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Abstract 

 

A main limitation in the field of flood hydrology is the short time period covered 

by instrumental flood time series, rarely exceeding more than 50 to 100 years. 

However, climate variability acts on short to millennial time scales and 

identifying causal linkages to extreme hydrological events requires longer datasets. 

To extend instrumental flood time series back in time, natural geoarchives are 

increasingly explored as flood recorders. Therefore, annually laminated (varved) 

lake sediments seem to be the most suitable archives since (i) lake basins act as 

natural sediment traps in the landscape continuously recording land surface 

processes including floods and (ii) individual flood events are preserved as detrital 

layers intercalated in the varved sediment sequence and can be dated with 

seasonal precision by varve counting. 

The main goal of this thesis is to improve the understanding about hydrological 

and sedimentological processes leading to the formation of detrital flood layers 

and therewith to contribute to an improved interpretation of lake sediments as 

natural flood archives. This goal was achieved in two ways: first, by comparing 

detrital layers in sediments of two dissimilar peri-Alpine lakes, Lago Maggiore in 

Northern Italy and Mondsee in Upper Austria, with local instrumental flood data 

and, second, by tracking detrital layer formation during floods by a combined 

hydro-sedimentary monitoring network at Lake Mondsee spanning from the rain 

fall to the deposition of detrital sediment at the lake floor. 

Successions of sub-millimetre to 17 mm thick detrital layers were detected in sub-

recent lake sediments of the Pallanza Basin in the western part of Lago Maggiore 

(23 detrital layers) and Lake Mondsee (23 detrital layers) by combining 

microfacies and high-resolution micro X-ray fluorescence scanning techniques (µ-

XRF). The detrital layer records were dated by detailed intra-basin correlation to a 

previously dated core sequence in Lago Maggiore and varve counting in Mondsee. 

The intra-basin correlation of detrital layers between five sediment cores in Lago 

Maggiore and 13 sediment cores in Mondsee allowed distinguishing river runoff 

events from local erosion. Moreover, characteristic spatial distribution patterns of 

detrital flood layers revealed different depositional processes in the two dissimilar 

lakes, underflows in Lago Maggiore as well as under- and interflows in Mondsee. 

Comparisons with runoff data of the main tributary streams, the Toce River at 

Lago Maggiore and the Griesler Ache at Mondsee, revealed empirical runoff 

thresholds above which the deposition of a detrital layer becomes likely. Whereas 

this threshold is the same for the whole Pallanza Basin in Lago Maggiore (600 

m
3
s

-1
 daily runoff), it varies within Lake Mondsee. At proximal locations close to 

the river inflow detrital layer deposition requires floods exceeding a daily runoff 

of 40 m
3
s

-1
, whereas at a location 2 km more distal an hourly runoff of 80 m

3
s

-1
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and at least 2 days with runoff above 40 m
3
s

-1
 are necessary. A relation between 

the thickness of individual deposits and runoff amplitude of the triggering events 

is apparent for both lakes but is obviously further influenced by variable influx 

and lake internal distribution of detrital sediment. 

To investigate processes of flood layer formation in lake sediments, hydro-

sedimentary dynamics in Lake Mondsee and its main tributary stream, Griesler 

Ache, were monitored from January 2011 to December 2013. Precipitation, 

discharge and turbidity were recorded continuously at the rivers outlet to the lake 

and compared to sediment fluxes trapped close to the lake bottom on a basis of 

three to twelve days and on a monthly basis in three different water depths at two 

locations in the lake basin, in a distance of 0.9 (proximal) and 2.8 km (distal) to 

the Griesler Ache inflow. Within the three-year observation period, 26 river floods 

of different amplitude (10-110 m
3
s

-1
) were recorded resulting in variable sediment 

fluxes to the lake (4-760 g m
-2

d
-1

). Vertical and lateral variations in flood-related 

sedimentation during the largest floods indicate that interflows are the main 

processes of lake internal sediment transport in Lake Mondsee. The comparison of 

hydrological and sedimentological data revealed (i) a rapid sedimentation within 

three days after the peak runoff in the proximal and within six to ten days in the 

distal lake basin, (ii) empirical runoff thresholds for triggering sediment flux at the 

lake floor increasing from the proximal (20 m
3
s

-1
) to the distal lake basin (30 m

3
s

-1
) 

and (iii) factors controlling the amount of detrital sediment deposition at a certain 

location in the lake basin. The total influx of detrital sediment is mainly driven by 

runoff amplitude, catchment sediment availability and episodic sediment input by 

local sediment sources. A further role plays the lake internal sediment distribution 

which is not the same for each event but is favoured by flood duration and the 

existence of a thermocline and, therewith, the season in which a flood occurred. 

In summary, the studies reveal a high sensitivity of lake sediments to flood events 

of different intensity. Certain runoff amplitudes are required to supply enough 

detrital material to form a visible detrital layer at the lake floor. Reasonable are 

positive feedback mechanisms between rainfall, runoff, erosion, fluvial sediment 

transport capacity and lake internal sediment distribution. Therefore, runoff 

thresholds for detrital layer formation are site-specific due to different lake-

catchment characteristics. However, the studies also reveal that flood amplitude is 

not the only control for the amount of deposited sediment at a certain location in 

the lake basin even for the strongest flood events. The sediment deposition is 

rather influenced by a complex interaction of catchment and in-lake processes. 

This means that the coring location within a lake basin strongly determines the 

significance of a flood layer record. Moreover, the results show that while lake 

sediments provide ideal archives for reconstructing flood frequencies, the 

reconstruction of flood amplitudes is a more complex issue and requires detailed 

knowledge about relevant catchment and in-lake sediment transport and 

depositional processes. 
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Kurzfassung 

 

Die Erforschung von Hochwasserereignissen, ihrer Wiederkehrhäufigkeiten und 

Entwicklung im Zuge des prognostizierten Klimawandels wird durch die kurzen 

instrumentellen Datenreihen stark begrenzt. Diese umfassen selten mehr als die 

letzten 50 bis 100 Jahre. Das Klima verändert sich jedoch auf kurzen bis hin zu 

sehr langen Zeitskalen, welche tausende Jahre umfassen können. Die Feststellung 

von kausalen Zusammenhängen zwischen Klimaänderungen und dem Auftreten 

hydrologischer Extremereignisse bedarf daher längerer Datenreihen. Aus diesem 

Grund sind in den letzten Jahren Geoarchive als Zeugen vergangener 

Hochwasserereignisse stärker in den Fokus der Forschung gerückt. Besonders 

geeignete Archive sind jährlich laminierte (warvierte) Seesedimente. Da 

Seebecken natürliche Stoffsenken in der Landschaft bilden, zeichnen die 

Sedimente kontinuierlich Erdoberflächenprozesse auf. Hochwasserereignisse 

führen zum erhöhten Eintrag von Material aus dem Einzugsgebiet und zur 

Bildung detritischer Lagen. Eingelagert innerhalb der warvierten 

Hintergrundsedimente können die einzelnen detritischen Lagen durch 

Warvenzählung mit saisonaler Präzision datiert werden. 

Das Ziel der vorliegenden Arbeit ist es, das Verständnis über die hydrologischen 

und sedimentologischen Prozesse, die zur Bildung von detritischen 

Hochwasserlagen in Seesedimenten führen, zu erweitern und damit zu einer 

verbesserten Interpretation von Seesedimenten als natürliche Hochwasserarchive 

beizutragen. Dieses Ziel wurde auf zwei unterschiedlichen Wegen verfolgt: zum 

einen werden Zeitreihen von Hochwasserlagen in zwei unterschiedlichen 

perialpinen Seen, Lago Maggiore in Norditalien und Mondsee in Oberösterreich, 

mit Zeitreihen instrumenteller Hochwasserdaten verglichen und zum anderen 

werden Hochwasserereignisse durch ein umfassendes Messnetz am Mondsee vom 

Niederschlag bis zur Sedimentablagerung am Seegrund überwacht. 

Die detritischen Lagen in subrezenten Sedimenten aus der Pallanzabucht im 

Westen des Lago Maggiore und aus dem Mondsee sind bis zu 17 mm und zum 

Teil weniger als einen Millimeter dick und wurden mittels Mikrofaziesanalysen 

und hochauflösenden Mikroröntgenfluoreszenz Scanverfahren (µ-XRF) detektiert. 

Das Alter jeder einzelnen der jeweils 23 detritischen Lagen wurde durch 

Warvenzählung im Mondsee und durch detaillierte Korrelation zu einer bereits 

datierten Kernsequenz im Lago Maggiore bestimmt. Die Korrelation detritischer 

Lagen zwischen fünf Sedimentkernen im Lago Maggiore und 13 Sedimentkernen 

im Mondsee ermöglichte es zum einen, solche Lagen, die durch 

Hochwasserereignisse gebildet wurden, von lokalen Erosionsereignissen zu 

unterscheiden. Zum anderen konnten anhand der unterschiedlichen räumlichen 

Verbreitungsmuster von Hochwasserlagen verschiedene Bildungsprozesse in den 
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beiden Seen abgeleitet werden. Während im Lago Maggiore grundberührende 

Underflows die wichtigsten Transportmechanismen für die 

Hochwasserlagenbildung sind, wird im Mondsee das detritische Material vor 

allem durch Interflows entlang der Thermokline über das Seebecken verteilt. 

Vergleiche der Zeitreihen detritischer Lagen und Abflussdaten der Hauptzuflüsse, 

dem Toce am Lago Maggiore und der Griesler Ache am Mondsee, zeigten für 

beide Standorte, dass die Ablagerung von detritischen Lagen ab einem 

bestimmten Abflusswert wahrscheinlich wird. Dieser empirische Grenzwert für 

die Hochwasserlagenbildung ist in der gesamten Pallanzabucht im Lago Maggiore 

gleich (Tagesabfluss: 600 m
3
s

-1
). Im Mondsee hingegen steigt der Grenzwert vom 

Delta (Tagesabfluss: 40 m
3
s

-1
) zur Seemitte hin an (stündlicher Abfluss: 80 m

3
s

-1
, 

2 Tage über 40 m
3
s

-1
 Tagesabfluss). Weiterhin wurde für beide Seen eine 

Beziehung zwischen der Stärke des Abflusses und der Dicke der 

Hochwasserlagen festgestellt, welche offensichtlich zusätzlich durch Variationen 

im Sedimenteintrag und in der Verbreitung innerhalb des Seebeckens beeinflusst 

wird. 

Um die Prozesse der Hochwasserlagenbildung im Detail zu verstehen, wurden im 

Mondsee und seinem Hauptzufluss, der Griesler Ache, verschiedene hydro-

meteorologische und sedimentologische Parameter von 2011 bis 2013 

aufgezeichnet. Niederschlag, Abfluss und Trübung wurden kontinuierlich am 

Austritt der Griesler Ache in den Mondsee gemessen und mit dem Sedimentflux 

am Seeboden verglichen. Letzterer wurde mittels Sedimentfallen an zwei 

Lokationen im See, in 0.9 km (proximal) und in 2.8 km Entfernung zum Delta der 

Griesler Ache (distal), gesammelt. Nahe dem Seeboden wurde der Sedimentflux 

in einer zeitlichen Auflösung von drei bis zwölf Tagen und monatlich in drei 

unterschiedlichen Wassertiefen ermittelt. Innerhalb des dreijährigen 

Messzeitraums wurden 26 Hochwasserereignisse mit unterschiedlicher Magnitude 

(10-110 m
3
s

-1
) und Sedimentflux am Seeboden aufgezeichnet (4-760 g m

-2
d

-1
). 

Vertikale und horizontale Variationen in der Sedimentation während der stärksten 

Hochwasserereignisse zeigen, dass Interflows die bedeutendsten 

Transportmechanismen für die seeinterne Sedimentverteilung sind. Der Vergleich 

von hydrologischen und sedimentologischen Daten offenbarte (i) eine rasche 

Sedimentation innerhalb von drei Tagen nach dem Hochwasserscheitel im 

proximalen und innerhalb von sechs bis zehn Tagen im distalen Teil des 

Seebeckens, (ii) empirische Abflusswerte für erhöhten Sedimentflux am Seeboden 

im proximalen (20 m
3
s

-1
) und distalen Teil des Seebeckens (30 m

3
s

-1
) und (iii) 

verschiedene Faktoren, welche die abgelagerte Sedimentmenge nach einem 

Hochwasserereignis kontrollieren. Der Sedimenteintrag zum See ist hauptsächlich 

durch Abflussstärke, Sedimentverfügbarkeit im Einzugsgebiet und episodischen 

Sedimenteintrag von lokalen Quellen bestimmt. Eine weitere Rolle spielt die 

Verteilung des Sediments innerhalb des Seebeckens. Diese ist nicht für jedes 

Hochwasserereignis gleich, sondern ist durch die Dauer des 

Hochwasserereignisses und die Existenz der Thermokline in den Sommermonaten 

limitiert. 

Insgesamt zeigen die Untersuchungen eine hohe Sensitivität von Seesedimenten 

für Hochwasserereignisse unterschiedlicher Intensität. Eine bestimmte 

Hochwasserstärke ist notwendig, dass genügend detritisches Material für eine 

sichtbare Hochwasserlage am Seeboden abgelagert wird. Verantwortlich sind 

positive Rückkopplungsmechanismen zwischen Hochwasserstärke, Erosion, 
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Sedimenttransport im Fluss und die Sedimentverteilung innerhalb des Seebeckens. 

Das Zusammenspiel dieser Faktoren wirkt unterschiedlich in verschiedenen Seen. 

Deshalb sind die hydrologischen Grenzwerte für die Hochwasserlagenbildung 

standortsspezifisch. Die Untersuchungen dieser Arbeit zeigen weiterhin, dass die 

Menge an abgelagertem Sediment am Seeboden nicht nur durch die Abflussstärke 

bestimmt wird. Die Sedimentation ist vielmehr durch die komplexe 

Wechselwirkung von Prozessen im Einzugsgebiet und innerhalb des Sees 

kontrolliert. Dies bedeutet, dass die Kernlokation innerhalb eines Seebeckens die 

Signifikanz eines Hochwasserarchivs maßgeblich beeinflusst. Weiterhin zeigen 

diese Ergebnisse, dass Seesedimente für die Rekonstruktion von 

Hochwasserhäufigkeiten ideale Archive darstellen. Die Ableitung von 

Hochwasserstärken aus der Dicke einzelner Hochwasserlagen ist allerdings 

komplexer und setzt eine detaillierte Kenntnis der relevanten Transport- und 

Ablagerungsprozesse im See und seinem Einzugsgebiet voraus. 
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1 Introduction 
 
1.1 Scientific context 
 
River floods are the most common and widespread natural hazards and there is an 
ongoing debate about how such events will change under future climate scenarios 
(e.g. Milly et al., 2001; Mudelsee et al., 2003; Min et al., 2011). However, until 
now evaluating linkages between flood occurrence and changing climate 
boundary conditions are limited by only short instrumental records as stated in the 
special IPCC report on extreme events from 2012: “There is limited to medium 
evidence available to assess climate-driven observed changes in the magnitude 
and frequency of floods at regional scales because the available instrumental 
records of floods at gauge stations are limited in space and time”. Therefore, for 
evaluating flood variability on all relevant time-scales it is necessary to extend 
instrumental flood records using historical and geological archives (Knox, 2000; 
Mudelsee et al., 2003; Merz and Bloeschl, 2008; Merz et al., 2014).  
For this purpose, lake sediments are particularly suitable research objects (Gilli et 
al., 2013) because lakes form traps in the landscape and continuously record land 
surface processes including extreme events (Brauer and Casanova, 2001). Detrital 
layers formed by river floods ideally contrasts to the background sedimentation 
and can be than detected using optical methods, e.g. microscopy (Mangili et al., 
2005, Brauer et al., 2009) and spectroscopy (Debret et al., 2010), physical 
methods, e.g. density and magnetic susceptibility (Thorndycraft et al., 1998), and 
geochemical methods, e.g. micro-X-ray fluorescence (µ-XRF) (Brauer et al., 2009, 
Czymzik et al., 2010). 
Detrital layers in lake sediments were first recognized as flood deposits in the 
1970s (Gilbert, 1973; Lambert et al., 1976; Sturm and Matter, 1978) but their 
potential for establishing long flood calendars was not explored until the early 
1990s, when first flood records were established from sediments of Lake Uri in 
Switzerland (Siegenthaler and Sturm, 1991) and Lilloet Lake in Canada (Desloges 
and Gilbert, 1994). Since then a growing number of flood reconstructions has 
been established particularly in the Alpine realm of Central and Northern Europe 
and North America. Palaeoflood frequencies are based on the occurrence intervals 
of detrital layers (Czymzik et al., 2010; Swierczynski et al., 2012; Glur et al., 
2013,), whereas flood intensities have been inferred from the thickness (Brown et 
al., 2000; Wilhelm et al., 2012, Wirth et al., 2013) and grain size distribution 
(Siegenthaler and Sturm, 1991; Kaufmann et al., 2011; Lapointe et al., 2012) of 
individual deposits. Varved sediment records provide most precise flood 
chronologies with seasonal resolution giving the unique possibility to compare 
and link sediment-based and instrumental flood time series (Leemann and Niessen, 
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1994; Lamoureux, 2000; Francus et al., 2002; Chutko and Lamoureux, 2008; 
Menounos and Clague, 2008; Trachsel et al., 2008; Czymzik et al., 2010; Schiefer 
et al., 2006; 2011). 
Despite the great potential especially of varved lake sediments for reconstructing 
long flood time series, there are still some confinements with respect to 
interpretation of detrital layer records due to a lack of understanding the complex 
chain of processes leading to the formation of detrital layers spanning from an 
extreme rainfall event to the final deposition of a detrital layer at the lake floor. 
One important issue under discussion is the completeness of detrital layer flood 
time series. Detailed comparisons of flood layer chronologies with instrumental 
hydrological data have revealed that detrital layer records can be biased by (I) 
individual layers which are not triggered by floods but by local erosion events as 
debris flows (e.g. Irmler et al., 2006; Swierczynski et al., 2009 and 2012) and 
subaqueous slumps (Lamoureux, 1999; Girardclos et al., 2007; Lauterbach et al., 
2012) and (II) 'missing flood layers', i.e. layers which are not detectable in the 
sediment record (Czymzik et al., 2010) or floods which did not result in detrital 
layer deposition due to either reduced sediment flux from the catchment or 
variable sediment distribution within the lake basin (Lamoureux, 2000; Gilli et al., 
2003; Swierczynki et al., 2009; Czymzik et al., 2010; Schiefer et al., 2011). A 
second critical issue under discussion is how the amount of deposited sediment is 
linked to flood amplitude and to which extend other factors in the catchment and 
the lake itself might play a role.  
To gain more knowledge about detrital flood layer formation in lake sediments, 
several approaches have been initiated in the past including (I) in situ monitoring 
of water and sediment fluxes from rivers to lakes (Gilbert, 1973; Lambert et al., 
1976; Weirich, 1986; Lambert and Giovanoli, 1988; Best et al., 2005; Dugan et 
al., 2009), (II) sediment trapping (Blass et al., 2007; Cockburn and Lamoureux, 
2008; Crookshanks and Gilbert, 2008; Dugan et al., 2009) and (III) detailed 
comparisons of single flood deposits with instrumental flood data (Desloges and 
Gilbert, 1994; Leemann and Niessen, 1994; Lamoureux, 1999; Gilbert et al., 2006; 
Schiefer et al., 2006 and 2011; Czymzik et al., 2010; Kämpf et al., 2012a). 
 
1.2 Scientific objectives and tasks 
The aim of this thesis is to improve the interpretation of detrital layers in lake 
sediments as archives for flood events by deciphering and understanding 
processes of detrital layer formation. This goal is achieved by (I) an event-based 
calibration of detrital layers with instrumental flood data applied in sub-recent 
sediments of two dissimilar basins, Lake Mondsee (Upper Austria) and Pallanza 
Basin in the western part of Lago Maggiore (Northern Italy), and (II) a combined 
hydro-sedimentary monitoring in Lake Mondsee and its catchment. Lake 
Mondsee was chosen for this in-depth monitoring since the sediments from the 
deepest part of the lake contain a varved detrital layer record covering the last 
7100 years (Swierczynski et al., 2013). 
(I) The calibration of detrital layer records requires: 

- Microscopic microfacies analyses on overlapping thin sections and X-ray 
fluorescence scanning at 200 µm step size on the upper 12-40 cm of 13 
surface sediment cores in Lake Mondsee and the upper 18-75 cm of 5 
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1.3 Organization of the thesis 
The thesis is conceptualized as a ‘cumulative thesis’ subdivided into six chapters. 
Following this introduction giving essential background information (chapter 1), 
chapters 2 to 4 represent the scientific work subdivided into three manuscripts 
(Table 1.1).  
The first manuscript (chapter 2) entitled ‘Flood event layers in recent sediments 
of Lago Maggiore (N. Italy) and their comparison with instrumental data’ informs 
about the detection of even sub-mm thick detrital layers in lake sediments by 
combining microfacies and µ-XRF scanning techniques. Detailed intra-basin 
correlation of detrital layers and comparison to instrumental lake level and river 
runoff data allows distinguishing river runoff events from local erosion, as well as 
evaluating the relation between detrital layer thickness and flood amplitude.  
The second manuscript (chapter 3) entitled ‘Processes of flood-triggered detrital 
layer deposition in the varved Lake Mondsee sediment record revealed by a dual 
calibration approach’ addresses spatial distribution patterns of detrital flood layers 
and the driving processes in Lake Mondsee. The comparison to instrumental 
precipitation and river runoff data allows identifying (i) empirical flood thresholds 
for detrital layer formation as well as (ii) missing layers or additional, non-flood 
triggered detrital layers at individual coring locations.  
The third manuscript (chapter 4) entitled ‘Hydrological and sedimentological 
processes of flood layer formation in Lake Mondsee’ presents the results of the 
three-year monitoring of hydo-sedimentary dynamics in Lake Mondsee and its 
catchment revealing (i) river floods as the main precursor for detrital sediment 
input to Lake Mondsee and (ii) the influence of factors besides flood amplitude 
controlling amount and spatial distribution of detrital sediment flux in Lake 
Mondsee.  
Summary and conclusions of the thesis including future perspectives are given in 
chapter 5. The references are listed in chapter 6. 
 
Table 1.1. Manuscripts presented in the thesis. 

Chapter Manuscript title Status 

Chapter 2 
 

Lucas Kämpf, Achim Brauer, Peter 
Dulski, Andrea Lami, Aldo Marchetto, 
Stefano Gerli, Walter Ambrosetti and 
Piero Guilizzoni. Flood event layers in 
recent sediments of Lago Maggiore 
(N. Italy) and their comparison with 
instrumental data 

Freshwater Biology 
(2012) 57, 2076–2090 
doi:10.1111/j.1365-
2427.2012.02796.x 

Chapter 3 Lucas Kämpf, Achim Brauer, Tina 
Swierczynski, Markus Czymzik, Philip 
Mueller, Peter Dulski. Processes of 
flood-triggered detrital layer 
deposition in the varved Lake 
Mondsee sediment record revealed by 
a dual calibration approach 

Journal of Quaternary 
Science (2014) 29, 475–
486 
doi: 10.1002/jqs.2721 
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Chapter 4 Lucas Kämpf, Philip Mueller, Hannes 
Höllerer, Birgit Plessen, Rudolf 
Naumann, Heiko Thoss, Andreas 
Güntner, Bruno Merz, Achim Brauer. 
Hydrological and sedimentological 
processes of flood layer formation in 
Lake Mondsee 

The Depositional Record 
(2015) 1, 18-37 
doi: 10.1002/dep2.2  

  
1.4 Authors contribution 
Chapter 2: I performed the microfacies analyses and intra-basin correlation within 
five surface sediment cores and measured the µ-XRF data in two surface sediment 
cores in collaboration with Peter Dulski. I compared the sediment data with 
instrumental data on river runoff and lake level. I analyzed the data, reviewed the 
relevant literature and wrote the manuscript. The co-authors, reviewers and 
particularly Achim Brauer substantially helped to improve the final manuscript. 
Chapter 3: I organized and lead the coring campaign at Lake Mondsee and 
performed the microfacies analyses, varve counting and intra-basin correlation 
within 13 surface sediment cores as well as µ-XRF measurements in collaboration 
with Peter Dulski. I developed the ideas about depositional processes at Lake 
Mondsee and the implications for the interpretation of the flood record. In 
addition, I conducted the evaluation and interpretation of the results, aided by 
discussions with the coauthors. I wrote the manuscript with major contributions of 
Achim Brauer. 
Chapter 4: I planned the monitoring set up in collaboration with Philip Mueller 
and changed the sediment traps in a monthly rhythm over three years (from 
January 2011 to December 2013). I performed the carbon and nitrogen analyses 
for sediment trap samples in collaboration with Birgit Plessen, the grain size 
analyses in collaboration with Philip Mueller and Sebastian Lorenz as well as the 
XRD analyses in collaboration with Rudolf Naumann. I conducted the evaluation 
and interpretation of the results and I almost entirely wrote the manuscript with 
contributions of Philip Mueller, Andreas Güntner, Bruno Merz and Achim Brauer. 
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Abstract 

A succession of 20 detrital layers was detected in five short cores from the 
Pallanza Basin in the western part of Lago Maggiore (Italy) by combining thin-
section analyses and high-resolution micro X-ray fluorescence (µ-XRF) scanning 
techniques. The detrital layers range in thickness from 0.6 mm to 17.4 mm and 
appear most distinct in the upper 20-25 cm of each core, where eutrophication 
since the early 1960s resulted in the deposition of a dark, organic sediment matrix. 
The age-depth model of previously dated cores was transferred by precise intra-
basin correlation of distinct marker layers, thus providing a reliable chronology 
for the 20 detrital layers covering the time period 1965-2006.  

All detrital layers are related to regional floods as recorded by short-term lake 
level rises and peaks in discharge of the River Toce, the main tributary to the 
Pallanza Basin. Detailed intra-basin correlation of detrital layers allows us to 
distinguish river runoff events from local erosion, as well as evaluate the relation 
between detrital layer thickness and flood amplitude. Massive clay accumulation 
on top of the thickest detrital layers might have affected lake ecology by 
attenuating light and influencing metabolic activity.  
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In the clastic-dominated sediments deposited before 1965, detrital layers are less 
clearly discernible because of the predominantly clastic pelagic sediment matrix. 
The combination of thin section and µ-XRF techniques, however, shows the 
potential to establish even longer flood layer time series from Lago Maggiore 
sediments.  

 

2.1 Introduction 

Many of the most severe floods which caused damage and loss of life in Europe 
occurred in the Alps (Bacchi & Ranzi, 2003; Schmocker-Fackel & Naef, 2010). A 
particularly memorable event was the flood at Lago Maggiore in October 1868, 
when the water level rose to 6.94 m above the mean level. The strong impact of 
f oods on human society and ecosystems raises the question of how the frequency 
and strength of such events will develop under the predicted changing climatic 
conditions (e.g. Milly et al., 2002; Schmocker-Fackel & Naef, 2010; Min et al., 
2011).  

Since instrumental data spanning the last 50 to 100 years are too short to represent 
natural climate variability, establishing long time series of flood frequencies from 
lake and fluvial sediment archives is a challenge for palaeoclimatic research 
(Knox, 2000; Chapron et al., 2005; Thorndycraft & Benito 2006; Debret et al., 
2010). Lake sediments trap flood-triggered sediment transport by tributaries 
(Ludlam, 1974; Sturm & Matter, 1978; Hsü & Kelts, 1985; Lamoureux, 2000), 
resulting in long chronologies of detrital layers intercalated in pelagic background 
sediments (Gilli et al., 2003; Chapron et al., 2005; Czymzik et al., 2010; Støren et 
al., 2010). Palaeoflood frequencies are based on the occurrence intervals of 
detrital layers, but detailed comparisons with instrumental data have revealed that 
some floods are not reflected in the sediment records (Gilli et al., 2003; 
Swierczynski et al. 2009; Czymzik et al. 2010). Hence, a detailed understanding 
of the processes of flood-triggered detrital layer deposition is required (Mangili et 
al., 2005; Lamb et al., 2010). Various approaches have been initiated including 
studies on single flood events (Schiefer, Menounos & Slaymaker, 2006; Kämpf et 
al., 2012) as well as on monitoring flood-triggered sediment flux (Effler et al., 
2006; Cockburn & Lamoureux, 2008; Crookshanks & Gilbert, 2008).  

The specific objective of this study is to use the stratigraphy of detrital layers in 
surface cores from Lago Maggiore to reconstruct the flood history of the last 40 
years and compare it with instrumentally recorded data on lake level and 
discharge of the main tributary River Toce. Investigating the spatial distribution of 
detrital layers in multiple cores combined with instrumental flood data should 
provide a calibration for the sediment data. The main goal is improving the 
knowledge of the generation of flood-induced detrital layers in a mid-latitude pre-
alpine lake. 
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The catchment lithology has five main classes: gneiss (49%), micaceous schists 
(27%), calcareous schists (11%), granites (6%) and sedimentary rocks (sandstones 
and shales, 7%) (Barbanti & Ambrosetti, 1989; Carollo, Libera & Contardi, 1989; 
Montaldo, Ravazzani & Mancini, 2007).  

The main flooding period in the Lago Maggiore area is from September to 
November. Major precipitation events are commonly caused by an interaction of 
large-scale circulation patterns and regional forcing mechanisms. North-westerly 
air flows, when crossing the Alpine barrier, cause a lee cyclogenesis over the Gulf 
of Genova inducing southerly winds (Bacchi & Ranzi, 2003). The Alps are a 
natural barrier, forcing the southerly moist flows to rise, which produces heavy 
and long-lasting precipitation (Bacchi & Ranzi, 2003; Rotunno & Ferretti, 2003). 
The Mediterranean Sea is the main moisture source area for southern Alpine 
precipitation (Sodemann & Zubler, 2010) and therefore the amount of water 
vapour strongly relates to the surface temperature of the Mediterranean Sea (Pinto 
et al., 2001). The combination of these meteorological and geomorphological 
factors is such that the western site of the Southern Alps including the Toce 
catchment gives rise to some of the most severe flood events in Europe (Bacchi & 
Ranzi, 2003).  

 

2.3 Methods 

2.3.1 Coring 

In 2006, five short cores were collected with a gravity corer (Type Ghilardi, 63 
mm liner diameter, Kelts et al., 1986) from the Pallanza Basin (Fig. 2.1c) because 
sediment sequences in that area do not show major disturbances (e.g. Baudo et al., 
2002; Marchetto et al., 2004). Mass flow deposits observed in cores of the deepest 
part of the central basin of Lago Maggiore have caused major erosion leading to 
shortened and non-continuous sediment profiles.  

Table 2.1. Data on gravity cores collected in the Pallanza Basin including the original core name 
and the name used in the text, position, water depth and core length. Cores P4 (Putyrskaya et al., 
2007) and LM98 13A (Marchetto et al., 2004) are used for dating the LMA06 cores (No LM 1-4). 
The transition between sediment units I and II (I/II, dated to 1965) and the mean sediment 
accumulation rate (SAR) between 1965 (I/II) and 2000 (K-4).  

(a) I/II was not detected in core LMA06 51/10/1 and SAR refers to the interval 1977-2000 (K-15 - 
K-4). (b) SAR in core LM98 13A is reported in Marchetto et al. (2004). Data on sediment cores 
have been compared with sediment trap data obtained by Kulbe et al. (2008). 
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The core locations (Table 2.1, Fig. 2.1c) are labelled as follows: location LM 1 
(two cores, LM 1a+b) lies southeast of Isola Madre close to the opening to the 
main basin. Towards the inflow of River Toce, two cores were taken in the basin 
centre (LM 2) and nearby the northern bank (LM 3). LM 4 was retrieved close to 
the southern shore line in the south of Isola Superiore. Two additional cores close 
to position LM 1, LM98 13A (Marchetto et al., 2007) and P4 (Putyrskaya, Klemt 
& Röllin, 2009), were collected in previous years and are considered in this study 
for chronological purpose. The recent parts of the sediment cores are compared 
with data obtained from a sediment trap mooring installed in the northern part of 
the Pallanza Basin (Fig. 2.1c) during two hydrological cycles from October 2004 
to May 2006 (Kulbe et al., 2008). Two integrating sediment traps (Technicap, 500 
cm2) in 57 m and 117 m water depth collected sediment on a 7-day (summer) and 
21-day basis (winter), respectively. The position close to core LM 3 provided 
information on the dynamics of autochthonous particle formation (diatoms, 
pigments, Cladocera) as well as on influx of allochthonous particles and pollutants 
(DDT, PCB, HCB, Hg) from the nearby tributary River Toce (Kulbe et al., 2008). 
 

2.3.2 Microfacies and geochemical analysis 

Detailed micro-facies analyses were carried out on the uppermost 18 - 27 cm of 
each core (total length: 44 - 107 cm, Table 2.1) and the upper 72 cm of core LM 
1a. Overlapping samples (10 cm x 2 cm x 1 cm) were taken from the fresh 
sediment surface of a split core from which thin sections were prepared according 
to Brauer & Casanova (2001). The sediment composition and textural features 
were analyzed descriptively under 12.5-100x magnification using a petrographic 
microscope (Carl Zeiss Axiophot). Semi-quantitative geochemical data were 
obtained by micro X-ray fluorescence (µ-XRF) measurements on the sediment 
slabs from thin-section preparation of the cores LM 1a (0 - 52 cm) and LM 3 (0 - 
26 cm) in 100 µm steps, allowing direct comparison of geochemical and micro-
facies data (Brauer et al., 2009). Analyses were carried out using an EDAX 
EAGLE III XL µ-XRF spectrometer (EDAX, Mahwah, New Jersey, USA) with a 
low-power Rh X-ray tube at 40 kV and 300 µA. All measurements were 
performed under vacuum on a single scan line with 123 µm spot size and a 
counting time of 30 s. The fluorescent radiation emitted from the sample was 
recorded by an energy dispersive Si (Li) detector and transformed into element 
information for each measuring point. The resulting intensities for major elements 
(aluminium (Al), silicon (Si), potassium (K), calcium (Ca), titanium (Ti), iron 
(Fe), sulphur (S)) are given as counts per second (cps), reflecting relative changes 
in element composition. 

 

2.3.3 Dating 

The chronology of sediment cores was established by correlation to previously 
dated cores LM98 13A and P4. The age-depth model of core LM98 13A is based 
on 210Pb measurements and historically documented biological and chemical 
markers, comprising changes in diatom composition in 1963 and 1989 (Cyclotella 
vs Stephanodiscus and vice versa) and an increase in nutrients and pigments in 
1963 (Marchetto et al., 2004; Guilizzoni et al., 2012). The results of modelling the 
vertical 137Cs distribution in core P4 were published by Putyrskaya et al. (2009). 
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Cross-correlation to the five cores of this study was done using 11 marker layers 
for the time period 1965 - 2006. 

 

2.3.4 Instrumental data 

Lago Maggiore lake level values have been collected daily since 1868 (data from 
the Consorzio del Ticino and from the meteorological station of Pallanza (CNR- 
National Research Council), 1951-present). For the entire observational period 
until 2006 Ambrosetti, Barbanti & Rolla (2006) inferred a total of 67 floods by 
lake levels exceeding 195.5 m a.s.l. at Pallanza. Discharge data of the main 
tributary River Toce were calculated to monthly means from river stage data, 
measured by the Institute of Ecosystem Study (CNR-ISE) at Candoglia gauge 
station since 1977 (Fig. 2.1b). For some years (1980, 1982, 1989, 1990, 1992, 
1995, 1997, 1998, 1999) daily discharge data were not available. However, since 
the available monthly means of discharge do not indicate major floods during 
these periods, an effect of these gaps in the time series on this study is excluded. 

 

2.4 Results  

2.4.1 Lithology 

Two main lithological units (I and II) have been distinguished in the Pallanza 
Basin sediment record in four of the five cores (Table 2.1, Fig. 2.2). The lower 
sediment unit I is characterized by a light greyish colour and the predominantly 
homogeneous clastic sediments consisting mainly of silt-sized mica, quartz and 
feldspar grains with scattered sand-sized grains clearly reflected in elevated count 
rates of Al, Si, K, Ca and Ti (Fig. 2.2). Al shows the most distinct peaks for 
detrital horizons and thus is used as a representative proxy for detrital matter. This 
is likely due to the abundance of Al-bearing mica in the micaceous schists and 
gneiss of the catchment. Correlation coefficients of r2 >0.60 of Al with Si, K, Ca 
and Ti indicate that all these elements are mainly of detrital origin (Table 2.2). The 
biogenic silica within diatom frustules is best described by the Si/Al ratio 
(Francus et al., 2009), because Si reflects both siliciclastic matter and biogenic 
components. Low values of Si/Al in sediment unit I reflect low biogenic silica 
contents, proven by diatom counts in core LM 1b, and therefore a low internal 
productivity, which is in good agreement with limnological data (Guilizzoni et al., 
2012). Fe shows weak correlation with detrital elements indicated by r2 values 
ranging between 0.22 (Fe versus Si) and 0.29 (Fe versus Ti). Thus, Fe mainly 
reflects the lake internal iron cycle including early diagenetic formation of iron 
sulphides especially in organic-dominated intervals (O-sections in Fig. 2.2). The 
organic matter in these sections is mainly composed of plant macro-remains and 
amorphous organics. The mostly homogeneous clastic sediment unit I is 
intercalated by 1-12 mm thick light greyish layers (L in Fig. 2.2), which are 
optically hardly discernible from matrix sediments. Elevated count rates of detrital 
elements like Al, Ti and K suggest a detrital origin of these layers. Nineteen 
detrital layers were detected in sediment unit I in core LM 1a down to 72 cm 
sediment depth (Fig. 2.2). 
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During minor floods, the river water is less dense due to lower contents of 
suspended matter. After entering the lake the suspension likely moves as low-
density over- or interflows (Mulder & Alexander, 2001, Sturm & Matter, 1978) 
causing a more random distribution of slowly sinking fine particles by lake 
internal currents and thus the absence of a clear proximal-distal pattern of thin 
detrital layers.  

Three detrital layers appear only in one of the two cores close to the northern (LM 
3) and southern shore (LM 4) (Fig. 2.3). The thickness (16.8-28.8 mm in LM 3) 
and specific microfacies of these layers (matrix-supported: sand-sized particles, 
organic plant macro-remains) indicates short-range transport of littoral sediments 
from the steep lateral slopes, probably driven by local debris flows (Hsü & Kelts, 
1985; Anselmetti et al., 2007; Swierczynski et al., 2009). Thus, local processes 
including slope instability rather than regional flooding triggered the deposition of 
these layers.  

 

2.5.2 Effects of flooding on the lake system 

The impact of floods on the lake itself is strongly related to fluvial sediment 
transport considered to play important ecological and water quality roles by 
attenuating light and influencing metabolic activity (Effler et al., 2006). These 
effects are, however, difficult to quantify (Guilizzoni et al., 2012). Strongly 
decreasing concentrations of chlorophyll-a and filter-feeding zooplankton were 
observed after flood events in Lago Maggiore in the 1950s (Vollenweider, 1956) 
and in the 1970s (Ambrosetti et al., 1980), most likely due to the increased 
turbidity (Guilizzoni et al., 2012). Coarse silt and sand grains sink quickly and 
thus affect water clarity only to a minor degree, whereas clay particles have a 
stronger impact on the lake ecosystem due to their large active surface and long 
residence time in the upper water column. Fishermen report that clay covers their 
nets even several months after major flood events. High clay amounts are found 
on top of detrital layers triggered by large floods, e.g. in 1977, 1979, 1987, 1993 
and 2000. Similar to total sediment load, fluxes of nutrients and pollutants are 
highest during flood events (Guilizzoni & Calderoni, 2007; Kulbe et al., 2008) 
which might have a fertilizing effect resulting in ‘eutrophication pulses’ (Manca et 
al., 2007). Such effects have been reported from lakes (e.g. Agren et al., 2008) 
and coastal areas (e.g. Brodie et al., 2010), but were not observed during the 
monitored Maggiore flood in November 2004 (Kulbe et al., 2008). 

 

2.5.3 Correlating the detrital layer record to instrumental data 

Since the definition of thresholds for floods in instrumental time series implies a 
number of inherent uncertainties (Petrow & Merz, 2009), we compared the detrital 
layer record of the well-dated core section from 1965 to 2006 with two 
independent instrumental data sets, (1) daily lake levels recorded at Pallanza 
station and (2) maximum daily River Toce discharges recorded at Candoglia 
gauge station. Both instrumental data sets were combined (Table 2.3) to test the 
hypothesis of flood-triggered deposition of detrital layers. In total, 23 
‘instrumental floods’ occurred in the period of which both data sets are available 
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(1977-2006). Twelve of these appear in both time series, while five exceed 
threshold values only in the lake level data and six in river discharge data.   

All 20 detrital layers identified in the sediment record during 1965-2006 can be 
correlated to flood events, thus proving flood-triggered deposition and excluding 
other causes like sediment reworking. For the period covered by both instrumental 
data series (1977-2006) we found that two detrital layers correlate to floods only 
in the lake level data (K-9, K-10) and two others (K-8, K-14) only to floods as 
defined by discharge data. This emphasizes the complex relations between 
instrumental floods and detrital layer deposition.The formation of detrital layers 
K-9 and K-10 during floods with maximum daily discharge below 600 m3s-1 
shows that factors other than maximum discharge, such as flood duration, must be 
considered as well. Layer K-10 is related to the April 1986 flood when river 
discharge was elevated for three weeks due to snow melt, but did not exceed daily 
discharge maxima >427 m3s-1. Interestingly, the detrital layers triggered by such 
type of floods are comparably thin and not deposited at all coring sites (Table 2.3).  

Two thicker detrital layers (K-8, K-14) were deposited during floods with 
maximum daily discharge clearly above the defined threshold which, however, did 
not result in lake levels exceeding the threshold of 195.5 m a.s.l., but fell short of 
this value only by 0.6 and 0.1 m, respectively. One reason for this observation is 
the base lake level preceding a flood. In case of very low water levels before a 
major flood even intense river discharges might not be sufficient to raise the level 
above the threshold. Moreover, it must be taken into account that the lake level is 
not solely determined by River Toce discharges (catchment size: 1551 km2) but 
also by the other tributaries of Lago Maggiore (total catchment size: 6599 km2). 
Other factors include different response times of river discharge (fast) and lake 
level (slow) to extremes in precipitation. 

 

2.5.4 Completeness of the detrital layer record 

Besides proving that detrital layers are triggered by regional floods, interpreting 
lake sediments as flood archives requires knowledge of the ‘completeness’ of a 
detrital layer record, i.e. the number of floods which are not recorded in the 
sediment record as well as possible reasons for the lack of detrital deposition. 
From the 28 instrumental recorded floods during the period 1965-2006, 20 
triggered the deposition of a detrital layer (71%). The eight most intense discharge 
events (>1000 m3s-1) all are reflected in the sediments. These results are very 
similar to earlier published data from Lake Ammersee at the northern alpine 
margin (Czymzik et al., 2010). Five of the eight floods that did not lead to detrital 
layer formation can be explained by multiple flooding in one year (1977, 1987, 
2000, 2002). It can be assumed that detrital matter of the first flood stayed in 
suspension and mixed with the suspended matter of subsequent floods 1-6 months 
later. Depending on lake water density fine to medium-sized silt grains can stay in 
suspension over several weeks to months, assuming a settling velocity of ca. 1-2 
m d-1 (Bloesch & Sturm 1986; Perkins et al., 2007). In addition, the strongest 
floods in October 1977, 1993 and 2000 triggered major turbidity currents that 
might have reworked surface deposits of preceding floods as indicated by two 
missing detrital layers below the thickest deposits K-6 and K-8 in the proximal 
core LM 2. 
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2.6 Conclusions 

Sediments of Lago Maggiore have been shown to be a suitable archive for 
detailed flood frequency reconstruction. Therefore, it is necessary to apply an 
integrated approach combining instrumental monitoring data and detailed 
sediment analyses. Even thin flood layers can be detected by a new combination 
of micro-facies analyses on thin sections and µ-XRF element scanning. Deriving 
amplitudes of floods from sediment data is not straightforward and requires a 
good spatial coverage of cores within the lake basin to reconstruct sediment 
pathways. 

So far, there is only little information on the impact of floods on lake ecosystems. 
For a better deciphering of the effects of floods and related sediment fluxes future 
project design should additionally include biomarker analyses (e.g. diatoms, 
pigments, Cladocera). 
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Abstract A succession of 23 sub-millimetre to maximum 12 mm thick, mostly 
flood-triggered detrital layers, deposited between 1976 and 2005, was analysed in 
12 varved surface sediment cores from meso-scale peri-alpine Lake Mondsee 
applying microfacies and high-resolution micro-XRF analyses. Detailed intra-
basin comparison of these layers enabled identification of (i) different source 
areas of detrital sediments, (ii) flood-triggered sediment flux and local erosion 
events, and (iii) seasonal differences of suspended flood sediment distribution 
within the lake basin.  

Additional calibration of the detrital layer record with river discharge and 
precipitation data reveals different empirical thresholds for flood layer deposition 
for different parts of the basin. At proximal locations detrital layer deposition 
requires floods exceeding a daily discharge of 40 m3s-1, whereas at a 2 km more 
distal location an hourly discharge of 80 m3s-1 and at least 2 days of discharge 
above 40 m3s-1 is necessary. Furthermore, we observe a better correlation between 
layer thickness and flood amplitude in the depocentre than in distal and proximal 
areas of the basin. Although our results are partly site-specific, the applied dual 
calibration approach is suitable to precisely decipher flood layer formation 
processes and, thereby, improve the interpretation of long flood time series from 
lake sediments. 
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3.1 Introduction 

Detrital layers in lake sediments are valuable recorders of extreme river floods 
(Siegenthaler and Sturm, 1991; Chapron et al., 2005; Gilli et al., 2013) and thus 
increasingly used to establish continuous long flood chronologies reaching several 
millennia back in time (Arnaud et al., 2005; Lauterbach et al., 2012; Czymzik et 
al., 2013; Swierczynski et al., 2013). The recurrence intervals of detrital layers 
provides information about palaeoflood frequencies (Czymzik et al., 2010; Glur et 
al., 2013), whereas flood intensities have been inferred from the thickness of 
individual deposits (Desloges and Gilbert, 1994; Brown et al., 2000; Wilhelm et 
al., 2013). Varved sediment records provide the unique opportunity to date detrital 
layers with seasonal precision (Mangili et al., 2005) and, thereby, determine 
palaeoflood variability even at seasonal scale (Lamoureux, 2000; Czymzik et al., 
2010; Swierczynski et al., 2012; Wirth et al., 2013). 

Despite the great potential especially of varved lake sediments for reconstructing 
long flood time series, there are still some confinements in interpreting detrital 
layer records due to a lack in understanding the complex chain of processes from 
an extreme rainfall event to the deposition of a fine layer of eroded catchment 
material on the lake floor. One important issue under discussion is the 
completeness of detrital layer flood time series. Detailed comparisons with 
instrumental hydrological data have revealed that detrital layer records can be 
biased by individual layers triggered by local erosion events rather than by floods 
(Kämpf et al., 2012b; Swierczynski et al., 2012; Simonneau et al., 2013) and by 
individual flood events that are not recorded in the sediments (Lamoureux, 2000; 
Gilli et al., 2003; Swierczynski et al., 2009; Czymzik et al., 2010; Schiefer et al., 
2011). Moreover, there is a lack of knowledge about the internal distribution of 
detrital sediments within lake basins, which, however, is important to determine 
the best coring location for flood reconstruction. 

To better decipher processes of detrital flood layer deposition in lake sediments, 
several approaches have been initiated including in situ monitoring of flood 
triggered sediment fluxes (Cockburn and Lamoureux, 2008; Crookshanks and 
Gilbert, 2008) and detailed comparisons of single flood deposits with instrumental 
flood data (Gilbert et al., 2006; Schiefer et al., 2006; Kämpf et al., 2012a). Here 
we present a new dual calibration approach for the detrital layer record from 
varved sediments of Lake Mondsee (Upper Austria) covering the Mid- to Late 
Holocene (Swierczynski et al., 2013). This approach integrates (i) precise intra-
basin correlation of detrital layers along transects from three near delta locations 
to a deep water distal site applying microscopic techniques, and, (ii) event-based 
calibration of detrital flood layers with precipitation and river discharge data over 
a 30-year period. The main goal of this study is to investigate the relations 
between hydrological conditions and detrital layer deposition and therewith to 
evaluate: (i) threshold values for detrital layer deposition, (ii) the completeness of 
flood layer records in dependence from their location within the lake basin and 



3 Flood-triggered detrital layer deposition in Lake Mondsee 

27 
 

(iii) the causes for flood events not leading to detrital layer deposition. Therewith 
we aim at an improved understanding of detrital layer deposition in Lake 
Mondsee and reconstruction of past flood variability with general relevance also 
for flood reconstructions from other lacustrine sediment records.  

 

3.2 Study site 

Lake Mondsee is located at the northern fringe of the European Alps in Upper 
Austria (47°48’N, 13°23’E) at an altitude of 481 m above sea level (a.s.l.). With a 
surface of 14 km2 the lake represents a meso-scale peri-alpine lake which is by a 
factor of 2-3 smaller than the previously studied peri-alpine lakes Brienz, Bourget 
and Ammersee and even by a factor of 40 smaller than the largest peri-alpine 
lakes Geneva and Constance. Lake Mondsee has a maximum water depth of 68 m 
and is a meromictic hardwater lake with one mixing period in autumn/winter. A 
thermal stratification of the lake water column is established from May to 
September (Dokulil and Skolaut, 1986). Lake Mondsee has a specific shape which 
is different from other peri-alpine lakes and displays a significant kink in the 
generally elongated and NW-SE directed shape (Fig. 3.1c). In addition, the main 
tributary and source for suspended sediments, the Griesler Ache, flows into the 
lake from the West at the kink position where the lake basin is N-S directed so 
that the continuation of the water flow in the lake is not, as in the other peri-alpine 
lakes, directed straight to the outflow but makes a 90° turn.  

The catchment (247 km2) is subdivided into two major geological units by a main 
alpine thrust fault (van Husen, 1989) following the southern shoreline of the lake 
(Fig.1b). The northern catchment (ca. 75% of the total catchment) is formed by 
smooth peri-alpine hills of up to 1100 m a.s.l. which are built up by Cretaceous 
Flysch sediments (Sandstone, Argillite). The valleys are covered by moraines 
formed by latest Pleistocene glacier activity (van Husen, 1989). Three tributaries 
drain the northern catchment: the main inflow Griesler Ache in the West draining 
an area of 109 km2 and forming a distinct delta as well as Zeller Ache in the North 
and Wangauer Ache in the East. The southern sub-catchment (ca. 25%) reaches a 
maximum elevation of 1700 m a.s.l. and belongs to the Northern Calcareous Alps. 
The base rock is composed of Jurassic and Triassic units of limestone and 
dolomite forming steep slopes at the southern lake shoreline which are drained by 
small torrents, e.g. the Kienbach creek with a catchment of 2.1 km2 (Fig. 3.1c). 
The outflow of Lake Mondsee is located at the south-eastern end of the lake and 
drains the lake via the river Seeache into Lake Attersee (Fig. 3.1c).  
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type (Petrow et al., 2009), and triggers the most extreme floods in Central Europe 
(Mudelsee et al., 2004; Petrow et al., 2009). The remaining events (ca. 30%) are 
related to northerly and westerly storm tracks (Tab. 3.2). Strong spring and winter 
floods are caused by precipitation events and associated rapid melting of snow. 
Frontal rainfall in that time is usually triggered by westerly circulation patterns 
(Tab. 3.2) carrying warm and moist air masses from the Atlantic Ocean (Petrow et 
al., 2009; Parajka et al., 2010).  

 

3.3 Methods 

13 short cores were recovered from Lake Mondsee (Fig. 3.1c) during three coring 
campaigns (2005, 2007, 2010) using a UWITEC Gravity Corer (60 and 90 mm in 
diameter). These cores are 72 to 160 cm long and have been collected in water 
depths between 34 m and 65 m (Tab. 3.4) following three transects along the 
steepest slope gradients in order to distinguish sediment source areas: (i) from the 
main inflow, Griesler Ache, to the long master core sequence used for establishing 
a long flood layer record (Swierczynski et al., 2013); (ii) between the main 
(Griesler Ache) and the secondary (Wangauer Ache) tributary; (iii) from the 
Kienbach creek inflow draining the steep southern catchment into the southern 
part of the lake basin close to the location of the master core. 

After cutting the sediment cores into two halves, lithological description and 
digital photographs on the split core surface were carried out. Overlapping 
samples for large-format (10 cm x 2 cm) thin sections for micro-facies analyses 
were taken from the fresh sediment surface. Thin sections were prepared 
according to the method described by Brauer and Casanova (2001). Microfacies 
analyses have been carried out under plain and polarized light conditions and 
magnifications between 20x and 400x, using a petrographic microscope (Olympus 
BX53). Thin-section images were obtained with a digital camera (Olympus DP72) 
and the software Olympus CellSens Dimension.  

Micro- X-ray fluorescence (µ-XRF) scanning has been conducted to the upper 26 
cm of cores MO/10/1, 4, 5, 7, 8, 9, MO/07/SC3 and MO/05/P3 using an EAGLE 
III XL µ-XRF spectrometer with a low power Rh X-ray tube at 40 kV and 300 
µA. All measurements were performed under vacuum on a single scan line with 
250 µm spot size, 200 µm step width and a counting time of 60 s. Each data point 
reflects the mean element intensity, expressed in counts per second (cps). Micro-
facies data were interpreted in combination with element data obtained by µ-XRF 
scanning on those impregnated sediment slabs from which thin sections have been 
prepared. This allowed direct comparison of geochemical and micro-facies data 
(Brauer et al., 2009). 

The chronology of the sediment cores was established by varve counting, intra-
basin correlation to the master core MO/05/P3, dated by varve counting and 
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additional 137Cs measurements (Swierczynski et al., 2009), as well as the 
identification of two marker diatom layers dated to 1983 and 1986 (Klee and 
Schmidt, 1987; Schmidt, 1991). 

The sediment record was compared with regional flood data. Discharge in the 
main tributary, Griesler Ache, is recorded by the hydrographic service of Upper 
Austria at the St. Lorenz gauging station (Fig. 3.1b). Precipitation data are 
obtained from the rain gauges in Thalgauberg (Griesler Ache), supplied by the 
hydrographic service of Land Salzburg, Oberwang (Wangauer Ache) and 
Scharfling (Kienbach), measured by the hydrographic service of Upper Austria 
(Fig. 3.1b). We used hourly and daily data for the period 1976-2005 covered by 
hydrological and sedimentological datasets. 

 

3.4 Results 

3.4.1 Sedimentology 

Mid- to Late Holocene sediments from Lake Mondsee sediments are formed by 
biochemical calcite varves comprising light and dark sub-layers (Lauterbach et 
al., 2011). Light sub-layers are composed of fine calcite crystals (< 5 µm) clearly 
reflected in µ-XRF calcium peaks (Fig. 3.2). Dark sub-layers consist of clay to silt 
sized mixed organic-minerogenic material indicated by secondary peaks in 
titanium used as a proxy for detrital input from the northern Flysch catchment 
(Swierczynski et al., 2012). Correlation coefficients of r2 = 0.70 - 0.75 to 
aluminium, potassium and silica confirm the predominately detrital origin of all 
these elements. Sediment cores in the deep southern basin (MO/05/P3: 62 m, 
MO/07/SC4: 64 m water depth) are entirely varved. However, varve preservation 
in sediment sequences retrieved from shallower coring sites (< 60 m) is limited to 
the uppermost decimetres leading to a broad lithological division into a 
homogeneous lower sediment unit I and a varved sediment unit II (Fig. 3.2). The 
transition between both units is gradual and occurs between 18 cm sediment depth 
in the central basin (MO/10/9) and 37 cm proximal to the river inflow (MO/10/5) 
(Tab. S.1). The lamination in sediment unit I appears indistinct in the proximal 
basin (MO/10/5: 47 m) and is absent in sediment cores from shallower parts of the 
lake (MO/10/6: 34 m). 

Sediment unit II was further divided into three sub-units based on sediment colour 
and varve micro-facies (Swierczynski et al., 2009). Our investigation on detrital 
layers is confined to the uppermost part of sediment unit II (Fig. 3.2), ranging in 
thickness from 5.5 cm in the distal core MO/05/P3 to 16 cm in the proximal core 
MO/10/5 and containing 28 (MO/05/P3) to 33 (MO/10 cores) distinct varves. The 
only non-varved sediment core from the shallow delta area (MO/10/6) was not 
considered for further investigations. 
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The investigated sediment interval from 1976 to 2005 includes 27 detrital layers 
(Tab. 3.1). Four layers with a thickness from 0.2 to 4.5 mm were only found each 
in one sediment core at the most proximal locations close to the river inflows 
(MO/10/2: 2 layers, MO/10/7 and MO/07/SC3: 1 layer each) and likely reflect 
local reworking of unconsolidated delta material. The remaining 23 detrital layers 
have been correlated within the investigated part of the basin (Fig. 3.3). 

Sediment cores located near the inflow of the main tributary Griesler Ache (ca. 
0.8 km) contain the highest number and thickest detrital layers (MO/10/4: 13 
layers, max. 10 mm, MO/10/7: 15 layers, max. 6.5 mm) indicating the Griesler 
Ache as the main source of detrital material. Towards the depocentre of the lake 
the number of detrital layers decreases and these layers commonly are thinner 
(MO/07/SC7 (2.3 km): 8 layers, max. 0.8 mm). Besides this common proximal-
distal pattern of sediment flux, four detrital layers (DL 4, 9, 10, 12) show a 
slightly increasing thickness towards the Kienbach inflow suggesting an 
additional sediment flux occurring from the Kienbach creek in the South 
contemporaneously to the sediment flux from the main tributary (Fig. 3.6). 
Further four detrital layers (DL 6, 14-16), which are all matrix-supported, have 
been only deposited in the southern part of the basin indicating the Kienbach 
creek as the exclusive sediment source (Fig. 3.6). 

The distribution of suspended detrital matter within the lake basin after a flood 
apparently is dependent from the season in which the flood occurred. Whereas six 
of the seven winter floods are only recorded in cores within 1.5 km distance from 
the Griesler Ache and Wangauer Ache river mouths mainly as matrix-supported 
layers (90%), summer flood layers are much wider distributed within the lake 
basin (Fig. 3.6). From the 11 summer layers found in proximal cores near the 
Griesler Ache inflow (MO/10/4+7), eight layers are distributed over a distance of 
1.6 km (MO/10/9) and six layers even further South to the location of the long 
master core in 2.9 km distance. The microfacies of these layers changes from 
graded layers at proximal sites (82% in MO/10/4+7) to silt/clay layers at distal 
sites (50% in MO/10/8, 63% in MO/10/9, 91% in MO/07/SC7). Three of the very 
fine-grained silt/clay layers in the distal master core (DL 12, 18, 19) could only be 
identified as detrital layers by correlation with the proximal core sequences. These 
layers have been added to the previously published long flood layer chronology 
(Swierczynski et al., 2012 and 2013).  

 

3.4.6 Detrital layers vs. instrumental data  

To investigate the effects of river discharge on detrital layer formation, all 23 
detrital layers occurring between 1976 and 2005 in at least two of the sediment 
cores have been compared to discharge data of the gauged main tributary river, 
Griesler Ache, and precipitation data of the three sub-catchments of Lake 
Mondsee (Fig. 3.7). This event-based comparison with instrumental data is 
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possible due to the determination of the flood seasons in the sediment record by 
micro-stratigraphical methods. 17 detrital layers (74%) correspond to events of 
elevated runoff in the Griesler Ache ranging in maximum daily discharge (Qd) 
from 24 to 83 m3s-1. 12 of these layers (70%) correlate to strong floods exceeding 
40 m3s-1. This runoff value was exceeded 13 times in the studied time interval and 
in all except one case this discharge resulted in the deposition of a detrital layer 
(92%). The likelihood for detrital layer deposition sharply decreases for lower 
flood amplitudes and is only 12% for floods with a daily discharge of 30-40 m3s-1. 

Ten of the 17 floods, led to detrital layer deposition, occurred in summer of which 
90% relate to intense precipitation (P) > 80 mm d-1 and associated hourly peak 
discharges (Qh) > 60 m3s-1 (Tab. 3.2). Detrital layers which formed after summer 
floods commonly are widely distributed in six to 12 sediment cores, except for 
one flood in July 1977 of which corresponding detrital layers have been found 
only in two proximal cores (Fig. 3.6). Five of the remaining seven floods occurred 
in spring (March-April) and two in winter (Tab. 3.2) all related to rain events 
exceeding 50 mm d-1 and commonly less extreme peak discharges (57% < 60 m3s-

1) leading to detrital layer deposition in two to six cores.  

For six detrital layers which occur in few cores either close to the Kienbach creek 
in the South (DL 6, 14-16) or close to the Wangauer Ache in the North (DL 3), 
neither coinciding discharge events in the Griesler Ache nor precipitation events 
in any sub-catchment have been measured. Therefore, local erosion or reworking 
processes rather than regional-scale flood events are assumed to have caused the 
formation of these layers. This has been proven for layer DL 16, which was 
triggered by a documented debris flow in the Kienbach valley (Swierczynski et 
al., 2009). Among these detrital layers, which are not related to floods, only DL 
17 exhibits a wider distribution in the lake basin and has been found in 11 cores. 
The thickness distribution of this layer within the basin points to the Wangauer 
Ache as source (Fig. 3.6). In summary, 17 of 23 detrital layers correspond to 
floods of the Griesler Ache (Fig. 3.7), and six layers are related to local events. 

Besides detrital layers triggered by other processes than regional floods, flood 
layer records might be biased by missing flood layers, i.e. floods that did not 
result in deposition of a detrital layer. For the studied interval, only one major 
Griesler Ache flood in November 1979 (Qd = 41.9 m3s-1) did not result in detrital 
layer deposition in any of the sediment cores (Tab. 3.2). However, the 
completeness of individual sediment cores with respect to flood layer deposition 
distinctly varies within the lake basin. Some layers are not perceptible in 
individual sediment cores, either due to predominantly clastic background 
sedimentation at the most proximal sites (e.g. MO/10/5) or sediment intervals 
with a less well preserved varve structure (Tab. 3.1). Such individual gaps were 
bridged by integrating neighbouring sediment cores to form composite profiles 
providing a more representative flood layer record (Fig. 3.7).  
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strongest summer floods in the investigation period in terms of intensity (Qh > 80 
m3s-1) and duration (Qd > 40 m3s-1 for at least 2 days). The other two flood layers 
in the master record were triggered by a summer flood below the threshold (DL 
18; Qd = 30.3 m3s-1) and a local spring precipitation event in the Kienbach 
catchment (DL 10; P = 86.2 mm d-1). 

 

3.5 Discussion 

Detrital layers in lake sediments commonly are considered as flood indicators 
(Siegenthaler and Sturm, 1991; Gilli et al., 2013). However, there is still a lack of 
knowledge about the completeness of palaeoflood records and how discharge and 
precipitation control the formation and thickness of flood layers (Gilli et al., 
2013). An important aspect for interpreting the number and thickness of detrital 
layers deposited after flood events certainly is the coring location with respect to 
the inflowing suspended matter (Czymzik et al., 2013). Here, we address these 
issues in a detailed case study for the Lake Mondsee sediment record by a 
comprehensive methodological approach combining multiple-core analyses with a 
calibration of detrital layers based on instrumental flood data. The precise 
chronology of varved sediment records gives the unique opportunity of such an 
individual event-based comparison of sedimentological and instrumental flood 
records (Schiefer et al., 2006; Chutko and Lamoureux, 2008; Czymzik et al., 
2010). Reconstruction of flood layer distribution within the lake basin through 
multiple core analyses provides complementary information about depositional 
processes (Sturm and Matter, 1978; Gilbert et al., 2006; Schiefer, 2006; Schiefer 
et al., 2011; Kämpf et al., 2012a) and, in combination with sediment 
geochemistry, about sediment source areas (Swierczynski et al., 2009; Simonneau 
et al., 2013). 

An important factor for interpreting detrital layers as flood deposits is the process 
of suspended sediment distribution within the basin either though underflows 
(hyperpycnal flows) or interflows (mesopycnal flows). Based on our detailed 
intra-basin correlation we assume that graded and matrix supported layers 
represent hyperpycnal flow deposits whereas silt/clay layers which are mostly 
very thin and almost evenly distributed over the lake basin represent mesopycnal 
flow deposits. Hyperpycnal flow deposits are rarely found in the depocentre of 
Lake Mondsee (MO/07/SC7 in Tab. 3.1); only one graded layer occurs during the 
studied time interval, whereas all other detrital layers appear as silt/clay layers. 
However, since all silt/clay layers in the depocentre can be unambiguously 
correlated to graded layers in proximal cores by their micro-stratigraphic position 
within the varved sediment sequence, we infer a separation of the suspended 
sediment plumes triggered by regional flooding into hyperpycnal flows confined 
to the near delta area (c. 1.5 km) and mesopycnal flows which are distributed to 
more distal parts of the lake basin. In this respect Lake Mondsee is different from 
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different distance from the inflow of suspended matter. In the distal lake basin the 
threshold is even better defined by maximum peak discharge and flood duration 
rather than by mean daily discharge. The long master core predominately records 
floods exceeding 80 m3s-1 peak discharge and a daily mean of 40 m3s-1 lasting for 
at least two days. In addition, we found that not all detrital flood layers have been 
formed at all core locations, not only because of different distances from the 
inflow source, but also due to variable distribution of suspended sediment loads 
within the lake. In summary, flood layer time series obtained from single cores 
indeed might be biased by so-called ‘missing’ flood layers so that such flood 
reconstructions must be considered as minimum flood estimates. 

Possible explanations for missing layers include erosion by hyperpycnal flows 
(Mangili et al., 2005; Schiefer, 2006) and sediment focusing by meandering 
(Gilbert et al., 2006) or spatially limited hyperpycnal flows (Lamoureux, 1999). 
Alternative explanations are related to an uneven distribution of suspended matter 
within the basin especially during mesopycnal flow transport. A previously 
underestimated factor in this respect is the season of flooding. For Lake Mondsee 
we demonstrate that summer detrital layers are much wider distributed within the 
basin compared to winter flood layers which are spatially confined to sites 
proximal to the inflow even during strong winter floods (Fig. 3.6). This might be 
explained by summer stratification favouring long-distance transport of fine-
grained suspended matter in the upper water column to the depocentre by 
mesopycnal flows (Sturm and Matter, 1978; Desloges and Gilbert, 1994; Schiefer, 
2006; Hodder et al., 2007). Moreover, lake internal currents, recorded during an 
ongoing monitoring study in Lake Mondsee (Mueller et al., 2013), could have a 
potential effect on mesopycnal flows (Sturm and Matter, 1978; Giovanoli and 
Lambert, 1985; Schiefer, 2006). Although the generation of lake internal currents 
might be specific in Lake Mondsee (Mueller et al., 2013) because of the 
characteristic basin morphology and the position of the discharging river inflows, 
an influence of internal currents for sediment distribution must be considered for 
all larger lake systems.  

In addition to missing layers as a bias for interpreting long palaeoflood time 
series, there is also the possibility of additional detrital layers, which are not 
related to regional floods and thus may lead to an overestimation of flood 
numbers. In Lake Mondsee, such non flood-triggered layers are formed by two 
different mechanisms: (i) debris flows deriving from the steep-sided Kienbach 
valley in the southern sub-catchment (Swierczynski et al., 2009) and (ii) 
reworking of unconsolidated sediment from the deltas and slopes through wave 
action and sediment instabilities. Debris flow deposits can be clearly distinguished 
from flood layers based on the exclusively dolomitic sediment composition (Fig. 
3.5) and coarser detrital grain sizes. Reworked detrital material deposited around 
the river deltas commonly did not form distinct layers and, therefore, can be also 
distinguished from flood deposits. Only in one case, a distinct and widespread 
detrital layer with a similar appearance like other flood layers (DL 17, Fig. 3.6) 
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has formed without a corresponding discharge peak in the Griesler Ache. This 
layer is not distinguishable from common flood layers. Intra-basin correlation 
enabled to trace this layer to the Wangauer Ache stream. Since no enhanced 
precipitation is recorded in the Wangauer Ache catchment during that time (Fig. 
3.7), we assume a local erosion event either in the stream bed or from the 
subaquatic slopes. 

Based on the abovementioned evidences, we can state that the long master core 
located in the distal southern basin completely records the strongest summer 
floods defined as peak discharge (80 m3s-1) and flood duration (2 days > 40 m3s-1). 
In addition to the earlier published flood layer record based on only the master 
core (Swierczynski et al., 2012 and 2013), we were able to identify three 
extremely thin flood layers (DL 12, 18, 19) through the multi-core approach. The 
amounts of detrital material transported to this distal site were so low, that we 
could identify them only through tracing flood material from the proximal site. 
The preferential deposition of summer flood layers can be explained by the effect 
of lake stratification favouring wide distribution of suspended matter through 
mesopycnal flows. Local erosion events can be, in most cases, clearly 
distinguished from flood deposits by multiple core micro-facies and micro-XRF 
analyses. Obviously, the empirical threshold must be considered as an 
approximation since also two low amplitude floods triggered the formation of 
detrital layers. 

 

3.5.2 Reconstructing flood amplitudes  

Besides establishing long time series of flood frequencies, it is challenging to 
reconstruct also amplitudes of palaeofloods. First attempts applied flood layer 
thickness as proxy for flood amplitudes (Brown et al., 2000; Wilhelm et al., 2013; 
Wirth et al., 2013) based on the concept that sediment flux in the lake is directly 
related to river discharge as has been demonstrated in several pro-glacial lakes 
(Desloges and Gilbert, 1994; Schiefer et al., 2006; Hodder et al., 2007; Chutko 
and Lamoureux, 2008; Schiefer et al., 2011). Although in agreement with this 
concept, most of the thickest flood layers in the Mondsee sediment record (1 to 5 
mm; Fig. 3.7) indeed were triggered by the strongest flood events (1991, 1997, 
2002), our calibration demonstrates that the assumed relation between flood 
amplitude and layer thickness is not generally valid but shows clear differences 
depending from the particular core position within the lake basin. This is obvious 
from highly variable linear correlation coefficients (Tab. 3.3). Reasons for these 
variations are non-linear components influencing layer thickness in different 
ways. For example, layer thickness in the distal southern part of the lake does not 
correlate to flood amplitudes (r2(Qh) = 0.22), because of additional sediment 
supply from the local Kienbach creek (Figs. 5 and 6) into this part of the basin. 
The proximal zone is generally more susceptible for local sediment mobilization 
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series derived from lake sediments. This approach allowed identifying missing 
layers or additional, non-flood triggered detrital layers at individual core 
locations. In addition, empirical flood amplitude thresholds for the formation of 
flood layers have been assessed and proven to be specific for different coring 
locations. This, in turn, is important information for defining the most suitable 
coring locations for future lake sediment investigations aiming at flood 
reconstructions. Our study further demonstrates that the season in which a flood 
occurs influences the distribution of detrital material within the lake basin, 
possibly because of the state of lake water stratification and/or internal water 
currents. However, these assumptions remain speculative and need to be tested by 
extending the observation through in-lake monitoring of suspended matter 
distribution and deposition. 

The results of this study provide a more robust interpretation of the long flood 
time series from Lake Mondsee and allow to better estimate uncertainties. In more 
general, we contribute to the discussion if and how flood layer thickness can be 
applied as proxy for flood amplitude by demonstrating that in certain 
circumstances a relationship between layer thickness and flood amplitude exists. 
However, this relationship can be strongly overprinted by non-linear components 
and is spatially different even within one lake basin. Therefore, reconstructing 
flood amplitudes still remains a major challenge for palaeoflood research in lake 
sediments. Even if our results obviously are in parts site-specific, we consider the 
dual calibration approach for flood layers as a suitable tool also for other lake 
records. Ideally, it should be complemented by observation of in-situ 
sedimentation through in-lake monitoring. 
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Abstract Detrital layers in lake sediments are recorders of extreme flood events. 
However, their use for establishing time series of past floods is limited by lacks in 
understanding processes of detrital layer formation.  

Therefore, we monitored hydro-sedimentary dynamics in Lake Mondsee (Upper 
Austria) and its main tributary, Griesler Ache, over a three-year period from 
January 2011 to December 2013. Precipitation, discharge and turbidity were 
recorded continuously at the river outlet to the lake and compared to sediment 
fluxes trapped with 3 to 12 day resolution at two locations in the lake basin, in a 
distance of 0.9 (proximal) and 2.8 km (distal) to the Griesler Ache inflow.  

Within the three-year observation period, 26 river floods of different magnitude 
(10-110 m3s-1) have been recorded resulting in variable sediment fluxes to the lake 
(4-760 g m-2d-1) including the ‘century-scale’ flood event in June 2013. The 
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comparison of hydrological and sedimentological data revealed (i) a rapid 
sedimentation within three days after the peak runoff in the proximal and within 
six to ten days in the distal lake basin, (ii) empirical flood thresholds for triggering 
sediment flux at the lake floor increasing from the proximal (20 m3s-1) to the distal 
lake basin (30 m3s-1), and (iii) various factors that control the detrital sediment 
transport in the lake. The amount of sediment transported to the lake is controlled 
by runoff and catchment sediment availability. The distribution of detrital 
sediment within the lake basin is mainly driven by mesopycnal interflows and 
closely linked to flood duration and the season in which a flood occurred.  

The combined hydro-sedimentary monitoring revealed detailed insights into 
processes of flood layer formation in a meso-scale peri-Alpine lake and, thereby, 
improves the interpretation of the depositional record of flood layers.  

 

4.1 Introduction 

Lakes form ideal sediment traps in the landscape continuously recording land 
surface processes in the catchment including extreme events (Hsü and Kelts 
1985). Discrete flood-triggered sediment fluxes of detrital catchment material into 
lakes result in the formation of discrete detrital layers at the lake floor (Sturm and 
Matter 1978; Siegenthaler and Sturm 1991). Therefore, detrital layers in lake 
sediments are increasingly used to establish long flood chronologies especially in 
the Alpine (Støren et al. 2010; Glur et al. 2013; Wirth et al. 2013b; Wilhelm et al. 
2013), peri-Alpine (Arnaud et al. 2005; Swierczynski et al. 2013; Czymzik et al. 
2013) and Arctic realms (Francus et al. 2002; Lamoureux et al. 2006; Lapointe et 
al. 2012). The recurrence intervals of detrital layers provide information about 
palaeoflood frequencies (Czymzik et al. 2010; Swierczynski et al. 2012; Schlolaut 
et al. 2014), whereas flood intensities have been inferred from the thickness 
(Schiefer et al. 2011; Wilhelm et al. 2013) of individual deposits. 

Varved sediment records provide, in addition, the unique opportunity to date 
detrital layers with seasonal precision (Mangili et al. 2005) and, thereby, (i) 
determine palaeoflood variability even at seasonal scale (Swierczynski et al. 2012; 
Wirth et al. 2013a) and (ii) calibrate the sub-recent detrital layer record with 
instrumental flood data (Francus et al. 2002; Chutko and Lamoureux 2008; 
Czymzik et al. 2010). 

Commonly, flood reconstruction from lake sediments assume the completeness of 
the depositional record in the sense that each flood resulted in a well-preserved 
detrital layer. However, a test of the hypothesis of completeness of the 
depositional record is still lacking.  First detailed comparisons of detrital layer 
records with instrumental data even questioned the assumption of completeness 
by providing evidence for  both, floods that did not result in detrital layer 
deposition and detrital layers, which were not triggered by strong floods (Czymzik 
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et al. 2010; Kämpf et al. 2012b).  A possible reason might be that the amount and 
spatial distribution of detrital sediment within a lake basin triggered by flood 
events might vary (Lamoureux 1999; Jenny et al. 2014) probably even depending 
on the season in which a flood occurred (Kämpf et al. 2014). A better knowledge 
of the hydrological and sedimentary processes of detrital layer formation is 
required to reduce the bias in interpretation and, thereby, improve the use of 
depositional records as palaeoflood archives.  

To gain a more sophisticated process understanding of detrital layer formation 
different attempts have been initiated comprising detailed analyses of single flood 
deposits (Gilbert et al. 2006; Kämpf et al. 2012a) and in situ monitoring of flood 
triggered sediment fluxes (Best et al. 2005; Crookshanks and Gilbert 2008; Dugan 
et al. 2009). Most observational studies of detrital sediment fluxes in lakes have 
been performed in arctic and high mountain lakes with predominantly clastic 
sedimentation. Despite of the growing number of flood reconstructions from 
Alpine and peri-Alpine lakes (e.g. Wirth et al., 2013b), in-depth monitoring 
studies in such lakes with mainly autochthonous sediments (biochemically 
precipitated calcite and organic components) are still lacking. 

Here we present results of a three-year integrated lake and catchment monitoring 
of flood and sediment dynamics in the peri-Alpine Lake Mondsee. The study 
period comprises the ‘century-scale’ flood event in June 2013 (Blöschl et al. 
2013). We chose Lake Mondsee for this in-depth monitoring since it provides a 
varved sediment record and a flood layer record covering the last 7100 years 
(Swierczynski et al. 2013) as well as a good data base of meteorological and 
hydrological data. In addition, a first calibration of sub-recent detrital layers with 
instrumental flood data is available (Kämpf et al. 2014). Ultimately, we will 
contribute new knowledge about flood layer formation in a meso-scale peri-
Alpine lake, which is expected to generally improve flood reconstructions from 
depositional records of lakes. 

 

4.2 Study site 

Lake Mondsee is located at the northern fringe of the European Alps in Upper 
Austria (47°48’N, 13°23’E) at an altitude of 481 m above sea level (a.s.l.) (Fig. 
4.1). With a surface area of 14 km2 and a maximum water depth of 68 m Lake 
Mondsee is a meso-scale peri-Alpine lake characterized by a specific 
morphometry displaying a significant kink in the generally elongated and NW-SE 
directed shape (Fig. 4.1). Lake Mondsee is a meromictic hardwater lake (Dokulil 
and Skolaut 1986) with one mixing period in autumn/winter and thermal 
stratification between May and September (Fig. 4.2). Episodically, the lake is 
completely ice-covered which happened once during the observation period in 
February to March 2012.  
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(A0=110 km2; MQ=4 m3s-1; HHQ =137 m3s-1, ref. BMLFUW [2011]), the 
Griesler Ache is the largest tributary to Lake Mondsee and the main source for 
suspended sediments during floods (Kämpf et al. 2014). The southern sub-
catchment (ca. 25%) reaches a maximum elevation of 1700 m a.s.l. and is part of 
the Northern Calcareous Alps. The base rock is composed of Jurassic and Triassic 
units of limestone and dolomite forming steep slopes at the southern lake 
shoreline which are drained by small torrents like, for example, the Kienbach 
creek with a catchment of 2.1 km2 (Fig. 4.1). Lake Mondsee drains via the river 
Seeache into Lake Attersee at the south-eastern end of the lake (Fig. 4.1).  

 

4.3 Methods 

A monitoring network was installed in Lake Mondsee and its catchment between 
2011 and 2012, comprising five river gauges along the main tributary to Lake 
Mondsee, the Griesler Ache, as well as four monitoring buoys and two sediment 
trap chains within the lake (Fig. 4.1). The combination of river gauges and 
monitoring buoys was designed to track hydro-sedimentary dynamics, i.e. runoff 
generation and sediment transport, continuously from the head catchments to the 
lake (Mueller et al. 2013). 

 

4.3.1 Catchment monitoring 

Precipitation in the Griesler Ache catchment is recorded since June 2011 using 
OTT Pluvio rain gauges (OTT Hydromet, http://www.ott.com) at the gauging 
stations St. Lorenz located close to Lake Mondsee (482 m a.s.l., 4 km distance to 
inflow), Fischbach Outlet (FBO, 552 m, 10 km) located at the confluence of the 
Griesler Ache and the Fischbach, which is the largest tributary to the Griesler 
Ache, and at two stations in the Fischbach head-catchment, Streuwiesenbach 
(SWB, 777 m, 11 km) and Fischbach Forest (FBF, 786 m, 12 km). In addition we 
used data from three precipitation gauges at Thalgauberg in the Griesler Ache 
catchment (730 m a.s.l., 11 km distance to inflow) (operated by the Hydrographic 
Survey of Salzburg), Scharfling in the Kienbach catchment (482 m, 0.7 km) and 
Oberwang in the Wangauer Ache catchment (595 m, 5 km) (both operated by the 
Hydrographic Survey of Upper Austria). Runoff data were obtained from the 
stream gauge of St. Lorenz (Hydrographic Survey of Upper Austria), located 4 km 
upstream of the Griesler Ache inflow to Lake Mondsee (Fig. 4.1). For monitoring 
sediment transport in the river, the station was additionally equipped with a FTS 
DTS-12 turbidity sensor (Forest Technology Systems Inc., 
http://www.ftsenvironmental.com) and an ISCO 3700 automatic pumping sampler 
(Teledyne ISCO, http://www.isco.com). Depending on the actual values of 
discharge and turbidity, 3-24 river water samples (1 l) were taken automatically 



4 Processes of flood layer formation in Lake Mondsee 

51 
 

for each of 21 flood events since June 2011 following the turbidity-threshold-
sampling (Lewis 1996). 

 

4.3.2 Lake monitoring 

Two moorings were installed in Lake Mondsee, each equipped with one 
sequencing sediment trap (S-trap) and three integrating sediment traps (I-traps). 
The locations follow a transect from the inflow of the Griesler Ache river to the 
location of a long sediment record used for establishing a flood layer chronology 
over the last 7100 years (Swierczynski et al. 2013), with one mooring in a 
distance of 900 m to the river mouth (proximal trap: 47°49.21’ N, 13°22.78’ E, 
water depth: 56 m) and the other in a distance of 2800 m (distal trap: 47°48.32' N, 
13°23.92' E, water depth: 63 m). We compared the sediment trap data with detrital 
layers investigated in surface sediment cores that were previously retrieved close 
to the trap locations in the proximal (sediment core MO/10/4: 47°49.16’ N 
13°22.79’ E) and distal lake basin (MO/05/P3: 47°48.41' N, 13°24.09' E, ref. 
Kämpf et al. [2014]). 

The I-traps (UWITEC, http://www.uwitec.at) have two collecting cylinders with 
an active area of 127 cm2 in total. The two sequencing traps are equipped with a 
computer programmable sample bottle carrousel and differ in size: with 500 cm2 
we chose a trap with a smaller active for the proximal location (PPS 4/3, 12 
sample bottles, Technicap, http://www.technicap.com) and a larger one for the 
distal location (1250 cm2, PPS 3/3, 12 sample bottles) due to expected higher 
sediment accumulation ratios closer to the inflow of the Griesler Ache 
(Swierczynski et al. 2009). The S- and one of the I-traps were deployed 
approximately 3 m above the lake bed surface in a water depth of 53 m (prox.) 
and 60 m (dist.). The other two I-traps were moored in the upper water column 
(14 m) and between the upper and lower traps (prox.: 33 m, dist.: 30 m). 12 
temperature loggers (Hobo U22 Water Temp Pro, Hobo, 
http://www.onsetcomp.com) were attached to the proximal mooring at water 
depths of 1, 3, 5, 8, 11, 14, 18, 22, 33, 43, 53 and 55 m and 4 loggers to the distal 
mooring at water depths of 1, 14, 30 and 60 m. 

The moorings were first deployed at 13 January 2011. The S-trap at the distal 
mooring was added on 04 April 2012. The traps were recovered in a monthly 
rhythm between April and November until 03 April 2014. Thus, I-traps collect 
material on a basis of 21 to 41 days between April and November and of 41 to 
123 days between December and March. The individual S-trap samples cover a 
time interval of 3-4 days between April and November and 4-12 days between 
December and March. 

This study reports data from samples collected between January 2011 and 
December 2013 giving a total of 28 I-trap samples from the upper (14 m) and 
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lower (prox.: 53 m, dist.: 60 m) water column at each location as well as 269 S-
trap samples at the proximal and 158 samples at the distal location. The S-trap 
time series exhibit three gaps: (i) between March and April 2012 (37 days) caused 
by persistent ice cover, (ii) between September and October 2012 (21 days) due to 
technical reasons, and (iii) in June 2013 (6 days) due to very high lake water level 
that inhibited trap recovery. The third gap was bridged by deploying two 
additional I-traps close to the mooring locations. 

 

4.3.3 Sediment analyses 

The sample bottles of the river water samplers and sediment traps were stored at 
4°C after recovery for at least 48 h to ensure that all suspended particles had 
settled. The samples were freeze dried and the total dry weight was determ ined. 
For trap samples, the daily sediment flux (in g m -2d-1) was calculated for each 
sample. For river water sam ples, the measured suspended sediment concentration 
(SSC in g l -1) was used for setting up SSC rating curves of the turbidity sensor at 
the gauge of St. Lorenz (Supplem entary Fig. 4.2). The rating curves were 
established individually for the three strongest recorded floods by applying 
polynomial regression (Lewis and Eads 2009). 

Total carbon (TC), nitrogen (TN) and organic carbon (TOC) were determ ined for 
each S-trap sample using an elem ental analyser Euro Vector EA (EuroEA 3000 , 
www.eurovector.it). For TC and TN, around 5 mg o f powdered sam ple was 
loaded in tin capsules  and com busted in th e elemental analyser. TOC was 
determined on in-situ decalcified samples. Around 3 mg of sample was weighted 
into Ag-capsules, treated with 20 % HCl, heate d for 3 h  at 75°C, and  finally 
wrapped and m easured as described above . Replicate determ inations showed a 
standard deviation better than 0.2%. Organic m atter (OM) was calculated as  
OM=2×TOC (Meyers and Teranes 2001) an d total inorganic carbon (TIC) as 
TIC=TC-TOC. The CaCO 3 content was calcu lated stoichiometrically by 
multiplying the T IC by 8.33, ass uming that all inorganic carbon  is bound as  
calcium carbonate. W e are aware that minor dolomite contributions fr om 
catchment rocks (Supplementary Fig. 4.1) in  the detrital carbona te fraction might 
cause little inaccuracies. 

Grain size was measured for 13 selected trap samples with high sediment flux 
rates using a laser particle sizer (Fritsch Analysette, Fritsch, 
http://www.fritsch.de). The samples were sieved at 1 mm and dispersed in an 
ultrasonic bath before measuring. Image data were automatically transferred to 
particle distribution by the software Fritsch MaScontrol applying the Fraunhofer 
model. 

The mineralogical composition was determined for those trap samples that were 
also analysed for their grain size distribution and for four samples of river bed 
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4.4 Results 

4.4.1 Hydro-climatic conditions at Lake Mondsee 2011-2013 

Mean annual precipitation in the Mondsee catchment during the observation 
period from January 2011 to December 2013 was 1600 mm and thus, in the range 
of the long-term mean (1981-2011, ref. BMLFUW [2011]). Large rainfall 
amounts (> 40 mm d-1) were recorded during 20 days (2011; 4, 2012: 7, 2013: 9) 
and primarily took place between May and September (15 days) and, secondarily, 
in winter (5 days >40 mm). With 90 mm d-1 the maximum precipitation was 
recorded at the Oberwang rain gauge on 01 June 2013 (Fig. 4.2). 

The mean runoff between January 2011 and December 2013 was 4.1 m3s-1 that is 
close to the long-term mean of 3.9 m3s-1 (1961-2011, ref. BMLFUW [2011]). 
Runoff events > 30 m3s-1 occurred 14 times in the observation period (2011: 3, 
2012: 4, 2013: 7) and, like precipitation events, cumulated in summer (May-Sep: 
8, Oct-Nov: 2, Dec-Feb: 4). The largest flood in the monitoring period reached a 
maximum hourly discharge of 104 m3s-1 (02 June 2013) and was one of the 
strongest recorded floods in that region with an estimated return period of around 
100 years (Eybl et al. 2013). 

 

4.4.2 Variability in sediment flux I: total sediment composition  

Sediment flux in Lake Mondsee was trapped over the period from January 2011 to 
December 2013 at two different sites within the lake basin (Fig. 4.4.1), one 
located in a position proximal to the inflow of the main tributary river (distance: 
900 m) and one in a distal position (2800 m). The total sediment flux including 
both, allochthonous and autochthonous components, was by median 4 g m-2d-1 
(prox.: 4.2 g m-2d-1, dist.: 3.6 g m-2d-1) and exhibited (i) a seasonal variability with 
higher flux rates in summer (5-6 g m-2d-1 in May-Sep) and lower flux rates in 
autumn and winter (1-1.5 g m-2d-1 in Oct-Jan) and (ii) short-term peaks of up to 
758 g m-2d-1 in the proximal and up to 59 g m-2d-1 in the distal lake basin (Figs. 
4.3a+b). 

The seasonal variability of the trapped sediment flux is also expressed by distinct 
changes in sediment composition (Figs. 4.3c+d). Calcite contents varied from 20-
40% (October to April) to 60-95% (May to September) with maximum values 
between July and August (Fig. 4.4.3c). The higher calcite contents in summer 
reflect biochemical precipitation of calcite in epilimnic waters which is a typical 
seasonal process in mid-latitude hardwater lakes (Koschel et al. 1983).  
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The contents of organic matter in trapped sediment, calculated from the measured 
TOC contents, varied between 5 and 25% and exhibited a clear maximum in April 
and a second, lower maximum of 15-20% in late autumn (October-December) 
when bulk sediment fluxes were lowest (Figs. 4.3b+d). The maximum in April 
was predominantly made up of diatom frustules, whereas in autumn amorphous 
organic matter and diatoms were abundant as revealed by smear slide 
investigations. Between October and March, the sediment was mainly composed 
of dolomitic and siliciclastic matter derived from either the shorelines by wave 
activity and/or directly from the catchment surface by runoff processes. The 
observed seasonal variations in sediment flux lead to the formation of 
characteristic diatom, calcite and mixed sub-layers preserved and described in the 
varved sediment record of Lake Mondsee (Lauterbach et al. 2011; Swierczynski 
et al. 2012). 

 

4.4.3 Variability in sediment flux II: spatial distribution  

We characterized the spatial sediment distribution in the lake water body by both 
its vertical and horizontal variability in order to decipher pathways and 
mechanisms of lake internal sediment transport. The vertical variability is 
expressed by the flux ratio of the lower and upper traps (L:U, ref. Cockburn and 
Lamoureux [2008]) calculated for the 28 I-trap samples representing monthly 
means (Fig. 4.3e). From these samples, 51% (prox.: 13 samples, dist.: 16 samples) 
ranged between 0.6 and 1.5 indicating comparable flux rates throughout the water 
column and 38% of the values ranged between 1.5 and 2.5 (prox.: 12 samples, 
dist.: 9 samples) representing a mixture of vertical and lateral sediment fluxes. 
L:U values > 2.5 rarely occurred (11%, prox.: 4 samples, dist.: 2 samples), 
reflecting sediment flux predominately in the lower water column mainly driven 
by hyperpycnal underflows (Cockburn and Lamoureux 2008). It has to be 
considered that the vertical sediment flux ratios likely represent minimum 
estimates of sedimentation during times of underflows, as the traps were designed 
to capture mainly sediment that settled vertically through the water column and 
were allocated 3 m above the lake bottom likely leading to an underestimation of 
material transported by underflows. The vertical sediment distribution indicates 
seasonally changing sediment pathways. In summer (May-Sep), the L:U ratio was 
< 1.5 for 90% of all values indicating predominately downward sediment flux 
from the upper water column. In fall to spring the L:U ratio was > 1.5 for 90% of 
all values pointing to the contribution of lateral sediment transport from the 
shoreline and/or the tributary streams during winter.  

The lateral sediment distribution is expressed by the flux ratio of the proximal and 
the distal site (Proximal-Distal Index [PDI], ref. Lamoureux [1999]). PDI values 
were calculated for the lowermost I-traps and sequential traps (Fig. 4.3f) revealing 
64% of the values ranging between 0.6 and 1.5 representing a uniform 
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The 01/13 event was characterized by a persistent wet phase over two months 
with two main precipitation periods of three and four days, respectively, and 
maxima of 57 to 83 mm d-1 (Fig. 4.8). Whereas the two winter floods were both 
triggered by precipitation events that covered the whole catchment area, the three 
strongest summer floods were triggered by regional and local scale rainfall events 
(Fig. 4.2). The latter were convective events of high intensity and short duration 
(< 1 day) affecting only parts of the catchment, like the 06/12 event in the 
Fischbach sub-catchment (max. rainfall at station SWB: 65 mm d-1) and the 07/13 
event in the Wangauer Ache catchment (Oberwang: 48 mm d-1). In contrast, the 
06/13 event was triggered by a series of synoptic scale low pressure systems 
(Blöschl et al. 2013), resulting in strong precipitation over the whole catchment 
area lasting for two weeks (Tab.1). 

The stream-flow rose within one to ten hours after the main precipitation events 
(Figs. 7+8). In January 2011, the flood hydrograph peaked at 78 m3s-1 and was 
larger than 10 m3s-1 for three days. The two runoff peaks between December 2012 
and January 2013 were characterized by maximum discharges of 50 and 66 m3s-1 
and durations of three and seven days. The local rainfall events in June 2012 and 
July 2013 triggered peak flows of 78 m3s-1 during the 06/12 event and 24 m3s-1 
during the 07/13 event. The comparably low peak flow in the Griesler Ache 
during the 07/13 event is due to the local character of the precipitation event 
which mainly covered the catchment of the Wangauer Ache which is not part of 
our monitoring network (Tab.1, Fig. 4.1). The June 2013 flood was exceptional 
for the entire observation period and reached by far the highest maximum 
discharge values (104 m3s-1) and the longest duration (9 days > 10 m3s-1). The 
flood resulted in a lake level rise of more than 1.5 m and flooding of the city of 
Mondsee. 

Suspended sediment concentration in the river (SSC), as recorded by turbidity 
measurements and automatic water samples, reached highest values during the 
06/13 event (SSCmax=61 g l-1 in samples, 103 g l-1 rated from turbidity) and was 
lowest during the 01/13 event (SSCmax=1.1 g l-1 in samples, 1.6 g l-1 rated from 
turbidity). During all events, SSC increased with increasing discharge and reached 
maxima during the rising limb of the flood hydrograph and already declined one 
to two hours before the flood peak (Figs. 7+8). 

The sediment depositions in the lake occurred with time lags of one to four days 
after the peak runoff at the proximal location and of up to ten days at the distal 
trap (Figs. 7+8). The total sediment deposition in the proximal basin was highest 
during the 06/12 event (4320 g m-2) and lowest during the 07/13 event (1258 g m-

2), whereas at the distal site the opposite has been observed, i.e. highest sediment 
deposition during the 07/13 event (468 g m-2) and lowest during the 06/12 event 
(174 g m-2). 

 



 

Ta
M
ev
in 

 

Th
co
pr
fe
do
(D
Ri
sim
in
ca
ar
se
(S
th
th
fro
06
fro

able 4.1. Tabl
Mondsee within
vent transporti

the monitorin

he sources o
omposition 
redominatel
eldspars, wh
olomite (Su
D:Q) to disti
iverbed mat
milar D:Q r

n sediment t
atchments a
re measured
ediments in 
Supplementa
he local 06/1
he bed load o
om the Nor
6/13 flood e
om both, th

4 Process

le 1: Hydro-se
n the monitori
ing sediments 
ng program. 

of detrital s
(Tab. 2). Th
ly consist of
hereas the N
upplementar
inguish betw
terial of the
ratios of 0.2
rap samples

as main sour
d for the Fis
this sub-cat
ary Fig. 4.1
12 and 07/1
of the Kienb
rthern Calca
exhibit D:Q 
he Flysch an

es of flood l

edimentary dat
ing period 201
from a differe

ediment are
he sediment
f siliciclasti

Northern Cal
ry Fig. 4.1). 
ween the tw
e main tribut
2. This value
s in the lake
rces for detr
chbach bed
tchment tha
). Similar v
3 events. Th
bach creek 

areous Alps
values betw

nd the Lime

layer forma

61 

ata on the five 
11-2013. Note
ent sub-catchm

e determined
ts originatin
ic material m
lcareous Al
This allow

wo main sed
utaries Gries
e is in accor
e, ranging b
rital sedime

d load reflec
at exclusive
values are m
he highest D
reflecting a
. Sediments
ween 0.5 an
stone catch

ation in Lak

largest sedim
e that the 07/1
ment (Wangau

d by their m
ng from the 
made up of 
lps are predo
s us to use t

diment sourc
sler and Wa
rdance with

between 0.2 
ents. The low
cting a clear
ly drains a F

measured in 
D:Q values 
a dominance
s trapped in 
nd 1.0 pointi
hments. 

e Mondsee 

ment transfer ev
3 event is a ve
uer Ache) that

mineralogica
Flysch catc
quartz, mic
ominantly c
the dolomit
ce areas (Ta
ngauer Ach

h most value
and 0.5, ind

west D:Q va
r dominance
Flysch area 
sediments t
> 1.0 were 

e of materia
the distal tr

ing to sedim

vents to Lake 
ery rare local 
t is not includ

al 
chment 
ca and 
composed o
te/quartz rat
ab. 2). 
he exhibit 
es measured
dicating the
alues < 0.2 
e of Flysch 
a 
trapped afte
measured f

al originatin
rap after the

ment transpo

ded 

 

of 
tio 

d 
ese 

er 
for 
ng 
e 
ort 



4 Processes of flood layer formation in Lake Mondsee 

62 
 

Sediment trap samples of the five events with highest sediment yields were further 
analysed for their grain size distribution (Fig. 4.9). The resulting distributions 
exhibit unimodal (prox.: 4 samples, dist.: 2 samples) and bimodal patterns (prox.: 
1 samples, dist.: 4 samples) with maxima around 10-60 µm for unimodal and at 2-
4 µm and 10-60 µm for bimodal functions, respectively. Thus, samples with a 
bimodal grain size distribution contain a higher portion of fine silt and clay 
particles. Fine-grained particles were generally more abundant in samples trapped 
(i) in summer, (ii) after the main sediment flux event and (iii) in the distal lake 
basin. The only exception is the June 2013 flood event (Fig. 4.9c), when trapped 
samples in the distal lake basin exhibited a unimodal function and a coarser 
maximum (36 µm) than in the proximal lake basin (24 µm). 

 

4.5 Discussion 

Detrital layers in lake sediments commonly are interpreted as flood recorders. 
However, the potential of these geoarchives for extending instrumental flood 
records back in time is still not fully exploited due to our limited knowledge about 
(i) how the amount and spatial distribution of detrital sediment are related to flood 
parameters and (ii) to which extent this relation is affected by local factors in the 
catchment and the lake. These are considered as potential bias for establishing 
palaeoflood time series from lake sediment records (e.g. Schiefer et al. 2006, 
2011; Dugan et al. 2009). 

The three-year monitoring at Lake Mondsee provides a comprehensive set of 
hydro-sedimentary data from the lake and its catchment comprising 26 floods with 
very different magnitudes (return periods ranging from << 1 year to 100 years), 
seasonal occurrence and sediment response (4 to 758 g m-2d-1). This reveals new 
insights into processes of flood layer deposition with unprecedented detail 
including a variety of influencing factors like peak runoff and season, sediment 
availability or the type of precipitation event giving the basis for an improved 
evaluation of the depositional record of Lake Mondsee. Our monitoring data have 
been related to the available sub-recent depositional record covering the time 
period from 1976 to 2005 (Fig. 4.11) (Kämpf et al. 2014) since it was not yet 
possible to obtain undisturbed sediment cores of the last three years due to the too 
high water content of the topmost sediments. 
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In addition to the coincidence of peaks in the runoff and sediment trap time series, 
we observed a significant exponential relation between peak runoff and the 
amount of trapped sediment in the proximal (r2=0.76) and distal lake basin 
(r2=0.80) if the local 07/13 event with predominant sediment flux from the 
ungauged secondary stream Wangauer Ache is excluded (Fig. 4.6a).   

Hitherto, we only discussed the relation between runoff and sediment transport. 
More important for interpreting the depositional record, however, is an assessment 
of the amount of sediment flux that is necessary to produce a recognizable detrital 
layer in the sediment record. We can calculate this minimum sediment yield from 
the thickness of the finest detected detrital layers found in the sediments (0.2 mm; 
Kämpf et al. 2014) and a mean dry density of 1.5 g cm-3. The resulting minimum 
sediment yield of approximately 300 g m-2 was exceeded by four of the 26 
observed floods at the proximal site that were triggered by runoff peaks ranging 
from 66 to 104 m3s-1 and precipitation > 65 mm d-1 (Fig. 4.4, Tab. 1). At the distal 
site, where the long flood record has been established (Swierczynski et al. 2013), 
only the strongest of these four events likely resulted in sufficient sediment 
transport to form a detrital layer (June 2013, max. runoff: 104 m3s-1). Hence, 
based on the amount of sediment deposition we predict the formation of one flood 
triggered detrital layer at the distal location (June 2013) and four layers at the 
proximal site (January 2011, June 2012, January, June 2013). Another event in 
July 2013 that also supplied sediment amounts > 300 g m-2 to the proximal and 
distal locations (Fig. 4.7) is not included in the further discussion since this event 
was caused by local precipitation in the Wangauer Ache catchment, which is not 
part of our monitoring network (Fig. 4.1).  

The flood discharge values, which according to the observational data should have 
caused detrital layer formation, are for both locations in the same range as 
empirical discharge thresholds for detrital layers revealed from the depositional 
record (Kämpf et al. 2014). These are >60 m3s-1 for the proximal site 
(observation: 66 m3s-1, 78 m3s-1, 104 m3s-1) and >80 m3s-1 for the distal site 
(observation: 104 m3s-1). The good agreement between these independently 
obtained data further supports the existence of discharge thresholds for flood layer 
deposition and makes us confident that these thresholds can be reasonable well 
determined.   

Despite the existence of thresholds in discharge for detrital layer formation we do 
not observe a correlation between runoff and sediment yield for the strongest 
floods (Fig. 4.6b). This suggests that the availability of fine-grained sediment in 
the rivers and variable sediment distribution within the lake basin also play a 
crucial role for detrital layer formation and will be discussed in the following. 
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Sediment availability 

The measured variations in suspended sediment concentration in the streams 
provide evidence for the sediment availability in the catchment as an important 
factor (Fig. 4.10). Fine sediments are mainly derived from the channel bank of the 
streams but sometimes also from patches of local erosion events, e.g. landslides, 
as revealed by field observations after the 06/13 flood (Supplementary Fig. 4.3). 
The sediment input to the streams further depends on the season since measured 
sediment concentrations were much lower during the winter flood (01/13: max. 1 
g l-1) compared to summer floods (20-103 g l-1). Although only two strong winter 
floods are observed, we assume that this seasonal difference is generally valid and 
can be explained by reduced soil erosion in winter due to snow cover and frozen 
ground (Dugan et al. 2009).  

Sediment availability is further changing within the course of a flood as 
demonstrated by the relation of river SSC and discharge (Fig. 4.10). Clockwise 
hysteresis functions indicate higher sediment concentrations during the rising 
limbs of the flood hydrographs proving river transport capacity as the main driver 
for riverine sediment transport in the initial phase of a flood when fine sediments 
are sufficiently available. In the later flood stage when sediments have been 
washed out and less fine material is available the riverine sediment transport is 
reduced as has been observed in various rivers (e.g. Forbes and Lamoureux 2005; 
López-Tarazón et al. 2010). This effect is also obvious from lower SSC values 
during the higher second flood peak of the 01/13 event which followed 13 days 
after a lower first runoff peak, which, in contrast, resulted in higher SSC values. 
For floods of only short duration, like the 06/12 event that lasted only for 18 hrs, 
river SSC followed the flood hydrograph during the rising and falling limb for the 
main flooding interval (> 40 m3s-1, 5 h) suggesting no limitations in sediment 
availability during such short floods.  

Although the interpretation of the hysteresis plot of the strongest event (06/13) is 
limited because runoff during peak flow conditions (>100 m3s-1) was likely 
underestimated due to river bank overflow, this example demonstrates that 
extreme high SSC values (>100 g l-1) not necessarily result in the highest 
suspended sediment transport into the lake. If a certain threshold is reached and 
the floodplain becomes flooded, the flow velocity decreases and suspended 
sediment accumulates in the floodplain (Supplementary Fig. 4.3). This process is 
known as catchment storage (e.g. Orwin et al. 2010) and is observed for the very 
strong 06/13 flood which led to lower amounts of trapped sediments than, for 
example, the 06/12 flood with much lower SSC values (max. 20 g l-1). 

Contrary to factors reducing sediment input to the lake, we also found few cases 
when sediment deposition can be significantly increased by additional sediment 
releases from local sources. Evidence for mixing of flood-triggered sediments 
from different sources is revealed for the distal location which is located ca. 800 
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Lake internal sediment distribution 

The different spatial sediment distribution in the lake basin of individual events 
(PDI=2-25) is related to variations in the formation of hyperpycnal underflows 
and mesopycnal interflows (Sturm and Matter 1978; Chapron et al. 2005). Sudden 
temperature increases of 2-3.5 K recorded in the deep water column during the 
largest summer floods proved the occurrence of underflows (Fig. 4.7). In winter, 
temperature fluctuations were less distinct or even negative (-0.4 K to +0.1 K in 
Fig. 4.8) due to the lower river water temperature. Underflows developed during 
the four strongest floods, but reached the distal site only during the 06/13 event 
seven hours after passing the proximal site. From this time lag, a minimum 
current speed of 9 cm s-1 can be calculated which is rather low compared to larger 
lakes where much stronger underflows were measured like, for example, lakes 
Walensee (20-50 cm s-1), Geneva (30-90 cm s-1) and Constance (30-130 cm s-1) 
(Lambert et al. 1976; Lambert and Giovanoli 1988). The resulting lower sediment 
transport capacity of underflows in Lake Mondsee is proven also by the measured 
vertical differences in sediment flux in the proximal (L:Uprox. 2-8) and distal 
locations (L:Udist.1-2) indicating underflows as the predominant transport 
mechanism in the proximal and interflows in the distal lake basin.  

The rather low number of underflows reaching the distal site compared to 
observations from other lakes (Schiefer et al. 2006; Cockburn and Lamoureux 
2008; Jenny et al. 2014) can be explained by the specific basin morphometry of 
Lake Mondsee (Fig. 4.1). At the point where the main tributary, the Griesler 
Ache, enters the lake, the elongated shape of the basin turns from NW-SE to N-S 
direction and later back to the original NW-SE direction. Due to this pronounced 
kink, the inflowing waters from the Griesler Ache are not straightaway directed 
towards the outflow but deflected first to the South and then to the East. 
Consequently, the flow velocity is expected to decrease, resulting in a lower 
sediment transport capacity. Lakes with frequent occurrence of underflows 
commonly have one large tributary stream and a simple elongated basin shape 
with straight flow direction from the main tributary inflow towards the outflow 
(Lambert et al. 1976; Best et al. 2005; Crookshanks and Gilbert 2008; Jenny et al. 
2014). 

The observed processes of detrital sediment distribution within Lake Mondsee 
provide explanations for the occurrence or absence of detrital layers in the 
depositional record obtained at the distal location (Swierczynski et al. 2013). 
There, flood layers are mainly transported by interflows and appear as very fine, 
only microscopically detectable (0.2-0.8 mm), non-graded silt/clay layers, 
whereas graded layers triggered by underflows only occur at the proximal site in 
an area within 1.5 km around the river mouths (Fig. 4.11). Importantly, interflows 
are favoured in the summer season when the water column is stratified and a 
pycnocline develops along which sediment is transported. In contrast, even high 
amplitude winter floods supplied only small sediment amounts to the distal lake 



 

ba
w
re
et
flo
di
de
flu

Fi
(p
(F
im
an
Gr
the

 

A
la
du
pr
di
se
fo
el

R
th
flo

asin like the
was not suffi
ecord from t
t al. 2012). I
oods a corin
isadvantage
elta sedimen
ux, which, i

igure 4.11. De
olarized light)

Fig. 4.1) and co
mages under po
nd different sp
riesler Ache R
e varved detri

Another facto
ake basin is 
uring the sh
roximal loca
ischarge dro
edimentation
or nine days
levated sedi

econstructin
herefore, nee
oods. Stron

4 Process

e January 20
cient to form
the distal sit
In order to o
ng site at th
e of this cori
nts (e.g. Sch
in turn, can 

etrital layers in
) of the upper 
orrelation of d
olarized light,

patial distribut
River coincide
ital layer recor

or controllin
the flood du

hort 06/12 ev
ation since t
opped and th
n rates in th

s resulting in
ment depos

ng palaeoflo
eds to conce
g but short 

es of flood l

013 flood; th
m a discern
te has been 
obtain a floo
e proximal 
ing location
hiefer et al.
be exclude

n the varved s
12 cm of sedi

detrital layers,
, 20-100x mag
ion patterns, (

ed to detrital la
rd: summer= M

ng the spatia
uration. Thi
vent (74 mm
the under- a
hus did not 

he distal trap
n strong and
sition at the 

ood time ser
ern not only
floods migh

layer forma

70 

he sedimen
nible detrital

regarded as
od record in
position sho

n might be a
2006) prov
d for the di

sediment reco
diment cores cl
, (b) microfac
gnification) sh
(c) seasonal fl
ayer depositio
May-Sep and 

al distributi
is can be de
m rainfall in
and interflo
reach the d

p (Fig. 4.7).
d long lastin
distal trap o

ries in parti
y about peak
ht not reach

ation in Lak

nt deposition
l layer. This
s summer ti
ncluding bo
ould be sele

a possible bi
viding additi
stal site. 

rd of Lake Mo
lose to the pro
ies of selected

howing graded
lood hydrogra
on according t

winter= Oct-A

ion of detrit
emonstrated
n 4 h, Tab.1
ws broke do

distal basin a
. In contrast
ng interflow
over ten day

icular from 
k discharge

h the distal l

e Mondsee 

n (245 g m-2

s explains w
me series (S

oth summer 
ected. Howe
ias through 
ional local s

ondsee: (a) Th
oximal and dis
d detrital layer
d layers in the
phs (hourly va
o the seasonal
Apr. 

tal sediment
for sedime
) with a foc
own quickly
as reflected 
t, the 06/13 

ws as reflect
ys (Fig. 4.7)

distal sedim
s but also th
ocation but

2) most like
why the floo
Swierczyns
and winter 

ever, the 
reworked 

sediment 

hin section sca
stal trap locati
rs (microscop

e proximal cor
values) of the 
l resolution of

t within the 
ent depositio
cal area at th
y when rive
by low 
flood lasted

ted by 
).  

ment records
he duration 
t result in 

ly 
od 
ki 

ans 
ion 
ic 

re 

f 

on 
he 
er 

d 

s, 
of 



4 Processes of flood layer formation in Lake Mondsee 

71 
 

thick detrital layers in proximal cores (e.g. DL 5 in Fig. 4.11; associated peak 
runoff: 100 m3s-1, daily mean: 24 m3s-1). Hence, daily instead of hourly runoff 
values are more appropriate for defining discharge thresholds for detrital layer 
formation in the depositional records. 

 

4.5.2 Implications for the use of detrital layers as flood proxies 

Our monitoring data provide clues for both, (1) reliable interpretation of detrital 
layers as flood proxies and (2) selecting suitable coring locations for palaeoflood 
reconstruction.  

The monitoring data reveals that thresholds in discharge exist, above which flood 
layer formation becomes very likely. Obviously, these thresholds depend on the 
coring location and most likely vary also for different lakes (Czymzik et al. 2010; 
Kämpf et al. 2012b; Corella et al. 2014; Jenny et al. 2014). However, the 
monitoring and its comparison with the sediment record demonstrate that these 
thresholds can be empirically determined and thus provide information about the 
minimum amplitude of floods recorded in depositional records.  

Reconstructing individual flood amplitudes from detrital layer thickness, however, 
still remains challenging. For Lake Mondsee with a complex lake basin 
morphometry, a vegetated catchment and sediments predominantly produced in 
the water column through biological productivity, this approach failed because 
several other factors including sediment availability, local sediment supply and 
lake internal sediment distribution significantly bias magnitude estimates of 
palaeofloods. In contrast, for small proglacial and nival lakes with one main 
tributary inflow and predominantly clastic-detrital sedimentation a correlation 
between peak runoff and sediment flux has been demonstrated (Desloges and 
Gilbert 1994; Chutko and Lamoureux 2008; Schiefer et al. 2011). More lakes 
must be investigated in order to find out if there is a systematic difference 
between lakes with different settings and sediment types.  

Detrital layer successions in depositional records should not per se be considered 
as complete flood time series. We have demonstrated that there might be 
additional layers due to local sediment transport but also ‘missing’ layers, i.e. 
floods that did not result in detrital layer formation. This can be either due to 
random or systematic processes, like the lack of winter flood layers at the distal 
location in Lake Mondsee. Both, additional, non-flood triggered, and missing 
layers represent a potential and assumedly site specific bias in flood 
reconstruction.  However, we have also demonstrated that it is possible to reduce 
the potential bias through (1) detailed micro-facies and geochemical analyses and 
(2) a careful choice of coring sites ideally integrating proximal and distal locations 
(Czymzik et al. 2010; Schiefer et al. 2011; Kämpf et al. 2014; Jenny et al. 2014).  
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Although flood reconstructions are conducted to a wide range of lakes, varved 
sediment records provide particularly suitable archives for process studies in order 
to develop quantitative flood proxies in terms of their hydrological characteristics. 

 

4.6 Conclusions 

The three-year integrated lake and catchment flood monitoring at Lake Mondsee 
revealed detailed insights into the complex chain of processes leading to flood 
layer formation. In particular, reasons for variable sediment flux at the lake floor 
could be identified including hydrological factors such as runoff magnitude and 
duration, local geomorphological factors influencing sediment availability in the 
catchment and factors controlling the spatial distribution of detrital material 
within the lake. This knowledge has implications for the long flood record 
established at the distal lake basin of Lake Mondsee: 

1. Threshold processes in the runoff - sediment flux relation define flood 
magnitudes above which suspended matter is transported and detrital 
layers are formed. The long Lake Mondsee flood layer chronology records 
all floods exceeding 80 m3s-1 river discharge and lasting for at least two 
days. 

2. The depositional record at the distal site represents mainly summer floods 
due to the seasonally favoured development of mesopycnal interflows, the 
main transport agent for lake internal sediment distribution. Winter flood 
layers, deposited by hyperpycnal underflows, can be only found at core 
locations close to the river inflow.   

3. Reconstruction of flood amplitudes by layer thickness is limited because 
the sediment yield after floods is not linearly related to runoff but is 
additionally affected by various other geomorphological and lake internal 
factors. 

4. The potential bias of detrital layers triggered by local erosion events rather 
than by high magnitude floods can be reduced by detailed micro-facies and 
high-resolution geochemical analyses. 

It has been shown that comparison of sediment monitoring with sub-recent detrital 
layer records provides valuable information for an advanced interpretation of 
detrital layers as flood recorders and for systematic selection of the most suitable 
coring location within a lake basin. Even if our dataset obviously is to a certain 
degree site specific for Lake Mondsee, we expect the fundamental mechanisms 
and controlling processes as valid also for many other lake sites. 
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5 Summary and future perspectives 

 

The main objective of this thesis is to improve the interpretation of lake sediments 

as recorders for past flood events by gaining knowledge about processes of 

detrital flood layer formation. Therefore, I first compared sub-recent detrital layer 

records of two different peri-Alpine lakes (Lago Maggiore, Mondsee) with 

instrumental flood data to test the possibility of linking sediment-based and 

instrumental flood records. In a second step, I investigated processes of detrital 

layer formation in Lake Mondsee using a combined hydro-sedimentary 

monitoring in the lake and its catchment.  

 

5.1 Calibrating lacustrine flood layer records of Lake Mondsee and Lago 

Maggiore with instrumental data 

Establishing detrital layer records for calibration. Detrital layer records from 

varved sediments of Lake Mondsee (MO) and non-varved sediments of Lago 

Maggiore (LM) were compared with instrumental flood data for the time period 

when sedimentological and hydrological datasets are available (MO: 1976-2005, 

LM: 1965-2006). The sub-mm to 17 mm thick detrital layers (MO, LM: 23) have 

been detected by using microfacies and µ-XRF scanning techniques. Analyses 

have been carried out on multiple sediment cores (MO: 13, LM: 5) to track spatial 

distribution patterns of detrital layers from the inflow of the main tributary rivers 

to the depocentre of the lakes. The event-based comparison of sedimentological 

and instrumental data requires a precise dating of the sediment sequences which 

was achieved for Lake Mondsee by varve counting in each investigated sediment 

core and for the non-varved sediments of Lago Maggiore by correlating the 

individual sediment cores to a previously dated core sequence (
210

Pb, 
137

Cs, 

biological markers) using detrital marker layers. 

Sedimentological features of detrital layers in two dissimilar lakes. In both 

lakes, we observed three different types of detrital layer microfacies. (1) Graded 

layers consist of clay to coarse silt and in Lago Maggiore even up to fine sand 

sized mineral grains. Layers of this type exhibit an upward fining sediment texture 

or, in few cases, two inversely or normally graded beds. (2) Silt/clay layers are 

exclusively formed by fine silt to clay sized mineral grains without a visible 

textural organization. (3) Matrix-supported layers are composed of up to sand-
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sized detrital grains in a fine grained sediment matrix. Typical features for matrix-

supported layers are dispersed littoral debris and endogenic sediment components 

reflected by aggregates of precipitated calcite in Lake Mondsee and scattered 

grains of authigenic iron sulphide in Lago Maggiore indicating erosion of 

lacustrine sediments in the shallow lake areas.  

The correlation of detrital layers between the individual sediment cores revealed 

spatial distribution patterns of the three layer types which remarkably differ 

between both lakes. In Lago Maggiore graded layers are found at each coring site 

and only very thin layers do not exhibit a clear grading. In Lake Mondsee, graded 

layers occur only close to the delta area of the inflowing tributary streams whereas 

in the depocentre silt/clay layers are most abundant. In both lakes, matrix-

supported layers occur only close to the lake shores.  

Comparing hydrological and detrital layer time series. The event-based 

comparison with runoff data of the main tributaries revealed for both lakes that all 

graded and silt/clay layers are triggered by floods (MO: 10, LM: 20). Matrix-

supported layers are triggered by local erosion events (MO: 6, LM: 3) and, in 

Lake Mondsee, additionally by snow melt floods (MO: 7). By their different 

microfacies and geochemical features detrital layers triggered by local erosion 

could be reliably distinguish from flood layers and thereby, removed from the 

flood layer record. In summary, the flood layer record contains 20 layers in Lago 

Maggiore (1965-2006) and 17 layers in Lake Mondsee (1976-2005).  

For both lakes, we found empirical runoff thresholds above which the formation 

of a detrital layer becomes likely. Whereas this threshold is the same for each 

coring site in Lago Maggiore (daily discharge: 600 m
3
s

-1
), the flood threshold 

increases with distance to the river mouth in Lake Mondsee. Close to the river 

inflow detrital layers correspond to floods with a daily discharge exceeding 40 

m
3
s

-1
. In the depocentre of the lake, an hourly peak discharge of 80 m

3
s

-1
 and at 

least 2 days > 40 m
3
s

-1
 are necessary to form a detrital layer. Cases of missing 

flood layers, i.e., floods with an amplitude above the empirical threshold which 

did not lead to a detrital layer, have been found in both lakes (MO: 1, LM: 5). 

Inferred reasons for Lago Maggiore are multiple flooding in one year and 

therewith mixing of sediment, erosion by large turbidity currents, and a disturbed 

and/or highly clastic background sedimentation inhibiting the detection of fine 

detrital layers. Moreover, the spatial distribution of detrital material in Lake 

Mondsee is not, as in Lago Maggiore, the same for each event but depends on the 

flood season. Whereas winter floods are deposited confined to the delta area, 60% 

of the summer floods are distributed to the depocentre of the lake likely due to the 

role of the established thermocline in summer for detrital sediment distribution in 

Lake Mondsee.  
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Besides the potential of lacustrine detrital layer records for reconstructing flood 

frequencies we tested for both lakes the relation of layer thickness and amplitude 

of the triggering flood events. Therefore, we applied a simple linear correlation 

model to all investigated sediment sequences. Although the number of sampling 

points is very small for both lakes (MO: 6-16, LM: 7-14), the obtained results give 

some indications about factors controlling detrital layer thickness in lake 

sediments. Close to the river delta, layer thickness weakly correlates to flood 

amplitude (r², MO: 0.3-0.5, LM: 0.3-0.4) since individual exceptional thick layers 

are not triggered by the strongest floods. The depocentre of the lake basins in a 

more distal position towards the main inflows are less affected by such individual 

events and therefore better reflect flood amplitude (MO: 0.8, LM: 0.5). However, 

for both lakes the amount of detrital sediment deposited at a certain location at the 

lake floor is obviously controlled by many variables including the amount of 

material mobilized in the catchment and sediment distribution within the lake. In 

the most distal area of Lake Mondsee, for example, the signal of the main 

tributary is overprinted by variable sediment supply from a local sediment source.       

Processes of detrital layer formation in two dissimilar lakes. The dual 

calibration of sub-recent detrital layer records in sediments of lakes Mondsee and 

Maggiore revealed several differences between both sediment records especially 

in thickness, microfacies and spatial distribution patterns of detrital layers as well 

as in the amplitudes of flood thresholds. Hence, we infer that sedimentation 

processes are not the same for the dissimilar lakes. As described above, the main 

difference between Lago Maggiore and Mondsee are basin morphometry and size 

of the inflowing streams (mean discharge MO: 4 m
3
s

-1
, LM: 70 m

3
s

-1
, catchment 

size MO: 247 km², LM: 1551 km²). 

In Lago Maggiore, most of the flood layers are graded over the whole investigated 

part of the basin and exhibit traces of micro-scale erosion at most proximal sites 

pointing to sediment deposition by high-energetic hyperpycnal underflows. In 

Lake Mondsee, most of the flood layers are graded in the proximal lake area and 

exhibit a non-graded silt/clay microfacies in the depocentre of the lake without 

any erosional features. This indicates a separation of the flooding river plumes 

into spatially confined hyperpycnal underflows and low-energetic mesopycnal 

interflows spreading to the depocentre of Lake Mondsee. Therefore, lake-internal 

processes play a larger role for flood layer formation in the low-energetic 

environment of Lake Mondsee than in the high-energetic Lago Maggiore 

evidenced by the spatially varying flood thresholds for detrital layer formation 

and correlation of layer thickness and flood amplitude. Most conspicuous is the 

fact that in the depocentre of Lake Mondsee flood layers are only formed in 

summer most likely due to the established thermocline as a necessary 

precondition for basin-wide sediment dispersal by mesopycnal flows. 
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The applied dual calibration approach has shown to be suitable to distinguish 

layers triggered by floods from those triggered by local erosion and decipher flood 

layer formation processes in two dissimilar lakes and, thereby, improve the 

interpretation of lake sediment based flood time series from different lake settings. 

  

5.2 Monitoring hydro-sedimentary processes during floods in Lake Mondsee 

To understand processes of detrital layer formation in more detail, sediment flux 

was trapped at two locations in Lake Mondsee and compared to local hydro-

meteorological data.  

Flood-related sediment flux 2011-2013. Within the three-year monitoring period 

from January 2011 to December 2013 26 river floods of very different magnitude 

(10-110 m
3
s

-1
) have been recorded resulting into a highly variable sediment 

response of 4 to 760 g m-2d-1 at the lake floor. Vertical and lateral variations in 

trapped sediment flux give explanations for spatial changes in detrital microfacies 

and point to different sediment transport processes within the lake water column: 

spatially confined sediment transport by underflows in winter and basin wide 

sediment distribution by interflows in summer. The comparison of hydrological 

and sedimentological data revealed (i) a rapid sedimentation within three days 

after the peak runoff in the proximal and within six to ten days in the distal lake 

basin, (ii) empirical flood thresholds for triggering detrital sediment flux at the 

lake floor increasing from the proximal (20 m
3
s

-1
) to the distal part of the lake (30 

m
3
s

-1
) and (iii) factors controlling the detrital sediment flux at a certain location in 

the lake basin. The amount of sediment transported to the lake is mainly 

controlled by runoff magnitude, variable sediment availability due to sediment 

wash out by previous floods, snow cover and catchment storage by overbank 

deposition as well as episodic sediment input by local sources like the Kienbach 

creek. Besides the total input of detrital sediment, the spatial distribution within 

the lake is also variable and further determines the sediment flux at the lake floor. 

Since the lake internal sediment transport in Lake Mondsee is mainly driven by 

interflows, lake stratification is a requirement for basin wide sediment distribution 

and only summer floods are recorded in the long Lake Mondsee flood layer record 

in the distal lake basin. Another important role plays the duration of a flood since 

the sedimentation of interflows lasts over several days and is driven by 

momentum from the tributary streams.  

The monitoring results give mechanistic explanations for detrital layers found in 

the long sediment record of Lake Mondsee in the distal lake basin (Swierczynski 

et al., 2013) including the limitation of sediment deposition to the summer season, 

the occurrence of local layers and reasons for floods which did not result into 

detrital layer deposition.  
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5.3 Conclusions 

The two applied approaches, (i) calibrating sub-recent detrital layer records with 

instrumental flood data and (ii) monitoring flood related sediment flux turned out 

to be suitable to decipher processes controlling flood layer formation in great 

detail. The impact of hydrological and local geomorphological factors in the 

catchment and the lake might substantially differ for different lake/catchment 

settings and thus, the results of this thesis contribute to identifying ideal sites for 

flood reconstructions based on lake sediments for future investigations. 

Determining factors are: 

Sediment characteristics. Linking sediment based and instrumental flood time 

series requires an accurate and precise timing of individual detrital layers. With a 

seasonal resolution, varved sediments provide the most precise and, in 

combination with independent time markers, the most accurate flood archives. 

Besides the exact timing of flood layers varved sediments even allow establishing 

palaeoflood records for different seasons. 

Lake and catchment size. Investigating two medium- (Mondsee) to large-scale 

peri-alpine lakes (Lago Maggiore) showed that detrital layers in larger lakes 

predominately represent regional-sized floods whereas in smaller lakes local 

thunderstorms or even local erosion events not related to floods can also lead to 

detrital layer formation.   

Lake morphometry. The differences in flood-related sedimentation in Lake 

Mondsee and Lago Maggiore were mainly attributed to the different lake 

morphometry including the size and arrangement of the tributary streams and the 

shape of the lake basin. Lakes with a simple elongated shape and one large 

tributary stream, like Lago Maggiore, favour the formation of underflows and a 

clear sediment imprint of floods over the whole lake basin. In lakes with several 

smaller tributaries and a more complex basin shape, like Lake Mondsee, 

interflows are more the dominant sediment transport mechanisms and further 

factors such as thermal stratification have to be considered. 

Coring location. Flood reconstructions are often based on one sediment sequence 

and finding the ideal coring location within a lake basin determines the 

significance of a flood layer record. Areas located close to the river inflow record 

variations in fluvial sediment flux most directly but are also exposed to erosion by 

large turbidity currents and deposits of local erosion events not related to floods. 

In contrast, locations in the distal lake basin predominately record the largest 

flood events, however, with a lower completeness due to the variable spatial 

extension of river plumes. In large lakes such as Lago Maggiore, distal coring 

locations are more favourable for flood reconstructions since the generation of 

strong underflows might cause sediment erosion in proximal areas and variable 

sediment distribution is less important leading to complete flood records even at 

distal locations. In contrast, the lake internal sediment distribution is highly 

variable in smaller lakes with several tributaries, as Lake Mondsee, and thus, 
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flood reconstructions solely based on distal sediment records includes more 

uncertainties in such lakes. Ideally, flood reconstructions should integrate multiple 

sites or at least two sediment sequences, one obtained from the deepest part and 

one closer to the main sediment source. 

The hydro-sedimentary monitoring at Lake Mondsee revealed close links between 

flood behaviour and detrital sediment deposition at the lake floor. The fact that the 

largest floods result into the largest sediment deposition prove that detrital layers 

are indicative for strong flood events since low amplitude floods do not supply 

sufficient amounts of detrital material to produce a visible detrital layer. This is 

proven by comparing detrital layer records with instrumental flood time-series at 

Lake Mondsee and Lago Maggiore revealing empirical flood thresholds for 

detrital layer deposition in both lakes enabling connecting sediment based and 

hydrological flood time-series. 

However, this in turn does not necessarily mean that the amount of deposited 

material after a flood, i.e. the thickness of detrital layers, is representative for the 

intensity of floods since other factors affecting the sediment transport to the lake 

and the lake internal sediment distribution can have a great impact on sediment 

deposition at a certain location in a lake basin. Hence, lake sediments provide 

ideal archives to reconstruct flood frequencies but the applicability for 

reconstructing flood amplitudes is more complex and presumably limited to 

individual sites.  

 

5.4 Further data 

The combined hydro-sedimentary monitoring was designed as joint 

interdisciplinary project including a further doctoral thesis of Philip Mueller in the 

field of Hydrology. Therefore, the comprehensive set of hydrological data from 

five gauging stations in the catchment and monitoring buoys in the lake (Fig. 1.2) 

was not presented entirely within this thesis and provides further unpublished 

information for a more in-depth processes understanding.  

(I) The three year monitoring period comprises 20 flood events during which 

precipitation, water level and suspended sediment concentration were measured at 

the five gauging stations along the Griesler Ache river. In addition, suspended 

sediments were sampled in the river by pumping water samplers and in the lake 

by sediment traps for each individual event (Fig. 1.2). This comprehensive set of 

hydrological and sedimentological data enables a very detailed investigation of 

hydro-sedimentary processes from the transformation of precipitation into 

discharge to sediment mobilization under different pre-conditions (e.g. season, 

soil moisture) and within different catchment settings (steep-sloped forest and 

gentle pasture land). 
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Figure 5.1. Hydro-sedimentary dynamics during the June 2013 flood: Runoff, suspended sediment 

concentration (SSC) in the Griesler Ache River and in the lake water column, trapped sediment 

deposition at the lake floor.  

 

 (II) A novel buoy system for monitoring limno-physical variables within the lake 

water column (turbidity, current velocity, temperature) and meteorological 

boundary conditions was developed within this project (Mueller et al., 2013). 

Together with the river monitoring stations and the sediment traps, the buoys 

collected data during the most severe flood event in June 2013 (Fig. 5.1). 

Suspended sediment concentration could be derived from rating curves based on 

water samples taken automatically for the river gauging stations and manually for 

the buoys during the time of maximum turbidity. With a peak runoff of 104 m
3
s

-1
, 

the flood was within the range of the strongest flood ever recorded at Lake 

Mondsee in August 2002 (113 m
3
s

-1
). Hence, the monitoring data spanning from 

precipitation to sediment deposition will provide unique insights into hydro-

sedimentary dynamics during a century-scale flood event. 

Moreover, the three-year monitoring provided further data which can aid an 

improved understanding an interpretation of other paleoenvironmental proxies 

beyond detrital flood layers.  

(I) Down to daily data on calcite precipitation and stable carbon, oxygen and 

nitrogen isotopes provide valuable information on the interpretation of 

microfacies (Brauer et al., 2008; Neugebauer et al., 2012) and isotopic 

composition of calcite varves (Leng and Marshal, 2004; Mangili et al., 2010). 

(II) The trapped sediment samples have been further investigated for amount, 

species and stable oxygen isotopic composition of diatom assemblages. 

Monitoring phytoplankton communities within the water column conducted by 

the Research Institute for Limnogy at the University of Innsbruck parallel to our 
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monitoring allow detailed comparisons of water column and sediment trap data. 

The results can help to decipher factors influencing diatom blooms, species 

dependent rates of deposition as well as the isotopic fractionation in diatoms 

providing valuable information for their use as paleothermometer (Leng and 

Marshall, 2004). 

 

5.5 Outlook 

Perspectives of applying lake sediments for flood frequency hydrology. Apart 

of the growing number of flood reconstructions from lake sediments (e.g. Wirth et 

al., 2013) the potential of lacustrine flood layers records is still not fully 

recognized in related research areas like hydrology and climate modelling. 

However, lake sediments could potentially help to solve a major challenge in the 

field of flood frequency hydrology: the temporal and spatial expansion of existing 

instrumental flood time-series (Merz & Blöschl, 2008). Lake sediments are the 

only geoarchives providing continuous and, especially in the case of varved lake 

sediments, high-resolution flood data on centennial to millennial time scales. 

However, the hydrological information of single detrital layers is, in most cases, 

unknown making these records difficult to use for modelling purposes. However, 

the results of this thesis reveal some promising hints for linking instrumental data 

and lake sediment records. 

Monitoring and sediment core data both revealed that detrital layers are formed by 

floods over certain runoff thresholds. The identification of such thresholds in turn 

gives the basis for linking instrumental flood records, limited in time, and 

sediment-based flood records with the previous unknown hydrological 

information and allows establishing flood frequency plots and estimate return 

periods for floods on a long-term data basis. An application of the monitoring and 

calibration approaches to selected other lake settings from different regions of the 

world could help to establish master profiles for flood reconstructions with 

quantified hydrological information. Such investigations should focus on varved 

sediment records due to their precise sediment chronology. In a next step, detailed 

comparisons between the established flood archives would allow deciphering 

regional differences in flood occurrence, flood prone weather regimes and the 

impact of climatic boundary conditions on a regional scale. 

Future challenges for understanding flood layer formation in lake sediments. 

The two approaches, (i) calibrating sub-recent detrital layer records in multiple 

sediment cores and (ii) monitoring flood-related sediment flux from the catchment 

to the lake revealed detailed insights into processes of flood layer formation. 

However, during answering some questions within this thesis, further questions 

became apparent which are yet not answered. 

(I) One of the major aims of the study, linking detrital layers in lake sediments to 

hydrological data is not fully reached since the varves deposited between 2011 

and 2013 have yet not been investigated in sediment cores. The acquisition of 



5 Summary and future perspectives 

83 

 

undisturbed sediments is challenging due to the high water content and 

unconsolidated structure of the uppermost millimetres of sediment. Therefore a 

freeze core has been retrieved from the distal lake basin in October 2014 which 

likely also contains the summer 2013 flood layer (Fig. 5.3). 

(II) The monitoring set up properly worked under a wide range of hydrological 

conditions and was proven to be able to track suspended sediment dynamics from 

the catchment to the lake floor. However, the use in practice also revealed some 

points of improvement that could help to gain more complementary datasets for 

future studies. For Lake Mondsee, we found strong evidence for considerable 

sediment input from the ungauged Kienbach creek. However, the catchment and 

in-lake monitoring were aligned to track sediment flux from the main tributary 

stream, the Griesler Ache. Gauging all relevant tributary streams would allow 

quantifying the total sediment supply from the catchment and the contribution of 

the different source areas. This is especially relevant if sediment supply from local 

sources, as the Wangauer Ache, cannot be distinguished in the sediment records. 

Moreover, tracking river plumes in the lake water column turned out to be 

challenging especially for underflows. The lowermost turbidity devices and traps 

were arranged 3 m above the sediment-water interface, and thus, likely too high to 

completely record underflows with a confined vertical extension. Hence, future 

studies should consider additional measurement and trapping devices for event 

specific sediment sampling, which ideally are (i) mounted directly at the lake 

bottom and (ii) remote-controlled for high-resolution sampling during flood 

events.  

 

Figure 5.2. Photograph of a freeze core retrieved from the distal lake basin in October 2014. 

Indicated are the thickest detrital flood layers of the calibration period and the uppermost flood 

layer likely deposited by the flood event in summer 2013. 
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