) = ιγ(S),
(4) γ2µ(T ) = µ(T ), (4′) γ1ι(S) = ι(S).

II. For any T ⊆ A and for any S ⊆ B the following conditions are true:
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(1) γ1(T ) ⊆ ιµ(T ) ⇔ ιµ(T ) = ιγµγ(T ),
(2) γ1(T ) ⊆ ιµ(T ) ⇔ γ1ιµ(T ) ⊆ ιµ(T ),
(3) γ2(S) ⊆ µι(S) ⇔ µι(S) = µγιγ(S),
(4) γ2(S) ⊆ µι(S) ⇔ γ2µι(S) ⊆ µι(S).

Theorem 1.3.3 ([24]) Let γ := (γ1, γ2) be a conjugate pair of additive closure op-

erators with respect to a given relation R ⊆ A×B. Let (µ, ι), (µγ, ιγ) be the Galois

connections between A and B induced by R and by Rγ, respectively. Then Hµγιγ , the

class of all closed sets under the closure operator µγιγ, is a complete sublattice of

Hµι and Hιγµγ is a complete sublattice of Hιµ.



Chapter 2

Strong Regular Varieties

In this chapter we study strong regular varieties of partial algebras. In Section 2.1

we define terms, the superposition of terms and term operations of partial algebras

(see [49], [2], [47]). Since the set of all term operations of a partial algebra induced

by usual terms is different from the set of all partial operations produced by the set

of all fundamental operations of the partial algebra, we introduce another kind of

terms, so-called C-terms which were first introduced by W. Craig ([15]) (see also [2],

[49]). Then we define different kinds of strong identities in partial algebras, study

the corresponding Galois connections and model classes.

2.1 Terms, Superposition of Terms and Term Op-

erations

First we recall the usual definition of terms. Let n ∈ N+ and Xn = {x1, . . . , xn}
be an n−element set. The set Xn is called an alphabet and its elements are called

variables. To every operation symbol fi, we assign a natural number ni ≥ 1, the arity

of fi. Let τ = (ni)i∈I be a type such that the set of operation symbols {fi | i ∈ I}
is disjoint with Xn. An n−ary term of type τ is inductively defined as follows:

(i) every variable xj ∈ Xn is an n−ary term of type τ ;

(ii) if t1, . . . , tni
are n−ary terms of type τ and fi is an ni−ary operation symbol,

then fi(t1, . . . , tni
) is an n−ary term of type τ .

11
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The set Wτ (Xn) of all n-ary terms of type τ is the smallest set containing x1, . . . , xn

that is closed under finite application of (ii). The set of all terms of type τ over the

alphabet X := {x1, x2, . . .} is defined as disjoint union Wτ (X) :=
∞⋃

n=1

Wτ (Xn).

By using step (ii) in the definition of terms of type τ , the term algebra

Fτ (X) := (Wτ (X), (f̄i)i∈I)

of type τ , the so-called absolutely free algebra, can be defined by

f̄i(t1, . . . , tni
) := fi(t1, . . . , tni

)

for each operation symbol fi and t1, . . . , tni
∈ Wτ (X).

As for partial operations we can also define a superposition of terms. Clones of

terms are subsets of Wτ (X) which are closed under the operation of superposition

of terms and contain all variables. For each pair of natural numbers m and n greater

than zero, the superposition operation Sn
m maps one n-ary term and n m-ary terms

to an m-ary term, so that

Sn
m : Wτ (Xn)× (Wτ (Xm))n → Wτ (Xm).

The operation Sn
m is defined inductively, by setting

Sn
m(xj, t1, . . . , tn) := tj for any variable xj ∈ Xn, and

Sn
m(fr(s1, . . . , snr), t1, . . . , tn) := fr(S

n
m(s1, t1, . . . , tn), . . . , Sn

m(snr , t1, . . . , tn)).

Using these operations, we form the heterogeneous or multi-based algebra

clone τ := ( (Wτ (Xn))n>0; (Sn
m)n,m>0, (xi)i≤n,n≥1 ).

It is well-known and easy to check that this algebra satisfies the clone axioms

(C1) Sp
m(Z̃, Sn

m(Ỹ1, X̃1, . . . , X̃n), . . . , Sn
m(Ỹp, X̃1, . . . , X̃n))

≈ Sn
m(Sp

n(Z̃, Ỹ1, . . . , Ỹp), X̃1, . . . , X̃n),

(C2) Sm
m(λj, X̃1, . . . , X̃m) ≈ X̃j, for 1 ≤ j ≤ m,

(C3) Sm
m(X̃j, λ1, . . . , λm) ≈ X̃j, for 1 ≤ j ≤ m,

where Sp
m and Sn

m are operation symbols corresponding to the operations Sp
m, S

n
m

of clone τ , λ1, . . . , λm are nullary operation symbols and Z̃, Ỹ1, . . . , Ỹp, X̃1, . . . , X̃m

are variables. The algebra clone τ is also called a Menger system.
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Since the set Wτ (Xn) of all n-ary terms of type τ is closed under the superposition

operation Sn := Sn
n , there is a homogeneous analogue of this structure. The algebra

(Wτ (Xn);Sn, x1, . . . , xn) is an algebra of type τ = (n+1, 0, . . . , 0), which still satisfies

the clone axioms above for the case that p = m = n. Such an algebra is called a

unitary Menger algebra of rank n. An algebra (Wτ (Xn), Sn) of type τ = (n + 1) is

called a Menger algebra of rank n if it satisfies the axiom (C1).

Let t ∈ Wτ (Xn) for n ∈ N+. To each partial algebra A = (A; (fA
i )i∈I) of type

τ we obtain a partial operation tA, called the n-ary term operation induced by t as

follows:

(i) If t = xj ∈ Xn then tA = xAj := en,A
j , where en,A

j is the n-ary total projection

on the j-th component.

(ii) Now assume that t = fi(t1, . . . , tni
) where fi is an ni-ary operation symbol,

and assume also that tA1 , . . . , t
A
ni

are the term operations induced by the terms

t1, . . . , tni
, and that the tAj (a1, . . . , an) are defined, with values tAj (a1, . . . , an) =

bj, for 1 ≤ j ≤ ni. If fA
i (b1, . . . , bni

) is defined, then tA(a1, . . . , an) is defined

and tA(a1, . . . , an) = Sni,A
n (fA

i , t
A
1 (a1, . . . , an), . . . , tAni

(a1, . . . , an)).

Let Wτ (Xn)A be the set of all n-ary term operations of type τ .

Let A = (A; (fA
i )i∈I) be a partial algebra of a given type τ . To every partial

algebra A we assign the partial clone generated by {fA
i | i ∈ I}, denoted by T (A).

The set T (A) is called clone of all term operations of the algebra A.

Example 2.1.1 Let A = ({0, 1}; fA) be a partial algebra of type (1). Let fA be the

partial operation defined by

fA(x) =

{
1 if x = 0
not defined if x = 1.

Let tA be the term operation induced by a term t ∈ W(1)(X). Then tA ∈ JA∪{fA, c1∞}
when the symbol c1∞ is used to express that fA(x) is an unary constant nowhere

defined. But the operation

gA = S2,A
2 (e2,A

1 , e2,A
1 , S1,A

2 (fA, e2,A
2 ))

is different from fA, c1∞ and elements of JA. We have gA ∈ T (A) but gA 6∈ W(1)(X)A.
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Since the set Wτ (Xn)A is different from the set of all partial operations generated

by {fAi | i ∈ I} we need a new definition of terms over partial algebras of type τ

which overcomes this problem.

Let X be an alphabet and let {fi | i ∈ I} be a set of operation symbols of type

τ , where each fi has the arity ni and X ∩ {fi | i ∈ I} = ∅. We need additional

symbols εk
j 6∈ X, for every k ∈ N+ := N \ {0} and 1 ≤ j ≤ k. Let Xn = {x1, . . . , xn}

be an n-element alphabet. The set of n-ary C-terms of type τ over Xn is defined

inductively as follows:

(i) Every xj ∈ Xn is an n-ary C-term of type τ .

(ii) If w1, . . . , wk are n-ary C-terms of type τ , then εk
j (w1, . . . , wk) is an n-ary

C-term of type τ for all 1 ≤ j ≤ k and all k ∈ N+.

(iii) If w1, . . . , wni
are n-ary C-terms of type τ and if fi is an ni-ary operation

symbol, then fi(w1, . . . , wni
) is an n-ary C-term of type τ .

Let WC
τ (Xn) be the set of all n-ary C-terms of type τ defined in this way. Then

WC
τ (X) :=

∞⋃
n=1

WC
τ (Xn) denotes the set of all C-terms of this type. Note that here

the use of the superscript C shall distinguish these sets from the analogous ones in

the total case; the letter C was used since Craig in [15] suggested the addition of

the extra constant terms εk
j .

Every n-ary C-term w ∈ WC
τ (Xn) induces an n-ary C-term operation wA of

any partial algebra A = (A; (fAi )i∈I) of type τ . For a1, . . . , an ∈ A, the value

wA(a1, . . . , an) is defined in the following inductive way:

(i) If w = xj then wA = xAj = en,A
j , where en,A

j is as usual the n-ary total

projection on the j-th component.

(ii) If w = εk
j (w1, . . . , wk) and we assume that wA1 , . . . , w

A
k are the C-term op-

erations induced by the terms w1, . . . , wk and that the wAi (a1, . . . , an) are

defined for 1 ≤ i ≤ k, then wA(a1, . . . , an) is defined and wA(a1, . . . , an) =

wAj (a1, . . . , an).
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(iii) Now assume that w = fi(w1, . . . , wni
) where fi is an ni-ary operation symbol,

and assume that the wAj (a1, . . . , an) are defined, with values wAj (a1, . . . , an) =

bj for 1 ≤ j ≤ ni. If fA
i (b1, . . . , bni

) is defined, then wA(a1, . . . , an) is defined

and wA(a1, . . . , an) = Sni,A
n (fA

i , w
A
1 (a1, . . . , an), . . . , wAni

(a1, . . . , an)).

Let WC
τ (Xn)A be the set of all n-ary term operations induced by the terms from

WC
τ (Xn) on the partial algebra A and let WC

τ (X)A :=
∞⋃

n=1

WC
τ (Xn)A.

Note that for C-terms we have T (A) = WC
τ (X)A (see [2]).

Now we show that arbitrary term operations induced by C-terms satisfy the

same compatibility condition as fundamental operations of A.

Lemma 2.1.2 Let ϕ : T (A) → T (B) be a clone homomorphism defined by ϕ(fA
i ) =

fB
i for all i ∈ I. Then ϕ(tA) = tB for all t ∈ WC

τ (X).

The Lemma can be proved by induction on the complexity of the term t ∈ WC
τ (X)

(see [12]).

On the sets WC
τ (Xn) we may introduce the following superposition operations.

Let w1, . . . , wm be n-ary C-terms and let t be an m-ary C-term. Then we define an

n-ary C-term S
m

n (t, w1, . . . , wm) inductively by the following steps:

(i) For t = xj, 1 ≤ j ≤ m (m-ary variable), we define

S
m

n (xj, w1, . . . , wm) = wj.

(ii) For t = εk
j (s1, . . . , sk) we set

S
m

n (t, w1, . . . , wm) = εk
j (S

m

n (s1, w1, . . . , wm), . . . , S
m

n (sk, w1, . . . , wm)),

where s1, . . . , sk are m-ary, for all k ∈ N+ and 1 ≤ j ≤ k.

(iii) For t = fi(s1, . . . , sni
) we set

S
m

n (t, w1, . . . , wm) = fi(S
m

n (s1, w1, . . . , wm), . . . , S
m

n (sni
, w1, . . . , wm)),

where s1, . . . , sni
are m-ary.

This defines an operation

S
m

n : WC
τ (Xm)× (WC

τ (Xn))m −→ WC
τ (Xn),

which describes the superposition of C-terms.



16 CHAPTER 2. STRONG REGULAR VARIETIES

The C-term clone of type τ is the heterogeneous algebra

cloneτC := ((WC
τ (Xn))n>0; (S

m

n )n,m>0, (xj)j≤m,m≥1).

Let T n(A) be the set of all n-ary term operations of a partial algebra A =

(A; (fA
i )i∈I). Then T (A) = ((T n(A))n∈N+ ; (Sm,A

n )n,m∈N+ , (en,A
j )n∈N+,1≤j≤n) is also a

partial clone, it is the partial clone generated by the fundamental operations of the

algebra A.

We define a family ϕ = (ϕ(n))n∈N+ of mappings, ϕ(n) : WC
τ (Xn) → T n(A), by

setting ϕ(n)(t) = tA, the n-ary term operation induced by t. It is easy to see that ϕ

has the following properties ([49]):

(i) ϕ(n)(xj) = en,A
j , 1 ≤ j ≤ n, n ∈ N+,

(ii) ϕ(n)(S
m

n (s, t1, . . . , tm)) |D= Sm,A
n (ϕ(m)(s), ϕ(n)(t1), . . . , ϕ

(n)(tm)) |D, for n ∈ N+,

where D is the intersection of the domains of all tAj , 1 ≤ j ≤ m, where s is m-ary,

and t1, . . . , tm are n-ary.

2.2 Strong Varieties

Let τ be a type. An ordered pair (t1, t2) ∈ Wτ (X)2 is called an equation of type τ ;

we usually write t1 ≈ t2.

An equation t1 ≈ t2 ∈ Wτ (X)2 is called a strong identity in a partial algebra A
(in symbols A |=

s
t1 ≈ t2) iff tA1 is defined whenever tA2 is defined and conversely

and tA1 = tA2 on the common domain, i.e. the induced partial term operations tA1 and

tA2 are equal.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆ Wτ (X)2.

Consider the connection between PAlg(τ) and Wτ (X)2 given by the following two

operators:

Ids : P(PAlg(τ)) → P(Wτ (X)2) and

Mods : P(Wτ (X)2) → P(PAlg(τ)) with

IdsK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈K (A |=
s

s ≈ t)} and

ModsΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
s

s ≈ t)}.
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Clearly, the pair (Mods, Ids) is a Galois connection between PAlg(τ) and

Wτ (X)2.

As usual for a Galois connection, we have two closure operators ModsIds and

IdsMods and their sets of fixed points, i.e. the sets

{Σ ⊆ Wτ (X)2 | IdsModsΣ = Σ} and {K ⊆ PAlg(τ) |ModsIdsK = K},

form two complete lattices Es(τ), Ls(τ).

Let V ⊆ PAlg(τ) be a class of partial algebras. The class V is called a strong

variety of partial algebras iff there is a set Σ ⊆ Wτ (X)2 of strong identities in V

such that V = ModsΣ.

In [4] P. Burmeister introduced the concept of an ECE-equation. By [5], page 67,

ECE-equations and strong equations are equivalent if the empty algebra is excluded.

Therefore we have the following Birkhoff-type characterization of strong varieties.

Theorem 2.2.1 ([5], p. 199) Let K be a class of partial algebras of type τ . Then a

class K is a strong variety iff K = HcScPfiltK ∪ {∅} where ∅ is the empty algebra.

(i.e. K is closed under closed homomorphic images, closed subalgebras, and filtered

products of partial algebras from K ∪ {∅}).

Now we consider equations consisting of C-terms. As for usual terms we define:

An equation t1 ≈ t2 ∈ WC
τ (X)2 is called a strong identity in a partial algebra A (in

symbols A |=
s

t1 ≈ t2) iff tA1 is defined whenever tA2 is defined and conversely and

tA1 = tA2 on the common domain, i.e. the induced partial term operations tA1 and tA2

are equal.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆ WC
τ (X)2.

Consider the connection between PAlg(τ) and WC
τ (X)2 given by the following two

operators:

Ids : P(PAlg(τ)) → P(WC
τ (X)2) and

Mods : P(WC
τ (X)2) → P(PAlg(τ)) with

IdsK := {s ≈ t ∈ WC
τ (X)2 | ∀A ∈K (A |=

s
s ≈ t)} and

ModsΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
s

s ≈ t)}.
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Clearly, the pair (Mods, Ids) is a Galois connection between PAlg(τ) and

WC
τ (X)2. We have two closure operators ModsIds and IdsMods and their sets of

fixed points.

Let V ⊆ PAlg(τ) be a class of partial algebras. The class V is called a strong

variety of partial algebras iff there is a set Σ ⊆ WC
τ (X)2 of strong identities in V

such that V = ModsΣ.

Theorem 2.2.2 ([2]) Let K be a class of partial algebras of type τ . Then a class K

is a strong variety iff K = HcScPfiltK (i.e. K is closed under closed homomorphic

images, closed subalgebras, and filtered products of partial algebras from K).

2.3 Strong Regular Varieties

For a term t ∈ Wτ (X) we denote the set of all variables in t by Var(t).

An equation p ≈ q ∈ Wτ (X)2 of terms is called regular if in p and q the same

variables occur i.e. if Var(p)=Var(q).

Let W r
τ (X)2 ⊆ Wτ (X)2 be the set of all regular equations of type τ .

An equation s ≈ t ∈ Wτ (X)2 is called a strong regular identity in a partial

algebra A (in symbols A |=
sr

s ≈ t) iff A |=
s

s ≈ t and Var(s)=Var(t).

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆ Wτ (X)2.

Consider the connection between PAlg(τ) and Wτ (X)2 given by the following two

operators:

Idsr : P(PAlg(τ)) → P(Wτ (X)2) and

Modsr : P(Wτ (X)2) → P(PAlg(τ)) with

IdsrK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈K (A |=
sr

s ≈ t)} and

ModsrΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
sr

s ≈ t)}.

Clearly, the pair (Modsr, Idsr) is a Galois connection between PAlg(τ) and

Wτ (X)2. Again we have two closure operators ModsrIdsr and IdsrModsr and their

sets of fixed points, i.e. the sets

{Σ ⊆ Wτ (X)2 | IdsrModsrΣ = Σ} and {K ⊆ PAlg(τ) |ModsrIdsrK = K},
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form two complete lattices Esr(τ), Lsr(τ).

Let V ⊆ PAlg(τ) be a class of partial algebras. The class V is called a strong

regular variety of partial algebras iff there is a set Σ ⊆ W r
τ (X)2 of strong regular

identities in V such that V = ModsrΣ.

To obtain a Birkhoff-type characterization for strong regular varieties we intro-

duce the following pin operator ⊥.

For a partial algebra A = (A : (fA
i )i∈I), let A⊥ = (A ∪ {⊥}; (fA⊥

i )i∈I) when ⊥ 6∈ A
and

fA⊥

i (a1, . . . , ani
) =

{
fA

i (a1, . . . , ani
) if (a1, . . . , ani

) ∈ domfA
i

⊥ otherwise.

The operation fA⊥
i is called one-point extension of fA

i .

Let K ⊆ PAlg(τ) and K⊥ = {A⊥|A ∈ K}. Moreover

K⊥0 = K, K⊥n+1 = (K⊥n)⊥ for all n ∈ N.

Now we can define the pin operator on K.

⊥K :=
∞⋃

n=0

K⊥n .

Theorem 2.3.1 ([48]) Let K be a class of partial algebras of type τ . Then a class

K is a strong regular variety iff K = HcInScP⊥(K) (i.e. K is closed under closed

homomorphic images, initial segments, closed subalgebras, direct products and the

pin operator applied on partial algebras from K).

Proposition 2.3.2 Let s, t ∈ WC
τ (X) and A ∈ PAlg(τ). If s ≈ t ∈ IdsA then there

exist s′, t′ ∈ WC
τ (X) and s′ ≈ t′ ∈ IdsrA (i.e. V ar(s′) = V ar(t′) and s′ ≈ t′ ∈ IdsA).

Proof. Let s ≈ t ∈ IdsA. Since

ε2
1(s, t) ≈ s ≈ t ≈ ε2

2(s, t) ∈ IdsA.

Let s′ = ε2
1(s, t) and t′ = ε2

2(s, t). We have V ar(s′) = V ar(t′) and s′ ≈ t′ ∈ IdsA.

Then s′ ≈ t′ ∈ IdsrA.

Because of Proposition 2.3.2 in the case of C-terms instead of strong identities

we can always consider strong regular identities.
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Chapter 3

Hyperidentities

This chapter shall motivate the study of hyperidentities. We first define the concepts

of hypersubstitutions, regular hypersubstitutions, strong regular M -hyperidentities

and M -solid strong regular varieties on the basis of terms from Wτ (X). Secondly,

we give the definition of M -solid strong varieties considering terms from WC
τ (X).

3.1 Hyperidentities and M-solid Strong Regular

Varieties

We consider mappings from the set of all operation symbols of type τ into the set

of all terms of type τ . Such mappings are called hypersubstitutions of type τ if they

preserve the arities. This means that to each ni-ary operation symbol of type τ ,

we assign an ni-ary term from Wτ (X). Hypersubstitutions σ can be extended to

mappings σ̂ : Wτ (X) → Wτ (X) which are defined on the set Wτ (X) of all terms of

type τ by the following inductive definition:

(i) σ̂[x] := x for every variable x ∈ X;

(ii) σ̂[fi(t1, . . . , tni
)] := Sni

n (σ(fi), σ̂[t1], . . . , σ̂[tni
]) for all terms t1, . . . , tni

∈
Wτ (Xn).

As Welke proved in [49], a necessary condition for σ̂[s] ≈ σ̂[t] to be a strong regular

identity in a partial algebra A whenever s ≈ t is a strong regular identity in A is that

σ̂ maps terms of the form fi(x1, . . . , xni
) to terms t with V ar(t) = {x1, . . . , xni

}. So to

define strong regular hyperidentities we will consider only such hypersubstitutions.

21
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Let σ be a hypersubstitution. We say that the hypersubstitution σ is a regular

hypersubstitution if V ar(σ(fi)) = {x1, . . . , xni
} for all i ∈ I.

Let HypR(τ) denote the set of all regular hypersubstitutions of type τ and let σR

denote some member of HypR(τ).

On HypR(τ) we define a binary operation by

σR1 ◦h σR2 := σ̂R1 ◦ σR2 .

From [49] follows that for any two regular hyperstitutions of type τ we have (σR1 ◦h

σR2)̂ = σ̂R1 ◦ σ̂R2 (this equation is valid for arbitrary hypersubstitutions).

Theorem 3.1.1 ([49]) The algebra HypR(τ) := (HypR(τ); ◦h, σid) is a monoid with

σid(fi) = fi(x1, . . . , xni
) for all i ∈ I.

Let A = (A; (fA
i )i∈I) be a partial algebra of type τ = (ni)i∈I , and let σR ∈

HypR(τ) be a regular hypersubstitution. We want to consider the derived algebra

σR(A) = (A; (σR(fi)
A)i∈I), where σR(fi)

A is the term operation induced by the

term σR(fi) on the algebra A. For regular hypersubstitutions we have the following

important feature.

Lemma 3.1.2 ([49]) Let σR be a regular hypersubstitution of type τ and let A be

a partial algebra of type τ . For a term t ∈ Wτ (X) we denote by tσR(A) the term

operation induced by t in the algebra σR(A), and by σ̂R[t]A the term operation induced

by σ̂R[t] in the algebra A. Then for every term t ∈ Wτ (X) we have

σ̂R[t]A = tσR(A).

Let M be a submonoid of HypR(τ). We introduce two operators χE
M and χA

M . Let

Σ ⊆ Wτ (X)×Wτ (X) be regular equations, s ≈ t ∈ Σ, we let

χE
M [s ≈ t] := {σ̂R[s] ≈ σ̂R[t] | σR ∈M} and

χE
M [Σ] :=

⋃
s≈t∈Σ

χE
M [s ≈ t].

For any partial algebra A of type τ and K ⊆ PAlg(τ), we let

χA
M [A] := {σR(A) | σR ∈M} and
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χA
M [K] :=

⋃
A∈K

χA
M [A].

Now we can define the concept of a strong regular M -hyperidentity of a partial

algebra of type τ .

Let M be a submonoid of HypR(τ) and let A be a partial algebra of type τ . Then

a strong regular identity s ≈ t of A is called a strong regular M-hyperidentity of A
if for every regular hypersubstitution σR ∈ M the equation σ̂R[s] ≈ σ̂R[t] is also a

strong regular identity of A. We write

A |=
srMh

s ≈ t :⇔ ∀σR ∈M(A |=
sr
σ̂R[s] ≈ σ̂R[t]).

A strong regular identity is called a strong regular M-hyperidentity of a class K

of partial algebras of type τ if it holds as strong regular M -hyperidentity in every

partial algebra in K. In the case, if M = HypR(τ), strong regular M -hyperidentities

are called strong regular hyperidentities.

The relation

|=
srMh

:= {(A, s ≈ t) ∈ PAlg(τ)×Wτ (X)2| ∀σR ∈M(A |=
sr
σ̂R[s] ≈ σ̂R[t])}

induces the Galois connection (HMId
sr, HMModsr) defined on subclasses K of

PAlg(τ) and regular equations Σ of identities in Wτ (X)2 as follows:

HMId
srK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈ K(A |=

srMh
s ≈ t)};

HMModsrΣ := {A ∈ PAlg(τ) | ∀s ≈ t ∈ Σ(A |=
srMh

s ≈ t)}.

A set Σ of identities in Wτ (X)2 is called a strong regular M-hyperequational

theory if there is a class K of partial algebras of type τ such that Σ = HMId
srK.

A classK of partial algebras of type τ is called a strong regular M-hyperequational

class if there is a set of identities Σ such that K = HMModsrΣ.

Corollary 3.1.3 ([49]) For every submonoid M⊆ HypR(τ) the operators χA
M and

χE
M form a conjugate pair of additive closure operators with respect to the relation

|=
sr

.
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Let V ⊆ PAlg(τ) be a strong regular variety of partial algebras, so that V =

ModsrΣ for some regular equation Σ ⊆ Wτ (X) × Wτ (X). Then V is said to be

M-solid if χA
M [V ] = V .

Theorem 3.1.4 ([49]) Let V ⊆ PAlg(τ) be a strong regular variety of partial alge-

bras and let Σ ⊆ Wτ (X)2 be a strong regular equational theory. Then the following

propositions (i)-(iv) and (i’)-(iv’) are equivalent:

(i) V is a strong regular M -hyperequational class, i.e. V = HMModsrHMId
srV .

(ii) V is M -solid, i.e. χA
M [V ] = V .

(iii) IdsrV = HMId
srV , i.e. every strong regular identity of V is a strong regular

M -hyperidentity of V .

(iv) χE
M [IdsrV ] = IdsrV .

And the following conditions are also equivalent

(i’) Σ = HMId
srHMModsrΣ.

(ii’) χE
M [Σ] = Σ.

(iii’) ModsrΣ = HMModsrΣ.

(iv’) χA
M [ModsrΣ] = ModsrΣ.

Theorem 3.1.5 ([49]) For any K ⊆ PAlg(τ) and for any set of regular equations

Σ ⊆ Wτ (X)2 the following conditions hold:

(i) χA
M [K] ⊆ ModsrIdsrK ⇔ ModsrIdsrK = HMModsrHMId

srK
and
(ii) χE

M [Σ] ⊆ IdsrModsrΣ ⇔ IdsrModsrΣ = HMId
srHMModsrΣ.

3.2 Hyperidentities and M-solid Strong Varieties

In this section we recall some basis facts on regular hypersubstitutions, strong hy-

peridentities and solid strong varieties of partial algebras using C-terms. For more

details see [26], [27] and [49].

Let {fi | i ∈ I} be a set of operation symbols of type τ and WC
τ (X) be the set of

all C-terms of this type. A mapping σ : {fi | i ∈ I} −→ WC
τ (X) which maps each ni-

ary fundamental operation fi to a C-term of arity ni is called a C-hypersubstitution

of type τ .
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Any C-hypersubstitution σ of type τ can be extended to a map σ̂ : WC
τ (X) −→

WC
τ (X) defined for all C-terms, in the following way:

(i) σ̂[xj] = xj for every xj ∈ Xn,

(ii) σ̂[εk
j (s1, . . . , sk)] = S

k

n(εk
j (x1, . . . , xk), σ̂[s1], . . . , σ̂[sk]), where s1, . . . , sk ∈

WC
τ (Xn),

(iii) σ̂[fi(t1, . . . , tni
)] = S

ni

n (σ(fi), σ̂[t1], . . . , σ̂[tni
]), where t1, . . . , tni

∈ WC
τ (Xn).

The C-hypersubstitution σ is called regular if V ar(σ(fi)) = {x1, . . . , xni
}, for all

i ∈ I.

Let HypC
R(τ) be the set of all regular C-hypersubstitutions of type τ and let σR

denote some member of HypC
R(τ).

Lemma 3.2.1 ([49]) Let σR1 , σR2 ∈ HypC
R(τ). Then (σ̂R2 ◦σR1)̂= σ̂R2 ◦ σ̂R1 , where

◦ is the usual composition of functions.

Now we define a product of C-hypersubstitutions in the usual way, by σR1 ◦h

σR2 := σ̂R1 ◦ σR2 and obtain:

Theorem 3.2.2 ([49]) The algebra HypC
R(τ) := (HypC

R(τ); ◦h, σid) with σid(fi) =

fi(x1, . . . , xni
) is a monoid.

Let A = (A; (fAi )i∈I) be a partial algebra of type τ = (ni)i∈I , and let σR ∈
HypC

R(τ). We want to consider the derived algebra σR(A) = (A; (σR(fi)
A)i∈I), where

σR(fi)
A is the term operation induced by the term σR(fi) on the algebra A.

Lemma 3.2.3 ([49]) Let σR be a regular C-hypersubstitution of type τ and let

σR(A) = (A; (σR(fi)
A)i∈I). For a term t ∈ WC

τ (X) we denote by tσR(A) the term

operation induced by t on the algebra σR(A), and by σ̂R[t]A the term operation

induced by σ̂R[t] on the algebra A. Then for every term t ∈ WC
τ (X) we have

σ̂R[t]A = tσR(A).

Lemma 3.2.4 Let σR1 , σR2 ∈ HypC
R(τ) and A ∈ PAlg(τ). Then σR1(σR2(A)) =

(σR2 ◦h σR1)(A).
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Proof. We have
σR1(σR2(A)) = (A; (σR1(fi)

σR2
(A))i∈I)

= (A; (σ̂R2 [σR1(fi)]
A)i∈I)

= (A; ((σR2 ◦h σR1)(fi)
A)i∈I)

= (σR2 ◦h σR1)(A).

(Remark that for the fundamental operations of the derived algebra σ(A) we have

f
σ(A)
i = σ(fi)

A. For σ1(σ2(A)) this gives f
σ1(σ2(A))
i = σ1(fi)

σ2(A) = σ̂2(σ1(fi))
A by

Lemma 3.2.3.)

Let M be a submonoid of HypC
R(τ). We introduce two operators χE

M and χA
M .

For any equation s ≈ t ∈ WC
τ (X)×WC

τ (X) and any set Σ ⊆ WC
τ (X)×WC

τ (X), we

let

χE
M [s ≈ t] := {σ̂R[s] ≈ σ̂R[t] | σR ∈M} and

χE
M [Σ] :=

⋃
s≈t∈Σ

χE
M [s ≈ t].

For any partial algebra A of type τ and K ⊆ PAlg(τ), we let

χA
M [A] := {σR(A) | σR ∈M} and

χA
M [K] :=

⋃
A∈K

χA
M [A].

Proposition 3.2.5 Let A ∈ PAlg(τ) and s ≈ t ∈ WC
τ (X)2. Then

χA
M [A] |=

s
s ≈ t iff A |=

s
χE

M [s ≈ t].

Proof. We have
χA

M [A] |=
s

s ≈ t ⇔ ∀σR ∈M(σR(A) |=
s

s ≈ t)

⇔ ∀σR ∈M(sσR(A) = tσR(A))

⇔ ∀σR ∈M(σ̂R[s]A = σ̂R[t]A)

⇔ ∀σR ∈M(A |=
s

σ̂R[s] ≈ σ̂R[t])

⇔ A |=
s

χE
M [s ≈ t].
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Now we can define the concept of a strong M -hyperidentity of a partial algebra of

type τ .

Let M be a submonoid of HypC
R(τ) and let A be a partial algebra of type τ . Then a

strong identity s ≈ t of A is called a strong M-hyperidentity of A if for every regular

C-hypersubstitution σR ∈ M the equation σ̂R[s] ≈ σ̂R[t] is also a strong identity of

A. We write

A |=
sMh

s ≈ t :⇔ ∀σR ∈M(A |=
s
σ̂R[s] ≈ σ̂R[t]).

A strong identity is called a strong M-hyperidentity of a class K of partial algebras

of type τ if it holds as strong M -hyperidentity in every partial algebra in K. In the

case, if M = HypC
R(τ), strong M -hyperidentities are called strong hyperidentities.

The relation

|=
sMh

:= {(A, s ≈ t) ∈ PAlg(τ)×WC
τ (X)2| ∀σR ∈M(A |=

s
σ̂R[s] ≈ σ̂R[t])}

induces the Galois connection (HMId
s, HMMods) defined on subclasses K of

PAlg(τ) and for sets Σ ⊆ WC
τ (X)2 as follows:

HMId
sK := {s ≈ t ∈ WC

τ (X)2 | ∀A ∈ K(A |=
sMh

s ≈ t)};

HMModsΣ := {A ∈ PAlg(τ) | ∀s ≈ t ∈ Σ(A |=
sMh

s ≈ t)}.

A set Σ ⊆ WC
τ (X)2 is called a strong M-hyperequational theory if there is a class

K of partial algebras of type τ such that Σ = HMId
sK.

A class K of partial algebras of type τ is called a strong M-hyperequational class

if there is a set Σ such that K = HMModsΣ.

Corollary 3.2.6 ([49]) For every submonoid M⊆ HypC
R(τ) the operators χA

M and

χE
M form a conjugate pair of additive closure operators with respect to the relation

|=
sMh

.

Let V ⊆ PAlg(τ) be a strong variety of partial algebras, so that V = ModsΣ

for some set Σ ⊆ WC
τ (X)×WC

τ (X). Then V is said to be M-solid if χA
M [V ] = V . If

M = HypC
R(τ), then V is called solid.
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Theorem 3.2.7 ([49]) Let V ⊆ PAlg(τ) be a strong variety of partial algebras and

let Σ ⊆ WC
τ (X)2 be a strong equational theory. Then the following propositions (i)-

(iv) and (i’)-(iv’) are equivalent:

(i) V is a strong M -hyperequational class, i.e. V = HMModsHMId
sV .

(ii) V is M -solid, i.e. χA
M [V ] = V .

(iii) IdsV = HMId
sV , i.e. every strong identity of V is a strong M -hyperidentity of

V .

(iv) χE
M [IdsV ] = IdsV .

And the following conditions are also equivalent

(i’) Σ = HMId
sHMModsΣ.

(ii’) χE
M [Σ] = Σ.

(iii’) ModsΣ = HMModsΣ.

(iv’) χA
M [ModsΣ] = ModsΣ.

Theorem 3.2.8 ([49]) For any K ⊆ PAlg(τ) and for any Σ ⊆ WC
τ (X)2 the fol-

lowing conditions hold:
(i) χA

M [K] ⊆ ModsIdsK ⇒ ModsIdsK = HMModsHMId
sK

and
(ii) χE

M [Σ] ⊆ IdsModsΣ ⇒ IdsModsΣ = HMId
sHMModsΣ.



Chapter 4

Strong Regular n-full Varieties

This chapter refers to [18]. The chapter is divided into three sections. In Section 4.1

we define strong regular n-full identities in partial algebras of type τ and study the

connections between the relations Rs, Rsr and Rrnf . In Section 4.2 and Section 4.3

we will characterize strong regular varieties of partial algebras where every strong

regular n-full identity is a strong regular n-full hyperidentity.

4.1 Regular n-full Identities in Partial Algebras

N -full terms were studied in [18] and are defined in the following way:

Let n ∈ N+ and let τ = (ni)i∈I be a type with corresponding operation symbols

(fi)i∈I for some index set I. We define an n-full term as follows:

(i) fi(xα(1), . . . , xα(ni)) is an n-full term of type τ for every function α ∈ Hni,n

where Hni,n is the set of all functions from the set {1, . . . , ni} into the set

{1, . . . , n}.

(ii) If t1, . . . , tn are n-full terms of type τ , then fi(tα(1), . . . , tα(ni)) is an n-full term

of type τ for every α ∈ Hni,n.

Let W nF
τ (Xn) be the set of all n-full terms of type τ .

For every partial algebra A of type τ and every n-full term t the n-full term

operation tA on A is defined as follows:

(i) If t = fi(xα(1), . . . , xα(ni)) for α ∈ Hni,n, then tA(a1, . . . , an) =

(fA
i )α(a1, . . . , an) := fA

i (aα(1), . . . , aα(ni)) for (aα(1), . . . , aα(ni)) ∈ domfA
i .

29



30 CHAPTER 4. STRONG REGULAR N -FULL VARIETIES

(ii) If t = fi(tα(1), . . . , tα(ni)) and assume that tA1 , . . . , t
A
n are the term opera-

tions induced by the terms t1, . . . , tn and that tAj (a1, . . . , an) are defined,

with values tAj (a1, . . . , an) = bj for 1 ≤ j ≤ n. If fA
i (bα(1), . . . , bα(ni)) where

bα(1), . . . , bα(ni) ∈ {b1, . . . , bn} is defined, then tA(a1, . . . , an) is defined and

tA(a1, . . . , an) = [fi(tα(1), . . . , tα(ni))]
A(a1, . . . , an)

= fA
i (tAα(1)(a1, . . . , an), . . . , tAα(ni)

(a1, . . . , an)).

The superposition of n-full terms is defined as follows:

For n ∈ N+, we define an operation: Sn : W nF
τ (Xn)n+1 → W nF

τ (Xn) as follows:
(i) Sn(fi(xα(1), . . . , xα(ni)), t1, . . . , tn) := fi(tα(1), . . . , tα(ni)),
(ii) Sn(fi(sα(1), . . . , sα(ni)), t1, . . . , tn) := fi(S

n(sα(1), t1, . . . , tn), . . . ,
Sn(sα(ni), t1, . . . , tn)),

where s1, . . . , sn ∈ W nF
τ (Xn) and α ∈ Hni,n.

Let n− clonenF (τ) := (W nF
τ (Xn);Sn)

and clonenF (τ) := ((W nF
τ (Xn))n>0; (Sn)n>0).

Proposition 4.1.1 ([18]) The algebra n − clonenF (τ) is a Menger algebra of rank

n.

Clearly, the operation Sn can also be defined on the set Wτ (Xn) of all n−ary terms.

This gives an algebra (Wτ (Xn);Sn) which also satisfies (C1). In [18] was proved that

n− clonenF (τ) is a subalgebra of (Wτ (Xn);Sn).

Now we consider the following set of equations: W nF
τ (Xn)2 ∩ W r

τ (Xn)2 :=

WRNF
τ (Xn)2.

An equation s ≈ t ∈ Wτ (X)2 is called a regular n-full identity in a partial algebra

A (in symbols A |=
rnf

s ≈ t) iff A |=
s

s ≈ t and s ≈ t ∈ WRNF
τ (Xn)2.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆ Wτ (X)2.

Consider the connection between PAlg(τ) and Wτ (X)2 given by the following two

operators:

Idrnf : P(PAlg(τ)) → P(Wτ (X)2) and

Modrnf : P(Wτ (X)2) → P(PAlg(τ)) with

IdrnfK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈K (A |=
rnf

s ≈ t)} and

ModrnfΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
rnf

s ≈ t)}.
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Clearly, the pair (Modrnf , Idrnf ) is a Galois connection between PAlg(τ)

and Wτ (X)2. As usual for a Galois connection, we have two closure operators

ModrnfIdrnf and IdrnfModrnf and their sets of fixed points, i.e. the sets

{Σ ⊆ Wτ (X)2 | IdrnfModrnfΣ = Σ} and {K ⊆ PAlg(τ) |ModrnfIdrnfK = K},

form two complete lattices Ernf (τ), Lrnf (τ).

Let V ⊆ PAlg(τ) be a class of partial algebras. The class V is called a strong

ragular n-full variety of partial algebras iff there is a set Σ ⊆ Wτ (X)2 of regular

n-full identities in V such that V = ModrnfΣ.

Let Σ ⊆ Wτ (Xn)2 and consider a mapping RNFE : P(Wτ (Xn)2) → P(Wτ (Xn)2)

defined by RNFE : Σ 7−→ RNFE(Σ) := Σ ∩WRNF
τ (Xn)2.

Proposition 4.1.2 RNFE has the properties of a kernel operator on Wτ (Xn)2.

Proof. (i) We prove that the operator RNFE is intensive.

Since Σ ∩WRNF
τ (Xn)2 ⊆ Σ then RNFE(Σ) ⊆ Σ.

(ii) We prove that the operator RNFE is monotone.

Let Σ1,Σ2 ⊆ Wτ (Xn)2 and Σ1 ⊆ Σ2. Then Σ1 ∩WRNF
τ (Xn)2 ⊆ Σ2 ∩WRNF

τ (Xn)2

and RNFE(Σ1) ⊆ RNFE(Σ2).

(iii) We prove that the operator RNFE is idempotent.

We have RNFE(RNFE(Σ)) = RNFE(Σ ∩ WRNF
τ (Xn)2) = (Σ ∩ WRNF

τ (Xn)2) ∩
WRNF

τ (Xn)2 = Σ ∩WRNF
τ (Xn)2 = RNFE(Σ).

Let V ⊆ PAlg(τ) and consider a mapping RNFA : P(PAlg(τ)) → P(PAlg(τ))

defined by RNFA : V 7−→ RNFA(V ) := Modsr(IdsrV ∩WRNF
τ (Xn)2).

Proposition 4.1.3 RNFA has the properties of a closure operator on PAlg(τ).

Proof. (i) We prove at first that the operator RNFA is extensive.

Since IdsrV ∩ WRNF
τ (Xn)2 ⊆ IdsrV , then V ⊆ ModsrIdsrV ⊆ Modsr(IdsrV ∩

WRNF
τ (Xn)2) = RNFA(V ).

(ii) We prove that the operator RNFA is monotone. Let V1 ⊆ V2 then IdsrV2 ⊆
IdsrV1 and IdsrV2 ∩ WRNF

τ (Xn)2 ⊆ IdsrV1 ∩ WRNF
τ (Xn)2. So RNFA(V1) =
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Modsr(IdsrV1 ∩WRNF
τ (Xn)2) ⊆Modsr(IdsrV2 ∩WRNF

τ (Xn)2) = RNFA(V2).

(iii) We prove that the operator RNFA is idempotent. From (i) and (ii), we have

RNFA(V ) ⊆ RNFA(RNFA(V )). Since IdsrModsr is a closure operator, we have

IdsrV ∩WRNF
τ (Xn)2 ⊆ IdsrModsr(IdsrV ∩WRNF

τ (Xn)2)

⇒ IdsrV ∩WRNF
τ (Xn)2 ⊆ IdsrModsr(IdsrV ∩WRNF

τ (Xn)2) ∩WRNF
τ (Xn)2

⇒ Modsr(IdsrModsr(IdsrV ∩ WRNF
τ (Xn)2) ∩ WRNF

τ (Xn)2) ⊆ Modsr(IdsrV ∩
WRNF

τ (Xn)2)

⇒ RNFA(RNFA(V )) ⊆ RNFA(V ).

Now we want to study the connections between the relations

Rs := {(A, s ≈ t) ∈ PAlg(τ)×Wτ (X)2 | A |=
s
s ≈ t},

Rsr := {(A, s ≈ t) ∈ PAlg(τ)×Wτ (X)2 | A |=
sr
s ≈ t} and

Rrnf := {(A, s ≈ t) ∈ PAlg(τ)×Wτ (X)2 | A |=
rnf

s ≈ t}.

We have:

Proposition 4.1.4 The relation Rsr is a Galois-closed subrelation of Rs.

Proof. Clearly, Rsr ⊆ Rs. LetK ⊆ PAlg(τ) and Σ ⊆ Wτ (X)2 such that IdsrK =

Σ and ModsrΣ = K. We will show that IdsK = Σ and ModsΣ = K. From Σ =

IdsrK we have that all identities in Σ are regular and thus ModsΣ = ModsrΣ. Since

K = ModsrΣ, then K = ModsΣ. From Σ = IdsrK and IdsrK ⊆ IdsK there follows

Σ ⊆ IdsK. K = ModsrΣ means that A |=
sr
s ≈ t for all A ∈ K and for all s ≈ t ∈ Σ.

Then

s ≈ t ∈ IdsK
⇒ s ≈ t ∈ IdsModsrΣ by K = ModsrΣ
⇒ ModsrΣ |=

s
s ≈ t

⇒ A |=
sr
s ≈ t for all A ∈ K

⇒ s ≈ t ∈ IdsrK
Since IdsrK = Σ, then s ≈ t ∈ Σ and therefore IdsK ⊆ Σ.

Proposition 4.1.5 The relation Rrnf is a Galois-closed subrelation of Rs.
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Proof. Clearly, Rrnf ⊆ Rs. Let K ⊆ PAlg(τ) and Σ ⊆ Wτ (X)2 such that

IdrnfK = Σ and ModrnfΣ = K. We will show that IdsK = Σ and ModsΣ = K.

From Σ = IdrnfK we have that all identities in Σ are members of WRNF
τ (Xn)2

and ModsΣ = {A ∈ PAlg(τ) | ∀s ≈ t ∈ Σ (A |=
s
s ≈ t)}. So ModsΣ = ModrnfΣ =

{A ∈ PAlg(τ) | ∀s ≈ t ∈ Σ (A |=
s
s ≈ t, s ≈ t ∈ WRNF

τ (Xn)2)}. Since K =

ModrnfΣ, then K = ModsΣ. From Σ = IdrnfK and IdrnfK ⊆ IdsK there follows

Σ ⊆ IdsK. The equation K = ModrnfΣ means that A |=
rnf

s ≈ t (i.e. A |=
s
s ≈ t

and s ≈ t ∈ WRNF
τ (Xn)2) for all A ∈ K and for all s ≈ t ∈ Σ. Then

s ≈ t ∈ IdsK
⇒ s ≈ t ∈ IdsModrnfΣ by K = ModrnfΣ
⇒ ModrnfΣ |=

s
s ≈ t

⇒ A |=
s
s ≈ t for all A ∈ K = ModrnfΣ and s ≈ t ∈ WRNF

τ (Xn)2

⇒ A |=
rnf

s ≈ t for all A ∈ K

⇒ s ≈ t ∈ IdrnfK.

Since IdrnfK = Σ, then s ≈ t ∈ Σ and therefore IdsK ⊆ Σ.

If R′ is a Galois-closed subrelation of R, then the complete lattice obtained from

R′ is a complete sublattice of the complete lattice obtained from R and any complete

sublattices of the original lattice arise in this way (see e.g. [28]).

4.2 Clones of n-full Terms over a Strong Variety

Now we prove that IdrnfV is a congruence relation on the Menger algebra n −
clonenF (τ) of rank n.

Theorem 4.2.1 Let V be a strong regular n-full variety of partial algebras of type τ

and let IdrnfV be the set of all regular n-full identities satisfied in V . Then IdrnfV

is a congruence relation on n− clonenF (τ).

Proof. Clearly, IdrnfV is an equivalence relation on n− clonenF (τ). At first we

prove by induction on the complexity of the n-full term t that from t1 ≈ s1, . . . , tn ≈
sn ∈ IdrnfV follows Sn(t, t1, . . . , tn) ≈ Sn(t, s1, . . . , sn) ∈ IdrnfV .
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a) If t = fi(xα(1), . . . , xα(ni)) for some α ∈ Hni,n then

Sn(fi(xα(1), . . . , xα(ni)), t1, . . . , tn) = fi(tα(1), . . . , tα(ni)) and
Sn(fi(xα(1), . . . , xα(ni)), s1, . . . , sn) = fi(sα(1), . . . , sα(ni)).

Since tα(j) ≈ sα(j) ∈ IdrnfV ; j = 1, . . . , ni, then

fi(tα(1), . . . , tα(ni)) ≈ fi(sα(1), . . . , sα(ni)) ∈ IdrnfV and

Sn(t, t1, . . . , tn) = Sn(fi(xα(1), . . . , xα(ni)), t1, . . . , tn)

≈ Sn(fi(xα(1), . . . , xα(ni)), s1, . . . , sn) = Sn(t, s1, . . . , sn) ∈ IdrnfV .

b) If t = fi(lα(1), . . . , lα(ni)) where l1, . . . , ln ∈ W nF
τ (Xn), for some α ∈ Hni,n and if

we assume that Sn(lα(j), t1, . . . , tn) ≈ Sn(lα(j), s1, . . . , sn) ∈ IdrnfV for j = 1, . . . , ni,

then

Sn(fi(lα(1), . . . , lα(ni)), t1, . . . , tn)

= fi(S
n(lα(1), t1, . . . , tn), . . . , Sn(lα(ni), t1, . . . , tn))

≈ fi(S
n(lα(1), s1, . . . , sn), . . . , Sn(lα(ni), s1, . . . , sn))

= Sn(fi(lα(1), . . . , lα(ni)), s1, . . . , sn) ∈ IdrnfV .
The next step consists in showing that for n-full terms s1, . . . , sn we have

t ≈ s ∈ IdrnfV ⇒ Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdrnfV.

Since t ≈ s ∈ IdrnfV and s1, . . . , sn ∈ W nF
τ (Xn) we have (Sn(t, s1, . . . , sn), Sn(s, s1,

. . . , sn)) ∈ WRNF
τ (Xn)2. Since t ≈ s ∈ IdrnfV and IdrnfV ⊆ IdsrV we have t ≈

s ∈ IdsrV and Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdsrV by [49]. Therefore we get

Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdrnfV .

Assume now that t ≈ s, t1 ≈ s1, . . . , tn ≈ sn ∈ IdrnfV . Then Sn(t, t1, . . . , tn) ≈
Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ≈ Sn(s, t1, . . . , tn) ∈ IdrnfV . Then IdrnfV is a

congruence relation on n− clonenF (τ).

The quotient algebra n− clonernFV := n− clonenF (τ)/IdrnfV is also a Menger

algebra of rank n.

In the next section we need an additional definition. For any n-full term t ∈
W nF

τ (Xn) we denote by tα the term which is formed from t by applying a mapping

α : {1, . . . , n} → {1, . . . , n} to the variables in t. This can be defined inductively by

the following two steps (see [18]):

(i) If t = fi(xβ(1), . . . , xβ(ni)) and for some mapping β ∈ Hni,n, then tα =

fi(xα(β(1)), . . . , xα(β(ni)));
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(ii) If t = fi(tβ(1), . . . , tβ(ni)) where t1, . . . , tn ∈ W nF
τ (Xn) and β ∈ Hni,n, then

tα = fi((tβ(1))α, . . . , (tβ(ni))α).

Clearly, the term tα is an n-full term.

Lemma 4.2.2 ([18]) Let t, t1, . . . , tn ∈ W nF
τ (Xn) and let α : {1, . . . , n} →

{1, . . . , n}. Then

Sn(t, tα(1), . . . , tα(n)) = Sn(tα, t1, . . . , tn).

4.3 N-full Hypersubstitutions and Hyperidenti-

ties

Let n ≥ 1 be a natural number. An NF-hypersubstitution of type τ is a mapping

from the set {fi | i ∈ I} of ni−ary operation symbols of type τ to the set W nF
τ (Xn)

of all n-full terms of type τ with the additional condition that for n > ni the image

σ(fi) has to be ni-ary (and therefore also n-ary).

Any NF-hypersubstitution σ induces a mapping σ̂ on the set W nF
τ (Xn) of all

ni − ary terms of the type, as follows

Let σ be an NF-hypersubstitution of type τ . Then σ induces a mapping σ̂ :

W nF
τ (Xn) −→ W nF

τ (Xn), by setting (see[18]):

(i) σ̂[t] := (σ(fi))α′ if t = fi(xα(1), . . . , xα(ni)) where α′ ∈ Hn,n is defined by

α′(j) := α(j) if 1 ≤ j ≤ min(n, ni) and α′(j) = n, otherwise, for some

α ∈ Hni,n.

(ii) σ̂[t] := Sn(σ(fi), σ̂[tα′(1)], . . . , σ̂[tα′(n)]) if t = fi(tα(1), . . . , tα(ni)) where

t1, . . . , tn ∈ W nF
τ (Xn) and for some α ∈ Hni,n.

Let σ be an NF-hypersubstitution. We say that the NF-hypersubstitution σ is

an RNF-hypersubstitution if V ar(σ̂[fi(xα(1), . . . , xα(ni))]) = {xα(1), . . . , xα(ni)} for all

i ∈ I and for some α ∈ Hni,n.

Let HypRNF (τ) denote the set of all RNF-hypersubstitutions of type τ and let

σrnf denote some member of HypRNF (τ).
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Proposition 4.3.1 Let σrnf be a RNF-hypersubstitution of type τ . Then

V ar(σ̂rnf [t]) = V ar(t) for all t ∈ W nF
τ (Xn).

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = fi(xα(1), . . . , xα(ni)) for some α ∈ Hni,n then

V ar(t) = {xα(1), . . . , xα(ni)} = V ar(σ̂rnf [t]).

(ii) If t = fi(tα(1), . . . , tα(ni)) where t1, . . . , tn ∈ W nF
τ (Xn) for some α ∈ Hni,n and if

we assume that V ar(tj) = V ar(σ̂rnf [tj]); j = 1, . . . , n, then

V ar(t) =

ni⋃
k=1

V ar(tα(k)) =

ni⋃
k=1

V ar(σ̂rnf [tα(k)]) = V ar(σ̂rnf [t]).

Lemma 4.3.2 The extension σ̂rnf of an RNF-hypersubstitution σrnf of type τ is an

endomorphism of the algebra n− clonenF (τ).

Proof. Let t, t1, . . . , tn ∈ W nF
τ (Xn). We will show that

σ̂rnf [Sn(t, t1, . . . , tn)] = Sn(σ̂rnf [t], σ̂rnf [t1], . . . , σ̂rnf [tn]).

(i) If t = fi(xα(1), . . . , xα(ni)) for some α ∈ Hni,n, then

σ̂rnf [Sn(t, t1, . . . , tn)] = σ̂rnf [Sn(fi(xα(1), . . . , xα(ni)), t1, . . . , tn]
= σ̂rnf [fi(tα(1), . . . , tα(ni))]
= Sn(σrnf (fi), σ̂rnf [tα′(1)], . . . , σ̂rnf [tα′(n)])
= Sn((σrnf (fi))α′ , σ̂rnf [t1], . . . , σ̂rnf [tn])
= Sn(σ̂rnf [fi(xα(1), . . . , xα(ni))], σ̂rnf [t1], . . . , σ̂rnf [tn])
= Sn(σ̂rnf [t], σ̂rnf [t1], . . . , σ̂rnf [tn]).

(ii) If t = fi(uα(1), . . . , uα(ni)) where u1, . . . , un ∈ W nF
τ (Xn) for some α ∈ Hni,n and if

we assume that σ̂rnf [Sn(uα(j), t1, . . . , tn)] = Sn(σ̂rnf [uα(j)], σ̂rnf [t1], . . . , σ̂rnf [tn]) for

all j = 1, . . . , ni, then

σ̂rnf [Sn(t, t1, . . . , tn)]

= σ̂rnf [Sn(fi(uα(1), . . . , uα(ni)), t1, . . . , tn)]

= σ̂rnf [fi(S
n(uα(1), t1, . . . , tn), . . . , Sn(uα(ni), t1, . . . , tn)]

= Sn(σrnf (fi), σ̂rnf [Sn(uα′(1), t1, . . . , tn)], . . . , σ̂rnf [Sn(uα′(n), t1, . . . , tn)])

= Sn(σrnf (fi), S
n(σ̂rnf [uα′(1)], σ̂rnf [t1], . . . , σ̂rnf [tn]), . . . , Sn(σ̂rnf [uα′(n)], σ̂rnf [t1], . . . ,
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σ̂rnf [tn]))

= Sn(Sn(σrnf (fi), σ̂rnf [uα′(1)], . . . , σ̂rnf [uα′(n)]), σ̂rnf [t1], . . . , σ̂rnf [tn])

= Sn(σ̂rnf [fi(uα(1), . . . , uα(ni))], σ̂rnf [t1], . . . , σ̂rnf [tn])

= Sn(σ̂rnf [t], σ̂rnf [t1], . . . , σ̂rnf [tn]).

On HypRNF (τ) we define a binary operation by

σrnf1 ◦h σrnf2 := σ̂rnf1 ◦ σrnf2 .

From ([26]) follows that for any two hyperstitutions of type τ we have (σ1 ◦h σ2)̂ =

σ̂1 ◦ σ̂2.

Proposition 4.3.3 For ni ≤ n and let σrnfid
(fi) = fi(x1, . . . , xni

). Then σ̂rnfid
[t] =

t for all t ∈ W nF
τ (Xn).

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = fi(xα(1), . . . , xα(ni)) for some α ∈ Hni,n, then

σ̂rnfid
[t] = (σrnfid

(fi))α′ = (fi(x1, . . . , xni
))α′ = fi(xα′(1), . . . , xα′(ni)) = t.

(ii) If t = fi(tα(1), . . . , tα(ni)) where t1, . . . , tn ∈ W nF
τ (Xn) for some

α ∈ Hni,n and if we assume that σ̂rnfid
[tj] = tj; j = 1, . . . , n, then

σ̂rnfid
[t] = Sn(σrnfid

(fi), σ̂rnfid
[tα(1)], . . . , σ̂rnfid

[tα(ni)])
= Sn(fi(x1, . . . , xni

), tα(1), . . . , tα(ni))
= fi(tα(1), . . . , tα(ni))
= t.

Theorem 4.3.4 The algebra HypRNF (τ) := (HypRNF (τ); ◦h) is a semigroup.

Proof. We have to prove that the product of two RNF-hypersubstitutions of

type τ belongs to the set of all RNF-hypersubstitutions of type τ . Let σrnf1 , σrnf2 ∈
HypRNF (τ). Then

V ar((σrnf1 ◦h σrnf2)̂[fi(xα(1), . . . , xα(ni))])

= V ar(σ̂rnf1 [σ̂rnf2 [fi(xα(1), . . . , xα(ni))]])
= V ar(σ̂rnf2 [fi(xα(1), . . . , xα(ni))])
= V ar(fi(xα(1), . . . , xα(ni)))
= {xα(1), . . . , xα(ni)} by Proposition 4.3.1.
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Remark 4.3.5 The semigroup HypRNF (τ) in general has no identity element.

Consider the following case:

Let A ∈ PAlg(τ) and HypRNF (τ) be the subsemigroup of Hyp(τ). Let

t1, t2 ∈ W nF
τ (Xn). Then t1 ≈ t2 ∈ IdsrA is called a strong regular n-full hy-

peridentity (SRNF-hyperidentity) in A (in symbols A |=
sRNFh

t1 ≈ t2) if for all

σrnf ∈ HypRNF (τ) we have σ̂rnf [t1] ≈ σ̂rnf [t2] ∈ IdsrA.

Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆ W nF
τ (Xn)2.

Consider the connection between PAlg(τ) and W nF
τ (Xn)2 given by the following

two operators.

HRNF Id
sr : P(PAlg(τ)) → P(W nF

τ (Xn)2) and

HRNFModsr : P(W nF
τ (Xn)2) → P(PAlg(τ)) with

HRNF Id
srK := {s ≈ t ∈ W nF

τ (Xn)2 | ∀A ∈K (A |=
sRNFh

s ≈ t)} and

HRNFModsrΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=
sRNFh

s ≈ t)}.

Let A = (A; (fA
i )i∈I) be a partial algebra of type τ and HypRNF (τ) be

the subsemigroup of Hyp(τ), then we define the derived algebra σrnf (A) :=

(A; (σrnf (fi)
A)i∈I) for σrnf ∈ HypRNF (τ).

Lemma 4.3.6 Let t ∈ W nF
τ (Xn), A ∈ PAlg(τ) and σrnf ∈ HypRNF (τ). Then

(σ̂rnf [t])A|D = tσrnf (A)|D.

where D is the common domain of both sides.

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = fi(xα(1), . . . , xα(ni)) for some α ∈ Hni,n, then

(σ̂rnf [t])A = ((σrnf (fi))α′)
A

= ((σrnf (fi))
A)α′

= (f
σrnf (A)
i )α′ = fi(xα(1), . . . , xα(ni))

σrnf (A).

(ii) If t = fi(tα(1), . . . , tα(ni)) where t1, . . . , tn ∈ W nF
τ (Xn) for some α ∈ Hni,n and if

we assume that σ̂rnf [tj]
A |D= t

σrnf (A)
j |D for j = 1, . . . , n and D =

n⋂
j=1

domσ̂rnf [tj]
A,
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then
(σ̂rnf [t]A) |D = [Sn(σrnf (fi), σ̂rnf [tα′(1)], . . . , σ̂rnf [tα′(n)])]

A |D
= Sn,A(σrnf (fi)

A, σ̂rnf [tα′(1)]
A, . . . , σ̂rnf [tα′(n)]

A) |D
= Sn,A(σrnf (fi)

A, σ̂rnf [tα′(1)]
A |D, . . . , σ̂rnf [tα′(n)]

A |D)

= Sn,σrnf (A)((fi)
σrnf (A), t

σrnf (A)

α′(1) |D, . . . , t
σrnf (A)

α′(n) |D)

= Sn,σrnf (A)((fi)
σrnf (A), t

σrnf (A)

α′(1) , . . . , t
σrnf (A)

α′(n) ) |D
= [fi(tα(1), . . . , tα(ni))]

σrnf (A) |D
= tσrnf (A) |D.

Let A be a partial algebra of type τ and HypRNF (τ) be the subsemigroup of

Hyp(τ). Then

χA
RNF : P(PAlg(τ)) → P(PAlg(τ)) and

χE
RNF : P(W nF

τ (Xn)2) → P(W nF
τ (Xn)2)

by
χA

RNF [A] := {σrnf (A) | σrnf ∈ HypRNF (τ)} and
χE

RNF [s ≈ t] := {σ̂rnf [s] ≈ σ̂rnf [t] | σrnf ∈ HypRNF (τ)}.

For K ⊆ PAlg(τ) be a class of partial algebras of type τ and Σ ⊆ W nF
τ (Xn)2 we

define χA
RNF [K] :=

⋃
A∈K

χA
RNF [A] and χE

RNF [Σ] :=
⋃

s≈t∈Σ

χE
RNF [s ≈ t].

Proposition 4.3.7 For any K,K ′ ⊆ PAlg(τ) and Σ,Σ′ ⊆ W nF
τ (Xn)2 the following

conditions hold:

(i) the operators χA
RNF and χE

RNF are additive operators on PAlg(τ) and

W nF
τ (Xn)2 respectively,

(ii) Σ ⊆ Σ′ ⇒ χE
RNF [Σ] ⊆ χE

RNF [Σ′],

(iii) χE
RNF [χE

RNF [Σ]] ⊆ χE
RNF [Σ],

(iv) K ⊆ K ′ ⇒ χA
RNF [K] ⊆ χA

RNF [K ′],

(v) χA
RNF [χA

RNF [K]] ⊆ χA
RNF [K]
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and (χA
RNF , χ

E
RNF ) forms a conjugate pair with respect to the relation

R := {(A, s ≈ t) ∈ PAlg(τ)×W nF
τ (Xn)2 | A |=

sr
s ≈ t}

i.e. for all A ∈ PAlg(τ) and for all s ≈ t ∈ W nF
τ (Xn)2, we have χA

RNF [A] |=
sr

s ≈ t

iff A |=
sr

χE
RNF [s ≈ t].

Proof. (i) It is clear from the definition that both, χA
RNF and χE

RNF , are additive

operators.

(ii) Suppose Σ ⊆ Σ′ ⊆ W nF
τ (Xn)2, then

χE
RNF [Σ] :=

⋃
s≈t∈Σ

χE
RNF [s ≈ t] ⊆

⋃
s≈t∈Σ′

χE
RNF [s ≈ t] =: χE

RNF [Σ′].

(iii) Suppose σrnf1 , σrnf2 ∈ HypRNF (τ) are two arbitrary RNF-hypersubstitutions

and assume that σ̂rnf1 [σ̂rnf2 [s]] ≈ σ̂rnf1 [σ̂rnf2 [t]] is an identity from χE
RNF [χE

RNF [Σ]].

Let σrnf ∈ HypRNF (τ) be a RNF-hypersubstitution with σrnf := σrnf1 ◦h σrnf2 .

Since HypRNF (τ) is a semigroup it follows that σrnf ∈ HypRNF (τ). Then we have

σ̂rnf [s] = (σrnf1 ◦h σrnf2)̂[s] = σ̂rnf1 [σ̂rnf2 [s]] ≈ σ̂rnf1 [σ̂rnf2 [t]] = (σrnf1 ◦h σrnf2)̂[t] =

σ̂rnf [t], i.e. σ̂rnf [s] ≈ σ̂rnf [t] ∈ χE
RNF [Σ].

(iv) and (v) can be proved in a similar way.

Finally, we need to show that χA
RNF [A] |=

sr
s ≈ t iff A |=

sr
χE

RNF [s ≈ t]. Indeed, we

have

χA
RNF [A] |=

sr
s ≈ t

⇔ ∀σrnf ∈ HypRNF (τ)(σrnf (A) |=
sr
s ≈ t)

⇔ ∀σrnf ∈ HypRNF (τ) (sσrnf (A)|D = tσrnf (A)|D)
⇔ ∀σrnf ∈ HypRNF (τ) (σ̂rnf [s]A|D = σ̂rnf [t]A|D)

by Lemma 4.3.6 (where D is the common domain)
⇔ ∀σrnf ∈ HypRNF (τ) (A |=

sr
σ̂rnf [s] ≈ σ̂rnf [t])

⇔ A |=
sr

χE
RNF [s ≈ t].

Theorem 4.3.8 For all K ⊆ PAlg(τ) and for all Σ ⊆ W nF
τ (Xn)2, the following

properties hold:
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(i) HRNF Id
srK = IdsrχA

RNF [K],

(ii) χE
RNF [HRNF Id

srK] ⊆ HRNF Id
srK,

(iii) χE
RNF [HRNF Id

srK] ⊆ IdsrK,

(iv) χA
RNF [ModsrHRNF Id

srK] ⊆ HRNFModsrHRNF Id
srK,

(v) ModsrIdsrχA
RNF [K] ⊆ HRNFModsrHRNF Id

srK, and dually,

(i’) HRNFModsrΣ = ModsrχE
RNF [Σ],

(ii’) χA
RNF [HRNFModsrΣ] ⊆ HRNFModsrΣ,

(iii’) χA
RNF [HRNFModsrΣ] ⊆ModsrΣ,

(iv’) χE
RNF [IdsrHRNFModsrΣ] ⊆ HRNF Id

srHRNFModsrΣ,

(v’) IdsrModsrχE
RNF [Σ] ⊆ HRNF Id

srHRNFModsrΣ.

Proof. We will prove only (i)-(v), the proofs of the other propositions being

dual.

(i) HRNF Id
srK

= {s ≈ t ∈ W nF
τ (Xn)2 | ∀A ∈ K (A |=

sRNFh
s ≈ t)}

= {s ≈ t ∈ W nF
τ (Xn)2 | ∀A ∈ K, ∀σrnf ∈ HypRNF (τ) (A |=

sr
σ̂rnf [s] ≈ σ̂rnf [t])}

= {s ≈ t ∈ W nF
τ (Xn)2 | ∀A ∈ K, ∀σrnf ∈ HypRNF (τ) (σrnf (A) |=

sr
s ≈ t)}

= IdsrχA
RNF [K].

(ii) Let s ≈ t ∈ χE
RNF [HRNF Id

srK] then s ≈ t ∈ χE
RNF [u ≈ v] for some

u ≈ v ∈ HRNF Id
srK. By (i) we have u ≈ v ∈ IdsrχA

RNF [K] (i.e. χA
RNF [K] |=

sr
u ≈ v)

but χA
RNF [χA

RNF [K]] ⊆ χA
RNF [K] and then χA

RNF [χA
RNF [K]] |=

sr
u ≈ v and

χA
RNF [K] |=

sr
χE

RNF [u ≈ v]. Since s ≈ t ∈ χE
RNF [u ≈ v] we have χA

RNF [K] |=
sr
s ≈ t

and x ≈ y ∈ IdsrχA
RNF [K]. By (i) we have s ≈ t ∈ HRNF Id

srK and
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χE
RNF [HRNF Id

srK] ⊆ HRNF Id
srK.

(iii) χE
RNF [HRNF Id

srK] ⊆ IdsrK by (ii) since HRNF Id
srK ⊆ IdsrK.

(iv) From (ii) we obtain
χE

RNF [HRNF Id
srK] ⊆ HRNF Id

srK
⇒ ModsrHRNF Id

srK ⊆ ModsrχE
RNF [HRNF Id

srK]
⇒ χA

RNF [ModsrHRNF Id
srK] ⊆ χA

RNF [ModsrχE
RNF [HRNF Id

srK]].
Further we get

χA
RNF [ModsrHRNF Id

srK] ⊆ χA
RNF [ModsrχE

RNF [HRNF Id
srK]]

= χA
RNF [HRNFModsrHRNF Id

srK] ⊆ HRNFModsrHRNF Id
srK by (i’) and (ii’).

(v) From (i) we obtain
IdsrχA

RNF [K] = HRNF Id
srK

⇒ ModsrIdsrχA
RNF [K] = ModsrHRNF Id

srK.
From (ii) we get

χE
RNF [HRNF Id

srK] ⊆ HRNF Id
srK

⇒ ModsrHRNF Id
srK ⊆ ModsrχE

RNF [HRNF Id
srK].

Then ModsrIdsrχA
RNF [K]

= ModsrHRNF Id
srK

⊆ ModsrχE
RNF [HRNF Id

srK]
= HRNFModsrHRNF Id

srK by (i’).

Theorem 4.3.9 The operators χA
RNF , χ

E
RNF satisfy the conditions in Proposition

4.3.7. For any K ⊆ PAlg(τ) with ModsrIdsrK = K and for any Σ ⊆ W nF
τ (Xn)2

with IdsrModsrΣ = Σ the following conditions (i)-(iii) and (i’)-(iii’), respectively,

are equivalent:

(i) ModsrHRNF Id
srK = K,

(ii) χA
RNF [K] ⊆ K,

(iii) IdsrK = HRNF Id
srK,

(i’) IdsrHRNFModsrΣ = Σ,

(ii’) χE
RNF [Σ] ⊆ Σ,

(iii’) ModsrΣ = HRNFModsrΣ.
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Proof. We will only show the equivalence of (i),(ii) and (iii), the other equiva-

lences can be shown analogously.

(i)⇒(ii) χA
RNF [K]
⊆ ModsrIdsrχA

RNF [K]
= ModsrHRNF Id

srK by Theorem 4.3.8(i)
= K by (i).

(ii)⇒(iii) From (ii) we have IdsrK ⊆ IdsrχA
RNF [K]. Then IdsrK ⊆ IdsrχA

RNF [K] =

HRNF Id
srK by Theorem 4.3.8(i). The converse inclusion is clear.

(iii)⇒(i) From (iii) we have

ModsrHRNF Id
srK ⊆ModsrIdsrK = K.

Theorem 4.3.10 The operators χA
RNF , χ

E
RNF satisfy the conditions in Propo-

sition 4.3.7. Then for all K ⊆ PAlg(τ) and Σ ⊆ W nF
τ (Xn)2, we have:

(i) χA
RNF [K] ⊆ModsrIdsrK ⇔ ModsrHRNF Id

srK
⊆ModsrIdsrK,

(ii) HRNFModsrHRNF Id
srK = K ⇒ ModsrIdsrK = K,

(iii) HRNFModsrHRNF Id
srK ⊆ModsrIdsrK ⇒ χA

RNF [K] ⊆ModsrIdsrK,
(iv) χA

RNF [ModsrIdsrK] ⊆ModsrIdsrK ⇒ χA
RNF [K] ⊆ModsrIdsrK,

(i’) χE
RNF [Σ] ⊆ IdsrModsrΣ ⇔ IdsrHRNFModsrΣ

⊆ IdsrModsrΣ,
(ii’) HRNF Id

srHRNFModsrΣ = Σ ⇒ IdsrModsrΣ = Σ,
(iii’) HRNF Id

srHRNFModsrΣ ⊆ IdsrModsrΣ ⇒ χE
RNF [Σ] ⊆ IdsrModsrΣ,

(iv’) χE
RNF [IdsrModsrΣ] ⊆ IdsrModsrΣ ⇒ χE

RNF [Σ] ⊆ IdsrModsrΣ.

Proof. (i) Assume χA
RNF [K] ⊆ ModsrIdsrK, then ModsrIdsrχA

RNF [K] ⊆
ModsrIdsrModsrIdsrK = ModsrIdsrK. From Theorem 4.3.8 (i), HRNF Id

srK =

IdsrχA
RNF [K] we get ModsrHRNF Id

srK = ModsrIdsrχA
RNF [K]. Therefore

ModsrHRNF Id
srK ⊆ ModsrIdsrK. Conversely, assume ModsrHRNF Id

srK ⊆
ModsrIdsrK and since χA

RNF [K] ⊆ ModsrIdsrχA
RNF [K] we get χA

RNF [K] ⊆
ModsrIdsrχA

RNF [K] = ModsrHRNF Id
srK ⊆ModsrIdsrK by Theorem 4.3.8 (i).

(ii) Assume HRNFModsrHRNF Id
srK = K, then K = HRNFModsrHRNF Id

srK

= ModsrχE
RNF [HRNF Id

srK] ⊇ ModsrIdsrK by Theorem 4.3.8 (i’) and (iii). But

K ⊆ModsrIdsrK and then ModsrIdsrK = K.
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(iii) Assume HRNFModsrHRNF Id
srK ⊆ ModsrIdsrK and since

χA
RNF [K] ⊆ ModsrIdsrχA

RNF [K] we get χA
RNF [K] ⊆ ModsrIdsrχA

RNF [K] ⊆
HRNFModsrHRNF Id

srK ⊆ModsrIdsrK by Theorem 4.3.8 (v).

(iv) Assume χA
RNF [ModsrIdsrK] ⊆ModsrIdsrK and since K ⊆ModsrIdsrK, we

get χA
RNF [K] ⊆ χA

RNF [ModsrIdsrK] ⊆ModsrIdsrK. The proofs of (i’),(ii’),(iii’) and

(iv’) are similar to the proofs of (i),(ii),(iii) and (iv), respectively.



Chapter 5

Strongly Full Varieties

In this chapter we consider a special case of strong regular n-full varieties. In Section

5.1 and Section 5.2, we define the concepts of strongly full terms and strongly full

varieties. In Section 5.3 we give the definition of cloneSFV , of n−SF−solid varieties

and we show that V is n − SF − solid if and only if cloneSFV is free with respect

to itself. In Section 5.4 we examine the connection between a strongly full variety

V of partial algebras and the class {T SF (A)|A ∈ V } of n-ary strongly full term

operations of its algebras.

5.1 Strongly full Terms

In the sequel we will consider a so-called n-ary type τn = (n, . . . , n, . . .) where all

operation symbols are n-ary for n ≥ 1, n ∈ N+.

Let (fi)i∈I be an indexed set of n-ary operation symbols and let Xn =

{x1, . . . , xn} be a set of variables. Then n-ary strongly full terms of type τn are

defined inductively by the following steps:

(i) fi(x1, . . . , xn) is a strongly full term of type τn,

(ii) If t1, . . . , tn are strongly full terms of type τn, then for every operation symbol

fi the term fi(t1, . . . , tn) is strongly full.

Let W SF
τn

(Xn) be the set of all strongly full n-ary terms of type τn.

If we define fi : W SF
τn

(Xn)n → W SF
τn

(Xn) by fi(t1, . . . , tn) := fi(t1, . . . , tn), then

we get an algebra FSF
τn

(Xn) = (W SF
τn

(Xn); (fi)i∈I) of type τn.

45
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Another way to define operations on W SF
τn

(Xn) is to consider the so-called

superposition operation Sn on W SF
τn

(Xn) defined by

(i) Sn(fi(x1, . . . , xn), t1, . . . , tn) := fi(t1, . . . , tn),
(ii) Sn(fi(s1, . . . , sn), t1, . . . , tn) := fi(S

n(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn)).

The operation Sn : W SF
τn

(Xn)n+1 → W SF
τn

(Xn) has the arity n + 1. This gives

an algebra cloneSF τn := (W SF
τn

(Xn);Sn) of type τ = (n + 1). (We should denote

cloneSF τn better by n− cloneSF τn, but for abbreviation we write cloneSF τn).

Then we can prove:

Proposition 5.1.1 The algebra cloneSF τn is a Menger algebra of rank n.

It can be proved by induction on the complexity of the term that cloneSF τn satisfies

the axiom (C1) (see [8]).

Another way to obtain a Menger algebra is to consider the superposition of

partial operations. The operation Sn,A is a total operation defined on sets of partial

operations. Then we prove:

Theorem 5.1.2 The algebra (P n(A);Sn,A) is a Menger algebra of rank n.

Proof. Let fA, gA
1 , . . . , g

A
n , h

A
1 , . . . , h

A
n ∈ P n(A). At first we will prove that

(a1, . . . , an) ∈ domSn,A(Sn,A(fA, gA
1 , . . . , g

A
n ), hA

1 , . . . , h
A
n ) iff

(a1, . . . , an) ∈ domSn,A(fA, Sn,A(gA
1 , h

A
1 , . . . , h

A
n ), . . . , Sn,A(gA

n , h
A
1 , . . . , h

A
n )).

Indeed, we have

domSn,A(Sn,A(fA, gA
1 , . . . , g

A
n ), hA

1 , . . . , h
A
n )

= {(a1, . . . , an) | (a1, . . . , an) ∈
n⋂

j=1

domhA
j and if hA

j (a1, . . . , an) = bj,

then (b1, . . . , bn) ∈ domSn,A(fA, gA
1 , . . . , g

A
n ) and (b1, . . . , bn) ∈

n⋂
k=1

domgA
k

and if gA
k (b1, . . . , bn)= ck, then (c1, . . . , cn) ∈ domfA}

= {(a1, . . . , an) | (a1, . . . , an) ∈
n⋂

j=1

domhA
j and if hA

j (a1, . . . , an) = bj,

then (b1, . . . , bn) ∈
n⋂

k=1

domgA
k and if gA

k (b1, . . . , bn) = ck,

then (c1, . . . , cn) ∈ domfA}



5.2. STRONGLY FULL VARIETIES OF PARTIAL ALGEBRAS 47

= {(a1, . . . , an) | (a1, . . . , an) ∈
n⋂

k=1

domSn,A(gA
k , h

A
1 , . . . , h

A
n ) and

if gA
k (hA

1 (a1, . . . , an), . . . , hA
n (a1, . . . , an)) = ck, then (c1, . . . , cn) ∈ domfA}

= domSn,A(fA, Sn,A(gA
1 , h

A
1 , . . . , h

A
n ), . . . , Sn,A(gA

n , h
A
1 , . . . , h

A
n )).

Now we prove that if both sides are defined, then they are equal.

Sn,A(Sn,A(fA, gA
1 , . . . , g

A
n ), hA

1 , . . . , h
A
n )(a1, . . . , an)

=Sn,A(fA, Sn,A(gA
1 , h

A
1 , . . . , h

A
n ), . . . , Sn,A(gA

n , h
A
1 , . . . , h

A
n ))(a1, . . . , an).

Every n− ary strongly full term t ∈ W SF
τn

(Xn) induces an n-ary term operation

tA on any partial algebra A = (A; (fA
i )i∈I) of type τn, in the following inductive

way:

(i) If t = fi(x1, . . . , xn) then tA := [fi(x1, . . . , xn)]A = fA
i .

(ii) If t = fi(t1, . . . , tn) and assume that tA1 , . . . , t
A
n are the term operations in-

duced by the terms t1, . . . , tn and that tAj (a1, . . . , an) are defined, with val-

ues tAj (a1, . . . , an) = bj, for 1 ≤ j ≤ n. If fA
i (b1, . . . , bn) is defined, then

tA(a1, . . . , an) is defined and
tA(a1, . . . , an) = [fi(t1, . . . , tn)]A(a1, . . . , an)

:= Sn,A(fA
i , t

A
1 , . . . , t

A
n )(a1, . . . , an)

= fA
i (tA1 (a1, . . . , an), . . . , tAn (a1, . . . , an)).

Let W SF
τn

(Xn)A be the set of all n-ary term operations of the partial algebra A
induced by strongly full n-ary terms.

Theorem 5.1.3 The algebra (W SF
τn

(Xn)A;Sn,A) is a Menger algebra of rank n.

The theorem can be proved by induction on the complexity of terms. We have to

prove that (W SF
τn

(Xn)A;Sn,A) satisfies the axiom (C1) (see [8]).

5.2 Strongly full Varieties of Partial Algebras

Let A = (A; (fA
i )i∈I) be a partial algebra of type τn and let s ≈ t be an equation of

strongly full n− ary terms s, t ∈ W SF
τn

(Xn).

The equation s ≈ t is called a strongly full identity satisfied in the partial algebra

A if sA = tA for the term operations sA and tA induced by the terms s and t,
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respectively. In this case we write A |=
sf

s ≈ t. (This is, s ≈ t is a strongly full

identity iff the right hand side is defined whenever the left hand side is defined and

both are equal).

By IdSFA we denote the set of all strongly full identities satisfied in A. For a class

K ⊆ PAlg(τn) of partial algebras of type τn we write IdSFK. If Σ ⊆ W SF
τn

(Xn)2 is

a set of strongly full equations, then we can ask for the class of all partial algebras

satisfying every s ≈ t ∈ Σ as a strongly full identity and call this class ModSF Σ.

Let K ⊆ PAlg(τn) be a class of partial algebras of type τn and Σ ⊆ W SF
τn

(Xn)2.

Consider the connection between PAlg(τn) and W SF
τn

(Xn)2 given by the following

two operators.

IdSF : P(PAlg(τn)) → P(W SF
τn

(Xn)2) and

ModSF : P(W SF
τn

(Xn)2) → P(PAlg(τn)) with

IdSFK := {(s, t) ∈ W SF
τn

(Xn)2 | ∀A ∈K (A |=
sf

s ≈ t)} and

ModSF Σ := {A∈ PAlg(τn) | ∀ (s, t) ∈ Σ (A |=
sf

s ≈ t)}.

Clearly, the pair (ModSF , IdSF ) is a Galois connection between PAlg(τn) and

W SF
τn

(Xn)2.

As usual for a Galois connection, we have two closure operators ModSF IdSF and

IdSFModSF and their sets of fixed points, i.e. the sets

{Σ ⊆ W SF
τn

(Xn)2 | IdSFModSF Σ = Σ} and {K ⊆ PAlg(τn) | ModSF IdSFK = K},
form two complete lattices ESF (τn), LSF (τn).

Let V ⊆ PAlg(τn) be a class of partial algebras. The class V is called a strongly

full variety of partial algebras if V = ModSF IdSFV . Let Σ ⊆ W SF
τn

(Xn)2 be a set of

strongly full equations of type τn. Then Σ is called a strongly full equational theory

if Σ = IdSFModSF Σ. (For more information on strong varieties of partial algebras

see e.g. [48]).

Then from the property of a Galois connection, we have

Proposition 5.2.1 V is a strongly full variety of partial algebras iff there exists a

set Σ ⊆ W SF
τn

(Xn)2 such that V = ModSF Σ.
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We notice that strongly full terms, strongly full identities and strongly full vari-

eties can be considered for arbitrary types τ .

Let IdSF
n K be the intersection of IdSFK and W SF

τn
(Xn)2.

Lemma 5.2.2 Let K ⊆ PAlg(τn). Then IdSF
n K is a congruence relation on

FSF
τn

(Xn).

Proof. Clearly, IdSF
n K is an equivalence relation on FSF

τn
(Xn). The next step is

to show that fi is compatible with IdSF
n K. Let s1 ≈ t1, . . . , sn ≈ tn ∈ IdSF

n K. Then

s1 ≈ t1, . . . , sn ≈ tn ∈ IdSF
n A for all A ∈ K because of IdSF

n K =
⋂
A∈K

IdSF
n A and

domsAi = domtAi , s
A
i |domsAi

= tAi |domtAi
for all i = 1, . . . , n.

Let D =
n⋂

i=1

dom sAi =
n⋂

i=1

dom tAi and

D′ = {(a1, . . . , an) ∈ D and (sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ domfA
i and

(tA1 (a1, . . . , an), . . . , tAn (a1, . . . , an)) ∈ domfA
i }.

We have

fA
i (sA1 |domsA1

, . . . , sAn |domsAn
)|D′= fA

i (tA1 |domtA1
, . . . , tAn |domtAn

)|D′

⇒ fA
i (sA1 |D, . . . , sAn |D)|D′ = fA

i (tA1 |D, . . . , tAn |D)|D′

⇒ fA
i (sA1 , . . . , s

A
n )|D′ = fA

i (tA1 , . . . , t
A
n )|D′

⇒ [fi(s1, . . . , sn)]A|D′ = [fi(t1, . . . , tn)]A|D′

⇒ [fi(s1, . . . , sn)]A|D′ = [fi(t1, . . . , tn)]A|D′

then fi(s1, . . . , sn) ≈ fi(t1, . . . , tn) ∈ IdSF
n A for all A ∈ K.

So fi(s1, . . . , sn) ≈ fi(t1, . . . , tn) ∈ IdSF
n K.

Now we prove that IdSF
n V is also a congruence relation on the algebra cloneSF τn.

Lemma 5.2.3 Let s, t1, . . . , tn ∈ W SF
τn

(Xn) and A ∈ PAlg(τn). Then

[Sn(s, t1, . . . , tn)]A|D = Sn,A(sA, tA1 , . . . , t
A
n )|D where D =

n⋂
i=1

dom tAi .

The Lemma can be proved by induction on the complexity of terms (see [8]).

Theorem 5.2.4 Let V be a strongly full variety of partial algebras of type τn and

let IdSF
n V be the set of all strongly full n-ary identities satisfied in V . Then IdSF

n V

is a congruence relation on cloneSF τn.



50 CHAPTER 5. STRONGLY FULL VARIETIES

Proof. At first we prove by induction on the complexity of the term t that from

t1 ≈ s1, . . . , tn ≈ sn ∈ IdSF
n V follows Sn(t, t1, . . . , tn) ≈ Sn(t, s1, . . . , sn) ∈ IdSF

n V .

(a) If t = fi(x1, . . . , xn) with Sn(fi(x1, . . . , xn), t1, . . . , tn) = fi(t1, . . . , tn) and

Sn(fi(x1, . . . , xn), s1, . . . , sn) = fi(s1, . . . , sn), then fi(t1, . . . , tn) ≈ fi(s1, . . . , sn) ∈
IdSF

n V and Sn(t, t1, . . . , tn) ≈ Sn(t, s1, . . . , sn) ∈ IdSF
n V .

(b) If t = fi(l1, . . . , ln) and if we assume that Sn(lj, t1, . . . , tn) ≈ Sn(lj, s1, . . . , sn) ∈
IdSF

n V for j = 1, . . . , n, then

Sn(fi(l1, . . . , ln), t1, . . . , tn) = fi(S
n(l1, t1, . . . , tn), . . . , Sn(ln, t1, . . . , tn))

≈ fi(S
n(l1, s1, . . . , sn), . . . , Sn(ln, s1, . . . , sn))

= Sn(fi(l1, . . . , ln), s1, . . . , sn) ∈ IdSF
n V .

The next step consists in showing that for strongly full terms s1, . . . , sn we have

t ≈ s ∈ IdSF
n V ⇒ Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdSF

n V .

From t ≈ s ∈ IdSF
n V =

⋂
A∈V

IdSF
n A we get domtA = domsA and tA|domtA = sA|domsA .

We will show that Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdSF
n V . LetD =

n⋂
i=1

dom sAi .

Consider the following cases :

case 1. Let t = fi(x1, . . . , xn) and s = fj(x1, . . . , xn). Then tA = fA
i and sA = fA

j .

Since t ≈ s ∈ IdSF
n A, we have fA

i |D′ = fA
j |D′ with

D′ = {(a1, . . . , an) ∈ D and (sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ dom fA
i and

(sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ dom fA
j }. Then

[Sn(t, s1, . . . , sn)]A|D = Sn,A(fA
i , s

A
1 , . . . , s

A
n )|D

= Sn,A(fA
j , s

A
1 , . . . , s

A
n )|D

= [Sn(s, s1, . . . , sn)]A|D.

case 2. Let t = fi(x1, . . . , xn) and s = fj(l1, . . . , ln) then tA = fA
i

and sA =Sn,A(fA
j , l

A
1 , . . . , l

A
n ). Since t ≈ s ∈ IdSF

n A, we have fA
i |D′ =

Sn,A(fA
j , l

A
1 , . . . , l

A
n )|D′ with

D′ = {(a1, . . . , an) ∈ D and (sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ dom fA
i and

(sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ domSn,A(fA
j , l

A
1 , . . . , l

A
n )}.
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Then [Sn(t, s1, . . . , sn)]A|D = Sn,A(fA
i , s

A
1 , . . . , s

A
n )|D

= Sn,A(Sn,A(fA
j , l

A
1 , . . . , l

A
n ), sA1 , . . . , s

A
n )|D

= [Sn(s, s1, . . . , sn)]A|D.

case 3. For t = fi(t1, . . . , tn) and s = fj(x1, . . . , xn) we can give a similar proof as in

case 2.

case 4. Let t = fi(t1, . . . , tn) and s = fj(l1, . . . , ln) then tA = Sn,A(fA
i , t

A
1 , . . . , t

A
n )

and sA = Sn,A(fA
j , l

A
1 , . . . , l

A
n ). Since t ≈ s is n − ary strongly full identity A, we

have Sn,A(fA
i , t

A
1 , . . . , t

A
n )|D′ = Sn,A(fA

j , l
A
1 , . . . , l

A
n ))|D′ with

D′ = {(a1, . . . , an) ∈ D and (sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ dom Sn,A(fA
i , t

A
1

, . . . , tAn ) and (sA1 (a1, . . . , an), . . . , sAn (a1, . . . , an)) ∈ dom Sn,A(fA
j , l

A
1 , . . . , l

A
n )}.

Then [Sn(t, s1, . . . , sn)]A|D = Sn,A([fi(t1, . . . , tn)]A, sA1 , . . . , s
A
n )|D

= Sn,A(Sn,A(fA
i , t

A
1 , . . . , t

A
n ), sA1 , . . . , s

A
n )|D

= Sn,A(Sn,A(fA
j , l

A
1 , . . . , l

A
n ), sA1 , . . . , s

A
n )|D

= Sn,A([fj(l1, . . . , ln)]A, sA1 , . . . , s
A
n )|D

= [Sn(s, s1, . . . , sn)]A|D.

Therefore in all cases we get Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ∈ IdSF
n A for all

A ∈ V . Assume now that t ≈ s, t1 ≈ s1, . . . , tn ≈ sn ∈ IdSF
n V . Then

Sn(t, t1, . . . , tn) ≈ Sn(t, s1, . . . , sn) ≈ Sn(s, s1, . . . , sn) ≈ Sn(s, t1, . . . , tn) ∈ IdSF
n V .

Clearly, IdSF
n V is an equivalence relation on cloneSF τn. Then IdSF

n V is a congruence

relation on cloneSF τn.

The quotient algebra cloneSFV := cloneSF τn/Id
SF
n V belongs also to the variety VMn

of Menger algebras of rank n. (Again we write cloneSFV instead of n− cloneSFV )

5.3 Hypersubstitutions and Clone Substitutions

Now we consider a mapping from the set of operation symbols {fi | i ∈ I} to the

set of all strongly full terms of type τn.

A strongly full hypersubstitution of type τn is a mapping from the set {fi | i ∈ I}
of n-ary operation symbols of type τn to the set W SF

τn
(Xn) of all n-ary terms of type

τn.
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Any strongly full hypersubstitution σ induces a mapping σ̂ on the set W SF
τn

(Xn)

of all n-ary terms of the type, as follows.

Let σ be a strongly full hypersubstitution of type τn. Then σ induces a mapping

σ̂ : W SF
τn

(Xn) −→ W SF
τn

(Xn), by setting

(i) σ̂[fi(x1, . . . , xn)] := σ(fi)

(ii) σ̂[fi(t1, . . . , tn)] := Sn(σ(fi), σ̂[t1], . . . , σ̂[tn]).

Let HypSF τn be the set of all strongly full hypersubstitutions of type τn.

Remark 5.3.1 HypSF τn ⊆ HypR(τn).

Theorem 5.3.2 The extension σ̂ of a strongly full hypersubstitution σ of type τn is

an endomorphism of cloneSF τn.

The Theorem can be proved by induction on the complexity of the term (see [8]).

On HypSF τn we define a binary operation by σ1 ◦h σ2 := σ̂1 ◦ σ2 and let σid

be the strongly full hypersubstitution defined by σid(fi) := fi(x1, . . . , xn). Clearly,

σ̂id[t] = t for all t ∈ W SF
τn

(Xn). It is easy to see that the set HypSF τn together with

the binary operation ◦h and with σid forms a monoid (HypSF τn; ◦h, σid). For more

background on hypersubstitutions see e.g. [26].

Now we consider mappings from the generating system Fτn := {fi(x1, . . . , xn) |
i ∈ I} to W SF

τn
(Xn).

A substitution of (W SF
τn

(Xn);Sn) is a mapping su : {fi(x1, . . . , xn) | i ∈ I} →
W SF

τn
(Xn) and the extension of a substitution su is a mapping su : W SF

τn
(Xn) →

W SF
τn

(Xn) defined by su(fi(x1, . . . , xn)) = su(fi(x1, . . . , xn)) and

su(fi(t1, . . . , tn)) = Sn(su(fi(x1, . . . , xn)), su(t1), . . . , su(tn)).

Now we want to prove that every substitution su : Fτn → W SF
τn

(Xn) can be

uniquely extended to an endomorphism.

Let VMn be the variety of all Menger algebras of rank n. Let {Xi | i ∈ I} be a

new set of variables. This set is indexed with the index set I for the set of operation

symbols of type τn. Let FVMn
({Xi | i ∈ I}) be the free algebra with respect to the

variety VMn , freely generated by {Xi | i ∈ I}. Then we have:
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Theorem 5.3.3 The algebra cloneSF τn is isomorphic to the free algebra FVMn
({Xi |

i ∈ I}), freely generated by the set Fτn.

Proof. We define a map ϕ : W SF
τn

(Xn) −→ FVMn
({Xi | i ∈ I}) inductively as

follows:

(1) ϕ(fi(x1, . . . , xn)) := Xi, i ∈ I,
(2) ϕ(fi(t1, . . . , tn)) := S̃n(Xi, ϕ(t1), . . . , ϕ(tn)).

We prove the homomorphism property ϕ(Sn(t, s1, . . . , sn)) = S̃n(ϕ(t), ϕ(s1), . . . ,

ϕ(sn)) by induction on the complexity of the term t.

(i) If t = fi(x1, . . . , xn) then ϕ(Sn(t, s1, . . . , sn)) = ϕ(fi(s1, . . . , sn))

= S̃n(Xi, ϕ(s1), . . . , ϕ(sn)) = S̃n(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

(ii) If t = fi(t1, . . . , tn) and if we assume that

ϕ(Sn(tj, s1, . . . , sn)) = S̃n(ϕ(tj), ϕ(s1), . . . , ϕ(sn)) for all j = 1, . . . , n,

then ϕ(Sn(t, s1, . . . , sn))

= ϕ(fi(S
n(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)))

= S̃n(Xi, ϕ(Sn(t1, s1, . . . , sn)), . . . , ϕ(Sn(tn, s1, . . . , sn)))

= S̃n(Xi, S̃n(ϕ(t1), ϕ(s1), . . . , ϕ(sn)), . . . , S̃n(ϕ(tn), ϕ(s1), . . . , ϕ(sn)))

= S̃n(S̃n(Xi, ϕ(t1), . . . , ϕ(tn)), ϕ(s1), . . . , ϕ(sn))

= S̃n(ϕ(fi(t1, . . . , tn)), ϕ(s1), . . . , ϕ(sn))

= S̃n(ϕ(t), ϕ(s1), . . . , ϕ(sn)).

Thus ϕ is a homomorphism. It maps the generating set Fτn = {fi(xi, . . . , xn) | i ∈ I}
of the algebra cloneSF τn onto the set {Xi | i ∈ I}, since ϕ(fi(xi, . . . , xn)) = Xi for

every i ∈ I. Furthermore, since {Xi | i ∈ I} is a free independent set ([36]), we have

Xi = Xj ⇒ i = j ⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn).

Thus ϕ is a bijection between the generating sets of cloneSF τn and FVMn
({Xi | i ∈

I}). Altogether, ϕ is an isomorphism.

As a consequence we get:

Corollary 5.3.4 The extension of a substitution is an endomorphism of the algebra

cloneSF τn.
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For two substitutions su1, su2 ∈ Subst we define the product su1 � su2 by

su1 � su2 := su1 ◦ su2, where su1 is the extension of su1.

Now we want to prove that the monoid of all strongly full hypersubstitutions of

type τn is isomorphic to the endomorphism monoid End(cloneSF τn). To do so we

need the following equations for the identity hypersubstitution, for substitutions

su, su1, su2 and its extensions:

(i) su = (su ◦ σid)̂ and

(ii) (su1 � su2) ◦ σid = (su1 ◦ σid)̂ ◦ (su2 ◦ σid).

Clearly, su◦σid is a hypersubstitution. If t = fi(x1, . . . , xn) then su(fi(x1, . . . , xn)) =

su(fi(x1, . . . , xn)) = su(σid(fi)) = (su ◦ σid)(fi) = (su ◦ σid)̂(fi(x1, . . . , xn)).

If t = fi(t1, . . . , tn) and if we assume that su(tj) = (su ◦ σid)̂ (tj); j = 1, . . . , n,

then
(su ◦ σid)̂(fi(t1, . . . , tn)) = Sn((su ◦ σid)(fi), (su ◦ σid)̂(t1), . . . , (su ◦ σid)̂(tn))

= Sn((su ◦ σid)(fi), su(t1), . . . , su(tn))
= Sn(su(fi(x1, . . . , xn)), su(t1), . . . , su(tn))
= su(Sn(fi(x1, . . . , xn), t1, . . . , tn))
= su(fi(t1, . . . , tn)).

For the second equation, consider ((su1 � su2) ◦ σid)(fi) = ((su1 ◦ su2) ◦ σid)(fi)

= (su1 ◦ su2)((σid)(fi)) = (su1 ◦ su2)(fi(x1, . . . , xn)) = su1(su2(fi(x1, . . . , xn)))

= (su1 ◦ σid)̂ (su2(fi(x1, . . . , xn))) = (su1 ◦ σid)̂ (su2 ◦ σid(fi)) = ((su1 ◦ σid)̂ ◦
(su2 ◦ σid))(fi).

Let idFτn
be the identity mapping on Fτn . Then we have

Proposition 5.3.5 The monoids (Subst;�, idFτn
) and (HypSF τn; ◦h, σid) are iso-

morphic.

Proof. We consider the mapping η : (Subst;�, idFτn
) → (HypSF τn; ◦h, σid)

defined by η(su) = su ◦ σid. Clearly, η is well-defined and injective since from

su ◦σid = su′ ◦σid by multiplication with σ−1
id from the right hand side there follows

su = su′. The mapping η is surjective since for σ ∈ HypSF τn and σ ◦ σ−1
id ∈ Subst,

we have (σ ◦ σ−1
id ) ◦ σid = σ. Therefore, η is a bijection. Let su1, su2 ∈ Subst, then

(su1 � su2) ◦ σid = (su1 ◦ σid) ̂◦ (su2 ◦ σid) = η(su1) ̂◦ η(su2) = η(su1) ◦h η(su2).

This shows that η is a homomorphism.



5.3. HYPERSUBSTITUTIONS AND CLONE SUBSTITUTIONS 55

Clearly, the monoids (HypSF τn; ◦h, σid) and (End(cloneSF τn); ◦, idW SF
τn

(Xn)) are iso-

morphic.

Let V be a strongly full variety of partial algebras. Then t1 ≈ t2 ∈ IdSFV is

called a strongly full hyperidentity in V if for any σ ∈ HypSF τn we have σ̂[t1] ≈
σ̂[t2] ∈ IdSFV . Let HIdSFV be the set of all strongly full hyperidentities in V .

Theorem 5.3.6 Let V be a strongly full variety of partial algebras and let t1 ≈
t2 ∈ IdSF

n V . Then t1 ≈ t2 is an identity in cloneSFV iff t1 ≈ t2 is a strongly full

hyperidentity in V .

Proof. Let t1 ≈ t2 ∈ IdSF
n V be an identity in cloneSFV . This means, for

every valuation mapping v : {fi(x1, . . . , xn) | i ∈ I} → cloneSFV , we have

v(t1) = v(t2). Let σ be any strongly full hypersubstitution. We will show that

σ̂[t1] ≈ σ̂[t2] ∈ IdSF
n V . We denote by nat : W SF

τn
(Xn) → W SF

τn
(Xn)/IdSF

n V the

natural mapping. Clearly, η := σ ◦ σ−1
id is a clone substitution, η ∈ Subst, and

v := nat ◦ η is a valuation mapping which is uniquely determined and has the ex-

tension v = nat ◦ η. Then

v(t1) = v(t2)
⇒ (nat ◦ η)(t1) = (nat ◦ η)(t2)

⇒ (nat ◦ σ ◦ σ−1
id )(t1) = (nat ◦ σ ◦ σ−1

id )(t2)
⇒ (nat ◦ σ̂)(t1) = (nat ◦ σ̂)(t2)
⇒ [σ̂(t1)]IdSF

n V = [σ̂(t2)]IdSF
n V

⇒ σ̂(t1) ≈ σ̂(t2) ∈ IdSF
n V .

Conversely, let t1 ≈ t2 be a strongly full hyperidentity in V . This means that

for every σ ∈ HypSF τn, we have σ̂[t1] ≈ σ̂[t2] ∈ IdSF
n V . To show that t1 ≈ t2

is an identity in cloneSFV , we will show that v(t1) = v(t2) for every valua-

tion mapping v : {fi(x1, . . . , xn) | i ∈ I} → cloneSFV . Consider a mapping

η : {fi(x1, . . . , xn) | i ∈ I} → cloneSF τn such that v = nat ◦ η. That means, using

a choice function φ : cloneSFV → cloneSF τn for every fi(x1, . . . , xn) we select from

the class [v(fi(x1, . . . , xn))]IdSF
n V a uniquely determined element from cloneSF τn as

image of fi(x1, . . . , xn) under η. Then η is well-defined since from fi(x1, . . . , xn) =

fj(x1, . . . , xn) there follows [fi(x1, . . . , xn)]IdSF
n V = [fj(x1, . . . , xn)]IdSF

n V and then

the choice function φ selects exactly one element η(fi(x1, . . . , xn)) from this class.
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Therefore η(fi(x1, . . . , xn)) = η(fj(x1, . . . , xn)). The extension v of v is uniquely de-

termined and we have v = nat ◦ η. Then σ := η ◦ σid ∈ HypSF τn and

(η ◦ σid)̂[t1] ≈ (η ◦ σid)̂[t2] ∈ IdSF
n V

⇒ η(t1) ≈ η(t2) ∈ IdSF
n V , by (i) before Proposition 5.3.5

⇒ [η(t1)]IdSF
n V = [η(t2)]IdSF

n V

⇒ (nat ◦ η)(t1) = (nat ◦ η)(t2)
⇒ v(t1) = v(t2).

Let V be a strongly full variety of partial algebras and let IdSF
n V be the set of

all n− ary strongly full identities satisfied in V . If every identity s ≈ t ∈ IdSF
n V is

a strongly full hyperidentity in V , then V is called n− SF − solid.

Proposition 5.3.7 Let V be a strongly full variety of partial algebras of type τn.

Then V is n − SF − solid iff IdSF
n V is a fully invariant congruence relation on

cloneSF τn.

Proof. Let V be n − SF − solid, let t1 ≈ t2 ∈ IdSF
n V and let ϕ : cloneSF τn →

cloneSF τn be an endomorphism of cloneSF τn, which extends ϕ : {fi(x1, . . . , xn) | i ∈
I} → cloneSF τn. Then we have

ϕ(t1) = (ϕ ◦ σid)̂[t1] ≈ (ϕ ◦ σid)̂[t2] = ϕ(t2) ∈ IdSF
n V

since ϕ ◦ σid is a strongly full hypersubstitution with ϕ = (ϕ ◦ σid)̂ (see (i) before

Proposition 5.3.5). Therefore IdSF
n V is fully invariant.

If conversely IdSF
n V is fully invariant, t1 ≈ t2 ∈ IdSF

n V and let σ ∈ HypSF τn,

then σ̂[t1] ≈ σ̂[t2] ∈ IdSF
n V since by Theorem 5.3.2 the extension of a strongly full

hypersubstitution is an endomorphism of cloneSF τn. This shows that every identity

t1 ≈ t2 ∈ IdSF
n V is satisfied as a strongly full hyperidentity and then V is n−SF −

solid.

Theorem 5.3.8 Let V be a strongly full variety of partial algebras. Then V is n−
SF − solid iff cloneSFV is free with respect to itself, freely generated by the in-

dependent set {[fi(x1, . . . , xn)]IdSF
n V | i ∈ I}, meaning that every mapping u :

{[fi(x1, . . . , xn)]IdSF
n V | i ∈ I} → cloneSFV can be extended to an endomorphism

u : cloneSFV → cloneSFV .
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Proof. Let cloneSFV be free with respect to itself. Using the equivalence from

Theorem 5.3.6, we will show that V is n−SF−solid if every identity t1 ≈ t2 ∈ IdSF
n V

is also an identity in cloneSFV . Let t1 ≈ t2 ∈ IdSF
n V . To show that t1 ≈ t2 is an iden-

tity in cloneSFV , we will show that v(t1) = v(t2) for any mapping v : {fi(x1, . . . , xn) |
i ∈ I} → cloneSFV . Given v, we define a mapping αv : {[fi(x1, . . . , xn)]IdSF

n V | i ∈
I} → cloneSFV by αv([fi(x1, . . . , xn)]IdSF

n V ) = v(fi(x1, . . . , xn)) i.e. by αv ◦ nat = v.

Since
[fi(x1, . . . , xn)]IdSF

n V = [fj(x1, . . . , xn)]IdSF
n V

⇒ i = j
⇒ fi(x1, . . . , xn) = fj(x1, . . . , xn)
⇒ v(fi(x1, . . . , xn)) = v(fj(x1, . . . , xn))
⇒ αv([fi(x1, . . . , xn)]IdSF

n V ) = αv([fj(x1, . . . , xn)]IdSF
n V ),

the mapping αv is well-defined and because of the freeness of cloneSFV it can be

uniquely extened to αv : cloneSFV → cloneSFV with αv ◦nat = v (Here we use that

{[fi(x1, . . . , xn)]IdSF
n V | i ∈ I} is a free independent generating set of cloneSFV ).

Since the set {fi(x1, . . . , xn) | i ∈ I} generates the free algebra cloneSF τn, the map-

ping v can be uniquely extended to a homomorphism v : cloneSF τn → cloneSFV .

Then we have
t1 ≈ t2 ∈ IdSF

n V ⇒ [t1]IdSF
n V = [t2]IdSF

n V

⇒ αv([t1]IdSF
n V ) = αv([t2]IdSF

n V )
⇒ (αv ◦ nat)(t1) = (αv ◦ nat)(t2)
⇒ v(t1) = v(t2),

showing that t1 ≈ t2 ∈ IdSF
n cloneSFV .

For the converse, we show that when V is n − SF − solid, any mapping α :

{[fi(x1, . . . , xn)]IdSF
n V | i ∈ I} → cloneSFV can be extended to an endomor-

phism of cloneSFV . We consider the mapping α ◦ nat : {fi(x1, . . . , xn) | i ∈
I} → cloneSFV which is a valuation map. So we have (α ◦ nat)(fi(x1, . . . , xn)) =

(α ◦ nat)(fi(x1, . . . , xn)). We define the map α : cloneSFV → cloneSFV by

(α ◦ nat)(t) = α([t]IdSF
n V ).

We will prove that

(i) α is well-defined. Let t1, t2 ∈ W SF
τn

(Xn), it follows from [t1]IdSF
n V = [t2]IdSF

n V that

t1 ≈ t2 ∈ IdSF
n V. Since V is n− SF − solid and with α ◦ nat : {(fi(x1, . . . , xn) | i ∈

I} → cloneSFV , we have (α ◦ nat)(t1) = (α ◦ nat)(t2)⇒ α([t1]IdSF
n V ) = α([t2]IdSF

n V ).

This shows that α is well-defined.
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(ii) α is an endomorphism.

Consider α(Sn([t0]IdSF
n V , . . . , [tn]IdSF

n V ))

= α[Sn(t0, . . . , tn)]IdSF
n V

= (α ◦ nat)(Sn(t0, . . . , tn))

= Sn((α ◦ nat)(t0), . . . , (α ◦ nat)(tn))

= Sn(α[t0]IdSF
n V , . . . , α[tn]IdSF

n V ).

(iii) α extends α. Indeed, we have

α([fi(x1, . . . , xn)]IdSF
n V ) = (α ◦ nat)(fi(x1, . . . , xn))

= (α ◦ nat)(fi(x1, . . . , xn))

= α(nat(fi(x1, . . . , xn)))

= α([fi(x1, . . . , xn)]IdSF
n V ).

Let T SF (A):=(W SF
τn

(Xn)A;Sn,A) be the Menger algebra of all n-ary strongly full

term operations of the partial algebra A. Let A be a partial algebra and C be a

submonoid of (Subst;�, idFτn
). Then t1 ≈ t2 is called a C-identity in T SF (A) iff

η(t1) = η(t2) for every η ∈ C.

Proposition 5.3.9 Let A be a partial algebra and let ψ−1(M) be the submonoid of

(Subst;�, idFτn
) corresponding to the submonoid M of HypSF τn. Then t1 ≈ t2 is a

strong M-hyperidentity in A iff t1 ≈ t2 is an ψ−1(M)-identity in T SF (A).

Proof. Let t1 ≈ t2 be a atrong M -hyperidentity in A. This means that for every

σ ∈ M we have σ̂[t1] ≈ σ̂[t2] ∈ IdSFA. Let η ∈ ψ−1(M). By Proposition 5.3.5,

we have ψ(η) = η ◦ σid ∈ M and η = (η ◦ σid)̂ . Then η(t1) = (η ◦ σid)̂ [t1] ≈
(η ◦ σid)̂[t2] = η(t2) ∈ IdSFA and η(t1)

A = η(t2)
A. So η(t1) ≈ η(t2) ∈ Id T SF (A).

Conversely, let t1 ≈ t2 be an ψ−1(M)-identity in T SF (A). This means that for every

η ∈ ψ−1(M) we have η(t1) ≈ η(t2) ∈ Id T SF (A). Let σ ∈M . By Proposition 5.3.5,

we have σ ◦ σ−1
id ∈ ψ−1(M) because of ψ(σ ◦ σ−1

id ) = (σ ◦ σ−1
id ) ◦ σid = σ ∈ M and

σ ◦ σ−1
id = σ̂. Then σ̂[t1] = (σ ◦ σ−1

id )(t1) ≈ (σ ◦ σ−1
id )(t2) = σ̂[t2] ∈ Id T SF (A) and

σ̂[t1] ≈ σ̂[t2] ∈ Id T SF (A) ⇒ σ̂[t1]
A = σ̂[t2]

A ⇒ σ̂[t1] ≈ σ̂[t2] ∈ IdSFA.



5.4. ISF − CLOSED AND V SF − CLOSED VARIETIES 59

5.4 ISF − closed and V SF − closed Varieties

Let V be a strongly full variety of partial algebras of type τn. Then V is called

ISF − closed if whenever A ∈ V and T SF (A) ∼= T SF (B), then also B ∈ V .

We consider the following set of strongly full hypersubstitutions of type τn:

OSF := {σ | σ ∈ HypSF τn and σ̂ is surjective }.

It is easy to see that OSF is a submonoid of HypSF τn.

Let A be a partial algebra of type τn. A congruence θ ∈ ConA is said to be

weakly invariant if for every ρ ∈ ConA the following condition is satisfied : if there

exists a full homomorphism from A/θ onto A/ρ, then θ ⊆ ρ. Let A be a partial

algebra, and let θ and ρ be any congruences on A. From the second isomorphism

theorem (see [4]), it always follows from θ ⊆ ρ that there exists a surjective full

homomorphism A/θ → A/ρ such that A/ρ is isomorphic to (A/θ)/(ρ/θ) (see [4]).

A set C of congruences of a partial algebraA of type τn is said to be isomorphically

closed if whenever θ ∈ C and A/θ ∼= A/ρ it follows that ρ ∈ C.

Theorem 5.4.1 Let A be a partial algebra of type τn. Then we have:

(i) A congruence θ on A is weakly invariant iff the principal filter [θ) generated by

θ in ConA is isomorphically closed.

(ii) Every weakly invariant congruence on A is invariant under all surjective full

endomorphisms of A.

Proof. (i) First let θ be weakly invariant. Let ρ and β be congruences on A such

that ρ ∈ [θ) and A/ρ ∼= A/β. Since θ ⊆ ρ, it follows from the second isomorphism

theorem that there is a surjective full homomorphism from A/θ onto A/ρ. But then

by composition there is also a surjective full homomorphism from A/θ onto A/β,

and since θ is weakly invariant, we have θ ⊆ β. Thus β ∈ [θ), showing that [θ) is

isomorphically closed.

Conversely, let [θ) be isomorphically closed. To show that θ is weakly invari-

ant, we consider ρ ∈ ConA for which there is a surjective full homomorphism

ψ : A/θ → A/ρ. Using the natural surjective full homomorphism natθ : A → A/θ,
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we get a surjective full homomorphism ψ ◦ natθ : A → A/ρ and by the first homo-

morphism theorem A/ρ ∼= A/ker(ψ ◦ natθ). Clearly θ = kernatθ ⊆ ker(ψ ◦ natθ)
and since [θ) is isomorphically closed, we have ρ ∈ [θ) and θ ⊆ ρ.

(ii) Let θ be a weakly invariant congruence on A and let φ : A → A by any surjective

full endomorphism. Then natθ◦φ : A → A/θ is a surjective full homomorphism and

by the first homomorphism theorem A/θ ∼= A/ker(natθ ◦ φ). But [θ) is isomorphi-

cally closed and by (i) we have ker(natθ ◦ φ) ∈ [θ). So θ ⊆ ker(natθ ◦ φ) and from

this we get

(u, v) ∈ θ ⇒ (u, v) ∈ ker(natθ ◦ φ)

⇒ (natθ ◦ φ)(u) = (natθ ◦ φ)(v) and u, v ∈ dom(natθ ◦ φ)

⇒ natθ(φ(u)) = natθ(φ(v)) and φ(u), φ(v) ∈ dom(natθ)

⇒ (φ(u), φ(v)) ∈ ker(natθ) = θ.

Then θ is invariant under all surjective full endomorphisms of A.

Proposition 5.4.2 Let A be a partial algebra of type τn. Then the set IdSF
n A

of its n − ary identities is a congruence on cloneSF τn, and the quotient algebra

cloneSF τn/Id
SF
n A is isomorphic to the term clone T SF (A).

Proof. By Theorem 5.2.4 the relation IdSF
n A is a congruence on cloneSF τn. We

define ϕ : cloneSF τn/Id
SF
n A → T SF (A) by ϕ([t]IdSF

n A) := tA. We get

[s]IdSF
n A = [t]IdSF

n A ⇒ s ≈ t ∈ IdSF
n A

⇒ sA|domsA = tA|domtA and domsA = domtA

⇒ sA = tA

⇒ ϕ([s]IdSF
n A) = ϕ([t]IdSF

n A)
and the mapping ϕ is well-defined.

Then we have
ϕ([s]IdSF

n A) = ϕ([t]IdSF
n A) ⇒ sA = tA

⇒ sA|domsA = tA|domtA and domsA = domtA

⇒ s ≈ t ∈ IdSF
n A

⇒ [s]IdSF
n A = [t]IdSF

n A
and the mapping ϕ is injective.

Clearly, ϕ is surjective.

We prove the homomorphism property ϕ(Sn([s]IdSF
n A, [t1]IdSF

n A, . . . , [tn]IdSF
n A))|D =

Sn,A(ϕ([s]IdSF
n A), ϕ([t1]IdSF

n A), . . . , ϕ([tn]IdSF
n A))|D ; D =

n⋂
j=1

domtAj .

Consider ϕ(Sn([s]IdSF
n A, [t1]IdSF

n A, . . . , [tn]IdSF
n A))|D
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= ϕ([Sn(s, t1, . . . , tn)]IdSF
n A)|D

= (Sn(s, t1, . . . , tn))A|D
= Sn,A(sA, tA1 , . . . , t

A
n )|D

= Sn,A(ϕ([s]IdSF
n A), ϕ([t1]IdSF

n A), . . . , ϕ([tn]IdSF
n A))|D.

Altogether, ϕ is an isomorphism.

For any congruence θ on cloneSF τn, we can define the usual quotient alge-

bra (W SF
τn

(Xn)/θ; (f ?
i )i∈I), whose operations f ?

i are defined by f ?
i ([t1]θ, . . . , [tn]θ) =

[fi(t1, . . . , tn)]θ. In the unary case n = 1, the congruence IdSF
n A is called the Myhill-

congruence on A, and the corresponding quotient algebra is called the Myhill-algebra

([39]). We now generalize this to n− ary algebras.

For any congruence θ on cloneSF τn, the quotient algebra M(θ) :=

(W SF
τn

(Xn)/θ; (f ?
i )i∈I) is called the Myhill-algebra of θ. For any partial algebra A of

type τn, the Myhill-algebra of IdSF
n A is denoted by M(A). For any n−ary strongly

full variety V , we set IdSF
n V = ∩{IdSF

n A | A ∈ V }; this is also a congruence on

cloneSF τn, whose quotient algebra M(V ) is called the Myhill-algebra of IdSF
n V .

Proposition 5.4.3 For every congruence θ on cloneSF τn we have

T SF (M(θ)) ∼= cloneSF τn/θ.

In particular, T SF (M(A)) ∼= T SF (A).

Proof. T SF (M(θ)) is the clone generated by {f ?
i | i ∈ I}. We define a map-

ping ϕ? : Fτn → {f ?
i | i ∈ I}, by ϕ?(fi(x1, . . . , xn)) = f ?

i for all i ∈ I. Since

cloneSF τn is freely generated by the set Fτn , the mapping ϕ? can be extended to

a homomorphism ϕ?, which is surjective since ϕ?(〈{fi(x1, . . . , xn) | i ∈ I}〉) =

〈ϕ?({fi(x1, . . . , xn) | i ∈ I})〉 = 〈{f ?
i | i ∈ I}〉 = T SF (M(θ)) and by the first

homomorphism theorem, we have T SF (M(θ)) ∼= cloneSF τn/kerϕ
?. We consider

a mapping ϕ : Wτn(Xn) → T (n)(M(θ)) whose restriction to W SF
τn

(Xn) is equal

to ϕ?, i.e. ϕ|W SF
τn (Xn) = ϕ?. Since cloneSF τn is a subalgebra of n − cloneτn =

(Wτn(Xn);Sn), we have T SF (M(θ)) ⊆ T (n)(M(θ)) and then ϕ?(fi(x1, . . . , xn)) =

ϕ|cloneSF τn
(fi(x1, . . . , xn)) = ϕ(fi(x1, . . . , xn)) = [fi(x1, . . . , xn)]θ (*) by [19]. We will
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show that θ = kerϕ?.

case 1. If (fi(x1, . . . , xn), fj(x1, . . . , xn)) ∈ kerϕ?, then

ϕ?(fi(x1, . . . , xn)) = ϕ?(fj(x1, . . . , xn))

⇔ [fi(x1, . . . , xn)]θ = [fj(x1, . . . , xn)]θ by (*)

⇔ (fi(x1, . . . , xn), fj(x1, . . . , xn)) ∈ θ.
case 2. If (fi(x1, . . . , xn), fj(t1, . . . , tn)) ∈ kerϕ? and we assume that ϕ?(tk) =

[tk]θ; k = 1, . . . , n, then

[fi(x1, . . . , xn)]θ = ϕ?(fi(x1, . . . , xn))

= ϕ?(fj(t1, . . . , tn))

= ϕ?(Sn(fj(x1, . . . , xn), t1, . . . , tn))

= Sn?
(ϕ?(fj(x1, . . . , xn)), ϕ?(t1), . . . , ϕ

?(tn))

= Sn?
([fj(x1, . . . , xn)]θ, [t1]θ, . . . , [t]θ)

= [Sn(fj(x1, . . . , xn), t1, . . . , tn)]θ = [fj(t1, . . . , tn)]θ.

In the same way, we show

(fi(x1, . . . , xn), fj(t1, . . . , tn)) ∈ θ ⇒ (fi(x1, . . . , xn), fj(t1, . . . , tn)) ∈ kerϕ?.

case 3. In a similar way, we show

(fi(s1, . . . , sn), fj(x1, . . . , xn)) ∈ kerϕ? ⇔ (fi(s1, . . . , sn), fj(x1, . . . , xn)) ∈ θ
case 4. If (fi(s1, . . . , sn), fj(t1, . . . , tn)) ∈ kerϕ? and we assume that ϕ?(sk) =

[sk]θ, ϕ
?(tk) = [tk]θ; k = 1, . . . , n , then

ϕ?(fi(s1, . . . , sn)) = ϕ?(fj(t1, . . . , tn))

⇔ ϕ?(Sn(fi(x1, . . . , xn), s1, . . . , sn))

= ϕ?(Sn(fj(x1, . . . , xn), t1, . . . , tn))

⇔ Sn?
(ϕ?(fi(x1, . . . , xn)), ϕ?(s1), . . . , ϕ

?(sn))

= Sn?
(ϕ?(fj(x1, . . . , xn)), ϕ?(t1), . . . , ϕ

?(tn))

⇔ Sn?
([fi(x1, . . . , xn)]θ, [s1]θ, . . . , [sn]θ)

= Sn?
([fj(x1, . . . , xn)]θ, [t1]θ, . . . , [tn]θ)

⇔ [Sn(fi(x1, . . . , xn), s1, . . . , sn)]θ

= [Sn(fj(x1, . . . , xn), t1, . . . , tn)]θ

⇔ [fi(s1, . . . , sn)]θ

= [fj(t1, . . . , tn)]θ.

⇔ (fi(s1, . . . , sn), fj(t1, . . . , tn)) ∈ θ.
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Then the isomorphic T SF (M(A)) ∼= T SF (A) follows from our result.

Theorem 5.4.4 Let V be a strongly full variety of partial algebras of type τn. Then

V is ISF − closed iff V satisfies the following two properties:

(i) A ∈ V iff M(A) ∈ V ,

(ii) IdSF
n V is weakly invariant.

Proof. Suppose first that V is ISF − closed. Property (i) follows from the

ISF − closedness and the result from Proposition 5.4.3 that for any A ∈ V , we have

T SF (M(A)) ∼= T SF (A). By Theorem 5.4.1, we can prove that (ii) holds by showing

that [IdSF
n V ) is isomorphically closed. For this, let α ∈ [IdSF

n V ), then IdSF
n V ⊆

α. Let θ be a congruence on cloneSF τn such that cloneSF τn/α ∼= cloneSF τn/θ.

Since IdSF
n V =

⋂
A∈V

IdSF
n A, we have ∆FSF

τn (Xn)/IdSF
n V = IdSF

n V/IdSF
n V =⋂

A∈V

IdSF
n A/IdSF

n V =
⋂
A∈V

(IdSF
n A/IdSF

n V ) and M(V ) = FSF
τn

(Xn)/IdSF
n V is isomor-

phic to a subdirect product of M(A) ∈ V , and thus M(V ) ∈ V . From IdSF
n V ⊆ α

follows that we have a surjective homomorphism

M(V ) = FSF
τn

(Xn)/IdSF
n V → (FSF

τn
(Xn)/IdSF

n V )/(α/IdSF
n V ) ∼= FSF

τn
(Xn)/α =

M(α). But V is a strongly full variety, so M(α) ∈ V . Furthermore by Proposi-

tion 5.4.3, we have

T SF (M(α)) ∼= cloneSF τn/α ∼= cloneSF τn/θ ∼= T SF (M(θ)),

and since V is ISF − closed, this gives M(θ) ∈ V . This means that IdSF
n V ⊆

IdSF
n M(θ), and we can finish the proof by showing that IdSF

n M(θ) = θ, so that

θ ∈ [IdSF
n V ). The equality IdSF

n M(θ) = θ holds because of

s ≈ t ∈ IdSF
n M(θ) ⇔ [s]θ = [t]θ ⇔ (s, t) ∈ θ.

Conversely, we assume that the strongly full variety of partial algebras V of type

τn satisfies (i) and (ii). From (i) we get M(A) ∈ V for all A ∈ V , since IdSF
n V =⋂

A∈V

IdSF
n A. Then we have ∆FSF

τn (Xn)/IdSF
n V = IdSF

n V/IdSF
n V =

⋂
A∈V

IdSF
n A/IdSF

n V =⋂
A∈V

(IdSF
n A/IdSF

n V ) and M(V ) = FSF
τn

(Xn)/IdSF
n V is isomorphic to a subdirect

product of M(A) ∈ V , and thus M(V ) ∈ V . To establish that V is ISF − closed,

let B and C be any two partial algebras, and suppose that T SF (B) ∼= T SF (C) and
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B ∈ V . It follows from Proposition 5.4.2 that

cloneSF τn/Id
SF
n B ∼= T SF (B) ∼= T SF (C) ∼= cloneSF τn/Id

SF
n C,

and since B ∈ V we have IdSF
n V ⊆ IdSF

n B. By (ii) IdSF
n V is weakly in-

variant, so we get IdSF
n V ⊆ IdSF

n C. But M(V ) = FSF
τn

(Xn)/IdSF
n V →

(FSF
τn

(Xn)/IdSF
n V )/(IdSF

n C/IdSF
n V ) ∼= FSF

τn
(Xn)/IdSF

n C = M(C) is a surjective ho-

momorphism. Since V is a strongly full variety, then we have M(C) ∈ V . By (i) we

get C ∈ V , establishing that V is ISF − closed.

Theorem 5.4.5 Let V be a strongly full variety of partial algebras of type τn which

is the model class of its n−ary strongly full identities, that is, let V = ModSF IdSF
n V .

Then V is ISF − closed iff it is OSF − solid.

Proof. First assume that V is OSF − solid, so that every s ≈ t ∈ IdSF
n V is an

OSF − hyperidentity in V (i.e. σ̂[s] ≈ σ̂[t] ∈ IdSF
n V for all σ ∈ OSF ). Let A ∈ V

and let T SF (A) be isomorphic to T SF (B). Then

σ̂[s] ≈ σ̂[t] ∈ IdSF
n A for all σ ∈ OSF

⇒ s ≈ t is an OSF − hyperidentity in A
⇒ s ≈ t is an ψ−1(OSF )− identity in T SF (A) (by Proposition 5.3.9)

⇒ s ≈ t is an ψ−1(OSF )− identity in T SF (B)

⇒ s ≈ t is an OSF − hyperidentity in B (by Proposition 5.3.9).

Then σ̂[s] ≈ σ̂[t] ∈ IdSF
n B for all σ ∈ OSF . So IdSF

n V ⊆ IdSF
n B and B ∈ V .

Conversely, assume that V is ISF − closed. Then by Theorem 5.4.4 and Theorem

5.4.1, we know that IdSF
n V is both, weakly invariant and invariant under all sur-

jective endomorphisms of cloneSF τn. Then for any identity s ≈ t ∈ IdSF
n V and any

surjective endomorphism η : cloneSF τn → cloneSF τn, we have η(s) ≈ η(t) ∈ IdSF
n V .

Given σ ∈ OSF , then σ ∈ HypSF τn and σ̂ is surjective. But η = σ ◦ σ−1
id = σ̂. Then

σ̂(s) ≈ σ̂(t) ∈ IdSF
n V for all σ ∈ OSF . This shows that V is OSF − solid.

A strongly full variety of partial algebras V of type τn is said to be SSF−closed if

for every partial algebra B of type τn, wheneverA ∈ V and T SF (B) is isomorphic to a

subalgebra of T SF (A), it follows that B ∈ V . The class V is said to be V SF−closed if
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for every partial algebra B of type τn, whenever A ∈ V and Id T SF (B) ⊇ Id T SF (A)

it follows that B ∈ V .

Proposition 5.4.6 Let V be a strongly full variety of partial algebras of type τn. If

V is V SF − closed, then it is both, ISF − closed and SSF − closed.

Proof. Let V be V SF − closed, and let A ∈ V and T SF (B) ∼= T SF (A). Then

Id T SF (B) = Id T SF (A), and so B ∈ V since V is V SF − closed. Similarly, if

T SF (B) is isomorphic to a subalgebra of T SF (A), then Id T SF (B) ⊇ Id T SF (A)

and so B ∈ V since V is V SF − closed. This shows that V is both, ISF − closed and

SSF − closed.

Theorem 5.4.7 Let V be a strongly full variety of partial algebras of type τn and

assume that V = ModSF IdSF
n V . Then V is V SF − closed iff it is OSF − solid.

Proof. Let V be OSF − solid, A ∈ V and Id T SF (B) ⊇ Id T SF (A). From the

fact that V is OSF − solid for all σ ∈ OSF we obtain σ̂[s] ≈ σ̂[t] ∈ IdSF
n V where

s ≈ t ∈ IdSF
n V . Since IdSF

n V ⊆ IdSF
n A we have :

σ̂[s] ≈ σ̂[t] ∈ IdSF
n A for all σ ∈ OSF

⇒ s ≈ t is an OSF − hyperidentity in A
⇒ s ≈ t is an ψ−1(OSF )− identity in T SF (A) by Proposition 5.3.9

⇒ s ≈ t is an ψ−1(OSF )− identity in T SF (B) by Id T SF (B) ⊇ Id T SF (A)

⇒ s ≈ t is an OSF − hyperidentity in B by Proposition 5.3.9.

Then σ̂[s] ≈ σ̂[t] ∈ IdSF
n B for all σ ∈ OSF . So IdSF

n V ⊆ IdSF
n B and B ∈ V .

Assume conversely that V is V SF − closed and let A = (A; (fA
i )i∈I) be a partial

algebra in V . For any hypersubstitution σ, we consider the derived algebra σ(A) =

(A; (σ(fi)
A)i∈I). Since the operations σ(fi)

A are term operations of A, we have

T SF (σ(A)) ⊆ T SF (A) and therefore Id T SF (σ(A)) ⊇ Id T SF (A). Since V is V SF −
closed, we have σ(A) ∈ V . This shows that any derived algebra, formed from an

algebra in V , belongs to V , which is known to be equivalent to the solidity of V .
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Chapter 6

Unsolid and Fluid Strong Varieties

In this chapter, we generalize some results of the papers [20], [21], [22] and [46] to the

partial case. In Section 6.1, we define the concepts of V -proper hypersubstitutions

and inner hypersubstitutions. In Section 6.2, we use the concepts of V -proper hy-

persubstitutions and inner hypersubstitutions to define the concepts of unsolid and

fluid strong varieties. We generalize unsolid and fluid strong varieties to n-fluid and

n-unsolid strong varieties. Finally, we give an example of n-unsolid strong variety of

partial algebras.

6.1 V-proper Hypersubstitutions

Now we consider regular C-hypersubstitutions which preserve all strong identities

of a strong variety of partial algebras.

Let V be a strong variety of partial algebras of type τ . A regular hypersubstitu-

tion σR ∈ HypC
R(τ) is called a V-proper hypersubstitution if for every s ≈ t ∈ IdsV

we get σ̂R[s] ≈ σ̂R[t] ∈ IdsV .

We use P (V ) for the set of all V-proper hypersubstitutions of type τ .

Proposition 6.1.1 The algebra (P (V ); ◦h, σid) is a submonoid of the algebra

(HypC
R(τ); ◦h, σid).

Proof. Clearly, σid ∈ P (V ). If σR1 , σR2 ∈ P (V ), then for every s ≈ t ∈ IdsV we

have σ̂R2 [s] ≈ σ̂R2 [t] ∈ IdsV and σ̂R1 [σ̂R2 [s]] ≈ σ̂R1 [σ̂R2 [t]] ∈ IdsV . This means that

(σ̂R1 ◦ σ̂R2)[s] ≈ (σ̂R1 ◦ σ̂R2)[t] ∈ IdsV and we get that (σR1 ◦h σR2)̂[s] ≈ (σR1 ◦h σR2)

67
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̂[t] ∈ IdsV . Therefore σR1 ◦h σR2 ∈ P (V ), and we have that P (V ) is a submonoid

of HypC
R(τ).

Let V be a strong variety of partial algebras of type τ . Two regular C-

hypersubstitutions σR1 , σR2 ∈ HypC
R(τ) are called V-equivalent iff σR1(fi) ≈

σR2(fi) ∈ IdsV for all i ∈ I. In this case we write σR1 ∼V σR2 .

Theorem 6.1.2 Let V be a strong variety of partial algebras of type τ , and let

σR1 , σR2 ∈ HypC
R(τ). Then the following are equivalent:

(i) σR1 ∼V σR2.
(ii) For all t ∈ WC

τ (X) the equation σ̂R1 [t] ≈ σ̂R2 [t] is an identity from IdsV .
(iii) For all A ∈ V we have σR1(A) = σR2(A).

Proof. (i)⇒ (ii). The implication can be proved by induction on the complexity

of the term t (see [11]).

(ii)⇒ (iii). We consider the term t = fi(x1, . . . , xni
) for i ∈ I. Then

σ̂R1 [fi(x1, . . . , xni
)] ≈ σ̂R2 [fi(x1, . . . , xni

)] ∈ IdsA for all A ∈ V by (ii) and we

get σ̂R1 [fi(x1, . . . , xni
)]A = σ̂R2 [fi(x1, . . . , xni

)]A for all i ∈ I and all A ∈ V . Thus

σR1(A) = σR2(A).

(iii)⇒(i). Here we have σ̂R1 [fi(x1, . . . , xni
)]A = σ̂R2 [fi(x1, . . . , xni

)]A for all i ∈ I and

all A ∈ V . Therefore σR1(fi) ≈ σR2(fi) ∈ IdsA for all A ∈ V . So, σR1 ∼V σR2 .

Proposition 6.1.3 Let V be a strong variety of partial algebras of type τ . Then the

relation ∼V is a right congruence on HypC
R(τ).

Proof. Let σR1 ∼V σR2 and σR ∈ HypC
R(τ). By Theorem 6.1.2 (ii) we have

(σR1 ◦h σR)(fi) = σ̂R1 [σR(fi)] ≈ σ̂R2 [σR(fi)] = (σR2 ◦h σR)(fi) ∈ IdsV.

So, σR1 ◦h σR ∼V σR2 ◦h σR. This shows that ∼V is a right congruence.

In general, ∼V is not a left congruence. But if V is solid, then it is a congruence.



6.1. V-PROPER HYPERSUBSTITUTIONS 69

Proposition 6.1.4 Let V be a strong variety of partial algebras of type τ . If σR1 ∼V

σR2 and σ̂R1 [s] ≈ σ̂R1 [t] ∈ IdsV , then σ̂R2 [s] ≈ σ̂R2 [t] ∈ IdsV when σR1 , σR2 ∈
HypC

R(τ) and s, t ∈ WC
τ (X).

Proof. Assume that σR1 ∼V σR2 and σ̂R1 [s] ≈ σ̂R1 [t] ∈ IdsV . By Theorem 6.1.2,

we have σ̂R1 [s] ≈ σ̂R2 [s] ∈ IdsV and σ̂R1 [t] ≈ σ̂R2 [t] ∈ IdsV . Thus σ̂R2 [s] ≈ σ̂R2 [t] ∈
IdsV .

As a corollary we get

Corollary 6.1.5 The set P (V ) is a union of equivalence classes with respect to ∼V .

(In this case one say that P (V ) is saturated with respect to ∼V ).

Now we consider the equivalence class of the identity hypersubstitution.

A regular C-hypersubstitution σR ∈ HypC
R(τ) is called an inner hypersubstitution

of a strong variety V of partial algebras of type τ if for every i ∈ I,

σ̂R[fi(x1, . . . , xni
)] ≈ fi(x1, . . . , xni

) ∈ IdsV.

Let P0(V ) be the set of all inner hypersubstitutions of V .

By definition, P0(V ) is the equivalence class [σid]∼V
.

Proposition 6.1.6 If σR ∈ P0(V ), then σ̂R[t] ≈ t ∈ IdsV for t ∈ WC
τ (X).

The Proposition can be proved by induction on the complexity of terms (see [11]).

Proposition 6.1.7 The algebra (P0(V ); ◦h, σid) is a submonoid of (P (V ); ◦h, σid).

Proof. Clearly, σid ∈ P0(V ). Assume that σR1 , σR2 ∈ P0(V ). Then
(σR1 ◦h σR2)̂[fi(x1, . . . , xni

)] = σ̂R1 [σ̂R2 [fi(x1, . . . , xni
)]]

≈ σ̂R1 [fi(x1, . . . , xni
)] by Proposition 6.1.6

≈ fi(x1, . . . , xni
) by Proposition 6.1.6

∈ IdsV.
Therefore σR1 ◦h σR2 ∈ P0(V ). Thus P0(V ) is a monoid. By Proposition 6.1.6,

we have P0(V ) ⊆ P (V ). So, the algebra (P0(V ); ◦h, σid) is a submonoid of

(P (V ); ◦h, σid).



70 CHAPTER 6. UNSOLID AND FLUID STRONG VARIETIES

Now we show that the compatibility condition from the definition of a closed ho-

momorphism for partial algebras transfers from fundamental operations to arbitrary

term operations.

Lemma 6.1.8 Let A ∈ PAlg(τ) and tA be the n-ary term operation on A induced

by the n-ary term t ∈ WC
τ (X). If B ∈ PAlg(τ) and if ϕ : A −→ B is a surjective

closed homomorphism, then for all a1, . . . , an ∈ A,

ϕ(tA(a1, . . . , an)) = tB(ϕ(a1), . . . , ϕ(an)).

The Lemma can be proved by induction on the complexity of terms (see [11]).

Lemma 6.1.9 Let A,B ∈ PAlg(τ) and σR ∈ HypC
R(τ). If h : A → B is a surjective

closed homomorphism, then h : σR(A) → σR(B) is a closed homomorphism.

Proof. From Lemma 6.1.8, for the term σR(fi) we have h(f
σR(A)
i (a1, . . . , an)) =

h(σR(fi)
A(a1, . . . , an)) = σR(fi)

B(h(a1), . . . , h(an)) = f
σR(B)
i (h(a1), . . . , h(an)). This

shows that h : σR(A) → σR(B) is a closed homomorphism.

Lemma 6.1.10 Let A,B ∈ PAlg(τ) and σR ∈ HypC
R(τ). If f : A → B is an

isomorphism, then f is also an isomorphism from σR(A) to σR(B).

Proof. Since f : A → B is bijective, the mapping f : σR(A) → σR(B) is also

bijective because partial algebras and their derived algebras have the same universes

and by Lemma 6.1.9, we have σR(A) ∼= σR(B).

Let V be a strong variety of partial algebras of type τ and σR1 , σR2 ∈ HypC
R(τ).

Then we define

σR1 ∼V−iso σR2 iff σR1(A) ∼= σR2(A) for all A ∈ V .

Clearly, ∼V⊆∼V−iso. If V = PAlg(τ), then we use ∼iso instead of ∼PAlg(τ)−iso.

Proposition 6.1.11 Let V be a strong variety of partial algebras of type τ . Then

(i) the relation ∼V−iso is a right congruence on HypC
R(τ);

(ii) if V is a solid variety then ∼V−iso is a congruence on HypC
R(τ).
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Proof. (i) Let σR1 ∼V−iso σR2 and σR ∈ HypC
R(τ). Then σR1(A) ∼= σR2(A) and

σR(σR1(A)) ∼= σR(σR2(A)) for all A ∈ V by Lemma 6.1.10. We have

(σR1 ◦h σR)(A) = σR(σR1(A)) ∼= σR(σR2(A)) = (σR2 ◦h σR)(A).

So, σR1 ◦h σR ∼V−iso σR2 ◦h σR. This shows that ∼V−iso is a right congruence.

(ii) Assume that V is solid. Then σR(A) ∈ V for all σR ∈ HypC
R(τ) for A ∈ V . From

σR1 ∼V−iso σR2 implies that σR1(σR(A)) ∼= σR2(σR(A)) for all A ∈ V . We have

(σR ◦h σR1)(A) = σR1(σR(A)) ∼= σR2(σR(A)) = (σR ◦h σR2)(A).

So, σR ◦h σR1 ∼V−iso σR ◦h σR2 . This shows that ∼V−iso is a left congruence and (i)

shows that it is a congruence.

Proposition 6.1.12 If V = PAlg(τ), then ∼iso is a congruence on HypC
R(τ).

Proof. Since V = PAlg(τ) is a solid variety, the claim follows from Proposition

6.1.11.

Proposition 6.1.13 The equivalence class P V−iso
0 (V ) = [σid]∼V−iso

is a submonoid

of (HypC
R(τ); ◦h, σid).

Proof. Clearly, σid ∈ P V−iso
0 (V ). Next, we will show that P V−iso

0 (V ) is closed

under the operation ◦h. Let σR1 , σR2 ∈ P V−iso
0 (V ). Then σR1 ∼V−iso σid and

σR2 ∼V−iso σid implies that σR1(A) ∼= A and σR2(A) ∼= A for all A ∈ V .
We have (σR1 ◦h σR2)(A) = σR2(σR1(A)) by Lemma 3.2.3

∼= σR2(A) by σR1 ∈ P V−iso
0 (V )

∼= A by σR2 ∈ P V−iso
0 (V ).

Then (σR1 ◦h σR2) ∼V−iso σid. Therefore σR1 ◦h σR2 ∈ P V−iso
0 (V ). So, P V−iso

0 (V ) is a

submonoid of HypC
R(τ).

Proposition 6.1.14 Let V be a strong variety of partial algebras of type τ , s ≈
t ∈ IdsV for s, t ∈ WC

τ (Xn) and let σR1 , σR2 ∈ HypC
R(τ). If σR1 ∼V−iso σR2 and

σ̂R1 [s] ≈ σ̂R1 [t] ∈ IdsV , then σ̂R2 [s] ≈ σ̂R2 [t] ∈ IdsV .
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Proof. Assume that σR1 ∼V−iso σR2 and σ̂R1 [s] ≈ σ̂R1 [t] ∈ IdsV . Then σR1(A) ∼=
σR2(A) for all A ∈ V . We get that there is an isomorphism ϕ from σR1(A) to σR2(A).

Let b1, . . . , bn ∈ A. Then there are elements a1, . . . , an ∈ A such that ϕ(a1) =

b1, . . . , ϕ(an) = bn.

We have
dom(σ̂R2 [s]

A) = {(b1, . . . , bn) | σ̂R2 [s]
A(b1, . . . , bn) exists }

= {(b1, . . . , bn) | σ̂R2 [s]
A(ϕ(a1), . . . , ϕ(an)) exists }

= {(b1, . . . , bn) | ϕ(σ̂R1 [s]
A(a1, . . . , an)) exists }

since ϕ is an isomorphism from σR1(A) to σR2(A)
= {(b1, . . . , bn) | ϕ(σ̂R1 [t]

A(a1, . . . , an)) exists }
since σ̂R1 [s] ≈ σ̂R1 [t] ∈ IdsA for all A ∈ V

= {(b1, . . . , bn) | σ̂R2 [t]
A(ϕ(a1), . . . , ϕ(an)) exists }

= {(b1, . . . , bn) | σ̂R2 [t]
A(b1, . . . , bn) exists }

= dom(σ̂R2 [t]
A)

and
σ̂R2 [s]

A(b1, . . . , bn) = σ̂R2 [s]
A(ϕ(a1), . . . , ϕ(an))

= ϕ(σ̂R1 [s]
A(a1, . . . , an))

= ϕ(σ̂R1 [t]
A(a1, . . . , an))

= σ̂R2 [t]
A(ϕ(a1), . . . , ϕ(an))

= σ̂R2 [t]
A(b1, . . . , bn).

Then σ̂R2 [s] ≈ σ̂R2 [t] ∈ IdsA for all A ∈ V . So, σ̂R2 [s] ≈ σ̂R2 [t] ∈ IdsV .

As a corollary we get

Corollary 6.1.15 The set P (V ) is a union of equivalence classes with respect to

∼V−iso. (i.e. P (V ) is saturated with respect to ∼V−iso).

Remark 6.1.16 P0(V ) ⊆ P V−iso
0 (V ) ⊆ P (V ).

6.2 Unsolid and Fluid Strong Varieties

For a solid strong variety every strong identity is closed under all regular hypersub-

stitutions. At the other extreme is the case where the strong identities are closed

only under the identity hypersubstitution.

A strong variety V of partial algebras of type τ is said to be unsolid if P (V ) =

P0(V ) and V is said to be completely unsolid if P (V ) = P0(V ) = {σid}.
A strong variety V of partial algebras of type τ is said to be iso-unsolid if P (V ) =

P V−iso
0 (V ) and V is said to be completely iso-unsolid if P (V ) = P V−iso

0 (V ) = {σid}.
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Proposition 6.2.1 Let V be a strong variety of partial algebras of type τ . Then

(i) If V is unsolid, then V is iso-unsolid.

(ii) V is completely unsolid iff V is completely iso-unsolid.

Proof. (i) The claim follows from the definitions and Remark 6.1.16.

(ii) If V is completely unsolid then V is completely iso-unsolid by Remark 6.1.16.

Conversely, assume that V is completely iso-unsolid. Then P (V ) = P V−iso
0 (V ) =

{σid}. Since P0(V ) ⊆ P (V ) and P (V ) 6= ∅, we get P0(V ) = {σid}. So, V is completely

unsolid.

A strong variety V of partial algebras of type τ is said to be fluid if, for every

partial algebra A ∈ V and every regular C-hypersubstitution σR ∈ HypC
R(τ), there

holds

σR(A) ∈ V ⇒ σR(A) ∼= A.

We denote by σR(V ) the class of all algebras σR(A) with A ∈ V . As an easy

consequence of the definition we have the following result:

Proposition 6.2.2 If a strong variety V of partial algebras of type τ is fluid then

for every regular C-hypersubstitution σR ∈ HypC
R(τ), there holds

σR(V ) ⊆ V ⇒ ∀A ∈ V (σR(A) ∼= A).

Proposition 6.2.3 Let V be a strong variety of partial algebras of type τ . Then for

all σR ∈ HypC
R(τ), we have σR(V ) ⊆ V iff σR ∈ P (V ).

Proof. Assume that σR(V ) ⊆ V . Let s ≈ t ∈ IdsV . Then IdsV ⊆ IdsσR(V )

and we have s ≈ t ∈ IdsσR(V ). So, σ̂R[s] ≈ σ̂R[t] ∈ IdsV by Proposition 3.2.5.

Therefore σR ∈ P (V ). Conversely, we assume that σR ∈ P (V ). Let A ∈ σR(V ) and

s ≈ t ∈ IdsV . Then σ̂R[s] ≈ σ̂R[t] ∈ IdsV by σR ∈ P (V ) and s ≈ t ∈ IdsσR(V )

by Proposition 3.2.5. Since A ∈ σR(V ) we have s ≈ t ∈ IdsA and A ∈ V . So,

σR(V ) ⊆ V .
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This shows that if a strong variety V of partial algebras of type τ is fluid, then

for every regular hypersubstitution σR ∈ HypC
R(τ), there holds

σR ∈ P (V ) ⇒ ∀A ∈ V (σR(A) ∼= A).

Proposition 6.2.4 Let V be a fluid strong variety of partial algebras of type τ .

Then P (V ) = [σid]∼V−iso
.

Proof. Let σR ∈ P (V ). Then σ̂R[s] ≈ σ̂R[t] ∈ IdsV for all s ≈ t ∈ IdsV implies

that σ̂R[s] ≈ σ̂R[t] ∈ IdsA for all A ∈ V . By Proposition 3.2.5, we have s ≈ t ∈
IdsσR(A). So, σR(A) ∈ V for all A ∈ V and for all σR ∈ HypC

R(τ). Since V is fluid,

we have σR(A) ∼= A and this implies that σR ∼V−iso σid. Therefore σR ∈ [σid]∼V−iso
.

Thus P (V ) ⊆ [σid]∼V−iso
but [σid]∼V−iso

⊆ P (V ). So, P (V ) = [σid]∼V−iso
.

Proposition 6.2.5 Let V be solid variety of partial algebras of type τ . Then V is

fluid iff P (V ) = [σid]∼V−iso
.

Proof. By Proposition 6.2.4, we have that if V is fluid then P (V ) = [σid]∼V−iso
.

Conversely, we assume that P (V ) = [σid]∼V−iso
. Let σR ∈ HypC

R(τ). Since V is solid,

we get σR(A) ∈ V for all A ∈ V . Next, we will show that σR ∈ P (V ). Suppose that

σR 6∈ P (V ). Then there is an identity s ≈ t ∈ IdsV such that σ̂R[s] ≈ σ̂R[t] 6∈ IdsV

and this implies that there exists A ∈ V such that σ̂R[s] ≈ σ̂R[t] 6∈ IdsA. By

Proposition 3.2.5, we get s ≈ t 6∈ IdsσR(A) and σR(A) 6∈ V which is a contradiction.

So, σR ∈ P (V ) = [σid]∼V−iso
and σR ∼V−iso σid. Therefore σR(A) ∼= A for all A ∈ V .

Then V is fluid.

Let V be a fluid strong variety of partial algebras of type τ and assume W is a

subvariety of V . Clearly, W is also fluid since, for allA ∈ W ⊆ V and σR ∈ HypC
R(τ),

we have

σR(A) ∈ W ⇒ σR(A) ∼= A.

Therefore, we have the following :

Proposition 6.2.6 Every subvariety of a fluid strong variety of partial algebras of

type τ is fluid.
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Proposition 6.2.7 If V is a fluid strong variety of partial algebras of type τ and

[σid]∼V
= [σid]∼V−iso

, then V is unsolid.

Proof. Assume that V is fluid and [σid]∼V
= [σid]∼V−iso

. Let σR ∈ P (V ). Since

V is fluid, we get σR(A) ∼= A for all A ∈ V (i.e. σR ∼V−iso σid). Therefore σR ∈
[σid]∼V−iso

= [σid]∼V
(i.e. σR ∼V σid) and we have σR ∈ P0(V ). So P (V ) ⊆ P0(V ),

but since P0(V ) ⊆ P (V ) then P (V ) = P0(V ). Therefore V is unsolid.

Proposition 6.2.8 Let V be a strong variety of partial algebras of type τ . Then

∼V |P (V ) is a congruence relation on the algebra (P (V ); ◦h, σid).

Proof. Let σR1 , σR2 ∈ P (V ) such that σR1 ∼V |P (V ) σR2 and let σR ∈ P (V ).

Then σR(A) ∈ V for all A ∈ V .

We show that ∼V |P (V ) is a right-congruence.

σR1 ∼V |P (V ) σR2 implies that σR1(A) = σR2(A) for all A ∈ V and we get that

σR(σR1(A)) = σR(σR2(A)) since σR is a function. So, σR1 ◦h σR ∼V σR2 ◦h σR but

σR1 ◦hσR, σR2 ◦hσR ∈ P (V ) because P (V ) is a monoid. Therefore σR1 ◦hσR ∼V |P (V )

σR2 ◦h σR.

We show that ∼V |P (V ) is a left-congruence.

σR(A) ∈ V and σR1 ∼V |P (V ) σR2 imply that σR1(σR(A)) = σR2(σR(A)). So, σR ◦h

σR1 ∼V σR ◦h σR2 but σR ◦h σR1 , σR ◦h σR2 ∈ P (V ) because P (V ) is a monoid.

Therefore σR ◦h σR1 ∼V |P (V ) σR ◦h σR2 .

So, ∼V |P (V ) is a congruence relation.

Proposition 6.2.9 Let V be a strong variety of partial algebras of type τ . Then

∼V−iso |P (V ) is a congruence relation on the algebra (P (V ); ◦h, σid).

Proof. Let σR1 , σR2 ∈ P (V ) such that σR1 ∼V−iso |P (V ) σR2 and let σR ∈ P (V ).

Then σR(A) ∈ V for all A ∈ V .

We show that ∼V−iso |P (V ) a right-congruence.

σR1 ∼V−iso |P (V ) σR2 implies that σR1(A) ∼= σR2(A) for all A ∈ V and by Lemma

6.1.10, we get that σR(σR1(A)) ∼= σR(σR2(A)). So, σR1 ◦h σR ∼V−iso σR2 ◦h σR but

σR1 ◦h σR, σR2 ◦h σR ∈ P (V ) because P (V ) is a monoid. Therefore σR1 ◦h σR
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∼V−iso |P (V ) σR2 ◦h σR.

We show that ∼V−iso |P (V ) is a left-congruence.

Since σR(A) ∼= σR(A) and σR(A) ∈ V then σR1(σR(A)) ∼= σR2(σR(A)). So, σR ◦h

σR1 ∼V−iso σR ◦h σR2 but σR ◦h σR1 , σR ◦h σR2 ∈ P (V ) because P (V ) is a monoid.

Therefore σR ◦h σR1 ∼V−iso |P (V ) σR ◦h σR2 .

So, ∼V−iso |P (V ) is a congruence relation.

6.3 n-fluid and n-unsolid Strong Varieties

The concepts of fluid and unsolid strong varieties of partial algebras can be gener-

alized in the following way:

Let 1 ≤ n ∈ N+. A strong variety V of partial algebras of type τ is called n-fluid,

if there are σR1 , . . . , σRn ∈ P (V ) with σRi
6∼V−iso σRj

for all 1 ≤ i 6= j ≤ n such that

for all A ∈ V and for all σR ∈ HypC
R(τ) the following implication holds:

(∗) If σR(A) ∈ V , then there is a k ∈ {1, . . . , n} with σR(A) ∼= σRk
(A).

Proposition 6.3.1 Let V be an n-fluid strong variety of partial algebras of type τ .

Then |P (V )/∼V−iso|P (V )
| ≥ n.

Proof. Since V is n-fluid, there are σR1 , . . . , σRn ∈ P (V ) with σRi
6∼V−iso σRj

for

all 1 ≤ i 6= j ≤ n such that condition (∗) is satisfied. Since [σRi
]∼V−iso|P (V )

⊆ P (V )

for all i ∈ {1, . . . , n} we have [σR1 ]∼V−iso|P (V )
∪ . . . ∪ [σRn ]∼V−iso|P (V )

⊆ P (V ) and

|P (V )/∼V−iso|P (V )
| ≥ n.

A strong variety V of partial algebras of type τ is called n-unsolid iff

|P (V )/∼V |P (V )
| = n.

By this definition, we have that if V is n-unsolid, then P (V ) = [σR1 ]∼V |P (V )
∪

. . . ∪ [σRn ]∼V |P (V )
. where σRi

6∼V σRj
for all 1 ≤ i 6= j ≤ n. But [σRi

]∼V |P (V )
⊆

[σRi
]∼V−iso|P (V )

⊆ P (V ) for all i ∈ {1, . . . , n}. So P (V ) = [σR1 ]∼V−iso|P (V )
∪ . . . ∪

[σRn ]∼V−iso|P (V )
. We have that if V is n-unsolid then P (V ) = [σR1 ]∼V |P (V )

∪ . . . ∪
[σRn ]∼V |P (V )

= [σR1 ]∼V−iso|P (V )
∪ . . . ∪ [σRn ]∼V−iso|P (V )

.

The following concept generalizes that of an n-fluid variety.
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Proposition 6.3.2 Let 1 ≤ n ∈ N and V be a strong variety of partial algebras of

type τ with ∼V |P (V ) =∼V−iso |P (V ). If V is n-fluid then V is k-unsolid for k ≥ n.

Proof. Assume that V is n-fluid. Then we have |P (V )/∼V−iso|P (V )
| ≥ n. Since

∼V |P (V ) =∼V−iso |P (V ) we get |P (V )/∼V−iso|P (V )
| = |P (V )/∼V |P (V )

| = k, i.e. V is

k-unsolid.

6.4 Examples

Let B be the strong regular variety

B = Modsr{x1(x2x3) ≈ (x1x2)x3, x
2
1 ≈ x1},

i.e., the class of all partial algebras of type (2) which satisfy the associative and the

idempotent law as strong identities. Both equations are regular (i.e. the both sides

of the equation have the same variables occurring). We denote by σt ∈ HypC
R(2)

the regular C-hypersubstitution which maps the binary operation symbol f to

the term t ∈ WC
(2)({x1, x2}). Instead of f(x1, x2) we write simply x1x2. The

set HypC
R(2)/∼B

consists precisely of the following classes of hypersubstitutions:

[σε2
1(x1,x2)]∼B

, [σε2
2(x1,x2)]∼B

, [σx1x2 ]∼B
, [σx2x1 ]∼B

, [σx1x2x1 ]∼B
, [σx2x1x2 ]∼B

. We will be

particularly interested in the following strong regular subvarieties of the strong reg-

ular variety B:

TR = Modsr{ε2
1(x1, x2) ≈ ε2

2(x1, x2)},
LZ = Modsr{x1x2 ≈ ε2

1(x1, x2)},
RZ = Modsr{x1x2 ≈ ε2

2(x1, x2)},
SL = Modsr{x1(x2x3) ≈ (x1x2)x3, x1

2 ≈ x1, x1x2 ≈ x2x1},
RB = Modsr{x1(x2x3) ≈ (x1x2)x3 ≈ ε2

1(x1, x2)x3, x1
2 ≈ x1},

NB = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3x4 ≈ x1x3x2x4},

RegB = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x1x3x1 ≈ x1x2x3x1},

LN = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x1x3x2},

RN = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x2x1x3},

LReg = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2 ≈ x1x2x1},
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RReg = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2 ≈ x2x1x2},

LQN = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x1x2x1x3},

RQN = Modsr{x1(x2x3) ≈ (x1x2)x3, x1
2 ≈ x1, x1x2x3 ≈ x1x3x2x3}.

All these varieties are strong regular varieties of partial algebras.

These varieties are given in the following diagram:

q
TR
@

@
@@

�
�

��
qLZ �

�
��q SL@

@
@@

�
�

��qRZ@
@

@@
qLN@

@
@@

�
�

��qRB q RN@
@

@@

�
�

��
qLReg �

�
�� q NB@

@
@@

�
�

�� qRReg@
@

@@
qLQN �

�
�� qRQN@

@
@@

qRegB

This is not the lattice of all strong subvarieties of B since we consider strong regular

ones.

A strong regular variety V of partial algebras of type (2) is called dual solid if

from s ≈ t ∈ IdsrV there follows σ̂x2x1 [s] ≈ σ̂x2x1 [t] ∈ IdsrV .

Then we have the following results:

Theorem 6.4.1 1. TR,LZ,RZ, SL are unsolid.

2. LN,RN,LReg,RReg are 2-unsolid.

3. B,RB,LQN,RQN are 4-unsolid.

4. NB and RegB are 6-unsolid.

5. All dual solid varieties different from TR, SL,NB, and RegB are 4-unsolid.
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6. Any strong regular variety V ⊆ B other than LZ,RZ,LN,RN,LReg,RReg,

LQN,RQN which is not dual-solid is 3-unsolid.

Proof. 1. It is easy to see that TR,LZ,RZ are unsolid. Further, HypC
R(2) =

[σε2
1(x1,x2)]∼SL

∪ [σε2
2(x1,x2)]∼SL

∪ [σx1x2 ]∼SL
, where σx1x2 ∈ P (SL). The application

of σε2
1(x1,x2) to x1x2 ≈ x2x1 ∈ IdsrSL provides x1 ≈ x2 6∈ IdsrSL and the appli-

cation of σε2
2(x1,x2) to x1x2 ≈ x2x1 provides x2 ≈ x1 6∈ IdsrSL. This shows that

σε2
1(x1,x2), σε2

2(x1,x2) 6∈ P (SL). Consequently, |P (SL)| = |[σx1x2 ]∼SL
| = 1, i.e. SL is

unsolid.

2. It is easy to see that HypC
R(2) = [σε2

1(x1,x2)]∼LN
∪ [σε2

2(x1,x2)]∼LN
∪ [σx1x2 ]∼LN

∪
[σx2x1 ]∼LN

, where σε2
1(x1,x2), σx1x2 ∈ P (LN). If we apply σ̂ε2

2(x1,x2) to x1x2x3 ≈ x1x3x2

we obtain x3 ≈ x2 which is not satisfied in LN and applying σ̂x2x1 to x1x2x3 ≈ x1x3x2

gives x3x2x1 ≈ x2x3x1 which is also not satisfied. Therefore P (LN)/∼LN|P (LN)
=

{[σε2
1(x1,x2)]∼LN

, [σx1x2 ]∼LN
}, i.e. LN is 2-unsolid. Similarly we can show that RN is

2-unsolid. For LReg and RReg we show in a similar way that these strong varieties

are 2-unsolid.

3. It is easy to check that HypC
R(2) = [σε2

1(x1,x2)]∼B
∪ [σε2

2(x1,x2)]∼B
∪ [σx1x2 ]∼B

∪
[σx2x1 ]∼B

∪ [σx1x2x1 ]∼B
∪ [σx2x1x2 ]∼B

, where σε2
1(x1,x2), σε2

2(x1,x2), σx1x2 , σx2x1 ∈ P (B).

The application of σx1x2x1 to the associative law provides x1x2x1x3x1x2x1 ≈
x1x2x3x2x1 6∈ IdsrB and the application of σx2x1x2 to the associative law provides

x3x2x1x2x3 ≈ x3x2x3x1x3x2x3 6∈ IdsrB. This shows that σx1x2x1 , σx2x1x2 6∈ P (B).

Consequently, |P (B)/∼B|P (B)
| = |{[σε2

1(x1,x2)]∼B
, [σε2

2(x1,x2)]∼B
, [σx1x2 ]∼B

, [σx2x1 ]∼B
}| =

4, i.e. B is 4-unsolid. Further we have HypC
R(2) = [σε2

1(x1,x2)]∼RB
∪ [σε2

2(x1,x2)]∼RB
∪

[σx1x2 ]∼RB
∪ [σx2x1 ]∼RB

, where σε2
1(x1,x2), σε2

2(x1,x2), σx1x2 , σx2x1 ∈ P (RB) and

|P (RB)/∼B|P (RB)
| = |{[σε2

1(x1,x2)]∼RB
, [σε2

2(x1,x2)]∼RB
, [σx1x2 ]∼RB

, [σx2x1 ]∼RB
}| = 4, i.e.

RB is 4-unsolid. In a similar one proves that LQN as well as RQN are 4-unsolid.

4. It is easy to check that HypC
R(2) = [σε2

1(x1,x2)]∼NB
∪ [σε2

2(x1,x2)]∼NB
∪ [σx1x2 ]∼NB

∪
[σx2x1 ]∼NB

∪ [σx1x2x1 ]∼NB
∪ [σx2x1x2 ]∼NB

. All these hypersubstitutions are NB-proper,

i.e. NB is solid. This gives |P (NB)/∼NB
| = 6, i.e., NB is 6-unsolid. In a similar

way one proves that RegB is 6-unsolid.

5. Let now V be a dual solid variety different from TR, SL,RB,NB and RegB.

Then we have HypC
R(2) = [σε2

1(x1,x2)]∼V
∪ [σε2

2(x1,x2)]∼V
∪ [σx1x2 ]∼V

∪ [σx2x1 ]∼V
∪
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[σx1x2x1 ]∼V
∪ [σx2x1x2 ]∼V

. Since V is dual solid, the hypersubstitutions σx1x2 and σx2x1

are V -proper. As a consequence of V 6= TR, SL and since V is dual solid we have

σε2
1(x1,x2), σε2

2(x1,x2) ∈ P (V ). The application of σx1x2x1 to the associative law provides

x1x2x3x2x1 ≈ x1x2x1x3x1x2x1. From this equation we derive x1x2x3x1 ≈ x1x2x1x3x1

in the following way

x1x2x3x1 ≈ x1x2x3x3x2x3x1

≈ x1x2x3x1x3x1x2x3x1

≈ x1x2x3x1x3x1x2x1x3x1

≈ x1x2x1x3x1x3x1x2x1x3x1

≈ x1x2x1x3x1x2x1x3x1

≈ x1x2x1x3x1x1x2x1x3x1

≈ x1x2x1x3x1.

This shows V ⊆ RegB. But TR, SL,RB,NB and RegB are the only dual solid sub-

varieties of RegB. Since V is different from these varieties we have σx1x2x1 6∈ P (V ).

The same argument shows σx2x1x2 6∈ P (V ). Since RB ⊆ V the set IdsrV of all

strong regular identities satisfied in V consists only of outermost identities and this

shows |P (V )/∼V |P (V )
| = |{[σε2

1(x1,x2)]∼V
, [σε2

2(x1,x2)]∼V
, [σx1x2 ]∼V

, [σx2x1 ]∼V
}| = 4, i.e.

V is 4-unsolid.

6. Finally if V is not a dual solid variety different from LZ,RZ,LN,RN,LReg,

RReg, LQN,RQN, then HypC
R(2) = [σε2

1(x1,x2)]∼V
∪ [σε2

2(x1,x2)]∼V
∪ [σx1x2 ]∼V

∪
[σx2x1 ]∼V

∪ [σx1x2x1 ]∼V
∪ [σx2x1x2 ]∼V

. We can prove that σx2x1 , σx1x2x1 , σx2x1x2 6∈ P (V ).

Then |P (V )/∼V |P (V )
| = |{[σε2

1(x1,x2)]∼V
, [σε2

2(x1,x2)]∼V
, [σx1x2 ]∼V

}| = 3, i.e. V is 3-

unsolid.



Chapter 7

M-solid Strong Quasivarieties

In this chapter we study strong quasivarieties of partial algebras. We first define the

concepts of strong quasi-identities and strong quasivarieties. Secondly, we develop

the theory of M -solid strong quasivarieties on the basis of two Galois-connections

and a pair of additive closure operators. Finally, we use a different definition of a

strong M -hyperquasi-identitiy to define weakly M -solid strong quasivarieties.

7.1 Introduction

A quasi-equation of type τ is a first order formula of the form

e : ∀x1, . . . , xs(s1 ≈ t1 ∧ s2 ≈ t2 ∧ ... ∧ sn ≈ tn ⇒ u ≈ v)

where s1, . . . , sn, t1, . . . , tn, u, v ∈ Wτ (X) and where ∧,⇒ are the binary proposi-

tional connectives conjunction and implication.

For abbreviation with e′ : s1 ≈ t1 ∧ s2 ≈ t2 ∧ ... ∧ sn ≈ tn and e′′ : u ≈ v we write

e : ∀x1, . . . , xs(e
′ ⇒ e′′).

Then the quasi-equation e is satisfied in the partial algebra A as a strong quasi-

identity if from sA1 = tA1 ∧ ... ∧ sAn = tAn it follows uA = vA (sA = tA means that

the induced partial term operation sA is defined whenever the induced partial term

operation tA is defined and both are equal). In this case we write A |=
sq

e.

Using the relation |=
sq

for every class K of partial algebras of type τ and for

every set QΣ of quasi-equations (i.e. implications of the form e′ ⇒ e′′) we form the

sets

81
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QIdsK := {e ∈ QΣ | ∀A ∈K (A |=
sq

e)} and

QModsQΣ := {A∈ PAlg(τ) | ∀ e ∈ QΣ (A |=
sq

e)}.

Let QV ⊆ PAlg(τ) be a class of partial algebras. The class QV is called a strong

quasivariety of partial algebras if QV = QModsQIdsQV .

In [5] Burmeister considered a different kind of quasi-identities based on QE-

equations and its model theory. In the next section we study quasi-identities con-

sidering C-terms.

7.2 Strong Quasi-identities

In this section, we define strong quasi-identities using terms from WC
τ (X).

A quasi-equation of type τ is a first order formula of the form

ce : ∀x1, . . . , xs(s1 ≈ t1 ∧ s2 ≈ t2 ∧ ... ∧ sn ≈ tn ⇒ u ≈ v)

where s1, . . . , sn, t1, . . . , tn, u, v ∈ WC
τ (X) and where ∧,⇒ are the binary proposi-

tional connectives conjunction and implication.

For abbreviation with ce′ : s1 ≈ t1 ∧ s2 ≈ t2 ∧ ... ∧ sn ≈ tn and ce′′ : u ≈ v we write

ce : ∀x1, . . . , xs(ce
′ ⇒ ce′′).

Then the quasi-equation ce is satisfied in the partial algebra A as a strong quasi-

identity if from sA1 = tA1 ∧ ... ∧ sAn = tAn it follows uA = vA. In this case we write

A |=
sq

ce.

Let CQΣ be a set of quasi-equations (i.e. implications of the form ce′ ⇒ ce′′).

Let Qτ denote the set of all quasi-equations of type τ and let K ⊆ PAlg(τ) be a

class of partial algebras of type τ . Consider the connection between PAlg(τ) and

Qτ given by the following two operators:

QIds : P(PAlg(τ)) → P(Qτ) and

QMods : P(Qτ) → P(PAlg(τ)) with

QIdsK := {ce ∈ CQΣ | ∀A ∈K (A |=
sq

ce)} and

QModsCQΣ := {A∈ PAlg(τ) | ∀ ce ∈ CQΣ (A |=
sq

ce)}.
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Clearly, the pair (QMods, QIds) is a Galois connection between PAlg(τ) and

Qτ , i.e it satisfies the following properties:

K1 ⊆ K2 ⇒ QIdsK2 ⊆ QIdsK1, CQΣ1 ⊆ CQΣ2 ⇒ QModsCQΣ2 ⊆ QModsCQΣ1

and

K ⊆ QModsQIdsK,CQΣ ⊆ QIdsQModsCQΣ.

The products QModsQIds and QIdsQMods are closure operators and their fixed

points form complete lattices.

Let QV ⊆ PAlg(τ) be a class of partial algebras. The class QV is called a strong

quasivariety of partial algebras if QV = QModsQIdsQV .

7.3 Strong Hyperquasi-identities

In [14] hyperquasi-identities for total algebras were introduced. We want to gener-

alize this approach to partial algebras but instead of terms from Wτ (X) as in [14]

we will use terms from WC
τ (X).

Let A be a partial algebra of type τ and let M be a submonoid of the monoid

HypC
R(τ). Then the quasi-equation

ce := (s1 ≈ t1 ∧ ... ∧ sn ≈ tn ⇒ u ≈ v)

of type τ in A is a strong M-hyperquasi-identity in A if for every regular C-

hypersubstitution σR ∈M , the formulas

σ̂R[ce] := (σ̂R[s1] ≈ σ̂R[t1] ∧ ... ∧ σ̂R[sn] ≈ σ̂R[tn] ⇒ σ̂R[u] ≈ σ̂R[v])

are strong quasi-identities in A. For M = HypC
R(τ), we speak simply of a strong

hyperquasi-identity in A.

A strong quasivariety V of type τ is called M-solid if χA
M [V ] = V . If ce is a strong

M -hyperquasi-identity in A or in V , we will write A |=
sMhq

ce or V |=
sMhq

ce,

respectively.

Example 7.3.1 Consider the strong regular quasivariety V of type τ = (2) defined

by the following strong quasi-identities:
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(S1) x(yz) ≈ (xy)z,

(S2) x2 ≈ x,

(S3) xyx ≈ ε2
1(x, y),

(S4) xy ≈ yx⇒ ε2
1(x, y) ≈ ε2

2(x, y).

Because of (S1), (S2), (S3) we have to consider exactly the following binary terms

over V :

t1(x, y) = ε2
1(x, y), t2(x, y) = ε2

2(x, y), t3(x, y) = xy, t4(x, y) = yx

and the regular hypersubstitutions σti , i = 1, . . . , 4 which map the binary operation

symbol f to the terms ti, i = 1, . . . , 4. It is easy to see that the application of each

of these regular hypersubstitutions to (S1), (S2), (S3), (S4) gives a strong identity

or a strong quasi-identity which is satisfied in V . This is enough to show that V is

a solid strong quasivariety.

As usual, the relation |=
sMhq

induces a Galois-connection. For any set CQΣ of

quasi-equations of type τ and for any class K of partial algebras of type τ we define:

HMQModsCQΣ := {A ∈ PAlg(τ) | ∀ce ∈ CQΣ(A |=
sMhq

ce)},

HMQId
sK := {ce ∈ CQΣ | ∀A ∈ K(A |=

sMhq
ce)}.

The products HMQModsHMQId
s and HMQId

sHMQMods are closure opera-

tors. The fixed points with respect to these closure operators form two complete

lattices. For a quasi-equation ce, we define χQE
M [ce] := {σ̂R[ce] | σR ∈M}, and for a

set CQΣ of quasi-equations we set χQE
M [CQΣ] :=

⋃
ce∈CQΣ

χQE
M [ce]. Then the following

lemma is very easy to prove.

Lemma 7.3.2 Let M be a submonoid of HypC
R(τ). Then the pair (χA

M , χ
QE
M ) is a

pair of additive closure operators having the property χA
M [A] |=

sq
ce⇔ A |=

sq
χQE

M [ce]

for any quasi-equation ce (a conjugate pair).



7.3. STRONG HYPERQUASI-IDENTITIES 85

Proof. By definition, χA
M and χQE

M are additive closure operators. We will use

that for every term t ∈ WC
τ (X), for every regular C-hypersubstitution σR and for

every partial algebra A, we have tσR(A) = σ̂R[t]A ([49]). Further we have

χA
M [A] |=

sq
ce

⇔ χA
M [A] |=

sq
(s1 ≈ t1 ∧ ... ∧ sn ≈ tn ⇒ u ≈ v)

⇔ ∀σR ∈M (σR(A) |=
sq

(s1 ≈ t1 ∧ ... ∧ sn ≈ tn ⇒ u ≈ v))

⇔ ∀σR ∈M (s
σR(A)
1 = t

σR(A)
1 ∧ . . . ∧ sσR(A)

n = t
σR(A)
n ⇒ uσR(A) = vσR(A))

⇔ ∀σR ∈M (σ̂R[s1]
A = σ̂R[t1]

A ∧ . . . ∧ σ̂R[sn]A = σ̂R[tn]A ⇒ σ̂R[u]A = σ̂R[v]A)

⇔ ∀σR ∈M (A |=
sq

(σ̂R[s1] ≈ σ̂R[t1] ∧ . . . ∧ σ̂R[sn] ≈ σ̂R[tn] ⇒ σ̂R[u] ≈ σ̂R[v]))

⇔ ∀σR ∈M(A |=
sq

σ̂R[ce])

⇔ A |=
sq

χQE
M [ce].

If CQΣ is a set of quasi-equations of type τ , then classes of the form

HMQModsCQΣ are called strong M-hyperquasi-equational classes and the fixed

points under HMQId
sHMQMods are called strong M-hyperquasi-equational theo-

ries. Therefore we can characterize M -solid strong quasivarieties by the following

conditions:

Theorem 7.3.3 Let M be a submonoid of HypC
R(τ). Then for every strong quasi-

variety QV ⊆ PAlg(τ) the following conditions are equivalent:

(i) QV is a strong M-hyperquasi-equational class.

(ii) QV is M-solid, i.e. χA
M [QV ] = QV .

(iii) QIdsQV = HMQId
sQV , i.e. every strong quasi-identity in QV is a strong

M-hyperidentity in QV .

(iv) χQE
M [QIdsQV ] = QIdsQV , QIdsQV is closed under the operator χQE

M .

Proof. (i)⇒ (ii): Since χA
M is a closure operator, the inclusion QV ⊆ χA

M [QV ] is

clear and we have only to show the opposite inclusion. Assume that B ∈ χA
M [QV ].

Then there is a regular C-hypersubstitution σR ∈M and a partial algebra A ∈ QV
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such that B = σR(A). Since QV is a strong M -hyperquasi-equational class, there

is a set CQΣ of quasi-equations such that QV = HMQModsCQΣ and A ∈ QV

means that for all regular C-hypersubstitutions σR ∈ M and for all ce ∈ CQΣ,

we have A |=
sq

σ̂R[ce]. By the conjugate property from Lemma 7.3.2 we have that

σR(A) |=
sq

ce and therefore σR(A) ∈ QModsCQΣ = QV since QV is a strong

quasivariety.

(ii)⇒ (iii): From χA
M [QV ] = QV implies that QIdsχA

M [QV ] = QIdsQV . Because of

QIdsχA
M [QV ] = {ce | ∀σR ∈M, ∀A ∈ QV (σR(A) |=

sq
ce)}

= {ce | ∀σR ∈M, ∀A ∈ QV (A |=
sq

σ̂R[ce])}

= HMQId
sQV

we have HMQId
sQV = QIdsQV .

(iii)⇒ (iv): The inclusion QIdsQV ⊆ χQE
M [QIdsQV ] follows from the property of

χQE
M . We only have to show the opposite inclusion. Let σR ∈M and ce ∈ QIdsQV .

Then σ̂R[ce] ∈ QIdsQV since QIdsQV = HMQId
sQV .

(iv)⇒ (i): From χQE
M [QIdsQV ] = QIdsQV by applying the operator QMods on both

sides we obtain the equation

QV = QModsQIdsQV = QMods(χQE
M [QIdsQV ]).

Considering the right hand side, we get

QMods(χQE
M [QIdsQV ])={A ∈ PAlg(τ) | ∀ce ∈ QIdsQV,∀σR ∈M (A |=

sq
σ̂R[ce])}

=HMQModsQIdsQV

and therefore with CQΣ = QIdsQV we have shown that QV is a strong M -

hyperquasi-equational class.

The following theorem is a consequence of the general theory of conjugate pairs of

additive closure operators (see [34]).

Theorem 7.3.4 Let M be a submonoid of HypC
R(τ). Then for every strong quasi-

equational theory CQΣ, the following conditions are equivalent:

(i) CQΣ is a strong M-hyperquasi-equational theory, i.e. there is a class QV of

partial algebras of type τ such that CQΣ = HMQId
sQV .
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(ii) χQE
M [CQΣ] = CQΣ.

(iii) QModsCQΣ = HMQModsCQΣ.

(iv) χA
M [QModsCQΣ] = QModsCQΣ.

Proof. The proof goes in a similar way as in ([14]).

7.4 Weakly M-solid Strong Quasivarieties

Now we define a different concept of M -hypersatisfaction of a quasi-equation. This

leads us to weakly M -solid strong quasivarieties. We will use the operator χE
M in-

troduced in Section 7.3.

Let A be a partial algebra of type τ , let M be a monoid of regular C-

hypersubstitutions, and let ce := (s1 ≈ t1 ∧ ... ∧ sn ≈ tn ⇒ u ≈ v) be a quasi-

equation of type τ . Then ce is called a weakly strong M-hyperquasi-identity in A if

the implication:

χE
M [{s1 ≈ t1 ∧ . . . ∧ sn ≈ tn}] ⇒ χE

M [u ≈ v]

is satisfied in A. In this case we write A |=
wsMhq

ce. If every partial algebra A of a

class QV has this property, we write QV |=
wsMhq

ce.

Proposition 7.4.1 If ce is a strong M-hyperquasi-identity in the class QV of par-

tial algebras of type τ , then ce is a weakly strong M-hyperquasi-identity in QV but

not conversely.

Proof. If ce is a strong M -hyperquasi-identity in QV then for every σR ∈M we

have σ̂R[ce] ∈ QIdsQV . Therefore we have

∀σR ∈M((σ̂R[s1] ≈ σ̂R[t1] ∧ . . . ∧ σ̂R[sn] ≈ σ̂R[tn] ⇒ σ̂R[u] ≈ σ̂R[v]) ∈ QIdsQV ).(∗)

Using the rules of the predicate calculus from (∗) we get,

(∀σR ∈M(σ̂R[s1] ≈ σ̂R[t1] ∧ . . . ∧ σ̂R[sn] ≈ σ̂R[tn])
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⇒ ∀σR ∈M(σ̂R[u] ≈ σ̂R[v])) ⊆ QIdsQV

and this means

(χE
M [s1 ≈ t1 ∧ . . . ∧ sn ≈ tn] ⇒ χE

M [u ≈ v]) ⊆ QIdsQV (∗∗)

and therefore ce is satisfied as a weakly strong M -hyperquasi-identity in QV .

The converse is not true since it could be possible to find a regular C-

hypersubstitution σR1 ∈M with

σ̂R1 [s1] ≈ σ̂R1 [t1] ∧ . . . ∧ σ̂R1 [sn] ≈ σ̂R1 [tn] ⇒ σ̂R1 [u] ≈ σ̂R1 [v] 6∈ QIdsQV

even if (∗∗) is satisfied.

Using this new concept we define:

A strong quasivariety QV of partial algebras of type τ is weakly M-solid if every

ce ∈ QIdsQV is a weakly strong M -hyperquasi-identity in QV . Our next aim is to

characterize weakly M -solid strong quasivarieties.

In the usual way the relation |=
wsMhq

induces a Galois connection if we define:

WHMQModsCQΣ := {A ∈ PAlg(τ) | ∀ce ∈ CQΣ(A |=
wsMhq

ce)},

WHMQId
sK := {ce ∈ Qτ | ∀A ∈ K(A |=

wsMhq
ce)}.

For sets CQΣ ⊆ Qτ of quasi-equations and classes QV ⊆ PAlg(τ) of partial

algebras of type τ . Then the pair (WHMQMods,WHMQId
s) is a Galois-connection

between the power sets P(PAlg(τ)) and P(Qτ) and the fixed points of the closure

operators WHMQModsWHMQId
s and WHMId

sWHMQMods form two complete

lattices which are dually isomorphic.

We are going to show that strong quasivarieties which are fixed points with respect

to WHMQModsWHMQId
s are weakly M -solid.

Proposition 7.4.2 If QV is a strong quasivariety of partial algebras of type τ and

WHMQModsWHMQId
sQV = QV then QV is weakly M-solid.

Proof. From the definition we get

QV = WHMQModsWHMQId
sQV

= {A ∈ PAlg(τ) | ∀ce ∈ QIdsQV (A |=
wsMhq

ce)}

and this means that every strong quasi-identity in QV is weakly M -solid.
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If we compare M -solid and weakly M -solid strong quasivarieties, we obtain:

Proposition 7.4.3 Every M-solid strong quasivariety of type τ is also weakly M-

solid.

Proof. If QV is M -solid, then by definition we have χA
M [QV ] = QV . The appli-

cation of Theorem 7.3.3 gives QIdsQV = HMQId
sQV ⊆ WHMQId

sQV by Propo-

sition 7.4.1. But this means by definition of weakly M -solid strong quasivarieties

that QV is weakly M -solid.

The fixed points with respect to the closure operator WHMQModsWHMQId
s

form also a complete lattice and Proposition 7.4.3 shows that this complete lattice

contains the complete lattice of all M -solid strong quasivarieties of partial algebras

of type τ . This does not yet mean that the complete lattice of M -solid strong qua-

sivarieties is a complete sublattice of the complete lattice of weakly M -solid strong

quasivarieties. We want to show that the lattice of all weakly M -solid strong quasi-

varieties is a complete sublattice of the complete lattice of all strong quasivarieties.

A way to characterize complete sublattices of a complete lattice is via Galois-closed

subrelations.

We want to apply Theorem 1.2.4 and prove at first.

Lemma 7.4.4 |=
wsMhq

is a Galois closed subrelation of |=
sq

.

Proof. Let A be a partial algebra of type τ and let ce be a quasi-equation of

type τ such that (A, ce) ∈ |=
wsMhq

. Then A |=
wsMhq

ce and by definition of weakly

strong M -hyperquasi-identity we have A |=
sq

ce. Therefore |=
wsMhq

⊆ |=
sq

.

Assume that K = WHMQModsCQΣ and CQΣ = WHMQId
sK where K ⊆

PAlg(τ). If A ∈ K, then A |=
wsMhq

CQΣ, i.e. for all ce ∈ CQΣ we have A |=
wsMhq

ce. But then also A |=
sq

ce by definition of weakly strong M -hyperquasi-identity,

therefore A ∈ QModsCQΣ and K ⊆ QModsCQΣ.

Conversely, if A ∈ QModsCQΣ, then for every ce ∈ CQΣ we have A |=
sq
ce and be-

cause of CQΣ = WHMQId
sK also A |=

wsMhq
ce for every ce ∈ CQΣ and this means
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A ∈ WHMQId
sK = K. Altogether we have K = QModsCQΣ.

From ce ∈ CQΣ = WHMQId
sK it follows A |=

wsMhq
ce for all A ∈ K. But then

by definition of a weakly strong M -hyperquasi-identity, A |=
sq
ce and this means

ce ∈ QIdsK and thus CQΣ ⊆ QIdsK. If ce ∈ QIdsK, then for all A ∈ K =

WHMQModsCQΣ we haveA |=
sq
ce, thereforeA |=

wsMhq
ce and ce ∈ WHMQId

sK =

CQΣ. This shows that QIdsK ⊆ CQΣ and altogether CQΣ = QIdsK.

As a consequence we have

Corollary 7.4.5 For every monoid M of regular hypersubstitutions the lattice of all

weakly M-solid strong quasivarieties is a complete sublattice of the complete lattice

of all strong quasivarieties of type τ .

Proof. This follows with Lemma 7.4.4 from Theorem 1.2.4.

The next step is to define the following operator χwQE
M on sets of quasi-equations.

Let ce : ce′ ⇒ ce′′ be a quasi-equation. Then

χwQE
M [ce] := χQE

M [ce′] ⇒ χQE
M [ce′′].

For sets CQΣ of quasi-equations we define: χwEQ
M [CQΣ] =

⋃
ce∈CQΣ

χwQE
M [ce].

This operator has the following properties:

Proposition 7.4.6 The operator χwQE
M : P(Qτ) → P(Qτ) is monotone and idem-

potent, but in general not extensive.

Proof. By definition the operator χwQE
M is additive and therefore monotone. We

show the idempotency. Let CQΣ ⊆ Qτ and ce ∈ CQΣ. Then χwQE
M [ce] = χQE

M [ce′] ⇒
χQE

M [ce′′] if ce is the implication ce′ ⇒ ce′′. Then

χwQE
M [χwQE

M [ce]] = χQE
M [χQE

M [ce′]] ⇒ χQE
M [χQE

M [ce′′]]

= χQE
M [ce′] ⇒ χQE

M [ce′′]

= χwQE
M [ce]

for every ce ∈ CQΣ since the operator χQE
M is idempotent. Since χwQE

M is additive,

we obtain the idempotency.
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Finally we want to give an example showing that a strong quasivariety can satisfy

an implication as a weakly strong M -hyperquasi-identity, but not as a strong M -

hyperquasi-identity.

We consider the strong regular quasivariety V of type τ = (2) defined by

(i) x(yz) ≈ (xy)z,

(ii) x2 ≈ x,

(iii) xyuv ≈ xuyv,

(iv) xy ≈ yx⇒ ε2
1(x, y) ≈ ε2

2(x, y).

There are exactly the following binary terms over QV : ε2
1(x, y), ε2

2(x, y), xy, yx, xyx,

yxy. We prove that (iv) is a weakly strong hyperquasi-identity in QV . That means,

for every partial algebra A ∈ QV we have to prove

(A |=
shq

xy ≈ yx) ⇒ (A |=
shq

ε2
1(x, y) ≈ ε2

2(x, y)).

This becomes clear because of A |=
shq

xy ≈ yx ⇔ ∀σR(A |=
sq
σ̂R[xy] ≈ σ̂R[yx] ⇔

A |=
sq
ε2
1(x, y) ≈ ε2

2(x, y)∧A |=
sq
ε2
2(x, y) ≈ ε2

1(x, y)∧A |=
sq
xy ≈ yx∧A |=

sq
yx ≈ xy∧

A |=
sq
xyx ≈ yxy∧A |=

sq
yxy ≈ xyx). The implication xy ≈ yx⇒ ε2

1(x, y) ≈ ε2
2(x, y)

is satisfied as a weakly strong hyperquasi-identity also in the case if A |=
shq

xy ≈ yx is

wrong, for instance, ifA |=
shq

ε2
1(x, y) ≈ ε2

2(x, y) is not satisfied and ifA |=
shq

ε2
1(x, y) ≈

ε2
2(x, y) is satisfied. In this case A has more than one element and is commutative.

But then xy ≈ yx ⇒ ε2
1(x, y) ≈ ε2

2(x, y) is not a strong quasi-identity in A and

xy ≈ yx⇒ ε2
1(x, y) ≈ ε2

2(x, y) is not satisfied as a strong hyperquasi-identity.
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Chapter 8

Solidifyable Minimal Partial
Clones

In this chapter, we generalize some results of the paper [23] to minimal partial clones.

The chapter is divided into three sections. In Section 8.1 we define the concept of

equivalence of strong varieties of different types and we show that strong varieties

of different types are equivalent if and only if their clones of all term operations

of different types are isomorphic. In Section 8.2 we study minimal partial clones in

([3]). In Section 8.3 we define the concept of a strongly solidifyable partial clone and

we want to find properties of minimal partial clones which are strongly solidifyable.

8.1 Equivalent Strong Varieties of Partial Alge-

bras

The concept of a hypersubstitution can be generalized to a mapping which assigns

operation symbols of one type to terms of a different type (see [49]).

Let τ = (fi)i∈I , τ ′ = (gj)j∈J be arbitrary types. A mapping

τ ′

τ σ : {fi | i ∈ I} → WC
τ ′ (X),

(with arity fi=arity σ(fi)), which assigns to every ni-ary operation symbol fi of

type τ an ni-ary term σ(fi) ∈ WC
τ ′ (X), is called a (τ, τ ′)-hypersubstitution.

The (τ, τ ′)-hypersubstitution τ ′
τ σ is called regular if V ar(τ ′

τ σ(fi)) = {x1, . . . , xni
}

for all operation symbols fi of type τ .

93
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Let HypC
R(τ, τ ′) denote the set of all regular (τ, τ ′)-hypersubstitutions and let

τ ′
τ σR be some member of HypC

R(τ, τ ′).

Any regular (τ, τ ′)-hypersubstitution τ ′
τ σR can be extended to a map

τ ′

τ σ̂R : WC
τ (X) → WC

τ ′ (X)

defined for all terms, in the following way:

(i) τ ′
τ σ̂R[xj] = xj for xj ∈ X;

(ii) τ ′
τ σ̂R[εk

j (t1, . . . , tk)] = εk
j (τ ′

τ σ̂R[t1], . . . ,
τ ′
τ σ̂R[tk]);

(iii) τ ′
τ σ̂R[fi(t1, . . . , tni

)] = S ′
ni

n (τ ′
τ σR(fi),

τ ′
τ σ̂R[t1], . . . ,

τ ′
τ σ̂R[tni

]).

Lemma 8.1.1 ([49]) Let τ ′
τ σR ∈ HypC

R(τ, τ ′). Then

τ ′

τ σ̂R[S
m

n (t, t1, . . . , tm)] = S ′
m

n (τ ′

τ σ̂R[t],τ
′

τ σ̂R[t1], . . . ,
τ ′

τ σ̂R[tm]).

Since the extension τ ′
τ σ̂R of the regular (τ, τ ′)-hypersubstitution τ ′

τ σR preserves

arities, every extension τ ′
τ σ̂R defines a family of mappings

τ ′

τ σ̂R = (η(n) : WC
τ (Xn) → WC

τ ′ (Xn))n∈N+ .

Theorem 8.1.2 ([49]) The extension τ ′
τ σ̂R of a regular (τ, τ ′)-hypersubstitution τ ′

τ σR

defines a homomorphism (η(n))n∈N+ : Cloneτ c → Cloneτ ′c where

Cloneτ c := ((WC
τ (Xn))n∈N+ ; (S

m

n )m,n∈N+ , (ek
j )k∈N+,1≤j≤k) and

Cloneτ ′c := ((WC
τ ′ (Xn))n∈N+ ; (S ′

m

n )m,n∈N+ , (e
′k
j )k∈N+,1≤j≤k).

Using our new concept of a hypersubstitution we can define a relation between strong

varieties of partial algebras of different types (see [49]).

Let V ⊆ PAlg(τ) and V ′ ⊆ PAlg(τ ′) be strong varieties of type τ and τ ′,

respectively. Then V and V ′ are called equivalent, V ∼ V ′, if there exist a regular

(τ, τ ′)-hypersubstitution τ ′
τ σR and a regular (τ ′, τ)-hypersubstitution τ

τ ′σR such that

for all t, t1, t2 ∈ WC
τ (X) and t′, t′1, t

′
2 ∈ WC

τ ′ (X):

(a) V |=
s

t1 ≈ t2 ⇒ V ′ |=
s

τ ′
τ σ̂R[t1] ≈τ ′

τ σ̂R[t2];

(a′) V ′ |=
s

t′1 ≈ t′2 ⇒ V |=
s

τ
τ ′σ̂R[t′1] ≈τ

τ ′ σ̂R[t′2];
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(b) V |=
s

τ
τ ′σ̂R[τ

′
τ σ̂R[t]] ≈ t;

(b′) V ′ |=
s

τ ′
τ σ̂R[ττ ′σ̂R[t′]] ≈ t′.

Lemma 8.1.3 Let τ ′
τ σR1 and τ ′

τ σR2 be regular (τ, τ ′)-hypersubstitutions and A ∈
PAlg(τ ′). If τ ′

τ σR1(fi)
A =τ ′

τ σR2(fi)
A for all i ∈ I, then τ ′

τ σ̂R1 [t]
A =τ ′

τ σ̂R2 [t]
A for

t ∈ WC
τ (X).

The Lemma can be proved by induction on the complexity of terms (see [12]).

Lemma 8.1.4 For every mapping h : {fi | i ∈ I} → T (A), A ∈ PAlg(τ ′), which

maps the ni-ary operation symbol fi of type τ to an ni-ary term operation from T (A),

there exists a regular (τ, τ ′)-hypersubstitution τ ′
τ σR such that h(fi) =τ ′

τ σR(fi)
A for

all i ∈ I.

Proof. Let a mapping h : {fi | i ∈ I} → T (A) i.e. h(fi) = tAi when ti ∈ WC
τ ′ (Xni

)

be given. Then we can consider a regular (τ, τ ′)-hypersubstitution τ ′
τ σR : {fi | i ∈

I} → WC
τ ′ (X) defined by τ ′

τ σR(fi) = ti, for i ∈ I and we get that h(fi) = tAi =τ ′
τ

σR(fi)
A for i ∈ I.

Lemma 8.1.5 If A ∈ PAlg(τ), B ∈ PAlg(τ ′), then for every clone homomorphism

γ : T (A) → T (B) there exists a regular (τ, τ ′)-hypersubstitution τ ′
τ σR such that

γ(tA) =τ ′
τ σ̂R[t]B for every t ∈ WC

τ (X).

Proof. Let A ∈ PAlg(τ), B ∈ PAlg(τ ′) and γ : T (A) → T (B) be a clone

homomorphism. Since γ preserves the arity, we can consider a mapping h : {fi | i ∈
I} → T (B) with h(fi) = γ(fA

i ), for i ∈ I which preserves the arity and by Lemma

8.1.4, we have a regular (τ, τ ′)-hypersubstitution τ ′
τ σR such that h(fi) =τ ′

τ σR(fi)
B,

for i ∈ I. Then we get that γ(fA
i ) =τ ′

τ σR(fi)
B, for i ∈ I. We want to show that

γ(tA) =τ ′
τ σ̂R[t]B for t ∈ WC

τ (X) which can be proved by induction on the complexity

of the term t (see [12]).

Proposition 8.1.6 Let A ∈ PAlg(τ), B ∈ PAlg(τ ′) be partial algebras and let

V := V (A) and V ′ := V (B) be the strong varieties generated by A and by B,

respectively. Then we have V ∼ V ′ iff T (A) ∼= T (B), i.e. if the clones T (A) and

T (B) are isomorphic.
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Proof. Let τ = (fi)i∈I , τ ′ = (gj)j∈J . Let V ∼ V ′. Then there are regular

hypersubstitutions τ ′
τ σR, τ

τ ′σR satisfying properties (a) − (b′) of the definition of

V ∼ V ′. Then γ : T (A) → T (B) with tA 7→τ ′
τ σ̂R[t]B is well-defined (because of

sA = tA ⇒τ ′
τ σ̂R[s]B =τ ′

τ σ̂R[t]B) and by Lemma 8.1.1 we get that γ is a clone

homomorphism. Moreover, γ is injective by properties (a′) and (b) since

τ ′

τ σ̂R[s]B =τ ′

τ σ̂R[t]B ⇒τ
τ ′ σ̂R[τ

′

τ σ̂R[s]]A =τ
τ ′ σ̂R[τ

′

τ σ̂R[t]]A ⇒ sA = tA,

and γ is surjective by property (b′) since

t′
B

=τ ′

τ σ̂R[ττ ′σ̂R[t′]]B = γ(τ
τ ′σ̂R[t′]A).

Conversely, let T (A) ∼= T (B) and let γ : T (A) → T (B) be a clone isomorphism.

Then there exist ti ∈ WC
τ ′ (Xni

), sj ∈ WC
τ (Xnj

) such that γ(fA
i ) = tBi , γ−1(gBj ) = sAj .

We define the regular hypersubstitutions τ ′
τ σR : fi 7→ ti,

τ
τ ′σR : gj 7→ sj. By Lemma

8.1.5 we have γ(tA) =τ ′
τ σ̂R[t]B, γ−1(t′B) =τ

τ ′ σ̂R[t′]A for t ∈ WC
τ (X) and t′ ∈ WC

τ ′ (X).

We are going to show that τ ′
τ σR, τ

τ ′σ̂R fulfil properties (a)−(b′), what implies V ∼ V ′.

(a) V |=
s

s ≈ t ⇒ sA = tA ⇒τ ′
τ σ̂R[s]B = γ(sA) = γ(tA) =τ ′

τ σ̂R[t]B ⇒ V |=
s

τ ′
τ σ̂R[s] ≈τ ′

τ σ̂R[t].

Analogously we obtain for (a′) (using γ−1 instead of γ):

(b)τ
τ ′σ̂R[τ

′

τ σ̂R[t]]A = γ−1(τ ′

τ σ̂R[t]B) = γ−1(γ(tA)) = tA,

i.e. V |=
s

τ
τ ′σ̂R[τ

′
τ σ̂R[t]] ≈ t.

In a similar way we conclude for (b′).

8.2 Minimal Partial Clones

The next concept which we have to introduce is the concept of a totally symmetric

and totally reflexive relation: (see [3])

A relation R ⊆ An on the set A is called totally symmetric if for all permutations

s on {1, . . . , n}

(a1, . . . , an) ∈ R⇔ (as(1), . . . , as(n)) ∈ R



8.2. MINIMAL PARTIAL CLONES 97

and totally reflexive if R ⊇ ιn where ιn is defined by

ιn := {(a1, . . . , an) ∈ An | ai = aj and 1 ≤ i < j ≤ n}.

R is called trivial if R = An.

A binary totally reflexive and totally symmetric relation is reflexive and symmetric

in the usual sense.

Let A be a finite set. The lattice LP (A) of all partial clones is atomic ([3]).

There are only finitely many minimal partial clones (atoms). In [3] all of them are

determined up to the knowledge of the minimal clones in the lattice LO(A) of all

total clones. Unfortunately, in general the total minimal clones are unknown. Lots

of work has been done to determine all minimal clones of total operations defined

on a finite set ([16], [45]). We will use the following theorem:

Theorem 8.2.1 ([3]) The lattice LP (A) of all partial clones on a finite set A is

atomic and contains a finite number of atoms. C ∈ LP (A) is a minimal partial clone

iff C is a minimal total clone or C is generated by a proper partial projection with

a nontrivial totally reflexive and totally symmetric domain.

Example 8.2.2 For a set F of operations defined on the same set let 〈F 〉 be

the clone generated by F . For the two-element set A = {0, 1} the total mini-

mal clones are the following ones ([42]): 〈∧〉, 〈∨〉, 〈x + y + z〉, 〈m〉, 〈c10〉, 〈c11〉,
〈N〉, where ∧,∨, N denote the conjunction, disjunction and negation. The sym-

bol + denotes the addition modulo 2 and c10, c
1
1 are the unary constant functions

with the value 0 and 1, respectively. We denote by m a ternary function defined by

m(x, y, z) = (x∧y)∨(y∧z)∨(x∧z). Remark that we write 〈∧〉 instead of 〈{∧}〉. Since

for n > 2 every totally symmetric and totally reflexive relation on {0, 1} is trivial,

we have exactly the following proper partial minimal clones on {0, 1}: 〈e21,{(00),(11)}〉,
〈e11,{0}〉, 〈e11,{1}〉, 〈e11,∅〉. Altogether we have 11 minimal partial clones of functions

defined on the set {0, 1}.
In [16] all total minimal clones on a three-element set are determined.

There are 84 total minimal clones on {0, 1, 2}. Further we have ex-

actly the proper partial minimal clones generated by unary partial pro-

jections with the domains {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, ∅, and the proper
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partial minimal clones generated by binary projections with the domains

{(0, 0), (1, 1), (2, 2)}, {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0)}, {(0, 0), (1, 1), (2, 2), (0, 2),

(2, 0)}, {(0, 0), (1, 1), (2, 2), (1, 2), (2, 1)}, {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0), (0, 2),

(2, 0)}, {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0), (1, 2), (2, 1)}, {(0, 1), (1, 0), (0, 2), (2, 0)}.
Since for n > 3 every totally symmetric and totally reflexive relation on {0, 1, 2} is

trivial. We have to consider totally symmetric and totally reflexive at most ternary

relations. Since the relations have to be totally symmetric by identification of vari-

ables one obtains binary proper partial projections except in the case that the domain

is {(0, 0, 0), (1, 1, 1), (2, 2, 2)}. In this case by identification of variables one obtains

the proper partial binary projection with domain {(0, 0), (1, 1), (2, 2)}. Altogether we

have 98 partial minimal clones on {0, 1, 2}.
For |A| > 4 not all total minimal clones are known. By [45] each total minimal clone

can be generated by an operation f of one of the following types:

(1) f is unary and f 2 = f or fp = id for some prime number p,

(2) f is binary and idempotent,

(3) f is a ternary majority function (f(x, x, y) = f(x, y, x) = f(y, x, x) = x),

(4) f is the ternary operation x+ y + z in a Boolean group,

(5) f is a semiprojection (i.e. ar f = n ≥ 3 and there exists an element i ∈ {1, . . . , n}
such that f(a1, . . . , an) = ai whenever a1, . . . , an are not pairwise different).

8.3 Strongly Solidifyable Partial Clones

A partial algebra A is called strongly solid if every strong identity is a strong hyper-

identity of A.

Example 8.3.1 Consider the three-element partial algebra A = ({0, 1, 2}; fA) of

type (1) with domfA = {1, 2} and fA(1) = 1, fA(2) = 0. Every strong identity of A
can be derived from the strong identity f 2(x) ≈ f 3(x) (fn(x) = f(. . . (f(x)) . . .)).

The unary terms over A are ε1
1(x), f(x) and f 2(x). Each of them fulfils f 2(x) =

f 3(x). That means, f 2(x) = f 3(x) is a strong hyperidentity and since all strong

identities of A can be derived from f 2(x) = f 3(x) every strong identity is a strong

hyperidentity and A is strongly solid.
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Now we give some conditions under which A is not strongly solid.

Proposition 8.3.2 Let A = (A; (fA
i )i∈I) be a partial algebra with |A| ≥ 2. Then A

is not strongly solid if it satisfies one of the following conditions:

(i) There is a binary commutative operation under the fundamental operations,

(ii) there is a total constant operation under the fundamental operations,

(iii) there is a nowhere defined (discrete) operation under the fundamental opera-

tions,

(iv) A satisfies a strong identity s ≈ t with Left(s) 6= Left(t) or Right(s) 6=
Right(t), where Left(s) and Right(s) denote the first and the last vaiable,

respectively occurring in the term s.

(v) A satisfies a strong identity of the form

f(xs1(1), . . . , xs1(n)) ≈ f(xs2(1), . . . , xs2(n))

with mappings s1, s2 : {1, . . . , n} → {1, . . . , n}, n ≥ 2, such that s1(i) 6= s2(i)

for all i = 1, . . . , n.

Proof. We show that A is not strongly solid indicating a strong identity which

is not a strong hyperidentity.

(i) Let fA be a binary commutative fundamental operation of A. Commutativity of

fA means: f(x, y) ≈ f(y, x) is a strong identity. The strong identity f(x, y) ≈ f(y, x)

is not a strong hyperidentity. This becomes clear if we substitute for the binary

operation symbol f in f(x, y), f(y, x) the term ε2
1(x, y).

(ii),(iii) A total, constant or nowhere defined unary operation fA satisfies the strong

identity f(x) ≈ f(y). The strong identity f(x) ≈ f(y) is not a strong hyperidentity.

This is evident if we substitute for f in f(x) ≈ f(y) the term ε1
1(x). If fA is an n-ary

total, constant or nowhere defined operation and n > 1, then f(x1, x2 . . . , xn) ≈
f(x2, x1, . . . , xn) is a strong identity but not a strong hyperidentity. We see this if we

substitute for the n-ary operation symbol f in f(x1, x2 . . . , xn) ≈ f(x2, x1, . . . , xn)

the term εn
1 (x1, . . . , xn).
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(iv) This becomes clear if we substitute for all n-ary operation symbols occurring in

terms s, t the term εn
1 (x1, . . . , xn) (or the term εn

n(x1, . . . , xn) in the second case in

which Right(s) 6= Right(t)).

(v) In this case we get the proof substituting for all n-ary operation symbols (n > 1)

in f(xs1(1), . . . , xs1(n)) ≈ f(xs2(1), . . . , xs2(n)) the term εn
j (x1, . . . , xn) for j = 1, . . . , n.

A partial clone C ⊆ P (A) is called strongly solidifyable if there exists a strongly

solid algebra A with C = T (A).

From Proposition 8.3.2, we get some criterions for partial clones to be not

strongly solidifyable.

Proposition 8.3.3 Let C ⊆ P (A) be a partial clone, |A| ≥ 2. If C satisfies one of

the following conditions (1)-(4), then C is not strongly solidifyable.

(1) C contains a binary commutative operation,

(2) C contains a total constant operation,

(3) C contains a nowhere defined operation,

(4) there exists an fA ∈ C(n), n ≥ 2, and mappings s1, s2 : {1, . . . , n} →
{1, . . . , n}, n ≥ 2, such that s1(i) 6= s2(i) for all i = 1, . . . , n and

f(xs1(1), . . . , xs1(n)) ≈ f(xs2(1), . . . , xs2(n)) is a strong identity in A.

Proof. If A is a partial algebra such that T (A) = C, and if C has one of the

properties (1) - (4), then T (A) has the same property. We can assume that A has one

of the operations requested in conditions (1) - (4) under its fundamental operations.

By Proposition 8.3.2 the partial algebra A cannot be strongly solid.

Since clones of partial operations are total algebras, we can characterize solidi-

fyable clones in the same way as it was done in [23] for clones of total algebras.

Theorem 8.3.4 C is strongly solidifyable iff C is a free algebra, freely generated by

{fA
i | i ∈ I}.
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Proof. Assume that C is strongly solidifyable. Then there exists a strongly solid

partial algebra A = (A; (fA)i∈I) such that C = T (A). Let F n,A := {fA
j | j ∈ I and

fA
j is n-ary }. Consider an arbitrary sequence ϕ := (ϕ(n))n∈N+ of mappings with

ϕ(n) : F n,A → T n(A). For every n ∈ N+ and every n-ary fA
j , there are n-ary C-term

operations tAj ∈ T n(A) with ϕ(n)(fA
j ) = tAj . This allows us to define a regular C-

hypersubstitution σR with σR(fj) = tj, j ∈ I. Then we have ϕ(n)(fA
j ) = σR(fj)

A,

j ∈ I. Let ϕ(n)(tA) = σ̂R[t]A for any t ∈ WC
τ (Xn). Then (ϕ(n))n∈N+ is the extension

of (ϕ(n))n∈N+ since ϕ(n)(fA
i ) = σ̂R[fi(x1, . . . , xni

)]A = σR(fi)
A and ϕ = (ϕ(n))n∈N+ is

an endomorphism because of

ϕ(n)(Sn,A
m (tA, tA1 , . . . , t

A
n ))

= ϕ(n)(S
n

m(t, t1, . . . , tn)A)

= σ̂R[S
n

m(t, t1, . . . , tn)]A

= S
n

m(σ̂R[t], σ̂R[t1], . . . , σ̂R[tn])A by Lemma 8.1.1
= Sn,A

m (σ̂R[t]A, σ̂R[t1]
A, . . . , σ̂R[tn]A)

= Sn,A
m (ϕ(n)(tA), ϕ(n)(tA1 ), . . . , ϕ(n)(tAn )) for every n ≥ 1.

Therefore any mapping (ϕ(n))n∈N+ can be extended to an endomorphism of C and

C is a free algebra, freely generated by {fA
i | i ∈ I}.

Conversely, let C be a free algebra, freely generated by {fA
i | i ∈ I} (i.e. for every

map ϕ : {fA
i | i ∈ I} → C there is a homomorphism (clone homomorphism)

ϕ : 〈{fA
i | i ∈ I}〉 → C). Then we have that C = 〈{fA

i | i ∈ I}〉 = T (A), where

A = (A; (fA
i )i∈I) is a partial algebra. The next step is to show that A is strongly

solid. Let σR : {fi | i ∈ I} → WC
τ (X) be a regular C-hypersubstitution. Consider

a mapping γ : {fA
i | i ∈ I} → C = T (A) with γ(fA

i ) = σR(fi)
A. Then γ can be

extended to a clone endomorphism γ : 〈{fA
i | i ∈ I}〉 → C and by Lemma 8.1.5 for

every term t ∈ WC
τ (X) we have

s ≈ t ∈ IdsA ⇒ sA = tA

⇒ γ(sA) = γ(tA)
⇒ σ̂R[s]A = σ̂R[t]A

⇒ σ̂R[s] ≈ σ̂R[t] ∈ IdsA.
Therefore A is strongly solid.

Proposition 8.3.5 Let C,C ′ ⊆ P (A) be clones of partial algebras. If C ∼= C ′ and

C is strongly solidifyable then C ′ is also strongly solidifyable.

Proof. Since C is strongly solidifyable, there is a partial algebra A = (A; (fA
i )i∈I)
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such that C = T (A) = 〈{fA
i | i ∈ I}〉. Since C ∼= C ′, there is an isomorphism

ϕ : T (A) → C ′ which maps the generating system of T (A) to a generating system

of C ′. Therefore C ′ = 〈{ϕ(fA
i ) | i ∈ I}〉 and we get that C ′ is a free algebra,

freely generated by {ϕ(fA
i ) | i ∈ I}. By Theorem 8.3.4, we have that C ′ is strongly

solidifyable.

From the definition of strongly solidifyable clones, from Proposition 8.1.6 and

Proposition 8.3.5, we have that

Corollary 8.3.6 If A is strongly solid and V (A) ∼ V (B), then B is strongly solid.

Now we want to determine all strongly solidifyable partial clones generated by a

single unary operation fA. A partial algebra A = (A; fA), (|A| ≥ 2), where fA is a

unary operation on A is called mono-unary. Every strong identity of a mono-unary

partial algebra has the form

fk(x) ≈ f l(x) (k, l ∈ {0, 1, . . .})

or

fk(x) ≈ fk(y) (k ∈ {1, 2, . . .}).

Obviously, identities of the second form cannot be strong hyperidentities because

when substituting for the unary operation symbol the term ε1
1(x) we would get

ε1
1(x) ≈ ε1

1(y) (i.e. x ≈ y) in contradiction to |A| > 1.

For a partial operation fA : A (→ A let ImfA := {fA(a) | a ∈ domfA} be the

image of fA and let λ(fA) denote the least non-negative m such that Im(fA)m =

Im(fA)m+1.

Example 8.3.7 1. Consider the three-element partial algebra A = ({0, 1, 2}; fA)

of type (1) with domfA = {1, 2} and fA(1) = 0, fA(2) = 1. Then we have

fA (fA)2 (fA)3

0 − − −
1 0 − −
2 1 0 −
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and λ(fA) = 3.

2. Consider the three-element partial algebra A = ({0, 1, 2}; fA) of type (1) with

domfA = {0, 2} and fA(0) = 0, fA(2) = 0. Then we have

fA (fA)2

0 0 0
1 − −
2 0 0

and λ(fA) = 1. Then |Im(fA)λ(fA)| = |Im(fA)1| = 1.

Corollary 8.3.8 The partial clone generated by the mono-unary partial operation

fA contains a constant iff |Im(fA)λ(fA)| = 1.

Then we have:

Proposition 8.3.9 A mono-unary partial algebra A = (A; fA), (|A| ≥ 2), is

strongly solid iff |Im(fA)λ(fA)| > 1 (i.e. T (A) contains no constant and no nowhere

defined partial operation).

Proof. Assume |Im(fA)λ(fA)| > 1. Then the powers (fA)m are not constant and

not nowhere defined operations. Every strong identity of A is of the form fk(x) ≈
f l(x). The powers (fA)m and the identity operation are the only unary operations

of T (A) and satisfy this identity since

((fA)m)k(x) = ((fA)k)m(x) = ((fA)l)m(x) = ((fA)m)l(x).

Thus every strong identity is a strong hyperidentity, i.e. A is strongly solid. If

|Im(fA)λ(fA)| ≤ 1 then (fA)λ(fA) is a nowhere defined operation or (fA)λ(fA) is

constant. In this case fk(x) ≈ fk(y) is a strong identity in A but not a strong

hyperidentity in A. This becomes clear when substituting for the unary operation

symbols the term ε1
1(x). Then we get ε1

1(x) ≈ ε1
1(y) (i.e. x ≈ y), a contradiction to

|A| > 1.
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If we want to determine all solidifyable minimal partial clones following Theorem

8.2.1 we have to investigate the proper partial minimal clones, i.e. the clones gen-

erated by a proper partial projection with a nontrivial totally reflexive and totally

symmetric domain. We can restrict our investigation to one projection en
i,D for every

totally reflexive and totally symmetric domain D and every n since en
j,D ∈ 〈en

i,D〉 and

en
i,D ∈ 〈en

j,D〉 for each 1 ≤ i, j ≤ n and thus 〈en
i,D〉 = 〈en

j,D〉.
We consider the following cases:

(i) 2 < n ≤ |A|.
Choose i = 1. Then ẽn

1,D(x1, x2, x3, x4, . . . , xn) ≈ ẽn
1,D(x1, x3, x2, x4, . . . , xn) where

ẽn
1,D is an operation symbol corresponding to the operation en

1,D, is a strong identity

of the algebra A = (A; en
1,D). Indeed, if (x1, x2, x3, x4, . . . , xn) ∈ dom en

1,D(= D),

then (x1, x3, x2, x4, . . . , xn) ∈ D since D is totally symmetric and conversely.

Further, in the case that both sides are defined, the values agree. The equa-

tion f(x1, x2, x3, x4, . . . , xn) ≈ f(x1, x3, x2, x4, . . . , xn) is not a strong hyperiden-

tity of A = (A; en
1,D) since when substituting for the operation symbol f the term

εn
2 (x1, . . . , xn) we would get en,A

2 (a1, . . . , an) 6= en,A
3 (a1, . . . , an) because of |A| > 2.

This means that A is not strongly solid. In a similar way for any other 1 < i ≤ n

and any totally symmetric and totally reflexive D ⊆ An we get that (A; en
i,D) is not

strongly solid. Therefore, the clones 〈en
i,D〉 with n > 2 and 1 ≤ i ≤ n are not strongly

solidifyable.

(ii) 2 = n ≤ |A|.
Let D 6= ι2, i.e. D is different from the diagonal ι2 = {(a, a) | a ∈ A}. Now we

consider the equation

ẽ21,D(x1, ẽ
2
1,D(x1, x2)) ≈ ẽ21,D(x1, ẽ

2
1,D(x2, x1)).

Assume that the left hand side is defined, i.e. (x1, x2) ∈ D. Then ẽ21,D(x1, x2) ≈ x1

and (x1, x1) ∈ D because of the reflexivity of D. Since D is symmetric we get

(x2, x1) ∈ D and therefore ẽ21,D(x2, x1) ≈ x2. From (x1, x2) ∈ D we get that the

right hand side is defined. In the same way we get that the left hand side is defined

whenever the right hand side is defined and both sides agree. On the other hand,

f(x1, f(x1, x2)) ≈ f(x1, f(x2, x1)) is not a strong hyperidentity of A = (A; e21,D)
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since when we substitute the operation symbol f by the term ε2
2(x1, x2) we would

get e2,A
2 (a1, a2) = e2,A

1 (a1, a2) i.e. A would be a one-element set. If D is the diagonal ι2

we have no contradiction. In this case e21,D is commutative and by Proposition 8.3.2(i)

we conclude thatA is not strongly solid. In a similar way we get also that 〈e22,D〉 is not

strongly solidifyable and therefore clones of the form 〈e2i,D〉 when i ∈ {1, 2}, D = ι2,

are not strongly solidifyable.

(iii) n = 1.

At first we consider the case that D 6= ∅. Then all strong identities of the algebra

(A; e1D) can be derived from the strong identity ẽ1D(x1) ≈ [ẽ1D]2(x1). Clearly, the

equation f(x1) ≈ f 2(x1) is a strong hyperidentity of A = (A; e1D). If D = ∅, then

e1D is the discrete unary function satisfying the strong identity ẽ1D(x1) ≈ ẽ1D(x2) for

all x1, x2 ∈ A. The equation f(x1) ≈ f(x2) is not a strong hyperidentity. This is

evident if we substitute for f in f(x1) ≈ f(x2) the term ε1
1(x).

Together with Theorem 8.2.1 we get our result:

Theorem 8.3.10 A minimal partial clone C of partial operations on A (A finite,

|A| ≥ 2) is strongly solidifyable iff C has one of the following forms

(1) C is generated by a unary operation fA different from the unary empty function

and satisfying (fA)2 = fA or (fA)p = id where p is a prime number, id the

identity operation on A and C contains no constant operation.

(2) C is generated by a binary operation gA which fulfils the identities

g(x1, x1) ≈ x1, g(g(x1, x2), x3) ≈ g(x1, g(x2, x3)) ≈ g(x1, x3).

Proof. We consider two cases:

case 1. C is generated by a proper partial projection with a nontrivial totally reflexive

and totally symmetric domain. Then by the remarks before Theorem 8.3.10, C

cannot be strongly solidifyable;

case 2. C is a total minimal clone. Then C is generated by an operation f of one of

the types (1) - (5):

(1) f is unary and f 2 = f or fp = id for some prime number p. Similar to Proposition



106 CHAPTER 8. SOLIDIFYABLE MINIMAL PARTIAL CLONES

8.3.9, we get that A is a solid algebra and C is strongly solidifyable.

(2) The operation f is binary and idempotent. If the binary operation f satisfies

f(x1, x1) ≈ x1 and f(x1, f(x2, x3)) ≈ f(x1, x3), then 〈f〉 is the clone of a rectangular

band and since rectangular bands are solid, 〈f〉 is strongly solidifyable. Conversely,

assume that C is minimal, strongly solidifyable and of type (2). Then there exists a

solid algebra A with C = T (A). We may assume that the type of A = (A; fA) is (n)

since C is minimal and is generated by only one operation which is not a projection.

By identification of variables, we get a binary operation g(x1, x2) := f(x1, x2, . . . , x2)

which belongs to C. Clearly, g cannot be a projection, otherwise A satisfies the

identity g(x1, x2) ≈ x1 or the identity g(x1, x2) ≈ x2. This contradicts the solidity

of A. Therefore 〈g〉 = C and then (A; gA) is also solid. Let t be an arbitrary binary

term over (A; gA) such that leftmost(t) = rightmost(t) = x1. Assume that tA is

not a projection, then tA generates C. This means, we can obtain gA from tA by

superposition and then the term t can be produced by g and variables x1, x2 and

this gives an equation of the form g(x1, x2) ≈ t(x1, x2, . . . , x2, x1). Since A is a solid

algebra, this cannot be an identity in A and thus tA is a projection and the term t

satisfies t(x1, x2, . . . , x2, x1) ≈ x1. Therefore g satisfies the identities g(x1, x1) ≈ x1

and g(x1, g(x2, x1)) ≈ x1.

(3) f is a ternary majority function (f(x1, x1, x2) ≈ f(x1, x2, x1) ≈ f(x2, x1, x1) ≈
x1). Then the identity f(x2, x1, x1) ≈ x1 is not a hyperidentity of A = (A; fA)

since when we substitute for the operation symbol the term ε3
1(x1, x2, x3), we get a

contradiction.

(4) f is the ternary operation x1 + x2 + x3 in a Boolean group. Then we have that

x1 + x1 + x2 ≈ x2 ≈ x2 + x1 + x1 is an identity. The identity x1 + x1 + x2 ≈ x2 is

not a hyperidentity. This becomes clear if we substitute for the operation symbol

the term ε3
1(x1, x2, x3).

(5) f is a semiprojection (i.e. ar f = n ≥ 3 and there exists an element i ∈ {1, . . . , n}
such that f(x1, . . . , xn) = xi whenever x1, . . . , xn are not pairwise different). Then

we have that f(x1, x2, . . . , xn) = xi = f(x2, x1, . . . , xn) where i ∈ {1, . . . , n}. So, the

identity f(x1, x2, . . . , xn) ≈ f(x2, x1, . . . , xn) is not a hyperidentity since when we

substitute for the operation symbol the term εn
1 (x1, . . . , xn), we get x1 ≈ x2 .
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In ([23]) was introduced the concept of the degree of representability degr(C) for

a clone of total functions. We generalize this concept to clones of partial operations.

Let C ⊆ P (A) be a clone of partial operations. Then the degree of representabil-

ity degr(C) is the smallest cardinality |A′| such that there is a clone C ′ ⊆ P (A′)

with C ∼= C ′.

Proposition 8.3.11 Let C be a strongly solidifyable minimal partial clone.

(i) If C = 〈f〉, f 2 = f and dom f ⊂ A then degr(C) = 2.

(ii) If C = 〈f〉, f 2 = f and dom f = A then degr(C) = 3.

(iii) If C = 〈f〉, fp = id then degr(C) = p, where p is a prime number.

(iv) If C = 〈f〉 and f is binary then degr(C) = 4.

Proof. (i) If f 2 = f and dom f ⊂ A then C ∼= T (A) where A = ({0, 1}; f0) with

f0(0) = 0 and dom f0 = {0} since in each case the Cayley table of the clone has the

form

id f
id id f
f f f

and thus C(1) ∼= T (1)(A). Since C and T (A) are generated by its unary functions we

get

〈C(1)〉 = C ∼= T (A) = 〈T (1)(A)〉.

(ii), (iii) and (iv) were proved in ([23]).
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Chapter 9

Partial Hyperidentities

In this chapter, we extend the concept of a hypersubstitution to partial hypersubsti-

tutions. In Section 9.1, we define the concepts of partial hypersubstitutions, regular

partial hypersubstitutions and we show that set of all regular partial hypersubsti-

tutions forms a submonoid of the set of all partial hypersubstitutions. In Section

9.2, we consider only regular partial hypersubstitutions of type τ = (n), n ∈ N+,

and we show that the extension of a partial hypersubstitution is injective if and

only if the partial hypersubstitution is a regular partial hypersubstitutions of type

τ = (n) when n ≥ 2. In Section 9.3 and Section 9.4, we define the concept of a

PHypR(τ)-solid strong regular variety of partial algebras.

9.1 The Monoid of Partial Hypersubstitutions

Studying partial algebras there is also some interest in partial mappings which are

compatible with the partial operations. Such partial homomorphisms were studied

for instance in ([7]). It is quite natural to extend the concept of a hypersubstitution

to partial ones.

Let {fi | i ∈ I} be a set of operation symbols, indexed by the set I and Wτ (X)

be the set of all terms of type τ . A partial hypersubstitution σ on {fi | i ∈ I} of type

τ is a partial function

σ : {fi | i ∈ I} (→ Wτ (X)

with the property : fi ∈ domσ ⇒ arity (fi) =arity (σ(fi)) = ni.

If domσ = {fi | i ∈ I}, then σ is called a (total) hypersubstitution.

109
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If domσ = φ, then σ is a called a discrete hypersubstitution.

Now we introduce a partial superposition operation Śni
m , so that

Śni
m : Wτ (Xni

)×Wτ (Xm)ni (→ Wτ (Xm)

which is defined iff at all ni + 1 inputs of Śni
m we have terms of the corresponding

arities.

Every partial hypersubstitution σ of type τ induces a partial mapping σ̂ :

Wτ (X) (→ Wτ (X) in the following canonical way:

(i) σ̂[xj] := xj for all xj ∈ X.

(ii) If t1, . . . , tni
∈ Wτ (Xm) and t1, . . . , tni

∈ domσ̂ and if fi ∈ domσ, then

σ̂[fi(t1, . . . , tni
)] := Śni

m (σ(fi), σ̂[t1], . . . , σ̂[tni
]).

Let PHyp(τ) be the set of all partial hypersubstitutions of type τ . On this set we

introduce a binary operation, denoted by ◦p, by σ1 ◦p σ2 := σ̂1 ◦ σ2 where ◦ is the

usual composition of functions and dom(σ1 ◦p σ2) = {fi | i ∈ I, fi ∈ domσ2 and

σ2(fi) ∈ domσ̂1}.

Example 9.1.1 Let f, g be binary operation symbols and let t1, t2 be the following

terms: t1 = f(x1, x2) and t2 = g(x2, x1). Let σ ∈ PHyp(2, 2) be defined by σ(f) =

f(x1, x2) and let σ(g) be not defined. Then we have σ̂[Ś2
2(x1, t1, t2)] = σ̂[f(x1, x2)] =

f(x1, x2). But Ś2
2(σ̂[x1], σ̂[t1], σ̂[t2]) is not defined and therefore σ̂[Ś2

2(x1, t1, t2)] 6=
Ś2

2(σ̂[x1], σ̂[t1], σ̂[t2]).

Lemma 9.1.2 Let σ̂ be the extension of the partial hypersubstitution σ of type τ .

If Śni
m (σ̂[t], σ̂[t1], . . . , σ̂[tni

]) is defined, then

σ̂[Śni
m (t, t1, . . . , tni

)] = Śni
m (σ̂[t], σ̂[t1], . . . , σ̂[tni

]).

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = xi ∈ X, then

Śni
m (σ̂[t], σ̂[t1], . . . , σ̂[tni

]) exists by assumption



9.1. THE MONOID OF PARTIAL HYPERSUBSTITUTIONS 111

⇒ Śni
m (σ̂[xi], σ̂[t1], . . . , σ̂[tni

]) exists
⇒ σ̂[ti] exists since σ̂[xi] = xi

⇒ σ̂[Śni
m (t, t1, . . . , tni

)] exists since t = xi

⇒ Śni
m (t, t1, . . . , tni

) ∈ domσ̂
and σ̂[Śni

m (t, t1, . . . , tni
)] = σ̂[ti] = Śni

m (σ̂[xi], σ̂[t1], . . . , σ̂[tni
]) = Śni

m (σ̂[t], σ̂[t1], . . . ,

σ̂[tni
]).

(ii) If t = fi(s1, . . . , sni
) and if we assume that Śni

m (σ̂[sj], σ̂[t1], . . . , σ̂[tni
]) is defined

and σ̂[Śni
m (sj, t1, . . . , tni

)] = Śni
m (σ̂[sj], σ̂[t1], . . . , σ̂[tni

]) for j = 1, . . . , ni, then

Śni
m (σ̂[t], σ̂[t1], . . . , σ̂[tni

]) exists by assumption

⇒ Śni
m (σ̂[fi(s1, . . . , sni

)], σ̂[t1], . . . , σ̂[tni
]) exists

⇒ Śni
m (Śni

m (σ(fi), σ̂[s1], . . . , σ̂[sni
]), σ̂[t1], . . . , σ̂[tni

]) exists

⇒ Śni
m (σ(fi), Ś

ni
m (σ̂[s1], σ̂[t1], . . . , σ̂[tni

]), . . . , Śni
m (σ̂[sni

], σ̂[t1], . . . , σ̂[tni
])) exists

⇒ Śni
m (σ(fi), σ̂[Śni

m (s1, t1, . . . , tni
)], . . . , σ̂[Śni

m (sni
, t1, . . . , tni

)]) exists

⇒ σ̂[fi(Ś
ni
m (s1, t1, . . . , tni

), . . . , Śni
m (sni

, t1, . . . , tni
))] exists

⇒ σ̂[Śni
m (fi(s1, . . . , sni

), t1, . . . , tni
)] exists

⇒ Śni
m (t, t1, . . . , tni

) ∈ domσ̂
and we can prove that σ̂[Śni

m (t, t1, . . . , tni
)] = Śni

m (σ̂[t], σ̂[t1], . . . , σ̂[tni
]) in a similar

way as in the total case.

Lemma 9.1.3 Let σ1, σ2 ∈ PHyp(τ). Then (σ1 ◦p σ2)̂ [t] = (σ̂1 ◦ σ̂2)[t] for t ∈
Wτ (X).

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = xj ∈ X and since (σ1 ◦p σ2)̂ , σ̂1, σ̂2 are partial functions from Wτ (X) into

Wτ (X) which are defined on variables, we have xj ∈ dom(σ1 ◦p σ2)̂ , xj ∈ domσ̂1

and xj ∈ domσ̂2. Then xj ∈ dom(σ1 ◦p σ2)̂ , xj ∈ dom(σ̂1 ◦ σ̂2) and (σ̂1 ◦ σ̂2)[xj] =

σ̂1[σ̂2[xj]] = σ̂1[xj] = xj = (σ1 ◦p σ2)̂ [xj] for all xj ∈ X.

(ii) If t = fi(t1, . . . , tni
) and if we assume that tj ∈ dom(σ1 ◦p σ2)̂ , tj ∈ dom(σ̂1 ◦ σ̂2)

and (σ1 ◦p σ2)̂ [tj] = (σ̂1 ◦ σ̂2)[tj] for j = 1, . . . , ni, then

t ∈ dom(σ1 ◦p σ2)̂

⇔ fi ∈ dom(σ1 ◦p σ2) and t1, . . . , tni
∈ dom(σ1 ◦p σ2)̂

⇔ fi ∈ domσ2 and σ2(fi) ∈ domσ̂1 and t1, . . . , tni
∈ dom(σ̂1 ◦ σ̂2)

⇔ fi ∈ domσ2 and σ2(fi) ∈ domσ̂1 and t1, . . . , tni
∈ domσ̂2 and σ̂2[t1], . . . , σ̂2[tni

] ∈
domσ̂1

⇔ fi(t1, . . . , tni
) ∈ domσ̂2 and Śni

m (σ2(fi), σ̂2[t1], . . . , σ̂2[tni
]) ∈ domσ̂1
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⇔ fi(t1, . . . , tni
) ∈ domσ̂2 and σ̂2[fi(t1, . . . , tni

)] ∈ domσ̂1

⇔ fi(t1, . . . , tni
) ∈ dom(σ̂1 ◦ σ̂2)

and (σ̂1 ◦ σ̂2)[t] = σ̂1[σ̂2[t]]

= σ̂1[Ś
ni
m (σ2(fi), σ̂2[t1], . . . , σ̂2[tni

])]

= Śni
m (σ̂1(σ2(fi)), σ̂1[σ̂2[t1]], . . . , σ̂1[σ̂2[tni

]])

= Śni
m ((σ1 ◦p σ2)(fi), (σ1 ◦p σ2)̂ [t1], . . . , (σ1 ◦p σ2)̂ [tni

])

= (σ1 ◦p σ2)̂ [fi(t1, . . . , tni
)]

= (σ1 ◦p σ2)̂ [t].

Lemma 9.1.4 Let σ1, σ2, σ3 ∈ PHyp(τ). Then ((σ1 ◦p σ2) ◦p σ3)(fi) = (σ1 ◦p (σ2 ◦p

σ3))(fi) for every i ∈ I.

Proof. At first we show that dom((σ1 ◦p σ2) ◦p σ3) = dom(σ1 ◦p (σ2 ◦p σ3)).

We have fi ∈ dom((σ1 ◦p σ2) ◦p σ3)

⇔ fi ∈ domσ3 and σ3(fi) ∈ dom(σ1 ◦p σ2) ̂
⇔ fi ∈ domσ3 and σ3(fi) ∈ dom(σ̂1 ◦ σ̂2) by Lemma 9.1.3

⇔ fi ∈ domσ3 and σ3(fi) ∈ domσ̂2 and σ̂2[σ3(fi)] ∈ domσ̂1

⇔ fi ∈ dom(σ2 ◦p σ3) and (σ2 ◦p σ3)(fi) ∈ domσ̂1

⇔ fi ∈ dom(σ1 ◦p (σ2 ◦p σ3)).

The next step is to prove that ((σ1 ◦p σ2) ◦p σ3)(fi) = (σ1 ◦p (σ2 ◦p σ3))(fi). This can

be done in a similar way as in the total case when we assume that fi ∈ dom((σ1 ◦p

σ2) ◦p σ3) and fi ∈ dom(σ1 ◦p (σ2 ◦p σ3)).

Let σid be the partial hypersubstitution defined by σid(fi) := fi(x1, . . . , xni
) for

all i ∈ I.

Lemma 9.1.5 Let t ∈ Wτ (X). Then σ̂id[t] = t.

This is clear since σid by definition is the total identity hypersubstitution.

Lemma 9.1.6 Let σ ∈ PHyp(τ). Then σ ◦p σid = σ = σid ◦p σ.
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Proof. We will prove that σid ◦p σ = σ.

We have dom(σid ◦p σ) = {fi | i ∈ I and (σid ◦p σ)(fi) exists}
= {fi | i ∈ I and σ̂id[σ(fi)] exists}
= {fi | i ∈ I and σ(fi) exists}
= domσ

and by Lemma 9.1.5, we have (σid ◦p σ)(fi) = σ(fi) where fi ∈ dom(σid ◦p σ) and

fi ∈ domσ. The second equation can be proved similarly.

Theorem 9.1.7 The algebra PHyp(τ) := (PHyp(τ); ◦p, σid) is a monoid.

The partial hypersubstitution σ ∈ PHyp(τ) is called regular if the following

implication is satisfied : if fi ∈ domσ, then V ar(σ(fi)) = {x1, . . . , xni
}.

Let PHypR(τ) denote the set of all regular partial hypersubstitutions of type τ

and let σR be some member of PHypR(τ).

Proposition 9.1.8 Let σR be a regular partial hypersubstitution of type τ . If t ∈
domσ̂R, then V ar(σ̂R[t]) = V ar(t).

Proof. We will give a proof by induction on the complexity of the term t ∈
domσ̂R.

(i) If t = xj ∈ X, then V ar(σ̂R[t]) = {xj} = V ar(t).

(ii) If t = fi(t1, . . . , tni
) and if we assume that V ar(σ̂R[tj]) = V ar(tj) for j =

1, . . . , ni, then V ar(σ̂R[t]) = V ar(Śni
m (σR(fi), σ̂R[t1], . . . , σ̂R[tni

]))

=
ni⋃

j=1

V ar(σ̂R[tj])

=
ni⋃

j=1

V ar(tj)

= V ar(t).

Theorem 9.1.9 The algebra PHypR(τ) := (PHypR(τ); ◦p, σid) is a submonoid of

(PHyp(τ); ◦p, σid).

Proof. We have to prove that the product of two regular partial hypersubstitu-

tions of type τ belongs to the set of all regular partial hypersubstitutions of type τ .
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Let σR1 , σR2 ∈ PHypR(τ).

We have V ar((σR1 ◦p σR2)(fi)) = V ar(σ̂R1 [σR2(fi)])

= V ar(σR2(fi))

= {x1, . . . , xni
}

and clearly, σid is a regular partial hypersubstitution. Then (PHypR(τ); ◦p, σid) is a

submonoid of (PHyp(τ); ◦p, σid).

9.2 Regular Partial Hypersubstitutions

Now we consider a type which has only one n-ary operation symbol for n ≥ 1.

Lemma 9.2.1 If f ∈ domσ then t ∈ domσ̂ for all t ∈ W(n)(X).

Proof. We will give a proof by induction on the complexity of the term t.

(i) The proposition is clear if t = xj since xj ∈ domσ̂.

(ii) If t = f(t1, . . . , tn) and if we assume that tj ∈ W(n)(Xm) and tj ∈ domσ̂ for

j = 1, . . . , n, then t ∈ domσ̂ because σ̂[t] = Śn
m(σ(f), σ̂[t1], . . . , σ̂[tn]) exists.

If t is not a variable, then the converse is also true.

Lemma 9.2.2 If t ∈ W(n)(X) \X then f ∈ domσ iff t ∈ domσ̂.

Proof. Assume that t ∈ domσ̂ and t ∈ W(n)(X) \ X then t = f(t1, . . . , tn) ∈
domσ̂, i.e. σ̂[t] = Śn

m(σ(f), σ̂[t1], . . . , σ̂[tn]) exists. Therefore, f ∈ domσ.

Lemma 9.2.3 If f ∈ domσ then f ∈ domσl for all l ∈ N+.

Proof. We will give a proof by induction on l.

For l = 1, everything is clear.

For l = k, we assume that f ∈ domσk−1, then σk(f) = σ̂[σk−1(f)] exists and

f ∈ domσk by Lemma 9.2.1.

Therefore, we have f ∈ domσl for all l ∈ N+.
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Now we will prove that for a regular partial hypersubstitution σR the mapping

σ̂R is injective. We need the concept of the depth of a term. The depth is defined

inductively by the following steps:

(i) depth(xj) := 0, if xj ∈ X,

(ii) depth(fi(t1, . . . , tni
)) := max{depth(t1), . . . , depth(tni

)}+ 1.

Proposition 9.2.4 If σR ∈ PHypR(n), n ≥ 2, and σ̂R[t] = σ̂R[t′] for t, t′ ∈
W(n)(X), then t = t′.

Proof. Since n ≥ 2, the regular partial hypersubstitution σR maps the n-ary

operation symbol f to a term which uses at least two variables and therefore

depth(σR(f)) ≥ 1. We will give a proof by induction on the complexity (depth)

of the term t.

(i) If t = xj ∈ X and f ∈ domσR, then t ∈ domσ̂R and σ̂R[t] = xj =

σ̂R[t′]. Since for t′ = f(t′1, . . . , t
′
n) we have 0 = depth(σ̂R[t]) = depth(σ̂R[t′]) =

depth(Śn
m(σR(f), σ̂R[t′1], . . . , σ̂R[t′n])) ≥ 1, a contradiction. Therefore, t′ is also a vari-

able and t′ = xj i.e. t = t′.

(ii) If t = xj ∈ X and f /∈ domσR, then t ∈ domσ̂R and σ̂R[t] = xj therefore σ̂R[t′] ex-

ists because of σ̂R[t] = σ̂R[t′] and σ̂R[t′] = xj, thus t′ = xi (since, if t′ = f(t′1, . . . , t
′
n)

then σ̂R[t′] does not exist) i.e. t = t′.

(iii) If t = f(t1, . . . , tn) and f ∈ domσR and if we assume that from σ̂R[tj] = σ̂R[t′j]

follows tj = t′j for j = 1, . . . , n, then σ̂R[t] = Śn
m(σR(f), σ̂R[t1], . . . , σ̂R[tn]) =

σ̂R[t′] = Śn
m(σR(f), σ̂R[t′1], . . . , σ̂R[t′n]). Since σR(f) uses all variables x1, . . . , xn this

is true only if σ̂R[tj] = σ̂R[t′j] for j = 1, . . . , n and this means t = f(t1, . . . , tn) =

f(t′1, . . . , t
′
n) = t′.

(iv) If t = f(t1, . . . , tn) and f /∈ domσR, then t /∈ domσ̂R and σ̂[t] does not exist,

therefore σ̂R[t] 6= σ̂R[t′], thus σ̂R[t] = σ̂R[t′] implies t = t′.

Corollary 9.2.5 Let σ be a partial hypersubstitution of type (n), n ≥ 2. Then the

extension σ̂ is injective iff σ ∈ PHypR(n).
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Proof. Let σ̂ be injective. We will prove that σ ∈ PHypR(n). We can consider

the following cases:

(i) Let f /∈ domσ. Then the implication f ∈ domσ ⇒ V ar(σ(f)) = {x1, . . . , xn} is

satisfied and σ ∈ PHypR(n) by the definition of regular partial hypersubstitutions.

(ii) Let f ∈ domσ (then t ∈ domσ̂ for all t ∈ W(n)(X)). Assume that σ /∈
PHypR(n). Then V ar(σ(f)) = {xk1 , . . . , xkl

} ⊂ {x1, . . . , xn}. If t = f(t1, . . . , tn),

t′ = f(t′1, . . . , t
′
n) and tk1 = t′k1

, . . . , tkl
= t′kl

, but tj 6= t′j for at least one

j ∈ {1, . . . , n}�{k1, . . . , kl} then σ̂[tk1 ] = σ̂[t′k1
], . . . , σ̂[tkl

] = σ̂[t′kl
], and σ̂[t] =

Śn
m(σ(f), σ̂[t1], . . . , σ̂[tn]) = Śn

m(σ(f), σ̂[t′1], . . . , σ̂[t′n]) = σ̂[t′], but t 6= t′. This shows

that σ ∈ PHypR(n) must hold if σ̂ is injective. If conversely, σ ∈ PHypR(n) and

σ̂[t] = σ̂[t′], then by Proposition 9.2.4 we have t = t′ and hence σ̂ is injective.

For a term t ∈ Wτ (X) we denote the first operation symbol (from the left)

occurring in t by firstops(t). Now we ask for injective partial hypersubstitutions if

τ is an arbitrary type τ = (ni)i∈I . We consider the following subset of PHypR(τ).

PHypreg(τ) := PHypR(τ)∩{σ ∈ PHyp(τ) | firstops(σ(fi)) = fi for fi ∈ domσ
and for i ∈ I}.

Lemma 9.2.6 If firstops(t) = fi, if σ ∈ PHypreg(τ) and t ∈ domσ̂, then

firstops(σ̂[t]) = firstops(t).

Proof. Since firstops(t) = fi, we can assume that t = fi(t1, . . . , tni
) and σ̂[t]

exists since t ∈ domσ̂. We have

firstops(σ̂[t])=firstops(Śni
m (σ(fi), σ̂[t1], . . . , σ̂[tni

]))

=firstops(fi(Ś
ni
m (s1, σ̂[t1], . . . , σ̂[tni

]), . . . , Śni
m (sni

, σ̂[t1], . . . , σ̂[tni
])))

where σ(fi) := fi(s1, . . . , sni
)

=fi

=firstops(t).

Proposition 9.2.7 (PHypreg(τ); ◦p, σid) is a submonoid of (PHyp(τ); ◦p, σid).

Proof. Clearly, σid ∈ PHypreg(τ). We have to prove that σ1◦pσ2 ∈ PHypreg(τ)

for σ1, σ2 ∈ PHypreg(τ). We get firstops((σ1 ◦p σ2)(fi)) = firstops(σ̂1[σ2(fi)]) =
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firstops(σ2(fi)) = fi by Lemma 9.2.6. Since PHypR(τ) is a submonoid of PHyp(τ)

we have that (PHypreg(τ); ◦p, σid) is a submonoid of (PHyp(τ); ◦p, σid).

Proposition 9.2.8 Let τ = (ni)i∈I , ni ≥ 1, be an arbitrary type and assume that

σ ∈ PHypreg(τ). If σ̂[t] = σ̂[t′], we have t = t′.

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = xj ∈ X and fi ∈ domσ, then σ̂[t] = xi = σ̂[t′] and V ar(σ̂[t′]) = {xi}.
Therefore depth(σ̂[t′]) = 0 and t′ = xi.

(ii) If t = xj ∈ X and fi /∈ domσ, then t ∈ domσ̂ and σ̂[t] = xi therefore σ̂[t′] exists

and σ̂[t′] = xi, thus t′ = xi (because if t′ = fi(t
′
1, . . . , t

′
ni

) then σ̂[t′] does not exist)

i.e. t = t′.

(iii) If t = fi(t1, . . . , tni
) and t ∈ domσ̂ , then σ̂[t] = Śni

m (σ(fi), σ̂[t1], . . . , σ̂[tni
]) =

σ̂[t′], therefore t′ /∈ X. Let t′ = fj(t
′
1, . . . , t

′
nj

) then we have σ̂[t] =

Śni
m (σ(fi), σ̂[t1], . . . , σ̂[tni

]) = Ś
nj
m (σ(fj), σ̂[t′1], . . . , σ̂[t′nj

]) = σ̂[t′]. Since

firstops(σ̂[t]) = firstops(σ̂[t′]) we get that fi = fj and then i = j. We as-

sume that from σ̂[ti] = σ̂[t′i] follows ti = t′i, i = 1, . . . , ni. Since σ is a regular partial

hypersubstitution, from σ̂[t] = σ̂[t′] we obtain σ̂[ti] = σ̂[t′i] , i = 1, . . . , ni and can

apply the hypothesis. Altogether, t = t′.

(iv) If t = fi(t1, . . . , tni
) and t /∈ domσ̂ , then σ̂[t] does not exist therefore σ̂[t] 6= σ̂[t′],

thus the implication σ̂[t] = σ̂[t′] ⇒ t = t′ is true.

Now we consider one more submonoid of PHypR(τ).

Let PHypBR(τ) := PHypR(τ) ∩ {σ ∈ PHyp(τ) | ops(σ(fi)) = {fi} for fi ∈
domσ}.

Lemma 9.2.9 If σ ∈ PHypBR(τ) and t ∈ domσ̂, then ops(σ̂[t]) = ops(t).

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = xj ∈ X, then ops(σ̂[t]) = ops(t) since σ̂[t] = t.

(ii) If t = fi(t1, . . . , tni
) and if we assume that ops(σ̂[tj]) = ops(tj), j = 1, . . . , ni,
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then
ops(σ̂[t]) = ops(Śni

m (σ(fi), σ̂[t1], . . . , σ̂[tni
]))

= ops(σ(fi)) ∪
ni⋃

j=1

ops(σ̂[tj])

= {fi} ∪
ni⋃

j=1

ops(tj)

= ops(fi(t1, . . . , tni
))

= ops(t).

Proposition 9.2.10 (PHypBR(τ); ◦p, σid) is a submonoid of (PHyp(τ); ◦p, σid).

Proof. Clearly, σid ∈ PHypBR(τ). We have to prove that σ1 ◦p σ2 ∈ PHypBR(τ)

for σ1, σ2 ∈ PHypBR(τ). One has ops((σ1 ◦p σ2)(fi)) = ops(σ̂1[σ2(fi)]) =

ops(σ2(fi)) = {fi} by Lemma 9.2.9. Therefore, (PHypBR(τ); ◦p, σid) is a submonoid

of (PHyp(τ); ◦p, σid).

Example 9.2.11 Let f, g be binary operation symbols. We define hypersubstitu-

tions σ1, σ2 by σ1(f) = f(g(x1, x2), x1), σ2(f) = f(f(x1, x2), x1) and σ1(g) =

g(f(x1, x2), x1) and σ2(g) = g(g(x1, x2), x1). We have σ1, σ2 ∈ PHypreg(2, 2) but

σ1 /∈ PHypBR(2, 2). Therefore PHypBR(τ) ⊂ PHypreg(τ).

Then we have

Corollary 9.2.12 (PHypBR(τ); ◦p, σid) is a proper submonoid of (PHypreg(τ); ◦p,

σid).

9.3 PHypR(τ )-solid Varieties

Let A = (A; (fA
i )i∈I) be a partial algebra of type τ . If for an arbitrary partial

hypersubstitution σR we have fi /∈ domσR, i.e., if the term σR(fi) is not defined,

then the induced term operation σR(fi)
A on the algebra A is a nowhere defined

operation. In the same way, if fi occurs in the term t, then σ̂R[t] is not defined and

σ̂R[t]A is the nowhere defined operation. If σR(fi) is defined, then we define the term

operation σ̂R[t]A in the usual way.
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Let A = (A; (fA
i )i∈I) be a partial algebra of type τ and σR ∈ PHypR(τ), then

we define σR(A) := (A; (σR(fi)
A)i∈I) where σR(fi)

A is an ni-ary partial operation

on A. If σR(fi) is not defined then σR(fi)
A is the nowhere defined ni-ary operation

on A.

Lemma 9.3.1 Let t be a term from Wτ (X) and let A ∈ PAlg(τ) and σR ∈
PHypR(τ). Then

σ̂R[t]A |D= tσR(A) |D

where D is the common domain of both sides.

Proof. We will give a proof by induction on the complexity of the term t.

(i) If t = xj ∈ X because of xj ∈ domσ̂R for all σR ∈ PHypR(τ), we have σ̂R[t]A =

σ̂R[xj]
A = eni,A

j is defined and σ̂R[t]A = σ̂R[xj]
A = eni,A

j = e
σR(A)
j = x

σR(A)
j = tσR(A).

(ii) If t = fi(t1, . . . , tni
) and if we assume that σ̂R[t]A is defined and σ̂R[tj]

A |D=

t
σR(A)
j |D for j = 1, . . . , ni where D =

ni⋂
j=1

domσ̂R[tj]
A, then

σ̂R[t]A |D = σ̂R[fi(t1, . . . , tni
)]A |D

= [Śni
m (σR(fi), σ̂R[t1], . . . , σ̂R[tni

])]A |D
= Sni,A

m (σR(fi)
A, σ̂R[t1]

A, . . . , σ̂R[tni
]A) |D

= Sni,A
m (σR(fi)

A, σ̂R[t1]
A |D, . . . , σ̂R[tni

]A |D)

= S
ni,σR(A)
m (f

σR(A)
i , t

σR(A)
1 |D, . . . , tσR(A)

ni |D)

= S
ni,σR(A)
m (f

σR(A)
i , t

σR(A)
1 , . . . , t

σR(A)
ni ) |D

= fi(t1, . . . , tni
)σR(A) |D

= tσR(A) |D.

This shows also that the domain of σ̂R[t]A is equal to the domain of tσR(A).

(iii) Assume t = fi(t1, . . . , tni
) and that σR(fi) is not defined. By definition,

σ̂R[t]A is nowhere defined and tσR(A) = S
ni,σR(A)
m (f

σR(A)
i , t

σR(A)
1 , . . . , t

σR(A)
ni ) =

S
ni,σR(A)
m (σR(fi)

A, t
σR(A)
1 , . . . , t

σR(A)
ni ) is nowhere defined because σR(fi) is not de-

fined. Therefore σ̂R[t]A = tσR(A).

Let A ∈ PAlg(τ) and let PHypR(τ) be the submonoid of PHyp(τ). Let t1, t2 ∈
Wτ (X). Then t1 ≈ t2 ∈ IdsrA is called a PHypR(τ)-hyperidentity in A (in symbols

A |=
srPh

t1 ≈ t2) if for all σR ∈ PHypR(τ) we have σ̂R[t1] ≈ σ̂R[t2] ∈ IdsrA.
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Let K ⊆ PAlg(τ) be a class of partial algebras of type τ and let Σ ⊆ Wτ (X)2.

Consider the connection between PAlg(τ) and Wτ (X)2 given by the following two

operators

Idsr
Ph : P(PAlg(τ)) → P(Wτ (X)2) and

Modsr
Ph : P(Wτ (X)2) → P(PAlg(τ)) with

Idsr
PhK := {s ≈ t ∈ Wτ (X)2 | ∀A ∈K (A |=

srPh
s ≈ t)} and

Modsr
PhΣ := {A∈ PAlg(τ) | ∀ s ≈ t ∈ Σ (A |=

srPh
s ≈ t)}.

Clearly, the pair (Modsr
Ph, Id

sr
Ph) is a Galois connection between PAlg(τ) and

Wτ (X)2. Again we have two closure operators Modsr
PhId

sr
Ph and Idsr

PhModsr
Ph and

their sets of fixed points.

Let A be a partial algebra of type τ and let PHypR(τ) be the monoid of all

regular hypersubstitutions. Then we consider the operators

χA
Ph : P(PAlg(τ)) → P(PAlg(τ)) and χE

Ph : P(Wτ (X)2) → P(Wτ(X)2)

defined by

χA
Ph[A] := {σR(A) | σR ∈ PHypR(τ)} and

χE
Ph[s ≈ t] := {σ̂R[s] ≈ σ̂R[t] | σR ∈ PHypR(τ)}.

For K ⊆ PAlg(τ) a class of partial algebras of type τ and for Σ ⊆ Wτ (X)2 a set

of equations we define χA
Ph[K] :=

⋃
A∈K

χA
Ph[A] and χE

Ph[Σ] :=
⋃

s≈t∈Σ

χE
Ph[s ≈ t].

Proposition 9.3.2 For any K,K ′ ⊆ PAlg(τ) and Σ,Σ′ ⊆ Wτ (X)2 the following

conditions hold:

(i) the operators χA
Ph and χE

Ph are additive operators on PAlg(τ) and on Wτ (X)2

respectively, i.e. we have
(ii) Σ ⊆ χE

Ph[Σ],
(iii) Σ ⊆ Σ′ ⇒ χE

Ph[Σ] ⊆ χE
Ph[Σ′],

(iv) χE
Ph[χE

Ph[Σ]] = χE
Ph[Σ],

(v) K ⊆ χA
Ph[K],

(vi) K ⊆ K ′ ⇒ χA
Ph[K] ⊆ χA

Ph[K ′],
(vii) χA

Ph[χA
Ph[K]] = χA

Ph[K]

and (χA
Ph, χ

E
Ph) forms a conjugate pair with respect to the relation
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R := {(A, s ≈ t) ∈ PAlg(τ)×Wτ (X)2 | (A |=
sr

s ≈ t)} i.e. for all A ∈ PAlg(τ)

and for all s ≈ t ∈ Wτ (X)2, we have χA
Ph[A] |=

sr
s ≈ t iff A |=

sr
χE

Ph[s ≈ t].

Proof. (i) It is clear from the definition that both, χA
Ph and χE

Ph, are additive

operators.

(ii) Let s ≈ t ∈ Σ. Since s, t ∈ domσ̂id by Lemma 9.1.5 we have σ̂id[s] ≈ σ̂id[t] for

all s ≈ t ∈ Σ and we get Σ ⊆ χE
Ph[Σ].

(iii) Suppose Σ ⊆ Σ′ ⊆ Wτ (X)2, then
χE

Ph[Σ] =
⋃

s≈t∈Σ

χE
Ph[s ≈ t]

=
⋃

s≈t∈Σ

{σ̂R[s] ≈ σ̂R[t] | σR ∈ PHypR(τ) (we have s, t ∈ domσ̂R)}

⊆
⋃

s≈t∈Σ′
{σ̂R[s] ≈ σ̂R[t] | σR ∈ PHypR(τ) (we have s, t ∈ domσ̂R)}

=
⋃

s≈t∈Σ′
χE

Ph[s ≈ t] = χE
Ph[Σ′].

(iv) Suppose σR1 , σR2 ∈ PHypR(τ) are arbitrary two regular partial hyper-

substitutions and σ̂R1 [σ̂R2 [s]] ≈ σ̂R1 [σ̂R2 [t]]. Then s, t ∈ dom(σ̂R1 ◦ σ̂R2)) is an

equation from χE
Ph[χE

Ph[Σ]]. Let σR ∈ PHypR(τ) be a regular partial hyper-

substitution with σR := σR1 ◦p σR2 . Since PHypR(τ) is a monoid, it follows

that σR ∈ PHypR(τ) and PHypR(τ) is a submonoid of PHyp(τ) we have

σ̂R = (σR1◦pσR2 )̂ = σ̂R1◦σ̂R2 . Since s, t ∈ dom(σ̂R1◦σ̂R2) we have s, t ∈ domσ̂R. Then

we have σ̂R[s] = (σR1◦pσR2) [̂s] = σ̂R1 [σ̂R2 [s]] ≈ σ̂R1 [σ̂R2 [t]] = (σR1◦pσR2) [̂t] = σ̂R[t],

i.e. σ̂R[s] ≈ σ̂R[t] ∈ χE
Ph[Σ]. By (ii) and (iii), we have χE

Ph[Σ] ⊆ χE
Ph[χE

Ph[Σ]]. There-

fore, χE
Ph[χE

Ph[Σ]] = χE
Ph[Σ].

(v) Let A ∈ K. Since fi ∈ domσid for all i ∈ I then σid(fi)
A = fi(x1, . . . , xni

)A = fA
i

is defined because fA
i is a partial operation and σid(A) = A. Therefore, we get

K ⊆ χA
Ph[K].

(vi) Suppose K ⊆ K ′ ⊆ PAlg(τ), then
χA

Ph[K] =
⋃
A∈K

χA
Ph[A]

=
⋃
A∈K

{σR(A) | σR ∈ PHypR(τ)}

=
⋃
A∈K

{(A; (σR(fi)
A)i∈I) | σR(fi)

A is defined and σR ∈ PHypR(τ)}

⊆
⋃

A∈K′
{(A; (σR(fi)

A)i∈I) | σR(fi)
A is defined and σR ∈ PHypR(τ)}
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=
⋃

A∈K′
{σR(A) | σR ∈ PHypR(τ)}

=
⋃

A∈K′
χA

Ph[A] = χA
Ph[K ′].

(vii) Suppose σR1 , σR2 ∈ PHypR(τ) are two arbitrary regular partial hypersubstitu-

tions and σR1(σR2(A)) ∈ χA
Ph[χA

Ph[K]] for allA ∈ K, then (σR2◦pσR1)(fi)
A is defined.

Let σR ∈ PHypR(τ) be a regular partial hypersubstitution with σR := σR2 ◦p σR1 .

Since PHypR(τ) is a monoid it follows that σR ∈ PHypR(τ). Then σR(fi)
A is

defined and (σR2 ◦pσR1)(fi)
A = σR(fi)

A. Hence σR1(σR2(A)) ∈ χA
Ph[K] for all A ∈ K

and χA
Ph[χA

Ph[K]] ⊆ χA
Ph[K]. By (v) and (vi), we have χA

Ph[K] ⊆ χA
Ph[χA

Ph[K]].

Therefore, we have χA
Ph[χA

Ph[K]] = χA
Ph[K].

Finally, we need to show that χA
Ph[A] |=

sr
s ≈ t iff A |=

sr
χE

Ph[s ≈ t].

Now we get
χA

Ph[A] |=
sr

s ≈ t ⇔ ∀σR ∈ PHypR(τ), (σR(A) |=
sr
s ≈ t)

⇔ ∀σR ∈ PHypR(τ), (sσR(A) |D= tσR(A) |D)

⇔ ∀σR ∈ PHypR(τ), (σ̂R[s]A |D= σ̂R[t]A |D)

by Lemma 9.3.1 (where D is the common domain)
⇔ ∀σR ∈ PHypR(τ)(A |=

sr
σ̂R[s] ≈ σ̂R[t])

⇔ A |=
sr

χE
Ph[s ≈ t].

Now we have a Galois connection and a conjugate pair of additive closure oper-

ator and may apply the theory developed e.g. in ([34]). Without proofs we will give

the following results. (The proofs can be found in [34].)

Theorem 9.3.3 For all V ⊆ PAlg(τ) and Σ ⊆ Wτ (X)2, the following properties

hold:

(i) Idsr
PhV = IdsrχA

Ph[V ];

(ii) Idsr
PhV ⊆ IdsrV ;

(iii) χE
Ph[Idsr

PhV ] = Idsr
PhV ;

(iv) χA
Ph[ModsrIdsr

PhV ] = ModsrIdsr
PhV ;

(v) Idsr
PhModsr

PhΣ = IdsrModsrχE
Ph[Σ]; and dually,
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(i’) Modsr
PhΣ = ModsrχE

Ph[Σ];

(ii’) Modsr
PhΣ ⊆ModsrΣ;

(iii’) χA
Ph[Modsr

PhΣ] = Modsr
PhΣ;

(iv’) χE
Ph[IdsrModsr

PhΣ] = IdsrModsr
PhΣ;

(v’) Modsr
PhId

sr
PhV = ModsrIdsrχA

Ph[V ].

Let V be a strong regular variety of partial algebras of type τ . Then V is said

to be PHypR(τ)-solid if χA
Ph[V ] = V .

PHypR(τ)-solid varieties of partial algebras can be characterized as follows:

Theorem 9.3.4 Let V ⊆ PAlg(τ) be a strong regular variety of partial algebras

and let Σ ⊆ Wτ (X)2 be a strong regular equational theory (i.e. V = ModsrIdsrV

and Σ = IdsrModsrΣ). Then the following propositions (i)-(iv) and (i’)-(iv’) are

equivalent:

(i) V = Modsr
PhId

sr
PhV ,

(ii) χA
Ph[V ] = V ;

(iii) IdsrV = Idsr
PhV ;

(iv) χE
Ph[IdsrV ] = IdsrV .

and the following are also equivalent

(i’) Σ = Idsr
PhModsr

PhΣ,

(ii’) χE
Ph[Σ] = Σ;

(iii’) ModsrΣ = Modsr
PhΣ;

(iv’) χA
Ph[ModsrΣ] = ModsrΣ.

9.4 Applications

As an example we want to determine all PHypR(2)-solid varieties of semigroups.

Varieties of total semigroups can be characterized as V = Mod Σ where Σ is a

set of equations containing the associative law and V consists precisely of all semi-

groups satisfying all equations from Σ as identities. As usual, we denote by IdV

the set of all identities satisfied in V . We need the following varieties of semigroups:

C:=Mod{(xy)z ≈ x(yz), xy ≈ yx}-the variety of commutative semigroups,

SL:=Mod{(xy)z ≈ x(yz), x2 ≈ x, xy ≈ yx}-the variety of semilattices,
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Z:=Mod{xy ≈ zt}-the variety of zero-semigroups (or of constant semigroups),

NB:=Mod{(xy)z ≈ x(yz), x2 ≈ x, xyzt ≈ xzyt}-the variety of normal bands,

RB:=Mod{(xy)z ≈ x(yz), x2 ≈ x, xyz ≈ xz}-the variety of rectangular bands,

RegB:=Mod{(xy)z ≈ x(yz), x2 ≈ x, xyzx ≈ xyxzx}-the variety of regular bands,

V nrec
RS :=Mod{(xy)z ≈ x(yz), x2y2z ≈ x2yx2yz, xy2z2 ≈ xyz2yz2, xyzyx ≈ xyxzxyx,

x2y3 ≈ y2x3, y3x2 ≈ x3y2},
VPC :=Mod{x(yz) ≈ (xy)z, xy ≈ yx, x2y ≈ xy2}-the greatest regular-solid variety

of commutative semigroups ([34]),

VRS:=Mod{(xy)z ≈ x(yz), xyxzxyx ≈ xyzyx, (x2y)2z ≈ x2y2z, xy2z2 ≈ x(yz2)2}
-the greatest regular-solid variety of semigroups ([34]).

Regular-solid varieties of semigroups were characterized in [34] by the following

theorem:

Theorem 9.4.1 ([34]) Let V be a variety of semigroups. Then V is regular-solid iff

V is self-dual and one of the following statements is true:

(1) Z ∨RB ⊆ V ⊆ VRS;

(2) V ⊆ V nrec
RS and V " Mod{(xy)z ≈ x(yz), xy4 ≈ y2xy2};

(3) V ⊆ V nrec
RS ∩Mod{(xy)z ≈ x(yz), xy4 ≈ x2y3} and V " C;

(4) V ⊆ VRC;

(5) V ∈ {RB,NB,RegB}.

We have to check which of these varieties satisfy strong identities which are not

satisfied after applying the nowhere defined hypersubstitution. Since we have only

one operation symbol, this can only happen if there is an identity of the form t ≈ x

for a variable x and a term t different from x. Such identities are called non-normal

and a variety of semigroups is called normal if it satisfies only normal identities. For

more background on normal varieties see e.g. [29].

Therefore we have:
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Lemma 9.4.2 A variety of semigroups is PHypR(2)-solid iff it is regular-solid and

normal.

Using this lemma we obtain:

Theorem 9.4.3 A variety of semigroups is PHypR(2)-solid iff it is regular-solid

and different from RB,NB,RegB, and SL.

Proof. It is easy to see that the set IdZ of all identities satisfied in the variety Z of

all zero-semigroups is precisely the set of all normal equations of type τ = (2). That

means, if V is regular-solid and Z ⊆ V , then V is PHypR(2)-solid. This happens in

the first case of Theorem 9.4.1. If in the cases (2) or (3) V is a non-trivial subvariety

of V nrec
RS which does not contain the variety Z of all zero-semigroups, then there is an

identity t ≈ x in V . From this identity we can derive an identity xk ≈ x for k ≥ 2.

From the identity x2y3 ≈ y2x3 ∈ IdV we can derive x7 ≈ x8 and from this identity

and from xk ≈ x we get the idempotent identity. The identity x2y3 ≈ y2x3 provides

the commutative law and then V = SL. If in case (4) V is a non-trivial subvariety

of VRC which does not contain the variety Z of all zero-semigroups, then from the

identity t ≈ x in V we derive again xk ≈ x for k ≥ 2. From x2y ≈ xy2 we derive

the x4 ≈ x5 and from both we derive the idempotent law and then the commutative

law is also satisfied. This shows V = SL in case (4).
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trie, Vol. 37 (1996), No. 2, 259-287.
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