
Technische Berichte Nr. 102

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the
Master Seminar on
Event Processing
Systems for Business
Process Management
Systems
Anne Baumgraß, Andreas Meyer, Mathias Weske (Hrsg.)

ISBN 978-3-86956-347-3
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 102

Anne Baumgraß | Andreas Meyer | Mathias Weske (Hrsg.)

Proceedings of the Master Seminar on Event Processing
Systems for Business Process Management Systems

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2016
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URN urn:nbn:de:kobv:517-opus4-83819
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83819

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-347-3

mailto:verlag@uni-potsdam.de

Preface

The increased availability of sensors disseminated in the world has lead to the possi-
bility to monitor in detail the evolution of several real-world objects of interest. GPS
receivers, RFID chips, transponders, detectors, cameras, satellites, etc. concur in the
depiction of the current status of monitored things. However, traditionally, Business
Process Management Systems only execute and monitor business process instances
based on events that originate from the process engine itself or from connected client
applications.

The Green European Transportation Service (GET Service) project1, analysed typ-
ical logistics processes, explored their environments, and developed approaches in
which information from the environment in which processes are executed are con-
sidered for process execution and monitoring as well as decision support in logistics.
Thus, the project presents techniques and systems to plan transportation routes more
efficiently and to respond quickly to unexpected events such as adverse weather or
strikes, during transportation.

In the master seminar “Event Processing Systems” organized by the Business Pro-
cess Technology group at Hasso-Plattner-Institut in the winter term 2014/2015, stu-
dents studied in depth examples and data from real-world use cases of the GET Ser-
vice project. These show opportunities for relating business processes and event pro-
cessing. The corresponding prototypes showcase the variants of using UNICORN2

and its extensibility for serving different scenarios in logistics. At the same time, they
exemplify benefits of event processing in the domain of logistics.

In this context, this technical report documents six different logistics scenarios.
First, Wong and Bülow investigate approaches for automatically revealing the influ-
ence of events in logistics processes, which are executed in a batch. Second, Rösler,
Kirsten, and Günther present an approach which gives insights into the monitor-
ing and progress calculations of multiple executions for the same business process.
Third, Mensing, Reschke, and Sportleder implement a propagation algorithm to
detect and visualize how single deadline changes influence multiple activities in

1 http://www.getservice-project.eu, last accessed September 2015.
2 http://bpt.hpi.uni-potsdam.de/UNICORN, last accessed September 2015.

v

http://www.getservice-project.eu
http://bpt.hpi.uni-potsdam.de/UNICORN

interdependent processes. Fourth, Beck, Brehm, and Eichenberg show the progres-
sion of delays in activities to the subsequent logistics steps in a non-linear fashion
with respect to their dependencies and additional time-dependent resource- and
status-constraints of the activities. Fifth, Jung and Zwerg demonstrate how location-
based information such as routes or traffic events can be incorporated in order to
enrich data at hand and improve monitoring and planning capabilities of logistics
processes. Finally, Omar and Richter introduce a novel approach to enrich location-
based process monitoring in logistics with unexpected weather events, while also
considering the state of the execution. The screencasts of these scenarios are available
at http://bpt.hpi.uni-potsdam.de/UNICORN/UNICORNUsage.

We would like to express our gratefulness to all the authors for their valuable
contributions, and the GET Service European Project for inspiring and promoting
real-world examples of logistics processes.

September 22, 2016 Prof. Dr. Mathias Weske,
Dr. Anne Baumgrass,

Dr. Andreas Meyer

vi

http://bpt.hpi.uni-potsdam.de/UNICORN/UNICORNUsage

Contents

Preface v

Monitoring Batch Regions in Business Processes 1
Tsun Yin Wong and Susanne Bülow

Multi Instance Monitoring . 11
Kerstin Günther, Kristina Kirsten, and Florian Rösler

DRAGON – Deadline Propagation Transcending the Boundaries of Processes 23
Michelle Mensing, Jakob Reschke, and Tim Sportleder

Non-linear Delay Propagation of Event Based Business Processes 35
Heiko Beck, Maximilian Brehm, and Marius Eichenberg

Location-Based Process Monitoring . 47
Pascal Jung and Thomas Zwerg

Location-based Process Monitoring: Location and Weather 59
Lucie Omar and Marvin Richter

vii

Monitoring Batch Regions in Business Processes*

Tsun Yin Wong and Susanne Bülow

Hasso-Plattner-Institut
{TsunYin.Wong,Susanne.Buelow}@student.hpi.uni-potsdam.de

Recently, batch activities have been introduced to improve the execution of busi-
ness processes by collectively performing batch activities that belong to different
process instances. Using traditional techniques to monitor processes with batch
activities leads to inadequate representation of process instances, since monitor-
ing is unaware of batch activities. This paper introduces an approach to monitor
batch activities, which also takes into account exceptions in batch clusters at differ-
ent levels of abstraction. The concepts and techniques introduced are evaluated
by a prototypical implementation using real-world event data from the logistics
domain.

1 Introduction

Many organizations in business and administration represent their working pro-
cedures as business processes to improve them and to monitor their execution [9].
Recently, batch activities [7] and batch regions [6] have been proposed to collectively
execute activities of different process instances. While methods and techniques for
monitoring individual business processes have been proposed, these are inadequate
to monitor batch activities. This paper introduces novel concepts and techniques for
monitoring batch activities, which also take into account exceptions. The approach
is evaluated by a prototypical implementation using real-world event data from the
logistics domain.

A batch region [6] of a process model consists of activities that are executed col-
lectively as a batch. We find batch activities in many domains, including health care
(many blood samples are analyzed in a batch) and logistics (containers in a vessel
are transported together). Since processes are performed non-automatically in these
environments, process monitoring uses events that occur while the process is being
executed. Events include the arrival of a vessel in a harbor with certain containers
or the completion of a blood sample analysis in a hospital.

* The research leading to these results has received funding from the European Union’s
Seventh Framework Program (FP7/2007–2013) under grant agreement 318275 (GET
Service).

1

mailto:{TsunYin.Wong, Susanne.Buelow}@student.hpi.uni-potsdam.de

Tsun Yin Wong, Susanne Bülow: Monitoring Batch Regions in Business Processes

Figure 1: Process from logistics domain. Events from various sources are related to
monitoring points (’b’ for begin event, ’e’ for end event of activity).

If traditional techniques for process monitoring were used in these settings, the
number of monitoring events would be overwhelming. Using information about
batch regions, the number of events to monitor can significantly be reduced. Further-
more, monitoring approaches need to expose the occurrence of irregular behaviour,
such as exceptions. Therefore, we also provide a classification of different types of ex-
ceptions of business processes, involving individual process instances and all process
instances in a batch, respectively.

The remainder of this paper is organized as follows: First, the need for batch
monitoring is illustrated by a motivating example in Section 2. Then, a conceptual
approach of batch monitoring is introduced in Section 3. In Section 4 the prototypical
implementation is explained. In Section 5 we use the batch monitoring approach for
the motivating example. Finally, Section 6 concludes this paper.

2 Motivating Example and Requirements

To exemplify the approach, we introduce a real world use case inspired by the GET
Service project1, which is funded by the Seventh Framework Program of the Euro-
pean Union. GET Service aims at supporting efficient transportation planning to
reduce both transportation times and empty miles, leading to a reduction of CO2
emission.

The respective process model is shown in Figure 1; it consists of six sequential ac-
tivities: At first, the transport planner schedules a container for transport (activity 1).

1 http://www.getservice-project.eu, last accessed September 2015.

2

http://www.getservice-project.eu

2 Motivating Example and Requirements

The container is later picked up at the warehouse and transported to the port by truck
(2), where the container is loaded on a sea vessel (3). The container is then shipped
to another port (4), where it is unloaded (5). Finally, the container is transported to
the customer by another truck (6).

As a sea vessel transports multiple containers to the same port, activities (3), (4)
and (5) are executed as a batch. Therefore we define a batch region involving those
activities. Each container is represented by a process instance, whereas a sea vessel is
represented by a batch cluster. To facilitate process monitoring, we assign monitoring
points to each activity, which define its start and its end event. In the use case, the
corresponding events are provided by port logistics (1) (3) (5), truck (2) (6) and
shipping (4) companies, resp.

In the use case, three exceptions may occur:

• Container misses sea vessel: A container arrives with excessive delay at the port of
origin and cannot be transported on the sea vessel for which it was scheduled.

• Sea vessel is late: The calculated arrival of the ship at the port of destination is
after the planned arrival.

• Container has been damaged: During the unloading of the containers at the port of
destination, customs notice that the container is unsealed and therefore needs
further inspection.

From our scenario, we can identify two main requirements for batch monitoring:
R1 In the traditional process monitoring approach, events indicate information

about single process instances. In our use case, each container transport would rep-
resent one process instance and events about each container would be monitored
individually. However, as soon as the container is loaded onto the sea vessel, it would
be sufficient to be updated about the progress of the vessel, instead of the progress of
the hundreds of containers on the vessel. To monitor the vessel, the events arriving
for each container must be aggregated. To enable monitoring of a batch cluster, we
therefore need a batch aggregation strategy for the events on the process level.

R2 Exceptions occurring in batch regions need to be handled differently than
exceptions during normal process executions. For example, the exception “Ship is
late” would normally result in one exception for each container on the ship. In batch
monitoring, it would be sufficient, to mark the sea vessel as having an exception. On
the other hand, the exception “Container has been damaged” detected for a container
should not result in an exception of the whole vessel, but only in an exception for the
affected container. Thus, a handling for different batch exceptions has to be examined.

3

Tsun Yin Wong, Susanne Bülow: Monitoring Batch Regions in Business Processes

3 Batch Monitoring Approach

In this section, an approach for batch monitoring is introduced. To connect events
to processes, monitoring points are introduced. A monitoring point is a binding of an
event type to an activity of a process model. Monitoring points are used to measure
the progress of process instances [4].

A batch region is a coherent part of a process, in which several process instances are
executed together as batch clusters. Process instances with equal values in a certain
group of attributes, the grouping value, will be executed in the same batch cluster [6].
Exceptions indicate an erroneous execution of a process instance. Several exception
types on different levels of a process can be distinguished [8]. Events and events
types are required but not part of our concept wherefore we refer the interested
reader to [3].

On the basis of this preliminary work, the novel approach for batch monitoring
is described, covering requirements R1 and R2, presented in Section 2. To allow
monitoring of batch clusters as described in R1, we introduce two batch aggregation
strategies for process instance events:

• Complete Event Set Strategy: Only if events for all process instances of a batch
cluster have been observed, the cluster progress will be recognized. This is a
cautious approach that needs additional exception handling in case of missing
events.

• Single Event Strategy: The first event connected to one process instance within a
batch cluster determines the cluster progress. We here assume that the correct
execution of one instance directly implies the correct execution of the whole
cluster. For our implementation, we chose this approach.

As far as batch exceptions (R2) are concerned, those have to be differentiated in ex-
ceptions outside of a batch region, which would be normal process exceptions and
exceptions within a batch region, resp. Moreover, we consider the following two
levels for exceptions in a batch region:

• Batch-level Exceptions: If the exception affects the whole batch cluster, namely
all contained process instances, it is an exception on batch level.

• Instance-level Exceptions: If the exception affects only one process instance, this
instance is then in exception and cannot be further executed together with
the remaining, correct process instances in the batch cluster. It is therefore
removed from the cluster and has to be handled separately. This is an exception
on process level.

4

4 Batch Monitoring Tool

4 Batch Monitoring Tool

In this section, we present the prototypical implementation of the batch monitoring
approach, including the overall architecture and a more detailed discription of the
implementation of batch monitoring.

4.1 Architecture

An overview of the system architecture is presented in Figure 2. It contains three
main components. The ProcessConfiguration is accessed by the Frontend to create the
monitoring points and batch regions as part of a process model. Monitoring includes
the monitoring of process instances, batch clusters (as described in R1 of Section
2) and exceptions (as described in R2) using monitoring points and batch regions
specified in the Frontend. The Monitoring is explained in detail in Section 4.2 It com-
municates with the Event Processing Platform (UNICORN2) introduced in [2] that
consumes events provided by process engines executing the process model. Informa-
tion about process instances and batch clusters are propagated to the Frontend. The
Frontend allows the visual configuration of the process which is then handled by the
ProcesConfiguration. Moreover, it offers an intuitive visualization of the progress of
process instances as well as batch clusters and visualizes occurring exceptions using
the information propagated from the Monitoring.

Batch Monitoring Tool

ProcessConfiguration

Frontend

BatchMonitoring ProcessMonitoring

Monitoring

ExceptionMonitoring

R

R

Monitoring
Points

Instance
Information

Batch
Regions

Event Processing Platform

R

R

Figure 2: System Architecture of Batch Monitoring Tool

2 http://bpt.hpi.uni-potsdam.de/UNICORN, last accessed September 2015.

5

http://bpt.hpi.uni-potsdam.de/UNICORN

Tsun Yin Wong, Susanne Bülow: Monitoring Batch Regions in Business Processes

4.2 Implementation

In this section, we focus on the implementation of batch monitoring shown as a
class diagram in Figure 3. The monitoring of process instances and batch clusters
as well as their exceptions are realized through monitoring points (MonitoringPoint).
A monitoring point connects an activity of the process model and an event type. Fur-
thermore, it can be marked as an exception (isException) and whether its monitored
activity lies within a batch region (isInBatchRegion) and is therefore relevant for mon-
itoring of batch clusters. A MonitoringListener triggers the monitoring point, once
an event of the appropriate event type occurs. This is realized using corresponding
event processing queries registered in the EPP. The monitoring point then updates
the monitoring status of an existing process instance or batch cluster (updateMoni-
toring()) in the MonitoringInformation according to the triggered activity or creates a
new process instance (createNewInstance()). In case of an exception, batch clusters or
process instances can be marked as having an exception (updateException()) and when-
ever a batch exception on process level (exceptionLevel) occurs, the affected process
instance will be removed from the batch cluster (removeInstanceFromCluster).

MonitoringPoint

-disExceptiond:bool
-disInBatchRegiond:bool
-deventTyped:String
-dactivityd:FlowNode
-dexceptionLevel

-dcreateNewInstancedf+
-dupdateMonitoringdf+
-dupdateExceptiondf+
-dremoveInstanceFromClusterdf+

BatchRegion

-dstartd:FlowNode
-dendd:FlowNode
-dgroupingCharacteristicd:String

-dcreateNewClusterdf+
-daddInstanceToClusterdf+

Listener

-dqueue

-dtriggerdf+

MonitoringListener

BatchRegionListener

MonitoringInformation

]dbatchClustersd:BatchCluster[]
]dprocessInstancesd:ProcessInstance[]

Figure 3: Class diagram of the monitoring implementation

A BatchRegion is defined by a start and end activity, as well as a groupingCharac-
teristic. The grouping characteristic consists of one or more attributes of an event
type. On occurrence of a corresponding event, the BatchRegionListener triggers the
batch region. The batch region determines the process instance belonging to the
triggering event and adds it to an existing cluster (addInstanceToCluster()) or create a
new one (createNewCluster()) in the MonitoringInformation, depending on its grouping
characteristic value.

6

5 Example Use Case

The tool is implemented in Java 7, using the Apache Wicket Framework for the
frontend. For process import of BPMN-alike signavio.xml-files, we use the libraries
jBPT and promniCAT. The ability of this tool for batch and exception monitoring is
demonstrated with an example in Section 5 as well as in a screencast of the tool3.

5 Example Use Case

Figure 4 provides a screenshot of the batch monitoring tool, showing an example
execution of the scenario described in Section 2. Each table row refers to a batch
cluster or a process instance. The current activity is indicated by the column in
which it is located, so the container moves to the right as it is transported. Events are
utilized to monitor the begin (b) and end (e) of an activity. A circle denotes that the
activity is in execution, a green tick marks the completion of the activity.

Figure 4: Visualization of process instances and batch clusters. Containers are rep-
resented by process instances, whereas a seavessel is represented by a batch of all
containers on that seavessel.

3 https://owncloud.hpi.de/public.php?service=files&t=
f02387692aaa880428905d30e3f9ab89, last accessed September 2015.

7

https://owncloud.hpi.de/public.php?service=files&t=f02387692aaa880428905d30e3f9ab89
https://owncloud.hpi.de/public.php?service=files&t=f02387692aaa880428905d30e3f9ab89

Tsun Yin Wong, Susanne Bülow: Monitoring Batch Regions in Business Processes

When a freight transport company schedules a container for transport, it also
arranges the seavessel to export its container. On this basis, we identify process
instances of the same batch cluster by taking the estimated time of departure of a
seavessel as the grouping characteristic of the batch region. In Figure 4, Container
10 and Container 11 that have arrived at the port are expected to be grouped in the
same batch cluster (follows R1 from Section 2). The transport planning for Container
12 is ongoing, but as soon as it finishes, a possible batch cluster will be assigned to
the container.

The three exception types described in Section 3 cover the exceptions in our use
case (follows R2).

• Container misses seavessel: The corresponding process instance must be removed
from the batch cluster for which it was planned. In our example, this applies
to the process instance regarding Container 3.

• Seavessel is not moving: The whole batch cluster Seavessel 4 is affected during the
execution. Its details are shown in Figure 5. The batch cluster contains five pro-
cess instances. The exception is triggered by an event of the type ShipNotMoving
which is bound to the activity ship container by vessel.

• Container has been damaged: The process instance regarding Container 2 is re-
moved from its batch cluster and remains at the port.

With our batch monitoring concept that considers executions on both process and
batch level, a transport planner sees the progress on a single view.

Figure 5: Details of batch cluster Seavessel 4 with five process instances. Its exception
has been triggered by an event of type ShipDelay.

8

6 Conclusion and Future Work

6 Conclusion and Future Work

In this paper, we have presented an approach with the corresponding implementa-
tion which enables the monitoring of batch executions, including their exceptional
behaviour. The progress monitoring is driven by monitoring points triggered by
events; a direct interaction with our tool to handle exceptions is not in its scope.

As of now, a BPMN process model is loaded into the monitoring tool and then
complemented with monitoring points and batch regions afterwards. Future work
includes the support of annotations in XML files for BPMN process models as men-
tioned in [1].

The batch concept presented in [5] includes the application of threshold rules
and Event-Condition-Action (ECA) rules. They are currently not considered in our
concept and we intend to integrate them to enable the detection of exceptions such
as the exceeding of batch clusters.

Since the concept of the monitoring tool is loosely based on workflow exception
patterns [8], research in how these patterns are supported in batches is required.

References

[1] A. Baumgrass, N. Herzberg, A. Meyer, and M. Weske. “BPMN Extension for
Business Process Monitoring”. In: Enterprise Modelling and Information Systems
Architectures. GI, 2014, pages 85–98.

[2] S. Bülow, M. Backmann, N. Herzberg, T. Hille, A. Meyer, B. Ulm, T. Y. Wong,
and M. Weske. “Monitoring of Business Processes with Complex Event Pro-
cessing”. In: Business Process Management Workshops. Springer, 2013, pages 277–
290.

[3] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co.,
2010.

[4] N. Herzberg and M. Weske. Enriching Raw Events to Enable Process Intelligence -
Research Challenges. Technical report 73. Hasso Plattner Institute at the Univer-
sity of Potsdam, 2013.

[5] L. Pufahl, N. Herzberg, A. Meyer, and M. Weske. “Flexible Batch Configura-
tion in Business Processes Based on Events”. In: Service-Oriented Computing.
Springer, 2014, pages 63–78.

[6] L. Pufahl, A. Meyer, and M. Weske. Batch Regions: Process Instance Synchroniza-
tion based on Data. Universitätsverlag Potsdam, 2014.

9

Tsun Yin Wong, Susanne Bülow: Monitoring Batch Regions in Business Processes

[7] L. Pufahl and M. Weske. “Batch Activities in Process Modeling and Execu-
tion”. In: Service-Oriented Computing – 11th International Conference, ICSOC. 2013,
pages 283–297. doi: 10.1007/978-3-642-45005-1_20.

[8] N. Russell, W. van der Aalst, and A. ter Hofstede. “Workflow Exception Pat-
terns”. In: Advanced Information Systems Engineering (2006), pages 288–302.

[9] M. Weske. Business Process Management: Concepts, Languages, Architectures. Sec-
ond Edition. Springer, 2012.

10

http://dx.doi.org/10.1007/978-3-642-45005-1_20

Multi Instance Monitoring

Kerstin Günther, Kristina Kirsten, and Florian Rösler

Hasso-Plattner-Institut
{Kerstin.Guenther,Kristina.Kirsten,Florian.Roesler}@student.hpi.uni-

potsdam.de

For monitoring multiple instances in a business process, we introduce a concept
to aggregate the progress of single instances to get the overall progress of a trans-
portation process. Our implemented system is addressed to the planner of logistic
companies and gives insights into the actual status of all orders and sends notifi-
cations about expected and unexpected events in real-time. The software helps to
keep the overview and to react quickly to events in order to ensure a trouble-free
process and to provide early information about the delivery.

1 Introduction

Businesses are based on processes, which consist of a set of activities in order to sup-
port and represent their business goal. The management of business processes is an
important item for business administrators who are mostly interested in improving
the operations of the company [14].

Especially in logistic companies an efficient management of business processes
is crucial because of the intensive supply chain in which multiple activities and
participants depend on each other and correlate. In today’s logistics companies, there
is one position that covers most directive tasks for the transportation business – the
planner. Planners distribute orders among available executive units like trucks. They
also continuously monitor the progress of the active transport routes and reschedule
certain steps upon encountering problems. The more orders a planner is supposed
to overview, the more a technical solution is inevitable to remain efficient. Such
tools exist and offer functionalities to track units during the execution of orders. For
that purpose event-driven systems are designed to immediately process and react to
events when they occur. They enable to continuously track the status of the processes
and to observe or, as the case may be, to respond to situations [2], like the re-planning
of routes because of unexpected events.

The complexity of monitoring increases drastically when orders are split into mul-
tiple instances and distributed to various executive units. In that case, the planner has
to keep track of all involved units to form an overall progress of the order and needs
the possibility to monitor each unit individually on demand to react to unexpected
situations.

11

mailto:{Kerstin.Guenther,Kristina.Kirsten,Florian.Roesler}@student.hpi.uni-potsdam.de
mailto:{Kerstin.Guenther,Kristina.Kirsten,Florian.Roesler}@student.hpi.uni-potsdam.de

Günther et al.: Multi Instance Monitoring

As complex event processing is a relatively new field of research (cf. Gartner Hype
Cycle, August 2013, [10]) the literature does not provide specific approaches for mon-
itoring multi instances. Nevertheless literature reviews show the interest for this
topic. In general, the identification of correlated events is important to understand
modern business processes [7]. Besides, various patents [4, 8] demonstrate the actual
demand to correlate multiple events, especially for security aspects. Moreover, it be-
comes obvious that the correlation of events respectively the aggregation of instances
is an interesting and important approach for different areas. Equally an event pro-
cessing system which is able to aggregate several instances to one single order and
simultaneously evaluate events is needed in order to provide an overview and notify
the planner of irregularities. Therefore, in this paper, a solution is presented that
allows the planner to instantaneously grasp the progress as well as arising problems
of a multi instance order, which increases efficiency and proactivity.

The general concept is described in Section 2 which is followed by the implemen-
tation in Section 3. A showcase with the description of two concrete use cases is
demonstrated in Section 4. Finally the paper is concluded in Section 5.

2 Concept

For the multi instances scenario, inspired by GET Service [3, 11], special require-
ments have been derived. The planner splits up the cargo into multiple instances
transported by different transportation instances, e.g. trucks, and potentially on
different routes. Expected as well as unexpected events during the transportation
process that may apply only to a subset of all instances must be monitored in real-
time keeping the planner informed about the transportation progress. The progress is
the target-performance comparison of the order’s status. To get the overall progress
of the order, the progresses of each single order are added up. Moreover, the plan-
ner has to be notified about unexpected events instantaneously for re-planing the
affected instance(s) to still complete the order meeting deadlines.

Based on the described requirements for the scenario, we modeled a BPMN model [9],
shown in Figure 4 in the appendix, describing the work flow of our concept. The
modeled process always terminates either by completing the order, i.e. all instances
complete their sub-orders, or by aborting the monitoring of the order due to missing
information of one or more instances.

Out of the BPMN we identified the planner’s order, the sub-orders for each instance
and the traces [12] sent by the instances (in this case trucks) as essential data objects
and therefore, modeled these data items in a data model (see Figure 3 in appendix.
In our implementation, the orders are given in XML format once at the start of the

12

2 Concept

transportation progress by the planner. The traces are position updates and optional
additional notifications of the driver in XML format sent periodically by each truck.
Secondary, we derived an event hierarchy, illustrated in Figure 5 in the appendix,
including 13 event types and 17 event aggregations we have identified as relevant
for our implementation.

Inspired by these models, we developed the architecture of our implementation,
shown in the model in Figure 1. An event traverses through our system in the fol-
lowing way: The position data is sent by a sensor system in the truck and can be
enriched with information by the truck’s driver. The UNICORN platform receives

Figure 1: Architectural Model

13

Günther et al.: Multi Instance Monitoring

this data, transforms this XML document into one event and transmits the resulting
event to the internal Event Processing Agent (EPA) which applies our aggregation
rules defined in Esper [4], e.g. an event of type OrderProgress and an event of type
TruckOrderStarted are aggregated to an OrderCompleted event if the number of com-
pleted units in the OrderProgress event is identical with the number of units in the
TruckOrderStarted event, i.e. all items that had to be delivered have arrived at the
destination. Then, the aggregated events are transmitted over queues and further
transformed to be finally visualised in our front-end.

A detailed description of the transmission and transformation as well as the design
and functionalities of our front-end is given in the next section.

3 Implementation

For our specific implementation, as seen in Figure 1, we utilize the provided UNI-
CORN platform [1, 13] as our central event processing system, being connected to
an Active MQ server. In order to persist emitted events, we use MongoDB that is
connected to our front-end, which is hosted on a Meteor server. The following para-
graphs shall clarify the detailed architecture as well as the reasons for the respective
product choices.

3.1 Queue Listener

One major functionality of the UNICORN platform is the construction of queues on a
connected Active MQ server, where processed events can be stored in various queues,
depending on previously specified Esper queries. In order to persist the events, it
is important to retrieve emerging events and store them in a database. Therefore,
we subscribe to existing queues for the respective event types and handle incoming
events accordingly with “Queue Listeners”.

The core task of the Queue Listeners is to continuously retrieve emitted events,
transform them and write them to a database. As the event messages are in a pro-
prietary format, which is not deserializable by common libraries, a transformation
to JSON is required first. After that the JSON messages are deserialized into event
objects by Gson1, a Java library by Google. As each event type requires individual
changes to the database, the listeners execute specific program logic for each type.
E.g. an “OrderCreated” event should trigger the creation of an order in the database

1 more information on https://code.google.com/p/google-gson/, last accessed
September 2015.

14

https://code.google.com/p/google-gson/

3 Implementation

whereas a “TruckLocation” event is supposed to update the location of the respective
truck in the database as well. The updated records are meant to be queried by the
front-end to display the orders to the client.

3.2 Meteor and MongoDB

As previously explained, one major requirement is the immediate delivery of up-
dated information to the planner. Most web technologies like Active Server Pages
(ASP) or JavaServer Pages (JSP) utilize a pull mechanism by the user to retrieve the
most recent data. This means the user either has to refresh the page manually or the
implementation automatically refreshes the page after a defined period of time. On
the opposite in recent years several frameworks have emerged that focus on estab-
lishing connections that allow updates to be pushed to the client as soon as they are
introduced on the server.

One system that offers the described functionality is Meteor, which at the time
of this writing is available in its stable version 1.0.3 [5]. As Meteor is a full-stack
framework based on Node.js, applications are written in JavaScript both on the server
as well as on the client. Once a client connects to a Meteor server, a WebSocket
connection is established, which is kept alive as long as the user remains on the page.
Whenever the database that is connected to Meteor undergoes changes to one of its
records, these changes are pushed to the client via the WebSocket, which is then able
to update its respective user interface.

In its current release Meteor only supports MongoDB, which enables Meteor
to effectively identify changes to the stored records. As MongoDB is a document-
oriented database [6] we store each monitored order in a single document, which
is created and continuously updated by the Queue Listeners. The Meteor server
depicts the end of our architectural chain and is the system that displays relevant
information to the user through a web page. A screenshot of the front-end that can
be used by the planner to monitor a particular order is shown in Figure 2.

The overview (see Figure 2) is split into four parts. Firstly on the left hand panel
general information are displayed about the respective order, like the destination
and deadline. Those information are static and will most likely not change through-
out the processing of an order. In the center the planner can follow the progress
on a map, which contains markers for the current positions of the involved trucks.
The right side contains a list of events that belong to the monitored order that arise
throughout the execution. In our specific implementation such a list would for exam-
ple contain events for a border crossing or an unexpected event that is encountered
by a truck. The four boxes below display the current status of the order, allowing
a quick overview through status bars that visualize the progress. The left box indi-

15

Günther et al.: Multi Instance Monitoring

Figure 2: Screenshot of the front-end of the system visualizing the status of one order

cates how many trucks have arrived and consequently how many items have been
delivered. Furthermore, the third box shows the total distance which all trucks have
covered so far. The rightmost box indicates the overall delivery status of the order
using the difference between the planned deadline and the current expected arrival
time. If the order is on-time the box is colored green, on the other hand if one or more
trucks are no longer on schedule and therefore the order will not be on-time, the box
changes to red. Next to these boxes, the estimated time of arrival is displayed.

Additionally, the front-end has a built-in notification functionality that is triggered
once a new event is emitted, no matter which order is concerned. In that case a little
pop-up notification appears in the top right corner, informing the planner, which
order is affected by what kind of event. We therefore make sure that the planner
even gets updates of orders that he is currently not actively monitoring and can react
quickly.

4 Showcase

This section describes two specific demo stories, which can be realized with the
presented solution for monitoring multi instances whereby the features and char-
acteristics will come out. In both stories the planner divides one order into three
partial-orders which are assigned to three different trucks. Each truck has to carry
10 items. The freights have to be transported from Lesquin (France) to Roosendaal
(Netherlands).

16

4 Showcase

4.1 Demo Story 1

The first story presents a delivery on-time. All three trucks start at the same time
in Lesquin. The current position of all trucks belonging to this order is visualized
on a map which can be observed by the planner. One after another notifications are
shown up that a truck has crossed the border to Belgium. To keep the clarity for the
planner all notifications are also visible and appear as pop-up in the system even if
the planner is currently observing another order. Therefore the planner can switch
to the order on demand and sees in this story a green-colored ETA (estimated time
of arrival) box which signales that the order can be delivered on-time. Later, the
planner is notified about the border crossing to France for every truck. The three
trucks arrive consecutively at the destination before the expiration of the deadline
and therefore the order is delivered on-time. Again, the planner is notified about
the arrival. At first for each truck a notification pops up and consequently an Order
42 has been completed! message shows up, assuming an order with the identification
number 42.

4.2 Demo Story 2

In contrast to the first demo story, this story describes a situation where a delivery
cannot be delivered on-time anymore. Again, the three trucks start at the same time
in Lesquin. Two of the trucks cross the border to Belgium and the planner is again
notified. However, the third truck gets unexpectedly into a border check. The truck
waits for hours in front of the border to Belgium during the two others are moving
forward to the destination Roosendaal. Consequently, the planner is informed that
the order is not anymore on-time. Because the third truck does not move in the last
three position updates2 and no regular break is scheduled, an unexpected event
is generated and sent to the system. Thereby the planner has the possibility to, for
instance, contact the driver, re-plan the route or inform the customer about the delay.
As long as the third truck does not arrive at the destination the order will not be
completed even if the first two trucks have already been arrived.

2 The number of position updates that have to be missed for a truck to generate an unex-
pected event can be configured.

17

Günther et al.: Multi Instance Monitoring

5 Conclusion

In business management, monitoring a process consisting of multiple instances be-
comes more and more relevant to optimize the work flow. Based on the given sce-
nario, we have developed a concept to aggregate the progress of each single instance
to get an insight in the overall progress of all instances.

Our solution gives an overview of the details of an order and informs the planner
about the current position of each instance belonging to that order, visualized on a
map. Furthermore, the planner knows the current overall progress of the order at
every time during the transportation and gets notified about unexpected events in
real-time. In that way, the planner can react on these events on time and re-plan the
route or inform the respective persons about the delay.

The event aggregations defined by us are based on the periodic input of traces
and uses the attributes defined in [12], e.g. the type 44 denotes a border check. Our
solution works without knowing such types, but without this information special
event types like BorderCheck or BreakStarted will not be generated.

Other features like congestion detection, delay propagation or using additional
information like weather data can be easily integrated in our system to improve the
accuracy of the estimated time of arrival and enrich the events shown to the planner.

Appendix

Figure 3: Data Model

18

5 Conclusion

Figure 4: BPMN: Overview and task Drive

19

Günther et al.: Multi Instance Monitoring

e

aggregation

 Trace

 type: Integer
source: Integer
time: DateTime
coordinate:
- latitude: Float
- longitude: Float
mileage: Integer
heading: Integer
speed: Integer
(property:

 - key: String
 - value: String)*

 OrderProgress

 orderID: Integer
 time: DateTime
 distanceDriven: Integer
 distanceAhead: Integer
 estimatedTimeOfArrival: DateTime
 unitsCompleted: Integer

Order

TruckOrder

 TruckOrderProgress

 truckID: Integer
 orderID: Integer
 time: DateTime
 distanceDriven: Integer
 distanceAhead: Integer
 estimatedTimeOfArrival: DateTime
 units: Integer

 TruckLocation

 truckID: Integer
orderID: Integer
time: DateTime
coordinate:
- latitude: Float
- longitude: Float
speed: Integer

 TruckOrderCompleted

 truckID: Integer
orderID: Integer
time: DateTime
distanceDriven: Integer
units: Integer

 OrderCompleted

 orderID: Integer
time: DateTime
distanceDriven: Integer
unitsCompleted: Integer

 TruckOrder

 orderID: Integer
truckID: Integer
units: Integer
start: String
destination: String
deadline: DateTime

 OrderCancelled

 orderID: Integer
 truckID: Integer
 time: DateTime
 distanceDriven: Integer
 distanceAhead: Integer
 unitsCompleted: Integer
 unitsOpen: Integer

if missing for
5 minutes

 BreakStarted

 truckID: Integer
 orderID: Integer
 time: DateTime
 coordinate:
 - latitude: Float
 - longitude: Float

 TruckOrderStarted

 truckID: Integer
 orderID: Integer
 time: DateTime
 startMileage: Integer
 distanceAhead: Integer
 estimatedTimeOfArrival: DateTime
 units: Integer

 BreakFinished

 truckID: Integer
 orderID: Integer
 time: DateTime
 duration: Time
 coordinate:
 - latitude: Float
 - longitude: Float

 UnexpectedEvent

 orderID: Integer
truckID: Integer
time: DateTime

 BorderCheck

 orderID: Integer
truckID: Integer
time: DateTime
borderTo: String

 Order-
 Completed

 Truck-
 Location

 Truck-
 Order

Figure 5: Event Hierarchy

20

References

References

[1] Baumgrass et al. GET Service: Deliverable D6.3 – Prototypical Implementation of
the Information Aggregation Engine. 2014.

[2] O. Etzion and P. Niblett. Event Processing in Action. 1st. Greenwich, CT, USA:
Manning Publications Co., 2010.

[3] GET Service. Website. Available at http://getservice-project.eu/, last
accessed September 2015. 2014.

[4] R. LeFaive, S. Sodem, J. Scarpelli, D. Ketcham, and A. Garg. Method and system
to correlate a specific alarm to one or more events to identify a possible cause of the
alarm. US Patent 7,131,037. Oct. 2006.

[5] Meteor Development Group. Website. Available at https://www.meteor.
com/, last accessed September 2015. 2015.

[6] MongoDB Inc. Website. Available at http://www.mongodb.org/, last ac-
cessed September 2015. 2015.

[7] H. Motahari-Nezhad, R. Saint-Paul, F. Casati, and B. Benatallah. “Event cor-
relation for process discovery from web service interaction logs”. English. In:
The VLDB Journal 20.3 (2011), pages 417–444. doi: 10.1007/s00778-010-
0203-9.

[8] H. Njemanze and P. Kothari. Real time monitoring and analysis of events from
multiple network security devices. US Patent 7,376,969. May 2008.

[9] OMG. Business Process Model and Notation, Version 2.0. Website. Available at
http://www.omg.org/spec/BPMN/2.0/, last accessed September 2015.
2011.

[10] J. Rivera and R. van der Meulen. Press Release. Available at http://www.
gartner.com/newsroom/id/2575515, last accessed September 2015. Aug.
2013.

[11] Treitl et al. GET Service: Deliverable D1.1 – Use Cases, Success Criteria and Usage
Scenarios. 2014.

[12] Trimble - Transport & Logistics. Fleet Integrator Guide, Version 1.14, Revision 172.
2012.

[13] UNICORN Platform. Website. Available at http://bpt.hpi.uni-potsdam.
de/UNICORN, last accessed September 2015. 2015.

[14] M. Weske. Business Process Management: Concepts, Languages, Architectures. sec-
ond. Springer, 2012.

21

http://getservice-project.eu/
https://www.meteor.com/
https://www.meteor.com/
http://www.mongodb.org/
http://dx.doi.org/10.1007/s00778-010-0203-9
http://dx.doi.org/10.1007/s00778-010-0203-9
http://www.omg.org/spec/BPMN/2.0/
http://www.gartner.com/newsroom/id/2575515
http://www.gartner.com/newsroom/id/2575515
http://bpt.hpi.uni-potsdam.de/UNICORN
http://bpt.hpi.uni-potsdam.de/UNICORN

DRAGON – Deadline Propagation Transcending the
Boundaries of Processes

Michelle Mensing, Jakob Reschke, and Tim Sportleder

Hasso-Plattner-Institut
{michelle.mensing,jakob.reschke,tim.sporleder}@student.hpi.uni-

potsdam.de

Practical business processes are often associated with deadlines. In a logistics
context these deadlines are subject to frequent changes. While there is work on the
prediction of the execution time of individual activities or single process instances,
research on the effect of a deadline shift on multiple activities and interdependent
processes is still lacking. Event processing can be used to communicate relevant
influencing factors for activities as soon as they are detected. This also applies
to deadline changes. We describe a demo software, Dragon, which implements a
flexible deadline propagation algorithm to predict imminent deadline violations
caused by a deadline shift across multiple process instances. It also features a
graphical user interface which provides multiple views on the scheduled activities
to visualize the effects of a deadline shift.

1 Introduction

Business processes and activities often have time constraints such as deadlines. If
a deadline of an activity is changed, consequences may arise for the preceding ac-
tivities. For a single process the propagation of such a change is easy to handle. In
practice, processes are interdependend due to shared resources or because of the per-
sonnel involved. Therefore, the consequences of a deadline shift are hard to predict
and may result in deadline violations because of undetected dependencies.

In this paper we present Dragon, a system that detects likely deadline violations be-
fore they occur using event processing technologies. To realise Dragon, we assigned
deadlines and execution times to activities, implemented a propagation algorithm
and a visualization of the consequences of a propagated deadline shift. Based on
real processes discovered in the context of the GET Service project1, we describe how
a single deadline change influences multiple process instances. Dragon is able to

1 GET Service: Efficient Transportation Planning and Execution.
http://www.getservice-project.eu, last accessed September 2015.

23

mailto:{michelle.mensing, jakob.reschke, tim.sporleder}@student.hpi.uni-potsdam.de
mailto:{michelle.mensing, jakob.reschke, tim.sporleder}@student.hpi.uni-potsdam.de
http://www.getservice-project.eu

Mensing et al.: Deadline Propagation Transcending the Boundaries of Processes

react to deadline shifts by using the event processing platform UNICORN2 for the
detection of a deadline change and notification of likely deadline violations.

Due to the lack of BPMN 2.0 [3] in explicit modeling of deadlines and execution
times for activities, existing papers focus on introducing time constraints to activities
[1] and predicting their execution times [4, 5]. The propagation of a deadline shift can
make use of both. Dragon uses the execution times of activities and the inner-process
and inter-process (through personnel disposition) relations between activities to
realize the propagation.

In Section 2, we introduce our use case by describing a real world scenario in which
a deadline shift occurs. Section 3 presents the data model and architecture of Dragon
and how it reacts to deadline change events. The algorithm which propagates a
deadline change is presented in Section 4. Section 5 deals with the graphical user
interface of Dragon. Finally, Section 6 summarizes our results, discusses conveivable
extensions of our approach and gives an outlook for further use.

2 Use Case

A planner of a logistic company has to deal with and plan multiple customer orders.
For each order exists a predefined process model and the planner assigns operators
to the activities defined in the process model. To meet specific loading and unloading
time windows for goods, start and end deadlines are specified for activities. However,
deadline shifts may occur due to deliberate replanning or replanning because of
unforeseen incidents. This can possibly lead to a reassignment of the operators.
Because an operator’s schedule is not constrained to a single process instance a
deadline shift can affect multiple instances.

In our scenario there are four orders with their related processes as shown in Figure
1. Goods are delivered from the USA via Rotterdam to Amsterdam in process 1 (P1),
from the USA via Amsterdam to Utrecht in process 2 (P2) and from Eindhoven via
Rotterdam to Amsterdam in process 3 (P3). In this example we assume that the goods
of P1 and P3 are delivered by the same truck between Rotterdam and Amsterdam.
Finally, process 4 (P4) includes the customization of goods at an external terminal
in Rotterdam and the subsequent shipping to the USA.

Several operators are assigned to these processes. For example operator #22 ships
the goods for P1 from the USA to Rotterdam, loads the goods and those of P3 on a
truck and drives from Rotterdam to Amsterdam. Furthermore, operator #6 transports

2 http://bpt.hpi.uni-potsdam.de/UNICORN, last accessed September 2015.

24

http://bpt.hpi.uni-potsdam.de/UNICORN

3 Data Model and Architecture

Figure 1: Overview of our logistics scenario with processes (solid lines) and selected
operator assignments (dashed lines)

the goods of P3 from Eindhoven to Rotterdam, unloads them and proceeds with the
execution of P4.

Due to an the earlier incoming ship of P1 at the port of Rotterdam the start deadline
for loading the goods of P1 onto a truck is shifted forward. As a result all preceding
activities of each process and operator involved may be affected. Here, operator #22
has to deliver the goods of P3 earlier so that the storing time can be minimized.

3 Data Model and Architecture

Dragon is based on a simplified process model and distinguishes between model-
and runtime of a process. In modeltime each process in the data model is defined
by a set of activities which reference other activities by predecessor or successor
relationships. Each activity includes a description, relative start- and end deadlines
and a default duration. In runtime a process instance is created and every activity is
represented by at least one Task. The assignment of an operator to a task is modeled by
an OperatorTask. Tasks and OperatorTasks have predecessors and successors just like
activities. All OperatorTasks which are performed by a particular operator constitute
the schedule of the operator which can thus relate to multiple process instances.

Dragon is implemented as a Spring Boot3 application consisting of the following
components: A graphical user interface (GUI), an event replayer, an event publisher,
a deadline propagator and an in-memory database containing the data (see Figure 2).
For retrieving and sending events we use the event processing platform UNICORN,

3 http://projects.spring.io/spring-boot/, last accessed September 2015.

25

http://projects.spring.io/spring-boot/

Mensing et al.: Deadline Propagation Transcending the Boundaries of Processes

DRAGON

Event
Publisher

Event
Replayer

Browser
GUI

Processes,
Deadlines,
Operators

Events

Deadline
Propagator

UNICORN

a)

b)

c)

d)

1)

2)

3)

Figure 2: Architecture of Dragon

from which events can be received via publish-subscribe and which offers a webser-
vice interface to publish new events and event types.

We defined an event hierarchy consisting of four event types. The DeadlineShift
event type (deadline shift for a single task), the DeadlineReplanning event type
(notification of a change in task planning parameters affecting deadline propagation)
and the DeadlineChange event type which serves as a generalization of the first two
event types. To make sure that DeadlineShift and DeadlineReplanning events will
also cause a DeadlineChange event to be published, we register an aggregation rule
in UNICORN. This way Dragon only needs to subscribe to DeadlineChange events.
The fourth event type is the DeadlineHazardNotification type for communicating
the result of the deadline propagation for a single task.

When Dragon receives a DeadlineChange event from UNICORN (a) the deadline
propagator starts calculating the propagation of the received deadline shift (b) (see
Section 4). After the calculation is finished the results are presented in the GUI (see
Section 5) and are published by the event publisher as DeadlineHazardNotification
events (c, d) for every affected task. For the demo, we prepared a DeadlineShift event
that is replayed to UNICORN when triggered from the GUI (1, 2). Our aggregation
rules will transform that event into a DeadlineChange event (3) which is then again
received by Dragon (a).

4 Propagation algorithm

We focus on deadlines which have been shifted to an earlier instant and propagating
that change to preceding tasks. The propagation starts from the task which is named

26

4 Propagation algorithm

in the DeadlineChange event by its database ID. An example event can be found in
Listing 2 in the appendix. This task will be called the origin of the deadline propaga-
tion. Starting from the origin task, the goal is to verify that its deadlines and those
of its preceding tasks can still be met. A high-level version of our algorithm can be
seen in Algorithm 1. First, the execution time of a task is predicted, starting from the
currently planned starting time (line 1). For each task the predicted execution inter-
val must start before the start deadline and end before the end deadline, otherwise
there is an imminent deadline violation. In case of a violation the start time of the
task is modified to meet the deadline again (line 3). New overlaps with preceding
tasks must be detected and handled by the propagation.

To control the extent of the propagation we assess how probable the violation
of a deadline for a given task is (line 2). When a task will finish after the deadline,
it is certain to violate that deadline. If it finishes a small amount of time before
the deadline, a deadline violation might still be possible if certain other hindering
events occur, e.g. traffic congestion. In both cases a planner wants to be informed
so the task can be replanned. The outcome of the risk assessment and replanning is
communicated to the environment on line 4.

We introduce an uncertainty level into the propagation which is initially zero and in-
creased for a propagation path whenever a task with an unviolated but tight deadline
is encountered (line 5). Everytime the uncertainty level is increased, the subsequently
detected violations become more speculative. Thus, if the uncertainty level reaches
a certain threshold, the propagation will stop (line 8).

When a task which has already been completed is encountered, the propagation
will also not persue it and its predecessors (line 12).

The propagation traverses all relevant tasks by the recursion on line 14. For this to
work correctly and comprehensively, the preceding tasks (line 11) are derived from
the task’s predecessors and from its OperatorTasks’ predecessors. This is shown in
listing 1 as an OCL4 constraint.

Listing 1: Obtaining the predecessors of a task for propagation in Dragon

context Task::propagationPredecessors: Set(Task)
derive: predecessors−>union(

containedOperatorTasks−>collect(predecessors)
−>flatten()−>collect(correspondingTask)−>asSet())

4 Object Constraint Language – http://www.omg.org/spec/OCL/, last accessed Septem-
ber 2015.

27

http://www.omg.org/spec/OCL/

Mensing et al.: Deadline Propagation Transcending the Boundaries of Processes

Algorithm 1 Deadline propagation outline
Require: originTask : Task, uncertaintyLevel : Integer,

uncertaintyThreshold : Integer

duration← predictDurationOf(originTask)
2: risk← assessDeadlineViolationRiskFor(originTask,duration)

replanExecutionTimesFor(originTask,duration, risk)
4: emitNotification(originTask,duration, risk)

if risk < CERTAIN then
6: uncertaintyLevel← uncertaintyLevel+ 1

end if
8: if risk = UNLIKELYor uncertaintyLevel > uncertaintyThreshold then

return {stop propagation}
10: end if

for all precedingTask ∈ originTask.propagationPredecessors do
12: if not precedingTask.isFinished then

precedingTask.endDeadline← originTask.startTime

14: propagateDeadlineChange(precedingTask,uncertaintyLevel) {recursion}
end if

16: end for

In Algorithm 1 there are four high-level calls marking variation points enumer-
ated below. We implemented these with the Strategy Pattern [2, p. 267] so different
implementations can be plugged in by reconfiguring the application. These varia-
tion points are: 1. The prediction of a task’s duration (line 1), 2. The assessment of a
deadline violation risk (line 2), 3. The replanning of a task to avoid a violation (line 3)
and 4. The notification about a task and its deadline violation risk (line 4).

In our proof-of-concept implementation Dragon, the duration is taken from a de-
faultDuration attribute of the Activity in our database. A deadline violation is consid-
ered “possible” (between “certain” and “unlikely”) if there is less than a configurable
amount of time, like one hour, between the predicted end time and the end deadline.
If there is more time, a violation is deemed unlikely. A task is replanned such that
the predicted end coincides with the end deadline. The notification is implemented
by adding a record for it in the database so it can be used by the GUI (see Section
5) and by calling the event publisher to publish DeadlineHazardNotification events
via UNICORN (see Figure 2 c, d).

An important optimization of the algorithm as outlined above is to not traverse
the same path of tasks twice without changing execution times any more. This issue
arises when a task has multiple predecessors which have a common ancestor task.
The propagation could traverse to and beyond the common ancestor from the first
predecessor of the origin task. Eventually the propagation would return to the second
predecessor and maybe reach the common ancestor from there again. If the risk
assessment and replanning operations decide that no further modification to the
common ancestor’s execution times is necessary, the propagation should not proceed
again with the predecessor tasks of the common ancestor. However, if the replanning

28

5 Application

strategy decides to change the execution times again, the propagation cannot be
pruned and must traverse the predecessors again until no further adjustments are
made.

5 Application

We provide a web-based GUI to visualize the effects of deadline shifts. When the
Dragon webpage is loaded, data on process instances and operators is loaded asyn-
chronously from the server. Using AngularJS5, the GUI reflects the data via double
data binding. This means, changes in the data cause corresponding changes in the
GUI and vice versa. In order to get information on deadline shifts, the server-side
of Dragon is continuously polled for deadline hazard notifications stored in the
database.

Data objects are serialized via JSON and stored as JavaScript objects. We faced two
problems which arise due to circular references among the objects. On the server
side, the serialization failed due to infinite recursion. On the client side, the data
binding with AngularJS failed for the same reason. Therefore, we had to transform
the data graphs by replacing some references with object identifiers.

The GUI features an instance view and an operator view. The instance view focuses
on process instances. From the list of process instances P1 to P4 introduced in section
2, any may be chosen to be visualized as a graph. That graph depicts the tasks of that
instance as circles with descriptive labels. All graphs are rendered using Scalable
Vector Graphics (SVG) which is embedded in the Document Object Model (DOM)
of the web page, allowing for easy manipulation via CSS and JavaScript. Figure 3
shows a part of the graph of an instance of P3. If a task is selected by clicking on
the corresponding node, an overlay shows information on that task, including time
constraints like the planned start and end time as well as the operators who take
part in the task.

Operators can be inspected via the operator view in an analogous manner. The
OperatorTasks in an operator’s schedule can have several predecessors and succes-
sors as an operator may transport wares from several tasks at once. Information on
a selected OperatorTask include time constraints from the corresponding task and
the related process instance.

For the purpose of demonstration, our GUI provides a button to evoke the nec-
essary event processing (see Figure 2, steps 1 and 2). When the deadline hazard

5 https://angularjs.org/, last accessed September 2015.

29

https://angularjs.org/

Mensing et al.: Deadline Propagation Transcending the Boundaries of Processes

Figure 3: Part of the graph of the P3 instance. Each node represents a task.

notifications are returned by the server, a warning message is shown. For each noti-
fication, the stored data is traversed to find the respective process instance and task
using the identifiers included in the notification. The violation probability for all
affected objects, including the operators of the task, are updated. Listing 3 (in the ap-
pendix) shows a serialized notification with a certain violation, new time constraints
and a reference to the respective task and process instance.

There are three degrees of severity of deadline hazards based on the uncertainty
level introduced in Section 4 and each represented in the GUI by a color. Viola-
tions with uncertainty level zero are certain and colored red. If the uncertainty level
reached the threshold, the violation is unlikely and colored green. All other viola-
tions are deemed possible and colored yellow. These colors are used to mark affected
process instances and operators in each list as well as tasks and OperatorTasks in each
graph. For instance, Figure 4 (in the appendix) shows details on an OperatorTask of
the origin task affected by our demo DeadlineShift event.

6 Conclusion and Outlook

In this paper we described an algorithm for the propagation of event based deadlines
changes to detect imminent deadline violations across multiple process instances.
Our demo implementation, Dragon, interacts with UNICORN to simulate deadline
changes and be notified of them. The results of the propagation are displayed in a
graph of tasks which are highlighted with colors to indicate deadline violations.

Our algorithm includes four variation points where different behavior suitable to
the application can be plugged in. In a real logistics planning system it would be
advisable to employ more advanced implementations compared to those in Dragon.
For example, the prediction of activity durations could make use of the approaches

30

6 Conclusion and Outlook

presented in [4, 5]. Also, other event processing applications such as awareness to
weather forecasts and delay propagation could be handy.

Dragon’s GUI could conceivably support more views to allow for more specialized
insight in the effects of a deadline change, e.g. a graph showing all tasks affected by a
deadline change regardless of operators and process instances. However, it would be-
come increasingly difficult to arrange the resulting graph in an easily comprehensible
manner.

We focused on deadlines which have been shifted to an earlier instant. Future
work could investigate applications for the propagation of postponed deadlines
and a propagation from the origin task into the future. While that should not reveal
deadline violations which are caused by the deadline change, both approaches would
probably be able to predict optimizable gaps in activity and operator schedules and
indicate opportunities for replanning.

Appendix

Listing 2: A DeadlineChange event serialized as JSON

{
"timestamp": "2015−02−26T14:08:05.000",
"taskId": "74",
"oldDeadline": "2015−03−01T15:00:00",
"newDeadline": "2015−03−01T13:00:00",
"deadlineType": "start",
"operatorId": "22"

}

31

Mensing et al.: Deadline Propagation Transcending the Boundaries of Processes

Listing 3: A deadline hazard notification serialized as JSON

{
"violationProbability": 2, // 2 = certain
"createdAt": 1424420516102,
"task": {

"processInstance": {
"id": 4

},
"id": 74

},
"newStartDeadline": 1424441700019,
"newPlannedStartTime": 1424441700019,
"newPlannedEndTime": 1424442900019,
"id": 1,
"newEndDeadline": 1424446200405

}

Figure 4: Part of the graph of operator Cole Sawyer. The selected OperatorTask faces
a certain deadline violation with changed temporal constraints, marked with red

32

References

References

[1] S. Cheikhrouhou, S. Kallel, N. Guermouche, and M. Jmaiel. “Toward a Time-
centric modeling of Business Processes in BPMN 2.0”. In: Information Integra-
tion and Web-based Applications & Services. ACM. 2013, page 154.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Pearson Education, 1994.

[3] OMG. Business Process Model and Notation (BPMN), Version 2.0. OMG Standard.
Jan. 2011.

[4] M. Polato, A. Sperduti, A. Burattin, and M. de Leoni. “Data-aware remaining
time prediction of business process instances”. In: Neural Networks (IJCNN).
IEEE. 2014, pages 816–823.

[5] A. Rogge-Solti and M. Weske. “Prediction of remaining service execution time
using stochastic petri nets with arbitrary firing delays”. In: Service-Oriented
Computing. Springer, 2013, pages 389–403.

33

Non-linear Delay Propagation of Event Based Business
Processes

Heiko Beck, Maximilian Brehm, and Marius Eichenberg

Hasso-Plattner-Institut
{Heiko.Beck,Maximilian.Brehm,Marius.Eichenberg}@student.hpi.uni-

potsdam.de

Workflows in an enterprise are usually determined by business processes and
corresponding process models. To manage these processes, workflow manage-
ment systems are used. For certain processes, there is a need to precisely model
resource- and status-dependencies and resulting time-dependencies of its inter-
linked process steps. The progression of delays caused at an initial process step to
the subsequent process steps may be non-linear due to these dependencies and ad-
ditional time-dependent resource- and status-constraints of the process steps. This
is especially true when modelling and monitoring complex real-world workflows.
In this paper, we propose a method for non-linear delay propagation considering
resource- and status-dependencies and -constraints of sequentially interlinked pro-
cess steps, and a visualization for live monitoring process progression and delay
propagation of processes. As a running example, we consider processes from the
field of logistics.

1 Introduction

Workflows in an enterprise are usually determined by business processes and cor-
responding process models. To manage these processes, workflow management
systems are used [3]. These systems are seldom using external information sources
to calculate dependencies, like resource- or status-dependencies, among related pro-
cess steps. Especially in the field of event based business processes there is a high
need of additional data to model the real world as good as possible. Also live moni-
toring of a running process is required. In this paper we focus on delay propagation,
as one case of interaction between process steps with the assistance of information
from external resources. We also take resulting deadline shifts and live monitoring
into account.

As a running example, we use the delay propagation in the field of logistics. In
particular, a scenario of cargo transport from London to Frankfort is considered.
We split the process into four steps, beginning with a flight from London to Am-
sterdam, followed by a loading activity to shift the cargo onto a truck. The truck
then brings the freight to Frankfurt and in the last step the cargo is unloaded at a

35

mailto:{Heiko.Beck,Maximilian.Brehm,Marius.Eichenberg}@student.hpi.uni-potsdam.de
mailto:{Heiko.Beck,Maximilian.Brehm,Marius.Eichenberg}@student.hpi.uni-potsdam.de

Beck et al.: Non-linear Delay Propagation of Event Based Business Processes

plant in Frankfurt. The transport is compromised by unexpected events, like severe
weather or traffic jam, as the reason for process delays. We also take additional in-
formation from external resources, so called constraints, into account. These status-
and resource-based constraints are necessary to model real world characteristics like
traffic density or loading capacities of a plant according to different start times.

In the paper we show that calculating dependencies, such as delays, among related
process steps is not trivial, if one takes this additional information into account. The
consideration of these status- and resource-dependencies may result in non-linear
delay propagation.

The remainder of this paper is structured as follows: Section 2 introduces the foun-
dations for our approach. Section 3 explains the non-linear delay propagation while
Section 4 shows our implementation. Section 5 reviews related work and Section 6
gives a conclusion.

2 Foundations

The general concept we are dealing with are processes. Each process consists of
smaller units called process steps. In this paper, we consider only sequential steps.
This means that it is not possible to start a new process step if its predecessor is not
finished. So the time an executing process needs to finish, becomes a main part of
this general concept.

The progress of processes is determined by events, whereas an event is something
that has happened or is contemplated as having happened [1]. The handling of such
events is called event processing. While handling these events, they can be trans-
formed, combined or split into many other events. These aggregations are modeled
with regulations, called aggregation rules. The result of such a aggregation can be
one or more new events.

A special kind of event is the unexpected event, which is something that happened
unplanned and was not predictable. Unexpected events affect the flow of the process
and will result in a recalculation of the process time. This can be either in a positive
or negative way. During the recalculation, additional external information, so called
constraints are taken into account. As an event happens at a certain point in time,
a constraint describes the capacity of one or more resources at this time. Therefore,
the capacity of resources can affect the process time, too.

36

3 Delay Propagation for sequential Processes

3 Delay Propagation for sequential Processes

In this chapter we will introduce our general approach for delay propagation for
business processes. A naive approach for delay propagation would be to sum up
the delays of the individual steps and use the result as delay for the whole process
instance. Such an approach is not sufficient to model real world processes because
these can depend ob different constraints as mentioned in the previous chapter. To
model these types of real world processes, we developed a non-linear delay propaga-
tion. In the first section we will first explain the basic method of delay propagation.
Then, in the second section we will make use of event processing in order to realize
our approach.

3.1 Fundamental principle

In order to calculate delay propagation, we expanded all process steps by three
attributes:

1. earliest start time: Specifies the earliest time, that a process may start at. Since
we are considering only sequential steps, the earliest start time is equal to the
end time of the previous step.

2. expected start time: Specifies when a process step actually starts. In contrast to
the earliest start time, the expected start time takes constraints into account.

3. expected end time: Specifies when a process step will be finished. The expected
end time dependents on the expected start time, constraints and unexpected
events. The duration of a step results from the difference between expected
start and end time.

Based on this process specification, we can introduce our approach which consists
generally of two parts: a recalculation part and a propagation part. Whenever a
process step is expected to be influenced by an unexpected event, a recalculation
is triggered. The aim of the recalculation is to update the expected start and end
time of the process step. If the step is already running, only its expected end time
will be updated. If a recalculation is finished, the new expected end time is propa-
gated as earliest start time to the following step. This principle of recalculation and
propagation is carried out until the entire process chain is updated.

The non-linearity of our approach is part of the recalculation. This is performed
using external information from different data sources that can be time dependent.
The result is therefore also time-dependent. It is possible that a step cannot be started
at its earliest start time due to a constraint or that the duration of the step differs

37

Beck et al.: Non-linear Delay Propagation of Event Based Business Processes

Figure 1: Visualization of the recalculation and propagation principle

dependent on the start time. A premise for our recalculation is that all constraints
for a process step were previously defined and that the information about these
constraints is machine-readable.

In Figure 1, our approach is visualized. The process instance consists of an arbitrary
number of sequential steps. Every step has an earliest start time, an expected start
time and an expected end time. The expected times of a step are the result of a
recalculation. The recalculation uses the earliest start time and information about
constraints as input. For each step, the various constraints which may influence one
step depend on the type of the step. The expected end time of one step flows as
earliest start time into the following step and triggers another recalculation.

3.2 The use of event processing

Our approach is based entirely on event processing. We regard the previously de-
fined process times as event types. Additionally we use aggregation rules to recal-
culate these times as well as for the propagation of times. Therefore we distinguish
between three kinds of aggregation rules:

1. unexpected event rule: Whenever an unexpected event impacts a step, the ex-
pected times of the particular step are updated. The result of such a rule is a
new expected start and a new expected end time event. If the affected step is
already running, no new expected start time event is created.

38

4 Implementation

2. propagation rule: Whenever the expected end time of a step is updated, a prop-
agation rule creates a new earliest start time event for the following step.

3. calculation rule: Whenever a new earliest start time event is received by a pro-
cess step, a recalculation rule updates the expected start and end time for the
particular step dependent on the earliest start time and process dependent
constraints.

To perform the delay propagation for a specific process instance, some context-
sensitive knowledge about step-sequences and available constraints is required. Once
an unexpected event rule updated a process step, the propagation rule must know
the succeeding step of the affected process instance to propagate a new earliest start
time. We use a unique ID for every transport step and a successor-function: The
unique ID of a process step is passed as parameter to the function that then returns
the ID of the subsequent step. Also, the calculation rule must include a function
call to calculate the process times considering all constraints. This function gets the
unique ID and the earliest start time as parameter and returns the updated expected
start and end time for the particular step.

Thus, our approach is fully described. We map unexpected events to process
steps and propagate the expected end time of one step as earliest start time to the
following step. Whenever a new earliest start time for a process step is available, the
expected start and end time for this step is recalculated using an event aggregation
rule and function calls. How this concept can be implemented is content of the next
section.The implementation is part of the next section.

4 Implementation

As a proof-of-concept, the Noldep (short for Nonlinear delay propogation) application
for process monitoring in the context of logistics was developed. The application
features delay propagation as an reaction to unexpected events that may emerge
during the progress of an active process. The core application is written in Java and
a web interface is based on web standards.

Noldep interacts with the UNICORN platform1 for process monitoring and process
calculation. UNICORN is a service for transportation planning and monitoring de-
veloped by the Business Process Technology Group2 at the Hasso Plattner Institute as part
of an European Research program. The service connects various transportation man-

1 http://bpt.hpi.uni-potsdam.de/UNICORN, last accessed September 2015.
2 http://bpt.hpi.uni-potsdam.de/Public/, last accessed September 2015.

39

http://bpt.hpi.uni-potsdam.de/UNICORN
http://bpt.hpi.uni-potsdam.de/Public/

Beck et al.: Non-linear Delay Propagation of Event Based Business Processes

agement systems from various transportation partners, logistics service providers
and authorities and enables the exchange of selected information between these
partners. The service is based on Esper3, an Event Processing Platform for Complex
Event Processing and Event Series Analysis developed by EsperTech.

Logistic chain
Noldep provides mechanisms for the specification of a sequential logistic chain as a
process model to model real-world logistics scenarios. In the application, a logistic
chain is specified as a list of the process steps flight, truck, loading and unloading
that are to be processed in sequential order. We apply the principles of Section 3 to
our process model; thus each of the process steps has an unique identifier and the
attributes earliest start time, expected start time, and expected end time to implement
delay propagation.

Architecture
In Figure 2, the architecture of Noldep and its interaction with UNICORN is modeled
in a system architecture diagram using Fundamental Modeling Concepts4. Noldep
derives the specifications of the logistic chains that are to be modeled from a local
database. For each of the process steps of a process, it registers relevant progress event
types and select queries that are used for process monitoring with the UNICORN
service. It also registers relevant delay event types and aggregation rules that are used
for the delay calculation and propagation with the service. As the type of progress
events (e.g., progression by truck, train or plane), unexpected events (e.g., severe
storm or congestion) and reaction to these types (e.g., process halt, circumnavigation)
is specific to a process step, this registration process is executed for each process step
of a process individually.

After this initial phase, UNICORN is then ready to monitor and process the
progress and delay events of each of the registered processes. The platform receives
any of these events through external logistic services and service providers. In our
case, we connect queues for plane status updates, truck status updates and traffic
status updates dependent on the process specification. The first two provide detailed
status updates from transportation services while the latter returns road congestions.
The UNICORN platform may access various databases for the estimation of process
durations that are specified in the event aggregation rules registered by Noldep.
In our application, these are databases for transport capacities of logistics services,

3 http://www.espertech.com/products/esper.php, last accessed September 2015.
4 http://fmc-modeling.org/, last accessed September 2015.

40

http://www.espertech.com/products/esper.php
http://fmc-modeling.org/

4 Implementation

Figure 2: System Architecture Diagram (FMC) of the Noldep application and inter-
action with external services

estimation of travel times for flight and land transport services, and loading and
unloading slots of cargo exchange services.

Noldep receives any events for its processes through streaming queues established
with UNICORN based on the select queries that were registered during the initial
registration of the process models. The core application of Noldep then pipes the
monitoring information of these queues to the Noldep web server. This web server
was set up at the start of the application and allows for local or remote interactions
with Noldep via a web browser.

Event Processing
In this section, we describe the Noldep implementation of the delay propagation in
Esper as motivated in Section 3. Noldep registers the event types EarliestStartTime,
ExpectedStartTime, ExpectedEndTime and ExpectedProcessTimes with the UNICORN
platform. These types share the attributes timestamp that symbolizes the time of oc-
currence of event instances and operatorId that relates instances with their respective
process step. An instance of the first three types has either one attribute startTime
or endTime based on the type while the latter has both. These attributes stand for
new estimates of the earliest or expected times of the respective step. However, only
the first three update the respective step in our application; the latter is the result
of the process time calculation based on EarliestStartTime and triggers the events
ExpectedStartTime and ExpectedEndTime.

In Algorithm 2, we see the respective Esper query that creates the event Expect-
edProcessTimes and implements the calculation rule as mentioned in Section 3. We

41

Beck et al.: Non-linear Delay Propagation of Event Based Business Processes

make use the Esper feature Joining Methods5 that allows the creation of join data in
the from clause via external Java calls. In this case, updateProcessTimes returns a single
event ExpectedProcessTimes based on the attributes operatorId and startTime of
the event EarliestStartTime. The function updateProcessTime queries external data
bases or web services based on its parameters to return an updated estimation of the
expected times of the affected step.

As mentioned before, ExpectedProcessTimes then triggers the creation of Expect-
edStartTime and ExpectedEndTime that are used to update the expected times of a
step in Noldep. ExpectedEndTime triggers an event EarliestStartTime of the succes-
sive step or none, if the step is the last in the sequence. To determine the identifier
of the successive step, we use the Esper feature User-Defined Functions (UDF)6.
UDFs may be used to return single Java Objects in the select and where clauses of the
queries. In this case, the method is a callback to our Noldep application that returns
the identifier of the successive process. Thus, these aggregation rules implement the
sequence that is used for non-linear propagation delay propagation as mentioned
in Section 3.

Algorithm 2 Creates ExpectedProcessTime based on the EarliestStartTimeEvent of
the same process step

select tr.operatorId as operatorId,
times.startTime as startTime,
times.endTime as endTime,
currentDate() as timestamp
from
EarliestStartTime.std:lastevent() as tr,
method:de.uni_potsdam.hpi.esper.Processes.updateProcessTimes(
tr.operatorId, tr.timestamp) as times

In order to trigger the sequence, a process step needs to be affected by an unex-
pected event or constraint that results in a delayed end time of the process step. In
Algorithm 3, a query is listed that creates an event ExpectedEndTime as a result

5 http://esper.codehaus.org/esper-5.0.0/doc/reference/en-US/html/epl_
clauses.html#joining_method, last accessed September 2015.

6 http://esper.codehaus.org/esper-5.1.0/doc/reference/en-US/html_
single/index.html#epl-function-user-defined, last accessed September
2015.

42

http://esper.codehaus.org/esper-5.0.0/doc/reference/en-US/html/epl_clauses.html#joining_method
http://esper.codehaus.org/esper-5.0.0/doc/reference/en-US/html/epl_clauses.html#joining_method
http://esper.codehaus.org/esper-5.1.0/doc/reference/en-US/html_single/index.html#epl-function-user-defined
http://esper.codehaus.org/esper-5.1.0/doc/reference/en-US/html_single/index.html#epl-function-user-defined

4 Implementation

of a traffic congestion. The event CongestionAhead is provided by the UNICORN
platform as a result of a congestion event returned by the external queue for traffic
status updates. We calculate the new expected end time based on the last event Ex-
pectedEndTime and the expected delay that is caused by the congestion. We use
an UDF to cast a date representation of type Java Long to Java Data. As mentioned
previously, these unexpected events are specific to a process step of a process and
need to be defined and registered for each of the steps individually.

Algorithm 3 Creates ExpectedEndTime as a result of the traffic update Congestion-
Ahead

select t.operatorId as operatorId,
de.uni_potsdam.hpi.esper.Utils.getDate(
t.timestamp.getTime() + c.predictedDelay) as timestamp

from pattern
[every t=ExpectedEndTime −>
c=CongestionAhead(operatorId=t.operatorId)
and not ExpectedEndTime(operatorId=t.operatorId)]

Interface
In Figure 3, the main view of the Noldep web interface is provided that displays the
process progression and status of a specific process. In this view, a line block graph
is displayed to visualize the current status of the selected process, its history and
its future. The sequential process step of the selected process are displayed from
bottom to top on the y-axis of the graph. For each process step, the current expected
start and end times are visualized by the start and end of the blue and green blocks
that are on the same y-level as the process step. The blue blocks of a step indicate the
sequence that was originally expected for the process step. The green blocks visualize
additional sequences that were introduced as an effect of delay propagation. The
red blocks visualize additional sequences that resulted from unexpected events. At
last, the grey bars in the background of the chart visualize the originally expected
process progression, that is, before any unexpected events and delay propagation.

43

Beck et al.: Non-linear Delay Propagation of Event Based Business Processes

Figure 3: The main view of the Noldep web interface

5 Related Work

With the growing number of Process Aware Information Systems, the possibilities for
time predictions increase. Different approaches like [2, 4] take advantage of historical
data from event logs to predict the remaining time for a running case. They model
processes by transition systems and annotate all states of the transition system with
time information from former process instances. For a running case, all information
from events are collected and the transition system is used to predict the remaining
time.

An approach presented in [3] uses the absence of events to predict the remaining
time of a running case. Therefore the process is modeled with a petri net instead of
an annotated transition system as the basis for time prediction. They not only use
the information from events for time prediction but also the passed time since the
last event occurred. So expected but not yet happened events can also influence the
predicted time.

The overall goal of all described approaches is to predict the time of a running
process instances correctly. With our approach, we had the same goal but with a
focus on the propagation of predicted times through a sequential process. Instead of
historical data from previous instances, we use production data from all stakeholder
of the process to calculate the remaining time context-sensitively.

6 Conclusion

The main purpose of this paper was the enrichment of event based business pro-
cesses with additional data and the delay propagation, as one case of interaction

44

References

between process steps. We proved that it is not sufficient to only consider a linear
propagation of delays and that there is a need to propagate delays in a non-linear
way. We introduced a new concept which deals with two different start times com-
bined with a depending end time and an enrichment with external information to
calculate and propagate delays. With the implementation, we have shown that we
are able to transfer the theoretical concept into a practical application use-case.

As our system is based on object oriented programming and relational database
models, it is limited by the events and external information that were implemented
and registered a priori. We are not able to handle unknown and unregistered events.

To enhance our concept of delay propagation, parallelism of processes should
taken into account. It should be possible that a process step has more than one
predecessor it depends on. With this it should be possible to model even more
complex and more real world scenarios.

References

[1] A. Baumgraß. Event processing in GET Service. English. Available at https:
//www.youtube.com/watch?v=bIVyr0rs9CE, 0:44 minute, last accessed
September 2015.

[2] M. Polato, A. Sperduti, A. Burattin, and M. de Leoni. “Data-aware remaining
time prediction of business process instances”. In: Neural Networks (IJCNN),
2014 International Joint Conference on. IEEE. 2014, pages 816–823.

[3] A. Rogge-Solti and M. Weske. “Prediction of remaining service execution time
using stochastic petri nets with arbitrary firing delays”. In: Service-Oriented
Computing. Springer, 2013, pages 389–403.

[4] W. M. Van der Aalst, M. H. Schonenberg, and M. Song. “Time prediction based
on process mining”. In: Information Systems 36.2 (2011), pages 450–475.

45

https://www.youtube.com/watch?v=bIVyr0rs9CE
https://www.youtube.com/watch?v=bIVyr0rs9CE

Location-Based Process Monitoring

Pascal Jung and Thomas Zwerg

Hasso-Plattner-Institut
{Pascal.Jung,Thomas.Zwerg}@student.hpi.uni-potsdam.de

In the world of logistics, the use of real-time information provides a great oppor-
tunity. Event Processing has thus become a crucial means. Combining event data
with information from external service providers yields further possibilities to
leverage the potential of these systems. In this paper, we therefore demonstrate
how location-based information such as routes or traffic events can be incorporated
in order to enrich data at hand and improve monitoring and planning capabilities.

1 Introduction

In times of Big Data and real-time information flow, Event Processing has become
a crucial tool for data management. Especially in the scope of logistics, a lot of data
comes in form of events, as for instance truck positions that are being emitted by GPS
sensors. In this paper, we investigate the integration of location-based information
in order to automatically process real-time events relevant to an on-going transport.

In our chosen use case, a truck is transporting goods from one site to another.
Our focus are not primarily the goods but the planning of the transport. From a
transportation planner’s perspective, it’s crucial to know when a certain transport
will be finished in order to be able to plan ahead. Knowing when a truck will deliver
helps to schedule that truck for further transportations, for example by plane or
train. There may be restrictions on the departure times, so in case a transport is
late for the transport by plane, a rescheduling is necessary. Knowing when a truck
arrives at its destination is a very central requirement in logistics that significantly
impacts efficiency. Obviously it’s not always possible to have a perfect estimated time
of arrival (ETA) from the beginning, since unexpected events such as accidents or
traffic jams can happen anytime. Thus it’s important to constantly reassess routes
and estimations.

To process all the information the scenario provides, we are using an event pro-
cessing platform called UNICORN [11]. Basically the platform’s functions are the
sending, receiving and processing of events. Input events for our chosen scenario
are for example truck orders and position updates which among other things help
to locate a specific truck. Knowing where the truck is and where it’s supposed to
drive helps to calculate the remaining driving distance and based on that the re-

47

mailto:{Pascal.Jung,Thomas.Zwerg}@student.hpi.uni-potsdam.de

Pascal Jung, Thomas Zwerg: Location-Based Process Monitoring

maining driving time. From the remaining driving time, an estimated time of arrival
can be derived. At the moment the ETA is only a very rough guess because it’s not
calculated based on an actual route not to mention actual traffic conditions. In the
current solution, the remaining driving distance is based on the shortest distance
between the current position and the destination. In other words it’s calculated as
the crow flies which for obvious reasons does not apply for a truck. Our task now is
to improve that calculation by incorporating additional real-time information, such
as route and traffic events. Once we know what routes will lead us to the desired
destination, those routes can be checked for traffic incidents that may impact our
choice of the best route. The incorporation of traffic events is particularly challenging,
because it requires the proper filtering and selection of potentially relevant events
(see Section 3.3). Based on an actual route and the according traffic conditions we can
calculate an accurate ETA. Besides, this approach allows the detection of potential
delays in case even the best route won’t let us get to the destination in time.

A basis for the functioning of our solution are recent developments in the field
of Complex Event Processing (CEP) frameworks and the establishment of Event-
Driven Architectures (EDA). Event-driven services that combine Service-Oriented
Architecture (SOA) and Complex Event Processing enable us to process streams of
heterogenous events on the fly. This integration builds a crucial prerequisite for the
effective monitoring and timely processing of incoming events, as for instance, the
GPS coordinates of a truck [3]. The approach to use Complex Event Processing for the
continuous analysis of events applied to the task of tracking goods and implement a
corresponding domain-specific function has been chosen before [7]. Our work builds
upon that approach and can be considered a continuation that is also inspired by
the GET Service project [4].

2 Architecture

To understand the implementation details, the following section gives a high level
overview on the solution’s architecture and highlights some of the central ideas
behind particular choices. The core implementation can be found in Section 3.

2.1 Back end and Front end

Our solution separates logic and presentation. The core of the solution is the back
end, taking care of all the important correlation and calculation steps throughout the
entire event processing. The front end, however, serves the purpose of visualizing
the results the back end provides during a transport. It displays all relevant data as

48

2 Architecture

Figure 1: A slightly simplified overview of the system

for instance, where the truck is located, when it will arrive and what relevant traffic
events there are en route. Since we are working with the event processing platform
UNICORN [11], we are following the publish-subscribe pattern. Our back end and
front end use the platform to benefit from its event processing capabilities and inter-
change event messages. Both, back end and front end, subscribe to the type of events
they plan to act upon in order to receive matching event information published by
the platform. It also works the other way around, because our application’s results
are also published back to the platform. The front end uses ActiveMQ [1], a Java
Messaging Service with AJAX capabilities, to obtain order and traffic information
from the platform over the web in real-time. More details on the application can be
found in Section 4.

2.2 Event Processing System

The functions of our solution are mainly driven by events, as shown in Section 1. It
shows a simplified version of the system’s architecture with the set of relevant events
and how they relate to each other.

The most important input event for the system is the Position Order Update (POU)
event. It’s a simple aggregation of the position update event and the truck order
event. Hence it contains information on the truck, its location and the according
order, which carries information on the start and end location and the delivery
deadline. Once this event has been processed by our application, the results are
published in the form of Traffic Notification (TN) and Truck Progress (TP) events.
A TN simply describes a traffic incident, it gives some information on the position,
the criticality and some textual description. The TP is the most important output of

49

Pascal Jung, Thomas Zwerg: Location-Based Process Monitoring

our application, it describes the current progress and contains an ETA. Since all the
available information on the truck itself, the routes and the traffic conditions go into
the calculation of an accurate ETA, it’s a rather complex task (see Section 3). Once
the TP is calculated, another simple aggregation can create a Truck Delay (TD) event,
in case a delay is detected. To detect a delay, the ETA is compared to the deadline. If
the ETA is greater, a delay is to be expected.

2.3 Custom Event Processing Agent leveraging Webservices

Our back end – an intermediate java application – takes care of the real-time event
processing, based on the POU events. Everything that happens inside our application
is initially triggered by the incoming events. The processing is repeated as long as
there are new events coming in. Through the use of external service providers for
routing and traffic information, real-time information is used to determine the best
route to drive. The consideration of traffic events for the choice of the route not only
helps to avoid busy or closed roads but also improves estimation accuracy because
driving speed will depend on the traffic conditions. Furthermore, if the current route
has to be discarded due to traffic incidents, those incidents can still be shown to the
planner in order to have some additional information and understand why the route
has changed.

2.4 Selecting a Service Provider

For the selection of the appropriate web service provider for routing and traffic
events, major providers, such as Google Maps [5], Nokia HERE [6], TomTom [10] and
Bing Maps [2] have been compared. While all of them provide some sort of routing
service, when it comes to traffic information, possibilities vary greatly. HERE was
most beneficial due to the possibility of querying traffic events only for a certain area,
plus the option to get additional traffic flow information. Since it fit the requirements
best, HERE has been used throughout the whole development process including
implementation, testing and demonstration of the solution.

3 Implementation in Detail

The general necessity for an intermediate application is based on the problem that
there are no providers publishing traffic notification data as events and that in this
implementation the calculation of the remaining distance and time depends on the
latest best available routing. Therefore, our application requires a trigger to repeat

50

3 Implementation in Detail

the request for a route and the corresponding traffic notifications. The trigger used for
recalculating the best route, distance and remaining time is received by subscribing
to the POU event channel of the underlying event processing platform. Once the
routing determination is completed, traffic notifications for this routing are retrieved,
validated and finally published as TP and TN events.

3.1 Determination of Routing, Estimated Driving Time and Delay

The basic assumption in this context is that since the application is able to determine
the current best route, the truck would also be able to be supplied with this informa-
tion. We can therefore assume that the truck is always taking the best available route.
Even if there is a deviation, e.g. a driver leaves the best route, the next best route gets
calculated immediately, triggered by the the next POU event that is received. The
eventual decision of the route itself is done by the traffic service provider. Since these
providers rarely provide driving speeds or durations for trucks, the time calculation
is done by the application. Basically, the remaining distance and a default average
speed can be used for calculating the remaining time. The default speed approach
can be improved as explained in Section 3.2. Further, for each traffic notification there
is a specific delay that represents the additional time needed to pass this incident.
These delays are added to the basic remaining driving time. The evaluation of a pos-
sible delay is completely done by the event processing platform which compares the
order’s planned arrival time with the remaining driving time in relation to the cur-
rent time. If the estimated arrival time, calculated by adding the remaining driving
time to the current time, is later than the deadline, a TD event is published.

3.2 Optimizing Estimated Driving Time and Delay by Introducing
Vehicle Profile

As previously discussed, the calculation of the remaining driving time as major part
of the overall remaining time can be approximated using a default average speed.
Since this is an approximative result, we improved it by introducing a Vehicle Profile
(VP). This profile allows the application to provide a very accurate determination of
the remaining time. The VP basically consists of a mapping of Road Category (RC)
to average speed as well as a default speed as a fallback value to be used in case the
RC cannot be determined or the speed of a particular RC is not set. All defined RCs
and estimated speed values for testing purposes are summarized in Table 1. As a
fallback, 60km/h, the average speed for trucks, is used [8]. The main advantage of
this VP is the high degree of specification. That is, there can be a specific speed for
every single RC or even a dedicated profile per driver based on historic driving data.

51

Pascal Jung, Thomas Zwerg: Location-Based Process Monitoring

Table 1: Road categories for vehicle profiles with example values used by the test
application (based on [9])

Category Description Speed in km/h

0 motorway (Autobahn) 85
1 federal highway (Bundesstraße) 70
2 country road (Landstraße) 60
3 freeway (Schnellstraße) 80
4 town road (innerstädtische Straße) 30

3.3 Relevance Determination of Traffic Notifications

The relevance of a TN is defined as being present on the current best route (A) or on
the default route (B). The default route is the route that would have been taken if there
had not been any incidents. The best route is defined as the best recommendation
of the selected service provider. This dual approach is used in order to provide
best possible information on TNs causing a delay in the case of A and to show why
there had been a rerouting in case of B. Otherwise the recipient that is consuming
events may not know why there had been a change of routing. Similarly, currently
no service that has been reviewed offers TNs published as events. Therefore, this
functionality is added by the intermediate application as well. This again results in
using web services, processing its responses and creating events from the outcome
of the processing step. There are many possibilities of specifying which TNs should
be queried within a single web service call.

It is possible to specify a position and a radius, a geographical rectangle or in case
of HERE it is also possible to provide a corridor’s coordinates and a width argument
to request all TNs within this specific area. The latter is what is used. However, based
on this approach, some irrelevant notifications are still sent. This may happen, if a
TN is located on an intersecting street or a parallel road. In order to eliminate those
irrelevant notifications we perform a re-validation step. The general concept of this
re-validation is based on the shape coordinates of the routes segments (cf. Figure 2).

For each segment of a route, e.g. a particular route between two consecutive driv-
ing instructions, there are coordinates modeling the exact layout of this road. For
every two consecutive coordinates we calculate a rectangle using an offset parameter
that describes the distance to both sides of the road. Additionally, it uses the end
coordinates of one rectangle and the start coordinates of the following rectangle
in order to calculate an additional figure in between. This is important because it
prevents false negative determinations since bends would cause large gaps at least

52

3 Implementation in Detail

Figure 2: Coordinates validation concept based on road shape coordinates, schematic
a) simple approach calculating polygons based on shape coordinates of the route
b) advanced re-validation taking gaps between subsequent polygons into account
to avoid false negative determinations b) has been used to validate the positions
of TNs

on one side of the road. Eventually it checks whether the start and end coordinates
of the TN are inside one of the polygons as shown in Figure 5 (appendix).

Furthermore, using multiple polygons instead of one large polygon supports faster
calculation, since it only computes polygon corner positions until TN coordinates
are validated inside. In contrast to that, one big polygon would need all corner
coordinates to validate the TN. Resulting from this validation, TN events are only
created for notifications that are explicitly detected as being on the remaining route
or the default route as declared in the beginning of this section.

3.4 Further Optimization

In order to increase the precision of the remaining driving time, it should be con-
sidered to create profiles specific to a certain driver or segments of a route. These
values could then be reused as input for VPs. Since this data has not been available
during development, it is not part of the application yet.

Another validation strategy can be to calculate the angle between the connection
of TN’s start and end coordinates and the connection of corresponding surrounding
route coordinates. In case that angle is smaller than a certain threshold, it can be
treated as relevant.

53

Pascal Jung, Thomas Zwerg: Location-Based Process Monitoring

Figure 3: The event replayer helps to control the application for demonstration pur-
poses

4 Application

In the following, the exemplary transport from Rosendaal to Eindhoven illustrates
the functionality and benefits of our solution. Just as this transport, all data used by
the application is taken from the real world. In order to speed up the demonstration
and simplify its repeatability, the data has been cached. An event replayer helps to
choose between three previously calculated scenarios (see Figure 3).

Once a scenario has been chosen, the replayer sends the truck’s traces to the plat-
form, simulating the driving of the truck. The traces are then converted into events
and eventually result in POUs that go into our application. Once the processing as
described in Section 3 is done, the TP and TN are published, in case of a delay, a
TD as well. Throughout the entire time of the transport, the front end continuously
displays the changes as soon as they have been processed. The front end therefore
supports the planner by summarizing the most important information in a very
concise manner (Section 4).

With the aid of the front end we fully benefit from our fairly complex and otherwise
hidden solution. The reduction to a simple and clear user interface (UI) helps to get an
overview of the most relevant data without having to understand what’s happening
in the background. The UI shows us exactly where the truck is at any time, what is
to be expected on the road ahead of the truck and above all, it let’s us know when to
expect the delivery at the final destination (cf. Figure 4). A status indicator informs
whether the transport is on time or delayed. If there are significant problems on the
road they will also be displayed and explained (see Figures 6 and 7). A planner can

54

5 Conclusion

Figure 4: The front end displays important information on the transport from
Roosendaal to Eindhoven

now easily monitor his transportations and see whether or not he needs to take action.
Further, the ability to inform the customer early may lead to an increase of customer
satisfaction and also save costs. In addition to that, the traffic-based rerouting leads
to a more efficient driving and increases the competitiveness on the market.

5 Conclusion

In this paper, we presented a solution to the integration of routing and traffic infor-
mation for the better planning and monitoring of logistics processes. We did this
by using external webservices that provided us with real data on routes and traffic
conditions. In particular, we improved the planning capabilities by determining an
accurate and realistic estimated time of arrival. Based on that, we further imple-
mented a delay detection and notification system. The truck progress is a useful side
product that also forms part of our solution and gives insiqht on how far the delivery
has come at any moment. The introduction of our concept of road categories and
customizable vehicle profiles has led to further improvement of the results. We have
shown how important it is, to have an exact estimated time of arrival in order to
increase flexibility and efficiency. Using our presented solution, it is now possible
to anticipate problems on the road and do a timely replanning. Saving costs due to
the avoidance of penalties or extra fees for coming late without notifying the cus-
tomer and increasing customer satisfaction due to a better communication and more
reliability in the estimations are side effects that are to be expected but yet have to

55

Pascal Jung, Thomas Zwerg: Location-Based Process Monitoring

be verified. Last but not least, there is still room for improvements. Since this is one
of the first attempts of integrating routing and traffic data in the context of event
processing, further developments can be expected in the future.

Appendix

Figure 5: Requisition and re-validation of traffic notifications

56

References

Figure 6: Due to an accident, a road that has been part of our initial route was closed.
After the rerouting has been applied, the truck’s estimated time of arrival is still
within schedule.

Figure 7: A finished transport that arrived on schedule, no traffic incidents occurred

References

[1] Apache ActiveMQ: open source messaging and Integration Patterns server. Available
at http://activemq.apache.org/, last accessed September 2015.

[2] Bing Maps: Choose Your Bing Maps API. Available at http://www.microsoft.
com/maps/choose-your-bing-maps-API.aspx, last accessed September
2015. 2015.

57

http://activemq.apache.org/
http://www.microsoft.com/maps/choose-your-bing-maps-API.aspx
http://www.microsoft.com/maps/choose-your-bing-maps-API.aspx

Pascal Jung, Thomas Zwerg: Location-Based Process Monitoring

[3] A. Buchmann, H.-C. Pfohl, S. Appel, T. Freudenreich, S. Frischbier, I. Petrov,
and C. Zuber. “Event-Driven Services: Integrating Production, Logistics and
Transportation”. In: 2nd International Workshop on Service Oriented Computing
in Logistics (SOC-LOG). San Francisco, USA, Dec. 2010.

[4] GET Service: Efficient Transportation Planning and Execution. Available at http:
//getservice-project.eu/, last accessed September 2015. 2015.

[5] Google Maps API. Available at https://developers.google.com/maps/,
last accessed September 2015. 2015.

[6] HERE Developer Portal. Available at https://developer.here.com, last
accessed September 2015. 2015.

[7] T. Metzke, A. Rogge-Solti, A. Baumgrass, J. Mendling, and M. Weske. “En-
abling Semantic Complex Event Processing in the Domain of Logistics”. In:
Service-Oriented Computing – ICSOC 2013 Workshops – CCSA, CSB, PASCEB,
SWESE, WESOA, and PhD Symposium, Berlin, Germany, December 2–5, 2013. Re-
vised Selected Papers. 2013, pages 419–431. doi: 10.1007/978-3-319-06859-
6_37.

[8] A. Pumberger Fessl. Lkw-Geschwindigkeitsverhalten auf Autobahnen. Available at
http://media.arbeiterkammer.at/wien/Verkehr_und_Infrastruktu
r_44.pdf. Wien, 2011.

[9] W. H. Schulz. Industrieökonomik und Transportsektor: Marktdynamik und Marktan-
passungen im Güterverkehr. Kölner Wissenschaftsverlag, 2004.

[10] TomTom Developer Portal. Available at http://developer.tomtom.com/, last
accessed September 2015. 2015.

[11] Unicorn: plattform capture and process real-world events from different sources. Avail-
able at http://bpt.hpi.uni-potsdam.de/UNICORN, last accessed Septem-
ber 2015.

58

http://getservice-project.eu/
http://getservice-project.eu/
https://developers.google.com/maps/
https://developer.here.com
http://dx.doi.org/10.1007/978-3-319-06859-6_37
http://dx.doi.org/10.1007/978-3-319-06859-6_37
http://media.arbeiterkammer.at/wien/Verkehr_und_Infrastruktur_44.pdf
http://media.arbeiterkammer.at/wien/Verkehr_und_Infrastruktur_44.pdf
http://developer.tomtom.com/
http://bpt.hpi.uni-potsdam.de/UNICORN

Location-based Process Monitoring: Location and Weather

Lucie Omar and Marvin Richter

Hasso-Plattner-Institut
{Lucie.Omar,Marvin.Richter}@student.hpi.uni-potsdam.de

Execution of process models can be affected by correlated external data from differ-
ent sources. In the context of transportations in logistics a lot of spatiotemporal
events are present with varying impact on the actual transport. We are faced with
the challenge to determine relevant relations between them. This paper presents an
application which prototypically closes this gap and provides the ability to extract
information from event producing services that is beneficial for the transportation
process in logistics. The functionality of this application is explained by the use of
an demonstration.

1 Introduction

Modeling and improving business processes is essential for the success of enterprises.
In addition being executed efficiently and correct, it is important to monitor the pro-
cess execution [4]. Since the availability of event data increases and the geographical
traceability of vehicles and physical objects improved with technologies such as the
Global Positioning System (GPS) or Radio-Frequency Identification (RFID), a more
detailed tracking of individual business tasks is enabled. These available data can
be used to support process monitoring based on location [1]. In [5], it is argued that
taking the particular context of geospacial information in the various lifecycle steps
of Business Process Management (BPM) into account can contribute to improve the
effectiveness and efficiency of process management.

On a daily basis, planners at transportation companies plan transportations for
different routes and means of transportation. There, transportation resources are
assigned to transportation orders. In the ideal case, the transportation takes places
just the way it was planned. In reality, transportations in different locations are
influenced by unexpected events happening in different places.

The location of these unexpected events is very important, e.g. a strike at an airport,
storm on the water or icy conditions on the road are only relevant in case they
are close to places where the transportation is executed. Here, also the state of the
transportation execution as well as related objects must be considered, as information
about icy roads are only important on those streets that the truck still has to drive
on. That means location-based information plays an important role in transportation

59

mailto:{Lucie.Omar,Marvin.Richter}@student.hpi.uni-potsdam.de

Lucie Omar, Marvin Richter: Location-based Process Monitoring: Location and Weather

processes. The mapping of concrete points to an area with changing conditions is
a major issue regarding location-based information. While the truck continuously
drives on a route, real time information about the location becomes necessary. That
raises the question, whether unexpected events should be considered for planning
and executing transportations in location-based process monitoring. Furthermore,
questions about the ability to support the planner in reacting to these relevant events
and determine intersections between the location-based transportation information
and relevant events have to be answered.

This paper presents a novel approach to enrich location-based process monitoring
in logistics with unexpected weather events, while also considering the state of the
execution. Ultimately, the usefulness of having access to these information will be
determined. Therefore, we create a running scenario, which will be presented in
Section 2 as well as insight into the current usage of weather events. The remainder
of this paper is structured as follows. Section 3 presents the architecture and imple-
mentation details of our prototypical application which is tested in Section 4. Finally,
Section 5 presents the conclusion as well as an outlook.

2 Scenario

In this section, we focus on narrowing down the general challenges of location-based
monitoring. For this purpose, we introduce a specific scenario inspired by GET Ser-
vice1. It outlines the importance of our approach and will be used as a running
scenario throughout the paper, especially to test our approach and decide, if a plan-
ner would benefit from knowledge about intersections between the transportation
routes and weather events during the planning and execution of transportations.

In our scenario, a transportation planner is responsible for planning and re-planning
transportations. Focusing on the transportations by truck, a planner is responsible
for 50–150 trucks on different routes on a daily basis. He has access to the route
coordinates, since he plans the route with a routing service and the regular truck
position updates that are sent by the trucks. In this planning process, there is a lack
of weather information. This makes the planner’s reaction regarding weather events
passive, because he can only react after it occurred. A truck driver for example con-
tacts the planner that he had an accident due to icy roads. Once the planer gets that
information, he has to re-plan the transportation. That results in major delays and
much additional work for the planner, which is time consuming and expensive. The

1 http://www.getservice-project.eu/, last accessed September 2015.

60

http://www.getservice-project.eu/

3 Architecture

only way that weather is used in the planning process is by decreasing the aver-
age speed in the planning process during the winter season, but that certainly not
enough.

Our approach aims at providing the planner with real time information about
weather alerts, which correlate with his routes, to give him the possibility to react
actively instead of passively. Being able to act before the weather event occurs, sup-
ports the prevention of weather related accidents and delays. In order to disburden
the planner, only relevant weather alerts should be sent. We define relevant weather
alerts as the ones that intersect with the remaining transportation route, which means
the truck driver still has to pass that area. Furthermore, we selected a transportation,
in which a truck is the means of transportation. The route goes from Cologne to
Mannheim.

3 Architecture

This section describes the architecture and the implementation details of our weather
warning system. This implementation is used in Section 4 in the context of the sce-
nario described in Section 2. Figure 1 provides an overview about the main compo-
nents of our application. The weather warning system consists of functional com-
ponents querying, transforming and producing events, in particular spatiotemporal
events. Spatiotemporal events are defined as ‘events that happen in a certain location
and at a certain point in time’ [3].

All components obtain their corresponding events from the event receiver which
subscribes to previously registered Java Message Service (JMS) queues. In our case
Apache ActiveMQ2 is used as a JMS provider, which delivers events published by
Unicorn3, a platform for capturing and processing real-world events using ESPER as
an event processing engine4. The events are supplied in JSON format. Thus the event
receiver is responsible for parsing and passing them on to one associated component.

There are three event producers that matter to the weather warning system: The
truck, sending position updates frequently, a weather service, providing weather warn-
ings, and the planner, entering the route information in form of a polygonal chain
of route coordinates. In addition, the weather warning system contains a persistence

2 Apache ActiveMQ: open source messaging and Integration Patterns server. http://
activemq.apache.org/, last accessed September 2015.

3 Unicorn: plattform capture and process real-world events from different sources. http:
//bpt.hpi.uni-potsdam.de/UNICORN, last accessed September 2015.

4 http://www.espertech.com/products/esper.php, last accessed September 2015.

61

http://activemq.apache.org/
http://activemq.apache.org/
http://bpt.hpi.uni-potsdam.de/UNICORN
http://bpt.hpi.uni-potsdam.de/UNICORN
http://www.espertech.com/products/esper.php

Lucie Omar, Marvin Richter: Location-based Process Monitoring: Location and Weather

U
n
ic

o
rn

Weather Warning System

Truck

Event Receiver

Routes

Weather

Service

Queries
Persistence Layer

Relevance

Checker

Route

Registration

Route

Weather

Correlation

RRR

Planner

plan route

Database

Figure 1: Architecture of the weather warning system

layer to provide an uniform interface to access data. On the one hand administrative
data in form of subscription queries are available, on the other hand mutable data in
form of route information with correlated WeatherWarning events are made accessi-
ble. The core of the weather warning system comprises three main components: the
route registration, the weather route correlation and the relevance checking component.

The route registration component provides the ability to collect 2D coordinate
events referring to predefined relevant routes. These coordinates will be stored in
the form of an open polygon in a local route storage via the persistence layer. After
the transport is completed, these route data will be removed.

The weather route correlation component is triggered by each incoming Weath-
erWarning event. It is responsible for correlating the incoming event to all routes
stored in the route storage. To perform necessary geospatial operations we choose

62

4 Application

the JTS Topology Suite5. It is a Java library that provides a geometry object model,
including points, lines and polygons, and implements the Open Geospatial Con-
sortium (OGC) API consisting of essential 2D geometric functions. In our case we
utilize the intersection functions on polygons to establish the correlation between
the area of the WeatherWarning, presented as closed polygonal geometry, and the
open polygonal chain of the route coordinates. Once an intersection is detected this
component creates a WeatherOnRoute event with references to the respective route
and weather event.

The relevance checker is used to detect if the determined WeatherOnRoute events
make an impact on the respective truck. The component is triggered by each incom-
ing truck position update. The truck coordinates are generally imprecise and need
to be correlated to the route in order to determine the remaining route. Due to the
fact that a rough approximation is sufficient (weather events have blurred borders),
we choose an obvious approach. We determine the route coordinate with the mini-
mal distance from the truck position as the start point of the remaining route. If an
impact is detected a WeatherWarningAhead event, enriched by additional information
as for instance the calculated distance between the truck and the weather area, will
be produced. Since the truck and the weather events are spatiotemporal events, it
is possible to derive temporal and spatial relations between these events and build
up a spatiotemporal pattern and a distance network respectively, as discussed in [2].
Once a WeatherOnRoute event is processed at this stage, it is going to be removed
from local storage.

An alternative implementation approach could have been to extend the ESPER
query language by the OGC Geospatial Functions. However, that would result in
a dependence on ESPER based event processing systems. Our implementation, in
contrast, could be embedded into every event processing network.

4 Application

In this section, we use the running scenario to test our approach. In addition to the
route coordinates that represent the transportation route from Cologne to Mannheim,
we use the truck position updates that the truck sends. These are the two event
types, the transportation planner has access to. A screencast demonstrating our
approach can be found at: http://bpt.hpi.uni-potsdam.de/UNICORN, last ac-
cessed September 2015.

5 JTS Topology Suite: API of 2D spatial predicates and functions. http://www.
vividsolutions.com/jts/JTSHome.htm, last accessed September 2015.

63

http://bpt.hpi.uni-potsdam.de/UNICORN
http://www.vividsolutions.com/jts/JTSHome.htm
http://www.vividsolutions.com/jts/JTSHome.htm

Lucie Omar, Marvin Richter: Location-based Process Monitoring: Location and Weather

For this demonstration, three weather events are used, which are based on the
weather events from the German Weather Service (DWD). These three weather alerts
have been chosen, so three different cases can be demonstrated in the following. The
result produced by our weather warning system is then compared to the visualiza-
tion of the scenario. Google Maps is used to visualize the route coordinates (com-
bined to a line), the truck position and the alert area, as seen in the legend in Figure
2d.

(a) Snowfall Advisory

(b) Icy Roads Advisory

(c) Frost Advisory

(d) Legend

Figure 2: Visualization of the weather warning events

Snowfall Advisory
The first weather alert is the snowfall advisory. As seen in Figure 2a, there is no
intersection between the route and the alert area. Hence, it is not a relevant weather
alert in our running scenario. As shown in Figure 3, the weather warning system
does not associate the alert with the route, which is correct.

Icy Roads Advisory
As a second weather alert we have the icy roads advisory, which is effective in the
Cologne area, as shown in Figure 2b. This event has an intersection with the trans-

64

4 Application

portation route. Since the truck is driving from Cologne to Mannheim and is already
south of Cologne, it is not on the remaining route and therefore not a relevant weather
alert. The weather warning system checks the whole route for an intersection with
the weather alert polygon and correctly determines the icy roads advisory intersects
with the transportation route. In the second step, the system computes the remaining
route according to the latest truck position. In this case, it determines correctly that
the alert area is not on the remaining route.

Frost Advisory
The third weather alert is the frost alert, which is effective in the Gernsheim area. As
seen in Figure 2c, there is an intersection between the route and the alert polygon.
This time, the truck position is north of this area and the truck is still driving towards
the frost advisory area. This makes it a relevant event and a WeatherWarningAhead
event should be sent. The weather warning system determines that the route in-
tersects with the alert area. In the second step, based on the remaining route, it
determines that the truck is driving towards the alert area and the WeatherWarningA-
head event is sent. This is correct, since this complies with our definition of a relevant
weather alert for the transportation planner.

Figure 3: Weather warning system output

Even though three weather alerts were evaluated by the weather warning system
(see Figure 3), only one WeatherWarningAhead event is sent to the planner. This is the
relevant weather warning, which is enriched with information about the transporta-
tion route, the latest truck position and the distance between the latest truck position
and the entrance point to the alert area. Figure 4 visualizes these information as well
as a map showing the route, the alert area and the latest truck position. This gives
the planner the possibility to react to the weather warning in real time. It enables the

65

Lucie Omar, Marvin Richter: Location-based Process Monitoring: Location and Weather

Figure 4: Possible visualization of the WeatherWarningAhead event

planner to actively decide, if re-planning should be used to adjust the transportation
route in order to avoid the alert area. This decision can be made by means of the kind
of weather alert, the distance to the alert area, the severity level and the expertise of
the transportation planner.

5 Conclusion

In this paper, we addressed the challenge of mapping concrete points to areas with
changing conditions referring to moving trucks on different routes and possible
intersections with unexpected weather events. It resulted in the question, whether
weather events should be considered for transportations in logistics. To cope with
those challenges, we proposed an application that determines relevant weather
events and creates a new event with valuable information about the weather alert,
the truck and the route, enriched with distance information. To test our application,
we have sent manipulated events and compared the expected results with the output
of our application. All results were accurate. The application enables the planner to
use relevant weather information in the planning and the execution of transporta-

66

References

tions. That gives him the chance to intervene before the event affects the truck. Thus,
we recommend including weather information in the transportation process.

At the current state we have implemented a prototype that merely serves as a
proof of concept. In the following we want to propose conceivable improvements.
By now there are no filtering methods implemented that consider the expected
impact of weather events on the transportation. On the basis of historical data and
empirical knowledge an ordinal property might be introduced to describe the degree
of influence. On this basis, one can filter weather events of interest, provided that a
proper threshold is chosen. In our case we confine ourselves to considering weather
events. Thus, a next step could be to generalize the presented concepts.

Furthermore, we merely considered the German Weather Service. In our future
work we will, therefore, also investigate other weather services, among other tasks
this includes additional transformation rules in the normalization phase for their
integration.

References

[1] C. Cabanillas, C. D. Ciccio, J. Mendling, and A. Baumgrass. “Predictive Task
Monitoring for Business Processes”. In: BPM’14. 2014, pages 424–432.

[2] B. M. Foued Barouni. “An Extended Complex Event Processing Engine to Qual-
itatively Determine Spatiotemporal Patterns”. In: Global Geospatial Conference.
2012.

[3] H. H. and B. Moulin. “A framework to support qualitative reasoning about
COAs in dynamic spatial environment”. In: Journal of Experimental and Theoret-
ical Artificial Intelligence 22.4 (2010), pages 341–380.

[4] M. Weske. Business Process Management: Concepts, Languages, Architectures. En-
glisch. Auflage: 2nd ed. 2012. Heidelberg ; New York: Springer, 2012.

[5] X. Zhu, G. Zhu, S. van den Broucke, J. Vanthienen, and B. Baesens. “Towards
location-aware process modeling and execution”. In: Business Process Manage-
ment Workshops. 2014, pages 186–197.

67

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

101 978-3-86956-346-6 Exploratory Authoring of
Interactive Content in a Live
Environment

Philipp Otto, Jaqueline Pollak,
Daniel Werner, Felix Wolff,
Bastian Steinert, Lauritz
Thamsen, Marcel Taeumel,
Jens Lincke, Robert Krahn,
Daniel H. H. Ingalls, Robert
Hirschfeld

100 978-3-86956-345-9 Proceedings of the 9th Ph.D.
retreat of the HPI Research
School on service-oriented
systems engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch, Tobias
Friedrich (Hrsg.)

99 978-3-86956-339-8 Efficient and scalable graph view
maintenance for deductive graph
databases based on generalized
discrimination networks

Thomas Beyhl, Holger Giese

98 978-3-86956-333-6 Inductive invariant checking
with partial negative application
conditions

Johannes Dyck, Holger Giese

97 978-3-86956-334-3 Parts without a whole? : The
current state of Design Thinking
practice in organizations

Jan Schmiedgen, Holger
Rhinow, Eva Köppen,
Christoph Meinel

96 978-3-86956-324-4 Modeling collaborations in self-
adaptive systems of systems :
terms, characteristics,
requirements and scenarios

Sebastian Wätzoldt, Holger
Giese

95 978-3-86956-324-4 Proceedings of the 8th Ph.D.
retreat of the HPI research school
on service-oriented systems
engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch

94 978-3-86956-319-0 Proceedings of the Second HPI
Cloud Symposium “Operating
the Cloud” 2014

Sascha Bosse, Esam Mohamed,
Frank Feinbube, Hendrik
Müller (Hrsg.)

93 978-3-86956-318-3 ecoControl : Entwurf und
Implementierung einer Software
zur Optimierung heterogener
Energiesysteme in
Mehrfamilienhäusern

Eva‐Maria Herbst, Fabian
Maschler, Fabio Niephaus,
Max Reimann, Julia Steier,
Tim Felgentreff, Jens Lincke,
Marcel Taeumel, Carsten Witt,
Robert Hirschfeld

Technische Berichte Nr. 102

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the
Master Seminar on
Event Processing
Systems for Business
Process Management
Systems
Anne Baumgraß, Andreas Meyer, Mathias Weske (Hrsg.)

ISBN 978-3-86956-347-3
ISSN 1613-5652

	Title
	Imprint

	Preface
	Contents
	Monitoring Batch Regions in Business Processes
	1 Introduction
	2 Motivating Example and Requirements
	3 Batch Monitoring Approach
	4 Batch Monitoring Tool
	4.1 Architecture
	4.2 Implementation

	5 Example Use Case
	6 Conclusion and Future Work
	References

	Multi Instance Monitoring
	1 Introduction
	2 Concept
	3 Implementation
	3.1 Queue Listener
	3.2 Meteor and MongoDB

	4 Showcase
	4.1 Demo Story 1
	4.2 Demo Story 2

	5 Conclusion
	Appendix
	References

	DRAGON – Deadline Propagation Transcending the Boundaries of Processes
	1 Introduction
	2 Use Case
	3 Data Model and Architecture
	4 Propagation algorithm
	5 Application
	6 Conclusion and Outlook
	Appendix
	References

	Non-linear Delay Propagation of Event Based Business Processes
	1 Introduction
	2 Foundations
	3 Delay Propagation for sequential Processes
	3.1 Fundamental principle
	3.2 The use of event processing

	4 Implementation
	5 Related Work
	6 Conclusion
	References

	Location-Based Process Monitoring
	1 Introduction
	2 Architecture
	2.1 Back end and Front end
	2.2 Event Processing System
	2.3 Custom Event Processing Agent leveraging Webservices
	2.4 Selecting a Service Provider

	3 Implementation in Detail
	3.1 Determination of Routing, Estimated Driving Time and Delay
	3.2 Optimizing Estimated Driving Time and Delay by Introducing Vehicle Profile
	3.3 Relevance Determination of Traffic Notifications
	3.4 Further Optimization

	4 Application
	5 Conclusion
	Appendix
	References

	Location-based Process Monitoring: Location and Weather
	1 Introduction
	2 Scenario
	3 Architecture
	4 Application
	5 Conclusion
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

