
Technische Berichte Nr. 100

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the 9th
Ph. D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch,
Tobias Friedrich (Hrsg.)

ISBN 978-3-86956-345-9
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 100

Christoph Meinel | Hasso Plattner | Jürgen Döllner | Mathias Weske |
Andreas Polze | Robert Hirschfeld | Felix Naumann | Holger Giese |

Patrick Baudisch | Tobias Friedrich (Hrsg.)

Proceedings of the 9th Ph. D. Retreat
of the HPI Research School

on Service-oriented Systems Engineering

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2016
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.

Online veröffentlicht auf dem Publikationsserver der Universität Potsdam
URN urn:nbn:de:kobv:517-opus4-83347
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-83347

Zugleich gedruckt erschienen im Universitätsverlag Potsdam:
ISBN 978-3-86956-345-9

mailto:verlag@uni-potsdam.de

Contents

Preface vii

Towards Analysis of Public Social Data to Improve Situational Awareness . . . 1
Aragats Amirkhanyan

Optimization of Decision Making in Business Processes 9
Ekaterina Bazhenova

Model Synchronization for Complex Industrial Systems 21
Dominique Blouin

Runtime data-driven software evolution in enterprise software ecosystems . . 33
Thomas Brand

See-Through Lenses for Massive 3D Point Clouds 43
Sören Discher

Formal Approaches and Failure Cause Models for Software Dependability . . 51
Lena Feinbube

Checks and Balances: Object-Constraints Without Surprises 63
Tim Felgentreff

Towards Efficient Processing of Multi-Temporal 3D Point Clouds: Refactoring the
Processing Workflow . 73

Dietmar Funck

Utility-Driven Modularized MAPE-K loop architectures for Self-adaptive
systems . 85

Sona Ghahremani

Editing Metamaterials, Creating Mechanisms . 97
Alexandra Ion

Profiling the Web of Data . 113
Anja Jentzsch

v

Contents

BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects 123
Robert Kovacs

Robustness of Estimation of Distribution Algorithms to Noise 133
Martin Krejca

Impacto: Simulating Physical Impact by Combining Tactile Stimulation with
Electrical Muscle Stimulation . 141

Pedro Lopes

Integrating Complex Event Processing to Case Management 157
Sankalita Mandal

Exploring Latent Factors in Code Artifacts . 169
Toni Mattis

Adaptive Data Structure Optimization for Evolving Dynamic Programming
Languages . 181

Tobias Pape

Trading Something In for an Increased Availability 191
Daniel Richter

Analysis of Distributed Algorithms on Scale-free Networks 201
Ralf Rothenberger

Linespace: A Sensemaking Platform for the Blind 211
Thijs Roumen

Cluster-based Sorted Neighborhoods for Deduplication 223
Ahmad Samiei

Time-travel Queries for Omniscient Database Debuggers 235
Arian Treffer

Video Classification with Convolutional Neural Network 245
Cheng Wang

vi

Preface

This is the 100th technical report of the Hasso Plattner Institute (HPI) and the pro-
ceedings of the 2015 edition of the annual retreat of HPI’s research school on “Service-
Oriented Systems Engineering”. Within the past 10 years, more than 100 Ph. D. stu-
dents have graduated from HPI, with more than 30 graduates from the HPI research
school among them.

The topic “Service-Oriented Systems Engineering” serves as an underlying theme
for many dissertation projects at HPI. Design and implementation of service-oriented
architectures present numerous research questions from the fields of software en-
gineering, system analysis and modeling, adaptability, and application integration.
Service-oriented systems engineering represents a symbiosis of best practices in
object orientation, component-based development, distributed computing, and busi-
ness process management. It allows for integration of business and IT concerns and
denotes an important research topic with high potential in academic research and
industrial application.

Looking back at a history of 10 years, the annual retreat of HPI’s research school
offers to all of its members the opportunity to present their ongoing research. Due
to the interdisciplinary structure of the research school, this technical report covers
a wide range of topics. These include but are not limited to: Human Computer Inter-
action and Computer Vision as Service; Service-oriented Geovisualization Systems;
Algorithm Engineering for Service-oriented Systems; Modeling and Verification of
Self-adaptive Service-oriented Systems; Tools and Methods for Software Engineer-
ing in Service-oriented Systems; Security Engineering of Service-based IT Systems;
Service-oriented Information Systems; Evolutionary Transition of Enterprise Appli-
cations to Service Orientation; Operating System Abstractions for Service-oriented
Computing; and Services Specification, Composition, and Enactment.

Prof. Dr. Andreas Polze, Speaker HPI Research School
Prof. Dr. Robert Hirschfeld, Coordinator HPI Research School

vii

Towards Analysis of Public Social Data to Improve
Situational Awareness

Aragats Amirkhanyan

Internet Technologies and Systems
Hasso-Plattner-Institut

Aragats.Amirkhanyan@hpi.de

Nowadays, social networks are essential parts of modern life. People posts
everything what happens with them and what happens around them. Such data
are widely used for analyzing and detecting global events and trends in social
networks. But since the amount of data producing by social networks increases
dramatically every year, and users start to post geo-tagged messages more often,
we are getting a possibility to detect more local and geo-spatial events.

In the report, I provide my view of how to use publicly available data to detect
geo-spatial events. Especially, I am interested in detecting crime events, and by
this way, improve situational awareness. In this report, I provide my progress of
doing research in this area including a description of methods for collecting data,
processing data, advanced searching and a description of the web application that
is aimed to provide a possibility to investigate collected geodata.

1 Introduction

Nowadays, Social Media services produce a huge amount of public data. And re-
searchers are very interested in analyzing such data for different purposes. And
many research papers of past years confirm that public data can be very valuable in
different scenarios. These data become more valuable when they are mapped to the
online geographic map that gives us wide range of possibilities for analyzing.

Sakaki et al. [12] use Twitter users as social sensors to detect earthquake shakes.
They investigated the real-time interaction of events, such as earthquakes, in Twitter
and proposed an algorithm to monitor tweets and to detect a earthquake target event.

Another use-case of using public data to detect threats was presented by
De Longueville et al. [3]. In the paper, they showed how location-based social net-
works (LBSN) can be used as a reliable source of spatio-temporal information, by
analyzing the temporal, spatial and social dynamics of Twitter activity during a
major forest fire event in the South of France in July 2009.

Also, there are many papers that are aimed to use location-based social networks
to understand user behavior around some area or to explore the area around in order
to improve situational awareness [9, 11, 13, 15, 16].

Social networks are very reflective to global events, such as earthquakes or forest
fires, but the amount of data, produced by social media services, increases every
year dramatically, and it gives us a possibility to use these data to detect also local
events. In 2013, Walther et al. [14] presented the paper, where they have shown how
to detect local geo-spatial events in the twitter stream. According to the authors, they

1

mailto:Aragats.Amirkhanyan@hpi.de

A. Amirkhanyan: Towards Analysis of Public Social Data to Improve Situational Awareness

are interested in detecting local events, such as house fires, on-going baseball games,
bomb threats, parties, traffic jams, Broadway premiers, conferences, gatherings and
demonstrations in the area they monitor.

The idea of detecting the local geo-spatial events is quite interesting. And with the
trend of increasing the popularity of location-based social networks and geo-tagged
content, we can suppose that in near future all events happening around will be
reflected in location-based social networks and blogs. Therefore, I am interested in
using the idea of detecting local geo-spatial events as a basement and go further, and
I would like to use publicly available data to detect geo-spatial crime events [6, 10].
Now, I am going in this direction and this report presents the current state of the
research project.

The remainder of the paper is organized as follows: section 2 reflects the main part
of the report. This section contains three subsections. Section 2.1 provides informa-
tion about data, which I collect and use. In subsection 2.2, I describe the overview of
the developed web application that is used for displaying, searching and analyzing
data. This overview includes the overview of the architecture and the overview of
the user interface. Section 2.3 briefly describes the method of geo-clustering since it
is a quite important part of data processing for displaying and analyzing. I conclude
the report and provide future directions of research in section 5.

2 Public Data Analyzing

2.1 Data

Data is an essential part of research. Therefore, initially, to prove the concept I decided
to use public data from Twitter. It is a quite reasonable decision because, nowadays,
Twitter is something more than just a social network. Twitter is the source of world
news [8] and it is the place, where breaking news about important events appear
firstly. Therefore, I can suppose that if something important happens around some
area then tweets about it will almost immediately appear in Twitter.

Twitter provides a quite powerful API to fetch required data. The only way to
access 100 % of all tweets in real-time is through the Twitter “Firehose”, but the
access to Twitter “Firehose” is very expensive. The other option for accessing tweets
is using one of Twitter’s direct API offerings [2]. The main disadvantage of using
free API is that Twitter does not guarantee that you will get all requested data. But
studies have estimated that using Twitter’s Streaming API users can expect to receive
anywhere from 1 % of the tweets to over 40 % of tweets in near real-time [2]. Also,
you can increase the percentage of receiving tweets by applying more strict criteria.
The criteria can be keywords, usernames, locations, named places, etc. For example,
if you ask Twitter to provide only geo-tagged tweets from some concrete city then
with the high level of likelihood you will get almost all geo-tagged tweets from the
specified area. For my experiments, I use the area around London. Firstly, because
London is one of the most active Twitter cities [4] and, secondly, because the main
language of tweets posting in London is English.

2

2 Public Data Analyzing

2.2 Application

Figure 1: Application architecture

Once we collected data, we need a tool to work with data. Therefore, I developed
a web application to provide methods for displaying, searching and analyzing col-
lected data. The application is written in the Java programming language with some
additional frameworks. To store geodata, I used MongoDB, because this database
provides geo-spatial index and suitable to store geodata.

You can find the overview of the application architecture in Figure 1. The archi-
tecture is quite simple. The application connects to the Twitter stream and receives
all tweets in real-time, which meet subscribed criteria. Tweets are presented in the
JSON format, therefore, firstly, application parses new incoming tweets, then it filters
them according to the predefined rules (for example, we would like to accept only
English tweets). After that, we normalize the tweet messages and build the database
entity Post that contains all needed fields for further analysis.

Application has the full access to the database and it provides the access to data
by REST API. User can request data according to the search criteria, which could
be dates, location, keywords and others. Once the user requested data, the system
retrieves data from the database and then passes them to the Cluster and Statistics
modules. The first one clusters geodata based on their location and the zoom param-
eter (the zoom level of the online map). By other words, the module groups close
posts and present them as one post with some weight that reflects the number of
grouped posts. Meanwhile, the second module calculates some statistics, such as the
intensity of posts, the most popular languages and hashtags. The processed result
is returned to the user interface (UI) through REST API, and after that, the user can
see the result and analyze it manually.

3

A. Amirkhanyan: Towards Analysis of Public Social Data to Improve Situational Awareness

Figure 2: User interface of the web application

The screenshot of the user interface you can find in Figure 2. As you can see from
this screenshot, the application provides the possibilities to cluster and display tweets
on the OpenStreetMap. Also, application provides some basic statistics, such as the
five most popular languages, the five most popular hashtags (on the left sidebar)
and the intensity of posts per minute (timeline under the map). Also, on the left
sidebar, you can apply different search criteria to find and analyze particular dataset.
For example, you can apply full text search by keywords and search by hashtag and
language.

The main goal of providing different statistics, displaying posts on the online map
and advanced methods for searching is to use them to detect local threats, especially,
crime threats. So far, it is possible only manually to monitor the area by applying
keywords (for example, bomb, crime, fire and so on) to be aware about the public
safety.

2.3 Clustering

In this section, I briefly show how geo clustering works. It is the important part of
the research work and the report, because displaying huge amount of data on the
online map is a challenge. The proposed approach is fully presented in the paper [1],
which is accepted by the IIT’15 conference. But in this report, I provide only brief
description of the approach.

The proposed approach is the grid and density-based geo clustering that clusters
data in two steps: (1) geohash preprocessing and (2) real-time density-based geo

4

2 Public Data Analyzing

clustering. The first step is quite simple and can work piece-by-piece of data and
it is based on geohash function. Geohash is a latitude/longitude geocode system
invented by Gustavo Niemeyer [5]. It is a hierarchical spatial data structure which
subdivides space into buckets of grid shape [5]. Geohash is the from 1 up to 12
characters value and it means that you can specify how accurate you want to calculate
the hash value and with that how accurate you want to determine the location.

In the first step of geo clustering, we take coordinates of the points, calculate the
geohash values with the specified precision and group them according to the same
geohash values. So, as a result, we have some filled hash table. The key point is which
level of the precision to use. And it depends on the zoom level, but the idea is that
we do not need fully delegate clustering to the geohash function because clustering
algorithms based on the geohash function (the grid-based clustering) suffer from
bad clustering of points, that are located near to the border of grids [1]. Therefore,
these recommended values of the precision come from experiments and your desire
of accuracy. Some recommendations you can find the paper [1]. For example, if we
want to cluster geodata with a zoom level equaled 5 then probably the best precision
will be 3. Using these recommendations and applying geohash preprocessing, we
reduce the number of points by grouping very close points, which will be grouped
into the one cluster in any clustering algorithm.

The next step of clustering is the density-based geo clustering. Proposed density-
based algorithm can process its input data piece-by-piece in a serial mode and it
does not need the entire data to start the process. We can pass points by batches and
have the result at any time. Just one assumption is that, in order to cluster new batch
of points, the algorithm should know about existing clusters.

Figure 3: Density-based geo clustering

Figure 3 shows the simplified view of the density-based geo clustering. The algo-
rithm produces the cluster with the center in the most densest area. The workflow
is quite simple. For every incoming point, we try to find the closest cluster among
the existing clusters based on the radius of the cluster, which we must specify as the
input parameter. If we can not find the closest cluster, we need to create new one that

5

A. Amirkhanyan: Towards Analysis of Public Social Data to Improve Situational Awareness

contains this considering point. So, the center of the new cluster is the coordinates of
the point. But if we found the closest cluster, we need to attach the point to the cluster
and then recalculate the center of the cluster. The center of the cluster is specified
algorithmically through iteration of the existing points and the center is located in
the densest area [7]. After recalculating the center of the cluster, it could be that some
points (maximum n/3 points) become out of the range of the cluster. In this case, we
need to pull such points from the cluster and pass again to input of the algorithm. It
is showed by the arrow from clusters to the Density-based cluster box.

3 Conclusion

In this report, I provided my research progress for the past semester. And the main
contribution of the work is developing a system that collects data from public sources
and provides statistics and advanced methods for searching and analyzing collected
geodata. And since the main goal of the research project is the crime events detection
to improve situation awareness, as future work, I would like to integrate additional
sources of public data including some crime statistics and crime reports that can
improve data analysis. Also now, I am working under the approach of time-spatial
clustering that can be used to cluster potential events based on anomalies around
some specified area during specific time. Another very important challenge is to
integrate machine learning classifiers to detect posts that reflect crimes and threats
in their content.

References

[1] A. Amirkhanyan, F. Cheng, and C. Meinel. Real-Time Clustering of Massive
Geodata for Online Maps to Improve Visual Analysis. Accepted by the 11th Inter-
national Conference on Innovations in Information Technology (IIT’15).

[2] Bright Planet. url: http://www.brightplanet.com/2013/06/twitter-firehose-vs-twitter-
api-whats-the-difference-and-why-should-you-care/ (last accessed 2015-10-01).

[3] B. De Longueville, R. S. Smith, and G. Luraschi. “”OMG, from Here, I Can
See the Flames!”: A Use Case of Mining Location Based Social Networks to
Acquire Spatio-temporal Data on Forest Fires”. In: Proceedings of the 2009 In-
ternational Workshop on Location Based Social Networks. LBSN ’09. Seattle, Wash-
ington: ACM, 2009, pages 73–80. doi: 10.1145/1629890.1629907.

[4] Forbes. The most active Twitter Cities. url: http://www.forbes.com/sites/victorlipman/
2012/12/30/the-worlds-most-active-twitter-city-you-wont-guess-it/ (last accessed
2015-10-01).

[5] Geohash. url: https://en.wikipedia.org/wiki/Geohash (last accessed 2015-10-01).

6

http://www.brightplanet.com/2013/06/twitter-firehose-vs-twitter-api-whats-the-difference-and-why-should-you-care/
http://www.brightplanet.com/2013/06/twitter-firehose-vs-twitter-api-whats-the-difference-and-why-should-you-care/
http://dx.doi.org/10.1145/1629890.1629907
http://www.forbes.com/sites/victorlipman/2012/12/30/the-worlds-most-active-twitter-city-you-wont-guess-it/
http://www.forbes.com/sites/victorlipman/2012/12/30/the-worlds-most-active-twitter-city-you-wont-guess-it/
https://en.wikipedia.org/wiki/Geohash

References

[6] M. Gerber. “Predicting Crime using Twitter and Kernel Density Estimation”.
In: Decision Support Systems (Elsevier) 61 (2014), pages 115–125. doi: 10.1016/j.
dss.2014.02.003.

[7] Google’s recommendations for clustering geodata. url: https://developers.google.
com/maps/articles/toomanymarkers (last accessed 2015-10-01).

[8] H. Kwak, C. Lee, H. Park, and S. Moon. “What is Twitter, a Social Network or a
News Media?” In: Proceedings of the 19th International Conference on World Wide
Web. WWW ’10. Raleigh, North Carolina, USA: ACM, 2010, pages 591–600. doi:
10.1145/1772690.1772751.

[9] H. J. Miller and J. Han. Geographic Data Mining and Knowledge Discovery. Bristol,
PA, USA: Taylor & Francis, Inc., 2001.

[10] S. V. Nath. “Crime Pattern Detection Using Data Mining”. In: Proceedings of the
2006 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology. WI-IATW ’06. Washington, DC, USA: IEEE Computer Society,
2006, pages 41–44. doi: 10.1109/WI-IATW.2006.55.

[11] D. Preoţiuc-Pietro and T. Cohn. “Mining User Behaviours: A Study of Check-in
Patterns in Location Based Social Networks”. In: Proceedings of the 5th Annual
ACM Web Science Conference. WebSci ’13. Paris, France: ACM, 2013, pages 306–
315. doi: 10.1145/2464464.2464479.

[12] T. Sakaki, M. Okazaki, and Y. Matsuo. “Earthquake Shakes Twitter Users: Real-
time Event Detection by Social Sensors”. In: Proceedings of the 19th International
Conference on World Wide Web. WWW ’10. Raleigh, North Carolina, USA: ACM,
2010, pages 851–860. doi: 10.1145/1772690.1772777.

[13] S. Scellato, A. Noulas, and C. Mascolo. “Exploiting Place Features in Link
Prediction on Location-based Social Networks”. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD
’11. San Diego, California, USA: ACM, 2011, pages 1046–1054. doi: 10.1145/
2020408.2020575.

[14] M. Walther and M. Kaisser. “Geo-spatial Event Detection in the Twitter
Stream”. In: Proceedings of the 35th European Conference on Advances in Informa-
tion Retrieval. ECIR’13. Moscow, Russia: Springer-Verlag, 2013, pages 356–367.
doi: 10.1007/978-3-642-36973-5_30.

[15] M. Ye, D. Shou, W.-C. Lee, P. Yin, and K. Janowicz. “On the Semantic An-
notation of Places in Location-based Social Networks”. In: Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. KDD ’11. San Diego, California, USA: ACM, 2011, pages 520–528. doi:
10.1145/2020408.2020491.

[16] Y. Zheng, Y. Chen, X. Xie, and W.-Y. Ma. “GeoLife2.0: A Location-Based Social
Networking Service”. In: Mobile Data Management: Systems, Services and Middle-
ware, 2009. MDM ’09. Tenth International Conference on. May 2009, pages 357–
358. doi: 10.1109/MDM.2009.50.

7

http://dx.doi.org/10.1016/j.dss.2014.02.003
http://dx.doi.org/10.1016/j.dss.2014.02.003
https://developers.google.com/maps/articles/toomanymarkers
https://developers.google.com/maps/articles/toomanymarkers
http://dx.doi.org/10.1145/1772690.1772751
http://dx.doi.org/10.1109/WI-IATW.2006.55
http://dx.doi.org/10.1145/2464464.2464479
http://dx.doi.org/10.1145/1772690.1772777
http://dx.doi.org/10.1145/2020408.2020575
http://dx.doi.org/10.1145/2020408.2020575
http://dx.doi.org/10.1007/978-3-642-36973-5_30
http://dx.doi.org/10.1145/2020408.2020491
http://dx.doi.org/10.1109/MDM.2009.50

Optimization of Decision Making in Business Processes

Ekaterina Bazhenova

Business Process Technology Group
Hasso Plattner Institute

Ekaterina.Bazhenova@hpi.de

Working faster and smarter has become a necessity for companies. A firm’s value
chain is directly affected by how well it designs and coordinates the decision mak-
ing. In order to serve this purpose, it is important for decision models and decision
logic to be well grounded in formal and precise semantics. According to recently
emerged Decision Model and Notation (DMN) standard from OMG group, the
decision logic should be separated from the process logic. With that, while the busi-
ness process modeling and execution perspective is well understood, there are still
no mature approaches for modeling and execution of decisions complementary to
business processes. To overcome this gap, we conducted research work presented
in this report in 2 parts: (1) a short overview of our earlier work on detecting and
optimizing decisions incorporated within process models; (2) A more extensive
outlook on our recent work on separation of the decision and process logic and
planned work on evaluating the benefits of such separation for a business process
performance.

1 Introduction

The value of business processes management (BPM) has been acknowledged as an
essential asset to drive a company. One of the most important and challenging BPM
aspects is decision making. Adding decision management perspective improves the
process by focusing on both the way decisions are made and directing the process
that must carry out the decisions [8, 11].

An intense interest of both scientific, and commercial communities towards ex-
ploring the possibilities of decision support in organizations is demonstrated by a
large number of emerging approaches on different decision ontologies [9], decision
service platforms [6, 17, 19], and decision modeling notations [13]. The limitations
of immediate start of usage of the above mentioned methods is that they all come
up with new semantics or platforms for expressing decisions. Thus, extra effort is
needed to identify and implement their integration with already existing and widely
used process modeling and execution approaches. In our earlier research works, we
addressed this issue by introducing an approach which consists of detecting and
improving the decision subprocesses by preserving the process logic [3].

Following the “separation of concerns” paradigm, we investigated handling the
compounding complexity of the business process models by externalizing the events,
operational conditions and decisions in separate decision models, e.g. which is sup-
ported by the recent Decision Model and Notation (DMN) [13]. However, the appli-
cability of such kind of a standard is limited in the current moment, as it is quite
challenging for enterprises to identify which parts of business processes comprise

9

mailto:Ekaterina.Bazhenova@hpi.de

Ekaterina Bazhenova: Optimization of Decision Making in Business Processes

process logic, and which parts of them should be externalized to a separate decision
model. This served for us to provide the formal framework for semi-automatical
detection of decision logic in business process models and for generation of deci-
sion models and corresponding decision tables from process models’ decision logic.
These decision models conform to DMN standard [13] for decision modeling. Pro-
cess models are represented with the industry standard: the Business Process Model
and Notation (BPMN) [12]. More details of this approach are presented in section 2
based on our paper [2].

The advent of knowledge discovery in data technology has created new oppor-
tunities to extract powerful knowledge from the stored data using data mining al-
gorithms. Thus, another way of deriving the decision logic from process logic is
through analysis of the execution log of the process model. In our most recent pa-
per, we addressed this issue by introducing an approach consisting of derivation of
decision models from process models and execution logs on the examples of DMN
and BPMN [12]. In particular, we derive the decision logic in the form of decision
tables from the event logs of a process model. Based on the derived decision logic, we
show the way to construct a corresponding DMN decision model. The approached
is summarized in section 3 based on our paper [4].

The remainder of the report is structured as follows: section 2 and section 3 rep-
resenting our works on the extraction of decision logic from process models, and
process models and execution log respectively. The limitations of the approaches
and future work are provided in section 4 which is followed by Conclusions and
References sections.

2 Extracting Control-Flow Based Decision Logic from
Process Models

2.1 Motivation and Exemplary Extraction of Decision Logic from Process
Models

Business process modeling is well established in business organizations and is highly
supported by modern tools. Modeling languages as BPMN [12] are well suited for
process experts as well as — thanks to tool support — end users. Process models
allow documentation of business operations, enactment of business processes fol-
lowing the given execution semantics, and (automatic) process analysis regarding
correctness, improvement, compliance, etc. In the course of process execution, mul-
tiple decisions are taken that influence the mentioned areas [8]. Analysis of industry
processes reveals that such decisions include the assignment of actual resources to
activities answering the question who shall execute a specific activity or evaluating
a given set of data to calculate a decision indicating which path shall be followed at
decision points (branching behavior). Furthermore, exceptional behavior is handled
by pre-specified procedures for each case. Especially, in the insurance and banking
domains, regulatory compliance highly influences process execution by specifying
which guidelines must be followed.

10

2 Extracting Control-Flow Based Decision Logic from Process Models

Based on the analysis of real world process models, we recognized that part
of the logic leading to decisions is often encoded in process models resulting in

Figure 1: Misuse of BPMN for de-
cision logic modeling

models that are hard to read and to maintain.
BPMN allows to represent decisions and their
impact or consequence respectively. However,
BPMN is not meant to represent the detailed de-
cision logic since modeling the decision logic of-
ten results in spaghetti like models (see Figure 1
for an abstract example) or extensive natural lan-
guage descriptions explaining the decision tak-
ing process that are not analyzable automatically.
Thus, decision logic modeling is out of scope for
BPMN. Instead, decision tables [18] and further
decision modeling concepts [9, 19] are a reason-
able and compact method to describe decision
logic in scenarios with many input parameters.
The upcoming DMN standard is meant to sup-
plement BPMN and allows the “separation of concerns” [14] between process logic
and decision logic modeling based on the actual scope of both modeling techniques.

BPMN’s scope comprises the business logic containing information on what ac-
tivities need to be executed in which order by which resource utilizing which data
objects while DMN covers the decision logic modeling by specifying which decision
is taken based on which information, where to find it, and how to process this infor-
mation to actually derive the decision result. Since both worlds existed long without
proper integration, organizations misused BPMN by including decision logic into
process models.

Thereby, data-based decisions are most common. A data-based decision is repre-
sented by a decision structure consisting of single and compound decision nodes we
refer to as split gateways representing exclusive or inclusive alternatives based on
external information. These decisions can be classified into three types:

(i) An explicit decision task with succeeding branching behavior, e.g. in a task, the
decision about a customer’s loyalty is taken and based on the result, different
actions (e.g. give or deny discount) are taken.

(ii) Branching behavior is encoded in decision points, e.g. split gateways with
decision logic (about the customer’s loyalty) encoded in annotations to the
gateways or to edges originating from such gateway.

(iii) There exists a decision task without succeeding branching behavior, e.g. set
discount for a customer based on her loyalty.

In Figure 2 an example of extraction of a decision model from process models is
presented, which corresponds to extraction of the decision models using the process
fragment satisfying one of the patterns (P3) introduced in our paper. On the left side
of Figure 2, one can see the process fragment, whereas on the right side the decision
model is shown. The latter can be divided into the decision requirements level (top)

11

Ekaterina Bazhenova: Optimization of Decision Making in Business Processes

manage
discount

 Loyalty?

Longevity?

yes

assign 12%
discount

≥5 years

assign 6%
discount<5 years

assign 5%
discount

no

check
longevity

manage
discount

check
longevity

client info

Longevity
check longevity

output

≥5 a

<5 b

Loyalty
check longevity

output

manage discount

output

yes a c

yes b d

no -- e

4

1

3

5

6

client
info

Loyalty

Longevity

2

manage discount table

check longevity table

Figure 2: Exemplary mapping for pattern P3: 1— from BPMN activity to DMN de-
cision; 2— from BPMN gateway to DMN decision; 3— from BPMN data node to
DMN input data; 4— from DMN decision table reference to actual DMN decision
table; 5— from DMN rule conclusions of sub-decision to DMN rule conditions;
6— from BPMN gateway to DMN rule conditions

and the decision logic level (bottom) consisting of decision tables. Also, we inserted
arrows to point out the correspondences of the two models’ elements. For the sake of
clarity, we omitted arrows when the correspondence was already shown by another
arrow. For example, arrow 1 shows that the process model’s decision task manage
discount corresponds to the decision element manage discount in the decision model.
Consequently, we did not draw an arrow for the decision task check longevity.

Arrow 2 illustrates the mapping of the gateway labeled Loyalty? to an equivalent
decision element. The correspondence between BPMN data nodes and DMN input
data elements is demonstrated by arrow 3. Note that the connections between the
data node and the tasks in the process model result in connections between the
gateway decision elements and the input data in the decision model. Furthermore,
the mapping of the manage discount decision is demonstrated through placing the
Loyalty decision as an input requirement. Similarly, corresponding to the left part of
row three of that table, since the task check longevity succeeds manage discount, the
DMN decision manage discount also requires check longevity as an input.

Arrow 4 shows that decisions are connected to decision tables if the decision logic
is visible in the process model and arrow 5 shows that the output column of the
sub-decision is used as input column of the dependent decision. Arrow 6 visualizes
that the headers of the condition columns correspond to the labels of the gateways
following the decision task and the cell values equal the edge conditions.

12

2 Extracting Control-Flow Based Decision Logic from Process Models

2.2 Adaptation of Input Process Model

After extracting the decision logic from a process model to a decision model, the
process model needs to be adapted in order to be usable together with the decision
model. Basically, the entire decision logic is hidden inside of the first decision task
of the pattern. For that purpose, BPMN offers business rule tasks that can be linked
to decision models and that will output the value of the top-level decision of the
decision model.

Thus, for the adaptation we transform the task corresponding to this top-level de-
cision to a business rule task. Since this decision potentially subsumes the decisions
corresponding to following decision tasks, these tasks will not be required anymore

 manage
discount

manage
discount
output?

c
assign 12%

discount

assign 6%
discount

assign 5%
discount

e

client
info

dd

Figure 3: Refactored process frag-
ment for pattern P3

in the adapted process model. Consequently, we
delete each decision task other than the first from
the process fragment. Basically, this means that
also the gateways succeeding the deleted deci-
sion tasks can be removed, such that only the
first decision task, the gateway succeeding it and
the end nodes of the process fragment are kept.
For each end node the gateway has an outgo-
ing edge connected to it and the conditions with
which the edges are annotated equal the row con-
clusions of the top-level decision table. This sit-
uation is illustrated in Figure 3. It is important
to assign the correct conditions to the different
edges originating from the split gateway. For example, the end node assign 12 % dis-
count in Figure 3 is connected to an edge annotated with c. This is because in the
original process fragment in Figure 2 the conjunction of the conditions leading from
the start node to this end node equals yes∧(≥ 5 years) and the table row representing
this conjunction has c as its output value.

The rest of the details on our work on extracting the control-flow decision logic
can be found in our paper [2], in which we introduce a semi-automatic approach
to identify decision logic in business processes pattern-based, with consequential
mapping of these patterns into DMN models and adaptation of the input process
model structure accordingly before we allow configuration of the results in model
post-processing. The separation especially fosters the differentation of stable process
models to be changed if the business model changes and dynamic decision models
allowing flexible configuration of the currently applied business models. Since orga-
nizations long misused BPMN as decision modeling languages also it is not meant
to capture these aspects, organizations require migration capabilities from misused,
spaghetti like process models to a separation that we build of an adapted BPMN
model and a DMN model.

13

Ekaterina Bazhenova: Optimization of Decision Making in Business ProcessesCredit scoring - plus Credit Bureau

Request
to check

if the account
is eligible
for credit

Collect
application

data

Decide
account
eligibility

Eligible?

Prepare
evaluation

report

Prepare
rejection

letter

Send
prepared

documents

Record
spent time

supplies
clientID

Case
record

Case
record

Case
record

Applicant
Risk Score

Account balance;
Account duration;
Nationality

Decide
evaluation
strategy

Strategy?

Local
evaluation

Outsource
evaluation
to credit
bureau

Case
record

Strategy Eligibility

Record
estimated
case time

Case
record

Estimated
case time

Spent case
time

no

yes

bureau

local

Figure 4: Process model showing the example business process of assessing the
credit

3 Extracting Control-Flow and Event Log Based Decision
Logic from Process Models

3.1 Motivation and Exemplary Extration of Decision Logic from both
Process Models an Execution Data

In this section we provide a description of the business process from the banking
domain, to which we refer throughout the rest of the paper. The corresponding busi-
ness process model is presented in Figure 4; it is based on a step-by-step approach
that is generally followed while assessing a personal loan [16].

Upon receiving the request to check if the account is eligible for a credit, the bank
worker firstly enters the estimated case time in the case record and then collects
application data such as account balance, account duration, nationality, and regis-
ters it in the same case record. Afterwards, an expert decision is made about the
evaluation strategy of the case: should it be done locally, or outsourced to a credit
bureau. Presumably, there are guidelines identifying how the application risk score
is assigned in the case of local evaluation; in the case of the credit bureau evaluation,
the algorithm is not known. The process follows with an account eligibility decision,
noted by a corresponding case recording. In case of a positive decision, the worker
prepares an evaluation report, otherwise, a rejection letter. The process finishes after
the worker sets the spent case time in the case record.

Figure 4 is a typical representation of a process model that is not aware of decisions.
For example, the model contains textual annotations and decision activities which
incorporate the business logic that is not represented explicitly in the model. It is
not difficult to imagine that upon expanding, such process models quickly become
complex, and the business logic management becomes tedious.

For understanding what would be a decision-aware process model in this case,
we need to refer to the context of the business process. Nowadays there exist two
main types of credit evaluation: (1) judgmental credit-evaluation systems, which
may rely on the subjective evaluation of loan officers; and (2) credit-scoring systems
that are empirically derived [5]. Basically, it has been settled in literature that using
scoring in credit evaluation rules out personal judgment. In credit scoring systems,

14

3 Extracting Control-Flow and Event Log Based Decision Logic from Process Models

the decision are taken, depending on the applicant’s total score, whilst in personal
judgment this issue is neglected. The decision here depends on decision-makers’
personal experience and other cultural issues, which vary from market to market [1].
With that, the brute force empiricism that characterizes the development of credit
scoring systems can lead to a treatment of the individual applicant in an unjust man-
ner; an example of such an occasion is judging the applicant’s creditability by the
first letter of a person’s last name [7]. Thus, it seems reasonable to use automated
credit scoring systems complemented with an explanatory model. The derivation of
DMN decision model corresponding to this process model could provide such an
explanatory model considering the past experiences, as the goal of the DMN stan-
dard is to provide basic principles and rules of thumb for organizing process models
to maximize agility, reuse, and governance of decision logic in BPM solutions [18].
We demonstrate the derivation of such a model in the paper [4].

With respect for deriving the decision model from the process model and its
execution log, we firstly review in the paper the most common ways to express
decisions in process models. One of the most widely used decision construct is
the exclusive gateway. It has pass-through semantics for exactly one out of a set
of outgoing paths if the associated condition, a Boolean expression, evaluates to
true [12]. Thus, a gateway does not ”decide” anything; it just specifies the path
taken by a process instance based on existing process data. For example, in Fig. 1
the evaluation strategy decision is taken in the activity preceding the corresponding
gateway, which only uses the result of this decision. Additionally, in our previous
work [2] we identified further decision structures in process models, through analysis
of 956 industry process models from multiple domains. We discovered that a single
splitway pattern is a common decision pattern, which was used in 59 % of the models.
For this paper, we use the notion of a Decision point, which corresponds to this single
split gateway from our previous work. With that, we assume that the decision task
preceding any decision gateway refers to the same business decision (the omission
of this decision task is a common mistake made by inexperienced BPMN users [18]).

In our paper [4] we introduce the following step-by-step approach to derive de-
cision models from process models, which is demonstrated by us on the examples
of BPMN process models and DMN decision models. The algorithm is expressed
through BPMN process model, as shown in Figure 5. The inputs to the algorithm
are the process model m and the corresponding event log which contains the val-
ues of data object attributes assigned during the process execution. The goal of the
algorithm is to get the outputs: (1) the decision model consisting of one decision re-
quirements diagram and corresponding decision tables; and (2) the adapted process
model m′, in which the described decisions are referenced by a business rule task. In
order to simplify the algorithm explanation, we assume for the rest of this chapter,
that each decision point of the input process model m contains only two outgoing
control flow paths and, correspondingly, two alternative tasks to be executed. The
extrapolation of the algorithm for an arbitrary finite set of control flow paths and
corresponding tasks will be presented in future work. Below we describe the actual
algorithm step-by-step.

15

Ekaterina Bazhenova: Optimization of Decision Making in Business ProcessesAlgorithm

1. Identify
decision points

2. Find decision
logic

3. Construct
decision model

4. Adapt
process model

Process
model Event log

Decision
points

Decision
tables

Decision
model

Adapted
process
model

Figure 5: Algorithm of derivation of the decision model and adaptation of the pro-
cess model

For concrete example of logs for the presented use case, see Section 5 in our
paper [4]. The consequent application of the suggestions from the previous sec-
tion, yields the following decision model as shown in Figure 6 for our use case.

Strategy
(Recommended)

Decide
evaluation
strategy

Decide evaluation
strategy table

Strategy table

Eligibility
(Recommended)

Decide
account
eligibility

Eligibility table

Decide account
eligibility table

Account
balance

Account
duration

Nationality

Figure 6: Constructed decision model referring to
Figure 4

The skeleton of the decision
points was built according to
step 2 of the algorithm pre-
sented above. Then, it was
established during the deci-
sion logic extraction (which we
partly omit) that there are data
dependencies between decision
points dp1 (Strategy) and dp2

(Eligibility). Therefore, an infor-
mation requirement is added
to the decision model (directed
edge between “Decide evalua-
tion strategy” and “Eligibility” decisions). Also, input data “case record” was re-
placed by the attributes which statistically were correlated based on the records
from the event log to the corresponding decisions (Account balance, Account duration,
and Nationality). At last, the labels of the gateway data-based decisions Strategy and
Eligibility were concatenated with the strings “recommended” so as to reflect that
the decision logic in the form of business rules was related to them.

3.2 Output Decision Model and Adaptation of Input Process Model

Adaptation of the process model in our use case works as follows: in the Figure 4,
the types of the tasks Decide evaluation strategy and Decide account eligibility will
be changed into business rules tasks. These business rules will be referencing the
corresponding decision tables (examples of decision papers can be found in our
paper [4]).

The extracted decision model in Figure 6 reflects explicitly the decisions corre-
sponding to the process model from Figure 4, and therefore, could be served as an

16

4 Conclusions and Planned Work

explanatory model, e.g., for compliance checks. Another advantage of the derived
decision model is that it permits changes in the decision model without changing
the process model, and vice versa, which supports the principle of separation of
concerns [18]. Further details of the formal grounding distinguished into process
modeling and decision modeling can be found further in the paper [4].

4 Conclusions and Planned Work

In this report we presented a short overview of our earlier work on the decision mod-
eling and improving in the processes where the decisions are incorporated within
process models. As well, we provided a more extensive outlook on our recent work
on separation of the decision and process logic and planned work on evaluating
the benefits of such separation for a business process performance. We firstly inves-
tigated extraction of control-flow based derivation of decision logic from process
models. Secondly, we provided the algorithm for extracting control-flow and event
log based decision logic from process models.

The limitations of the presented work and corresponding planned activities are
presented below:

1. Advanced Derivation of Control-Flow Based Decisions in Process Models In
future work, we will extend the approach presented in section 2 by analyzing fur-
ther process model collections and reduce the assumption of control flow decision
structures to identify more patterns and to provide a complete overview about deci-
sion logic modeling in process models. The mapping will be adjusted accordingly.
Furthermore, we extend the configuration capabilities by, for instance, including
label analysis. Finally, we plan to publish best practice guidelines on how to model
processes and decisions separately for optimal business usage. Later, the approach
can be extended with the other representations of decisions in BPMN, for example,
with the involvement of data objects analysis etc. In future it should be, however,
taken into account, that the models can be underspecified, and then the “corrected”
decision patterns should be considered.

2. Enhanced Decision Model Mining from Process Model and Event Log The
approach in section 3 is our first step in investigating the possibility of derivation of
DMN process model from process model and its execution log. For that, we assumed
that each decision point of the input process model contains only two outgoing con-
trol flow paths and, correspondingly, two alternative tasks to be executed. In future,
we plan to generalize this for an arbitrary finite set of control flow paths and corre-
sponding tasks. Secondly, we plan to include into the framework the extraction of
the decision rules by discovering branching conditions where the atoms are linear
equations or inequalities involving multiple variables and arithmetic operators, as
in [10]. Further, we will do an implementation of the provided framework and pro-
vide the extended approach evaluation by applying it to business processes from
multiple domains.

17

Ekaterina Bazhenova: Optimization of Decision Making in Business Processes

3. Improvement of Business Processes through Decision Optimization In order
to improve a given business process, we plan to generate the recommendations on
changing the actual structure of the process. Such transformation should increase
the expected payoff of the process. For example, the separation of the decision logic
in the credit assessment process should improve the process flexibility— one of the
most important quality measures of the business process [15].

4. Further Challenges in Process and Decision Management Compared to the
extensive stream of BPM research, the decision perspective of business processes
up to now has received by far less attention. To overcome this gap, we are currently
working on an extensive overview (a planned journal paper) with the aim to identify
the challenges of decision modeling with respect to business processes. To this end,
we plan to introduce the concept of a decision lifecycle at the enterprise with respect
to business process perspective, which consists of five stages such as design, analysis,
configuration, enactment and evaluation of decisions. Then, for each stage we will
establish the challenges coming emerging from theory and industrial experience. It is
planned that this work will summarize our experience on modeling and optimizing
decisions in business processes.

5 Publications Summer Term 2015

Workshop papers:

• Deriving Decision Models from Process Models By Enhanced Decision Mining [4];

Conference papers:

• Extracting Decision Logic from Process Models [2].

References

[1] H. A. Abdou and J. Pointon. “Credit Scoring, Statistical Techniques and Evalu-
ation Criteria: A Review of the Literature.” In: Int. Syst. in Accounting, Finance
and Management 18.2-3 (2011), pages 59–88.

[2] K. Batoulis, A. Meyer, E. Bazhenova, G. Decker, and M. Weske. “Extracting
Decision Logic from Process Models”. In: Proceedings of the 27th International
Conference on Advanced Information Systems Engineering (CAiSE ’15). Springer,
2015, pages 349–366.

[3] E. Bazhenova and M. Weske. “A data-centric approach for business process
improvement based on decision theory”. In: Proceedings of the 15th International
Conference on Business Process Modeling, Development and Support (BPMDS 2014).
Volume 175. Lecture Notes in Business Information Processing. Springer Berlin
Heidelberg, 2014, pages 242–256. doi: 10.1007/978-3-662-43745-2_17.

18

http://dx.doi.org/10.1007/978-3-662-43745-2_17

References

[4] E. Bazhenova and M. Weske. “Deriving Decision Models from Process Mod-
els Through Enhanced Decision Mining”. In: Proceedings of 3th International
Workshop on Decision Mining and Modeling for Business Processes (DeMiMoP ’15).
Innsbruck, Austria, 2015.

[5] Board of Governors of the Federal Reserve System. Report to the congress on
credit scoring and its effects on the availability and affordability of credit. Technical
report. Aug. 2007.

[6] A. Bock, H. Kattenstroth, and S. Overbeek. “Towards a modeling method for
supporting the management of organizational decision processes”. In: Mod-
ellierung 2014. Volume 225. Lecture Notes in Informatics. Gesellschaft fuer
Informatik, 2014, pages 49–64.

[7] N. Capon. “Credit Scoring Systems: A Critical Analysis.” In: Journal of Market-
ing 46.2 (1982).

[8] S. Catalkaya, D. Knuplesch, C. Chiao, and M. Reichert. “Enriching Business
Process Models with Decision Rules”. In: BPM 2013 International Workshops.
Springer, Sept. 2013.

[9] E. Kornyshova and R. Deneckère. “Decision-making Ontology for Information
System Engineering”. In: ER. Springer-Verlag, 2010.

[10] M. de Leoni, M. Dumas, and L. Garcı́a-Bañuelos. “Discovering Branching
Conditions from Business Process Execution Logs”. In: FASE. Springer, 2013.
doi: 10.1007/978-3-642-37057-1_9.

[11] M. Lohrmann and M. Reichert. “Modeling Business Objectives for Business
Process Management.” In: S-BPM ONE. Springer, 2012, pages 106–126.

[12] OMG. Business Process Model and Notation (BPMN) v. 2.0.2. 2013.
[13] OMG. Decision Model and Notation (DMN) v.1. 2014.
[14] D. L. Parnas. “On the Criteria to be Used in Decomposing Systems into Mod-

ules”. In: Communications of the ACM 15.12 (1972), pages 1053–1058.
[15] H. A. Reijers and S. Liman Mansar. “Best practices in business process redesign:

an overview and qualitative evaluation of successful redesign heuristics”. In:
Omega 33.4 (2005), pages 283–306.

[16] M. Sathye, J. Bartle, M. Vincent, and R. Boffey. Credit Analysis and Lending
Management. Wiley, 2003.

[17] W. Schaper. SAP Decision Service Management. SAP AG. Sept. 12, 2014. url:
http://scn.sap.com/docs/DOC-29158 (last accessed 2014-11-13).

[18] B. Von Halle and L. Goldberg. The Decision Model: A Business Logic Framework
Linking Business and Technology. Taylor and Francis Group, 2010.

[19] A. Zarghami, B. Sapkota, M. Z. Eslami, and M. van Sinderen. “Decision as
a Service: Separating Decision-making from Application Process Logic.” In:
EDOC. IEEE, 2012.

19

http://dx.doi.org/10.1007/978-3-642-37057-1_9
http://scn.sap.com/docs/DOC-29158

Model Synchronization for Complex Industrial Systems

Dominique Blouin

System Analysis and Modeling
Hasso-Plattner-Institut

Dominique.Blouin@hpi.uni-potsdam.de

This document reports on my work since I joined the research school at the Hasso-
Plattner-Institute in June 2015. The purpose of this work is to improve the current
approaches and tools for model transformation/synchronization developed at
the System Analysis and Modeling group, so that they perform well for the rich
languages used for modeling complex industrial systems. For this, we propose new
strategies exploiting meta-model cardinality constraints and model statistics to
improve performances when matching complex patterns. We also plan to develop
new concepts for improving the usability of the Triple Graph Grammars (TGG)
language in order to ease the specification of model transformations.

1 Introduction

In order to be able to develop nowadays and future complex systems at affordable
costs, model-based engineering has been proposed. It consists of modeling the sys-
tem to be developed with dedicated languages thus replacing natural language
specifications with models supporting automated analyses of the design and code
generation. Model analysis allows discovering design flaws early before implemen-
tation of the system starts. The objective is to avoid as much as possible the costly
rework of systems due to the discovery of defects late in the cycle such as at operation
time.

In general, several modeling languages and tools must be used and combined to
be able to represent all aspects of a system. In addition, it is often the case that the
same information about a system is represented with models of different languages
leading to information overlaps. Hence, it must be ensured that the models remain
consistent with each others as they are often changed during design.

Inconsistencies in system specifications can indeed lead to extremely costly rework
and production delays. For example, when the first Airbus A380 was assembled, it
was discovered that the cables made in Hamburg were too short for the cabin made
in Toulouse [1]. Such inconsistency only discovered late at integration time lead to
more than six billion dollars in additional costs. The problem was due to differences
in the CAD tools (and processed specifications) used by the German and French
teams, which allowed this inconsistency in the specifications to be undetected.

Such problems are expected to occur more and more often as system complexity
is increasing with the heterogeneous system specifications being more and more

21

mailto:Dominique.Blouin@hpi.uni-potsdam.de

Dominique Blouin: Model Synchronization for Complex Industrial Systems

interrelated.1 In this context, ensuring system specifications are consistent is chal-
lenging and becomes even more crucial due to concurrent engineering [15], where
systems are being developed more and more in parallel as opposed to the traditional
sequential process.

While model-based engineering is being introduced in industry, this problem of
maintaining consistency between models is not yet solved. In order to account for
it, Airbus has been developing for more than a decade its own development en-
vironment ACE (Airbus Concurrent Engineering) that intents to impose the same
CAD tools to all its engineering sites. However, it is not always the case that spe-
cific CAD tools can be imposed, especially when systems are developed by several
independent subcontractors. Therefore, developing automated means to preserve
consistency or at least detect inconsistencies between heterogeneous specifications
(models) is essential.

In that direction, the System Analysis and Modeling (SAM) group of the HPI has
been developing the MoTE (Model Transformation Engine) tool [16], which is based
on the Triple Graph Grammar (TGG) language [21]. In a former project that occurred
before I joined the HPI [5], I have used MoTE to synchronize the models of two
different editors for the SAE AADL (Architecture Analysis and Design Language)
modeling language [20]. Since each editor was storing its data in its own format
(meta-model), the objective was to to automatically synchronize their data to preserve
consistency and allow users to use any of the editors transparently.

During this experiment, several scalability and expressiveness shortcomings were
discovered when MoTE was used with the complex and rich AADL language, and
in particular for AADL models of industrial case studies. Such case studies are now
used to evaluate our current work and are therefore introduced in the next section.

2 Case Studies

In my former work before joining the HPI, I have proposed the RDAL (Requirements
Definition and Analysis Language) [18]. RDAL is a modular language supporting
Requirements Engineering (RE) that is meant to be combined with other languages
for modeling concerns such as architecture and use cases. The language also embeds
constructs to support specific RE best practices inspired from both RE and industry
practices [14]. In a first step, I have applied a combination of the RDAL, AADL and
URN [13] languages for the modeling and analysis of a simple isolette system, used to
maintain newborns at a safe and comfortable temperatures (left part of figure 1). The
work consisted of converting an existing natural language requirements specification
for the system into a set of combined models. This process allow the discovery of
several design flaws thus showing important benefits of the approach.

1For example, for the A380, typically 80 % of changes in the specifications may have an
impact on the cable network [2].

22

2 Case Studies

Figure 1: Isolette and Patient-Controlled Analgesia (PCA) infusion pump devices

Later on, a team from the Kansas State University (KSU) applied the same ap-
proach to a much more complex and realistic case study consisting of a Patient
Controlled Analgesia (PCA) infusion pump system (right part of figure 1). Infusion
pumps are used to provide a high level of control, accuracy, and precision drug de-
livery to patients and their malfunction can lead to severe injuries or death. However,
these devices have been associated with persistent safety problems, so much that in
2010, the US Food and Drug Administration (FDA) undertook an initiative to help
improve their design [10].

Like for the simple isolette case study, modeling the PCA Pump system with the
same combined RDAL, AADL and URN languages allowed to significantly improve
the specifications. However, this process of combining languages revealed several
shortcomings in model integration [3], thus making these case studies ideal for study-
ing and evaluating model integration techniques. In particular, these case studies
made use of MoTE for synchronizing the AADL graphical and textual editors, and
now serve to evaluate our current research work on model synchronization described
below.

23

Dominique Blouin: Model Synchronization for Complex Industrial Systems

3 Current Work

3.1 Current Issues

The MoTE tool developed at SAM allows specifying relations between two models
of different modeling languages. These relations can be used to transform one of
the related models into the other one and vice versa, thanks to bi-directionality.
Besides, an important advantage of MoTE is that it can transform the models in an
incremental fashion. This means that when a model is changed, only the parts of
the related model that need to be changed to preserve consistency are updated. This
allows better scalability for large models, but also to preserve information present in
only one of the models by avoiding unnecessary re-instantiation of model elements.

These relations between models in MoTE are specified in a declarative way using
the TGG formalism [21]. However, to be executable, these TGGs must be compiled
into models of the Story Diagram language (SDM) [12], which is another model
transformation language developed in the SAM group but implementing an oper-
ational paradigm. SDM specifications are interpreted to perform the actual trans-
formations/synchronizations. This interpretation makes extensive use of pattern
matching, which consists of identifying predefined patterns in the graphs of the
related model elements. Patterns are then pre-conditions for applying a subsequent
transformation to the matched models elements to realize the transformations.

A key advantage of the SDM interpreter over other similar tools and ap-
proaches [22] is that in order to optimize performances, it is able to adapt its matching
plan at runtime according to the actual data structures that have to be matched. This
is in contrast with other story diagram tools for which the matching strategy is hard
coded in generated code and cannot adapt at runtime. It has been shown that this
runtime adaptation can avoid extremely costly matching processes that result hard
coded search plans not taking into account the actual size and structure of data.

In SDM, the way the matching plan is computed is encoded into a matching strategy
component that can easily be replaced at runtime to adapt to the specific models
to be transformed. The current matching strategy simply consists of first trying to
match the references between model elements having the least number of elements
in order to reduce the matching time. However, this it was shown in my experiments
that this strategy does not always perform well for the complex structures of the
AADL models of the complex PCA Pump case study. Indeed, such models have
several complex components which may have as many as 90 connections among.
Connection patterns are the most complex and expensive to match and actually
cause several performance problems on our cases study.

3.2 A Debugger for Story Diagrams

In order to better understand these performance problems, we have first worked
on providing means to better analyze the performances of SDM. For this, we have
completed the development a graphical debugger for story diagrams (figure 2). This

24

3 Current Work

debugger, for which a first version ad been developed during a master project in the
SAM group required significant subsequent development efforts to become usable.

The debugger allows for tracing the execution of story diagrams by highlighting
in the graphical editor the elements that are currently executed, as illustrated by the
elevator pattern object in Figure 2 being tested for a match. Variables used during
the match can be inspected to help better understand the behavior of the matcher.
Breakpoints can also be declared to stop the execution when a specific model element
is processed by the interpreter, and optionally when a condition attached to the
breakpoint evaluates to true.

Figure 2: Story Diagram Graphical Debugger

In addition, an execution trace model can be created automatically during the exe-
cution of a story diagram, from which various data such as detailed execution times
can be computed to help identify bottlenecks and benchmark different matching
strategies.

25

Dominique Blouin: Model Synchronization for Complex Industrial Systems

3.3 Currently Explored Pattern Matching Approaches

Our current work consists of exploring new matching strategies to solve the perfor-
mance problems experienced for the PCA Pump complex models. For this, we are
investigating strategies that will make use of more information from the models such
as cardinality constraints indicating the maximum number of elements a reference
may have. Furthermore, we are also exploring the possibility to make use of statisti-
cal data from the models specific to the languages of the models being transformed.
For example, while the cardinality of several references may be unbounded in the
meta-model of a language, it is often the case that in practice such statistical bound
there does exist, due to the nature of the actual real objects of the domain being
represented by the models.

Furthermore, we aim to characterize the limits of our dynamic pattern matching
approach. In other words, we are investigating means to determine precise condi-
tions under which we can guarantee that our matching strategy will execute in an
acceptable time, acceptable being related to the time users can wait for models to be
synchronized while they are working with the tools.

Altogether, this work on pattern matching embraces a much larger scope than
model synchronization. Pattern matching is indeed a widely spread problem and as
a matter of fact, our SDM tool could be used for many other applications far beyond
those of the SAM group.

4 Future Work

Once we have completed our work on pattern matching, we will work on other
shortcomings that have been identified during my experiments with MoTE. There
are related to the declarative TGG language used to specify model transformation/
synchronization between languages.

These shortcomings mostly concern the expressivity, structure and verification/
validation of TGGs specifications from which MoTE produces operational story dia-
grams.

4.1 Reuse of Model Elements

A challenging task in model synchronization is finding algorithms to avoid infor-
mation losses due to model elements being destroyed and re-instantiated during
changes propagation. In this sense, a first improvement was made to MoTE by imple-
menting the algorithm presented in [11], which avoids re-instantiating the entire set
of objects created in the sub-tree of the changed object. However, during my project
on synchronization with the AADL, I found that changing a reference from an ob-
ject to another model object was still causing re-instantiation of the object. I could
provide a first solution for this problem [5], but further work is required to ensure
its correctness. In addition, it relies on additional constraints that must be imposed
to specific sets of TGG rules describing the creation of a model object of a specific

26

4 Future Work

type. Further research must be pursued to develop means to formally identify these
sets of rules, either through the introduction of a new concept in the TGG language
or with appropriate validation constraints pertaining to these sets of TGG rules.

Finally, research on developing a more general strategy is required to avoid object
deletion in general. This could be achieved by for example storing the objects to be
destroyed temporarily in case they are later needed or interact with the user during
synchronization and let him handle non-deterministic cases.

4.2 Usability Improvements

Several shortcomings regarding the usability of TGGs were identified during my
former work with MoTE. This calls for a review of the TGG language to ease the de-
velopment of model synchronization layers in general. The proposed improvements
are briefly summarized in the following.

4.2.1 Structure of TGGs
Several improvements are needed to better structure TGGs to favor reuse of elements
across specifications and ease maintenance. We will investigate new concepts such as
TGG rule extension/refinement, global rule variables, and potentially reusable TGG
sides to help retarget one side of an existing TGG specification to another language
to be synchronized.

4.2.2 Query Languages
Queries can be defined at various places in a TGG to express attribute assignments
or constraints for model objects. While the architecture of MoTE provides hooks to
integrate arbitrary query languages, only OCL is currently available. Other languages
could help improve performances on large models such as EMF-IncQuery [9], which
makes use of an incremental evaluation scheme. In any case, we will provide a generic
query language infrastructure allowing to easily integrate new languages to better
meet our needs.

4.3 Verification/Validation of TGGs

One difficulty when defining a TGG is insufficient means for verification and valida-
tion of specifications. Inexperienced users can easily define incorrect TGGs and only
discover the problems at runtime. Many simple rules could be added to the existing
set of validation rules to detect problems as early as possible.

Other analyses are also needed to verify properties such as TGG completeness,
taking into account the languages of the models to be synchronized. For example,
it is not easy to ensure a rule is defined for all contexts in which a model object can
be created, and missing rules will lead to incorrect models being generated during
transformation.

Further research is also required to develop automated analyses to verify complete-
ness, for example using graph theory taking into account not only the structure of a
meta-model but also its additional well-formedness constraints. This work fits well

27

Dominique Blouin: Model Synchronization for Complex Industrial Systems

into the CorMorant project of the SAM group [7], which aims at providing methods
and tools for the formal verification of correctness of model transformations specified
with TGGs.

5 Other Research Activities

5.1 Publications

Since I joined the research school, I have submitted a paper about the PCA Pump
case study mentioned above to the REFSQ conference that will be held next year [3].
In addition, I have published 2 papers on some of my former work. The first paper [4]
proposes a model-based approach and tool for the synthesis of FPGA systems. It
makes use the MoTE tool developed at the SAM group to generate VHDL code. I
was invited to present this work at a special session on HLS (High Level Synthesis)
during the NASA/ESA Adaptive Hardware and Systems conference in Montreal. The
second paper presents a framework for exploration and synthesis of multiprocessor
architectures on FPGAs [8], again making use of a modeling approach and tool based
on AADL. This paper has been published in the ACM Transactions in Embedded
Computing Systems journal.

5.2 PhD Thesis Jury

I have accepted to be part of the jury for the PhD thesis of Cuauhtemoc Castellanos [6]
and Elie Richa [19] at the Telecom Paris-Tech engineering school in Paris, France.

5.3 Committees

I have been a member of the program committee of the Multi-Paradigm workshop
at the MODELS conference and of the EUROMICRO SEAA conference for the Em-
bedded Software Engineering track.

I have also pursued my activities as a member of the SAE AS-2C standards commit-
tee for the AADL language [20] and been involved in the European COST action on
Multi-Paradigm Modeling for Cyber-physical Systems (MPM4CPS) [17], for which
Prof Dr. Giese leads the working group 1 responsible for providing foundations for
MPM4CPS.

5.4 Master Projects

With Prof Dr. Giese, we have proposed a project for HPI master students to extend
the Eclipse meta-modeling framework for global model management. Unfortunately,
we did not get any candidate.

I am also currently discussing potential collaboration between the Lina laboratory
of the University of Nantes in France and the University of East Anglia in the UK for

28

6 Conclusion

a master project on inferring traceability links between legacy systems modeled with
the AADL and requirements. Work on automated traceability management from the
SAM group may be an interesting starting point in this project.

6 Conclusion

With these improvements of both the SDM pattern matching strategy and MoTE
TGG language, we hope to contribute to a better handling of model-based specifi-
cations of complex industrial systems. In particular, by allowing automated model
synchronization in an incremental scalable manner, our approach aim at limiting
the introduction of inconsistencies in system specifications or at least at detecting
them during development, thus reducing development costs significantly.

Furthermore, this research will serve as a basis of a future longer term project
for establishing new modeling foundations for modular incremental global model
management.

References

[1] Why do Projects Fail: Airbus A380. url: http://calleam.com/WTPF/?p=4700 (last
accessed 2015-10-01).

[2] A 380, quand la CAO s‘emmêle. url: http://www.usinenouvelle.com/article/a-380-
quand-la-cao-s-emmele.N17079 (last accessed 2015-10-01).

[3] D. Blouin, B. Larson, E. Vasserman, and H. Giese. Combining Requirements, Use
Case Maps, and Architectural Models for Medical Device Design. Submitted to the
Requirements Engineering: Foundation for Software Quality (REFSQ) 2016
conference.

[4] D. Blouin, G. Ochoa Ruiz, Y. Eustache, and J.-P. Diguet. “Kaolin: a System-level
AADL Tool for FPGA Design Reuse, Upgrade and Migration”. In: NASA/ESA
International Conference on Adaptive Hardware and Systems (AHS). Montréal,
Canada, June 2015.

[5] D. Blouin, A. Plantec, P. Dissaux, F. Singhoff, and J.-P. Diguet. “Synchronization
of Models of Rich Languages with Triple Graph Grammars: An Experience
Report”. In: Theory and Practice of Model Transformations: 7th International Confer-
ence ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings.
2014, pages 106–121. doi: 10.1007/978-3-319-08789-4_8.

[6] C. Castellanos. “Conception de Systèmes Sûrs et Sécurisés à partir d‘une Mod-
élisation Orientée Composant”. PhD thesis. Telecom Paris-Tech School, 2015.

[7] The CorMorant Project. url: http : / /www .hpi . uni - potsdam .de / giese /projects /
cormorant (last accessed 2015-10-01).

29

http://calleam.com/WTPF/?p=4700
http://www.usinenouvelle.com/article/a-380-quand-la-cao-s-emmele.N17079
http://www.usinenouvelle.com/article/a-380-quand-la-cao-s-emmele.N17079
http://dx.doi.org/10.1007/978-3-319-08789-4_8
http://www.hpi.uni-potsdam.de/giese/projects/cormorant
http://www.hpi.uni-potsdam.de/giese/projects/cormorant

Dominique Blouin: Model Synchronization for Complex Industrial Systems

[8] Y. Corre, J.-P. Diguet, D. Heller, D. Blouin, and L. Lagadec. “TBES: Template-
Based Exploration and Synthesis of Heterogeneous Multiprocessor Architec-
tures on FPGA”. In: ACM Transactions in Embedded Computing Systems (2015).

[9] EMF-IncQuery Project Homepage. url: https://www.eclipse.org/ incquery/ (last
accessed 2015-10-01).

[10] U.S. Food and Drug Administration Infusion Pumps Improvement Initiative. url:
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospital
DevicesandSupplies/InfusionPumps/ucm202501.htm (last accessed 2015-10-01).

[11] H. Giese and S. Hildebrandt. Efficient Model Synchronization of Large-Scale Mod-
els. Technical report 28. Hasso Plattner Institute at the University of Potsdam,
2009.

[12] H. Giese, S. Hildebrandt, and A. Seibel. “Improved Flexibility and Scalabil-
ity by Interpreting Story Diagrams”. In: Proceedings of the Eighth International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2009).
Edited by T. Magaria, J. Padberg, and G. Taentzer. Volume 18. Electronic Com-
munications of the EASST, 2009.

[13] ITU URN Specification. url: http://www.itu.int/rec/T-REC-Z.150/en (last accessed
2015-10-01).

[14] D. Lempia and S. Miller. Requirements Engineering Management Handbook. Tech-
nical report. Federal Aviation Administration (FAA), 2009.

[15] F. Mas, J. Menendez, M. Oliva, and J. Rios. “Collaborative Engineering: An
Airbus Case Study”. In: Procedia Engineering 63 (2013). The Manufacturing
Engineering Society International Conference, MESIC 2013, pages 336–345.
doi: 10.1016/j.proeng.2013.08.180.

[16] MoTE Project Homepage. url: http://www.mdelab.org/mdelab-projects/mote-a-tgg-
based-model-transformation-engine/ (last accessed 2015-10-01).

[17] The Multi-Paradigm Modeling for Cyber-Physical Systems (MPM4CPS) European
COST Action. url: http://www.cost.eu/COST_Actions/ict/IC1404 (last accessed
2015-10-01).

[18] RDAL SAE Draft Specification. url: https://wiki.sei.cmu.edu/aadl/images/0/0e/
RDAL_annex_draft_v161.pdf (last accessed 2015-10-01).

[19] E. Richa. “Qualification of Source Code Generators in the Avionics Domain:
Automated Testing of Model Transformation Chain”. PhD thesis. Telecom
Paris-Tech School, 2015.

[20] SAE AADL Specification. url: http://standards.sae.org/as5506b/ (last accessed
2015-10-01).

[21] A. Schürr. “Specification of graph translators with triple graph grammars”. In:
Proc. of the 20th International Workshop on Graph-Theoretic Concepts in Computer
Science. Edited by E. W. Mayr, G. Schmidt, and G. Tinhofer. Volume 903. Lec-
ture Notes in Computer Science. Herrsching, Germany: Spinger Verlag, June
1994, pages 151–163.

30

https://www.eclipse.org/incquery/
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202501.htm
http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/GeneralHospitalDevicesandSupplies/InfusionPumps/ucm202501.htm
http://www.itu.int/rec/T-REC-Z.150/en
http://dx.doi.org/10.1016/j.proeng.2013.08.180
http://www.mdelab.org/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
http://www.mdelab.org/mdelab-projects/mote-a-tgg-based-model-transformation-engine/
http://www.cost.eu/COST_Actions/ict/IC1404
https://wiki.sei.cmu.edu/aadl/images/0/0e/RDAL_annex_draft_v161.pdf
https://wiki.sei.cmu.edu/aadl/images/0/0e/RDAL_annex_draft_v161.pdf
http://standards.sae.org/as5506b/

References

[22] G. Varro, A. Anjorin, and A. Schurr. “Unification of Compiled and Interpreter-
Based Pattern Matching Techniques”. In: Modelling Foundations and Applica-
tions. Edited by A. Vallecillo, J.-P. Tolvanen, E. Kindler, H. Storrle, and D.
Kolovos. Volume 7349. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pages 368–383. doi: 10.1007/978-3-642-31491-9_28.

31

http://dx.doi.org/10.1007/978-3-642-31491-9_28

Runtime data-driven software evolution in enterprise
software ecosystems

Thomas Brand

System Analysis and Modeling
Hasso-Plattner-Institut

thomas.brand@hpi.uni-potsdam.de

The study presented in this report explored how runtime data already supports
enterprise software evolution decisions at SAP to make the software continuously
fit the requirements. The study helped answering questions and to confirm or rebut
assumptions made when first approaching this research field. Also it revealed
additional research challenges.

1 Introduction

When software is adapted to the needs of a changing context through the periodic
release of modified versions then this is considered as software evolution [4] for
this study. The modifications performed by the software manufacturer may affect
the source code, the documentation as well as the recommended configuration and
finally result in a new software package release version. The term software package
is used in the study to distinguish a deployable release of software artifacts from a
software system, which in contrast shall be the term for a software instance operating
in a particular environment. Software packages are built for software products such
as SAP software and custom developed applications.

For this study any data generated or collected during the operation of a software
system is considered as runtime data. Runtime data is already used by self-adaptive
autonomous software systems for their individual adaptation [3]. If necessary such
a system can to a certain extend automatically adjust to the events which it is capable
to sense and process as runtime data. Those can be events for example regarding the
system itself or its given goals and its environment, which shall be considered here
as context.

Especially the following current circumstances suggest asking how runtime data
of systems, which are based on the same software package, can also support the
evolutionary adaptation of this particular underlying software package in the sense
of the earlier given definition of software evolution: 1. The emerging support for
software deployments in cloud environments and the increase in software as a ser-
vice offerings making it technically easier for the software manufacturer to access
the runtime data as well as 2. the currently available technologies for mass data
processing to analyze the accruing runtime data.

Figure 1 depicts the automated steps of the control loop to accomplish self-
adaptation of an individual software system. The strengths of such an automated
control loop can comprise fast reaction times, great complexity handling [1] and

33

mailto:thomas.brand@hpi.uni-potsdam.de

Thomas Brand: Runtime data-driven software evolution in enterprise software ecosystems

Context

Represents the sensable

context of the software system.

Ctx
interact

xStep

Monitor

Obtain required data as a

main source for knowledge.

M

xStep

Analyze

Determine if adaptation is required

based in known rules and goals.

A x Step

Plan

Plan the adaptation actions

according to the knowledge.

P

x Step

Execute

Perform the planned

actions.

E

senses

senses
effects

Progresses

to next step

Datastore

KnowledgeK

Software system

One instance based on

a software package.

Sys

Figure 1: Control loop to automatically perform the individual adaptation of a soft-
ware system based on its knowledge, which can comprise for example rules, goals,
system self- and context awareness.

objective decisions based on specified goals and measured data. The very narrow
context comprehension and the limited adaptation solution space can be assessed
as weaknesses of the loop. Both of those weaknesses are less challenging for the
human-controlled development cycle that drives the evolutionary adaptation of a
software package. But utilizing ideas from the automated self-adaptive systems con-
trol loop especially the consideration of runtime data may help to further improve
the results of this development cycle. An enhanced version of the development cy-
cle, which considers runtime data to produce additional knowledge for software
evolution decisions, is depicted in Figure 2.

This study investigated the development cycle for SAP configuration recommen-
dations. The recommendations are provided to customers as SAP Best Practices
packages, sometimes also simply called content packages. A SAP Best Practices pack-
age is typically developed for a particular software package release. With the best
practices packages the software manufacturer SAP intents to help its customers to
implement business best practices in their SAP software systems faster and easier.
The packages consist of a variety of items including business process descriptions,
planning aids, configuration guides, test scripts and learning materials.

The goal behind understanding the development cycle for SAP Best Practices
packages was to learn about the challenges associated with decisions regarding the
creation and evolutionary adaptation of the content. Furthermore during the study
I sought for insights about how runtime data is or could be utilized to support those
decisions but also how the data could support the content provisioning towards the
customer. In order to get to know more about the use cases for runtime data in those
regards and about techniques to obtain and process the data, I also got in touch
with the SAP Usage Measurement Program. Eventually understanding software
respectively content evolution relevant questions better shall help to evaluate system
architecture options required for answers based on runtime data.

For this explorative empirical study I discussed with subject matter experts and
additionally conducted interviews. I recorded and processed nine interviews ad-
hering to scientific practices recommended for example in [5] and [2] to compile

34

2 Reporting on conducted interviews

Context
Represents the human and

software comprehendable context.

Ctx

xStep
Analyze

Obtain necessary data and
determine required adaptations.

A

xStep
Design

Elaborate and
plan adaptations.

D x Step
Assure quality
Test software in
different environments.

Q

x Step
Release
Provision the software as a
usable respectively deployable
package to the customer.

R

senses

effects

x Step
ImplementI

KnowledgeK

May return to
previous
step

 Progresses
to next step

Software package
Deliverable of the development
cycle, comprising for example of
software binaries, documentation
and a recommended configuration.
The source code may be used for
manufacturer internal software
analytics.

Pkg

senses

senses

interact being based on

Software system
One or multiple instances.

Sys

Figure 2: Human-controlled development cycle driving the evolutionary adaptation
of a software package by producing new package releases, which are the basis for
one or more software systems.

summaries which were approved by the interviewees and are quoted in this report.
The following sections of this report present major insights I gained from the study.

2 Reporting on conducted interviews

2.1 Development cycle

This section shall provide an overview about the content development cycle for SAP
Best Practices packages and related insights gained through the study.

Role model Several roles from within SAP and its software ecosystem are involved
in the development cycle for SAP Best Practices packages. At SAP the solution pack-
age owner has the responsibility for the content package as a product and is basically
involved in all steps of the development cycle and also coordinates the activities be-
fore and afterwards. The package build lead is responsible that the content and
finally the package are actually created. He controls the development cycle and man-
ages a team of package build experts. The package build expert with his detailed
business and software package knowledge is mainly involved in the design, imple-
mentation and quality assurance steps. The software packages for which the SAP
Best Practices packages are built, are provided by the SAP software development
team. Besides customers the SAP software ecosystem comprises several types of part-
ners. Those partner companies are most relevant for the development cycle, which
have distinguished business process and industry expertise and conduct content
based software system implementation projects with customers. Thus consultants

35

Thomas Brand: Runtime data-driven software evolution in enterprise software ecosystems

from partners or SAP Consulting are regularly members of the package build team.
The collaboration seems to work well without an explicit role model for the software
ecosystem at SAP [9, § 15, 9, § 4].

Analyze step After the portfolio decisions about which SAP Best Practices pack-
ages shall be created the development process starts with the identification of re-
quired changes and new content features. This comprises trying to anticipate future
requirements and considering feedback about existing content. The conducted in-
terviews indicate that the focus of content development lies on the identification
of additionally required content for further business processes, process steps and
integration scenarios. Insights into customer systems are considered as less helpful
when trying to understand what the customers’ requirements are or will be in the
future [10, § 3] and thus those insights are likely not considered today [9, § 6].

Input about what content shall be developed is gathered through several chan-
nels [10, § 6]. On the one hand from outside of the software manufacturer based on
relationships with customers and partners [10, § 2]. On the other hand from within
the organization, such as from the support [9, § 7] and the go-to-market team [10, § 2].
But most of the content changes and enhancements seem to be triggered through
changes of the software package performed by the software development team [9,
§ 9, 10, § 2, 7, § 3]. The content is also reviewed about once a year [13, § 9]. But as the
content creation is carefully deliberated, the existing content seems to rarely become
obsolete [10, § 13]. The package owner and the package build team together prioritize
both external and technical requirements for the SAP Best Practices package releases
and add them to the backlog from where they are processed [10, § 2].

With the SAP Best Practices packages the goal is to cover 80 % of the functionality,
which every customer needs independent of his size [9, § 17, 10, § 2]. A challenge
for the package build team is to comprehend how many customers actually require
the process being built and to forecast the usage frequency. The team’s correspond-
ing assessment is sometimes not right. It happens that a request of one customer is
generalized and becomes the customers’ demand [10, § 5]. The interviews also sug-
gest that additional support would be very appreciated for assumption validation
and understanding what customers actually use [8, § 14]. This could for example
help to determine which processes are used most often [9, § 8] and which products
customers integrate as part of their solutions [9, § 5].

To summarize: there are many sources from where requests for changed or addi-
tional content reach the content development team. Among those sources runtime
data from customer systems could not be found. But as the content shall serve the
vast majority of customers as best practice it is exceedingly important to validate
the received requests and to objectively prioritizing them. Thus helping to answer
the following question seems to be especially valuable: how is the already existing
content actually being used and how well will requested content meet the needs of
most customers?

Design step This step comprises for example designing blueprints, performing fea-
sibility checks, specification tasks and doing the detailed project planning. The work

36

2 Reporting on conducted interviews

deals mainly with the question how to do something. Creativity and knowledge
about usage patterns are essential [9, § 9, 13, § 12]. While SAP has strong expertise
in base processes and cross components, partners are favored for industry specific
processes, like retail, banking or hi-tech [10, § 10]. First the required features are
specified as well as the bill of material, which determines the content artifacts to be
created. Then a project plan is defined containing the timelines, work assignments
and required systems [10, § 8]. Also the network to the software development team
needs to be established as it changes from time to time [10, § 8]. To summarize: de-
signing for content development and the corresponding planning requires creativity
and sophisticated technical and industry business expertise.

Implement step During this step all content assets are created. It lasts typically four
to eight weeks [10, § 8]. When the package build team defines a process based on their
knowledge and the fragmentary product documentation then it quickly runs into
problems. Therefor the collaboration with the software development is very close.
Regular calls take place and the package build team also takes part in the program
management meetings so it is aware of the features the software development is
working on and the problems the developers encounter. [10, § 9]

Also consultants from SAP and SAP partners contribute to the implementation of
the SAP Best Practices packages with their experience from customer projects [10,
§ 11]. Additionally partners create and market their own best practices packages with
a major goal being a high level of consistency and integration with SAP content.

To summarize: developing content requires tight collaboration with the software
development team. In the future also partners shall get more involved in content
development efforts. This might require allowing them to participate in the content
development infrastructure.

Assure quality step In this step content consolidation tests are followed by accep-
tance tests. [10, § 8]. Also performance tests are conducted and documentation assets
are checked for quality. While the content is tested by SAP in simulated customer
implementation projects, acceptance testing is also done together with partners [10,
§ 8].

Release step This step is about getting the content published and rolled out to the
customer. Three release modes can be distinguished: 1. A SAP Best Practices package
is released sometime during the lifetime of the corresponding software package
release. This is a rare case, today. 2. The best practices package is released shortly
after the software package became available. 3. Particular software packages and
their best practices packages are developed simultaneously.

The SAP Hybris e-commerce software is an example for the second mode. The
Hybris software package gets released every three months. About four to six weeks
later the corresponding SAP Best Practices package is released. [10, § 7]

The reason for this delay in the second mode is that the content development is
not done simultaneously but may only start when the software enters the solution
validation phase, which is only about four weeks before the software release [10, § 7].

37

Thomas Brand: Runtime data-driven software evolution in enterprise software ecosystems

In this mode SAP Best Practices packages must also only be tested with already
released software, too. Thus the second mode does not allow including a mechanism
in the software setup routine to automatically tailor the SAP Best Practices integration
configuration content according to the scenario which the customer earlier specified
during the setup in a questionnaire. [9, § 19]

If the content is released for downloading then only the entire best practices pack-
age can be obtained as a single archive file by the consumer. This circumstance makes
it currently impossible to measure how often individual content assets are actually
accessed [9, § 5]. It is planned that in the future content created by SAP and by part-
ners is provided through one common database [10, § 11]. This may then also allow
for a more detailed access tracking.

Finally it is the responsibility of the package owner that the released content
reaches the partners and customers, for example by providing enablement material,
conducting partner workshops and presenting it at fairs. The package owner’s main
target group are the partners and not the customers. [9, § 1]

To summarize: if the content development is separated from the software devel-
opment process as with the first and second release mode then it is hard for the
content development to benefit from or influence the runtime data which the soft-
ware collects and analyzes. Thus the data also can not be utilized for example for the
content provisioning or content adaptation. Also the coarse granularity for accessing
and obtaining the content on package instead of asset level has been recognized as
hindrance for understanding asset user access frequencies as an indicator for content
asset relevance.

2.2 Question properties

The study investigated questions relevant for deciding about new features and evo-
lutionary adaptation. It turned out that some of the questions’ properties seem to
be useful for deriving requirements for the system architecture, which can sup-
port answering those questions with the help of runtime data. For example the
following two questions probably require different architectural components to be
answered: 1. Where do long waiting times between two business process steps oc-
cur as they may indicate missing functionality within the software executing this
business process [9, § 12]? 2. How many customer software systems are based on
SAP Best Practices packages and how does their setup differ from the originally
recommended configuration [13, § 2]? This section presents some of the question
properties and discusses related question examples.

Response time This is the duration from the point in time when the question
occurred until a suitable answer is available. For example if an error occurs then
access to a customer system would be helpful for the development team [10, § 3] to
analyze the error as well as provide support and later a corresponding bug fix. The
developer would need responses to his questions within support case timeframes—
if not immediately then likely within a few hours.

38

2 Reporting on conducted interviews

In comparison the question about how often which of the software manufacturer’s
software packages get integrated by customers [9, § 5] might not be as urgent. But
an system architecture and related processes requiring up to a year or longer [14, § 5,
12, § 6] to provide this information might be less valuable.

Also customers are interested in a feature to compare their common key per-
formance indicators against aggregated benchmark values to identify potential for
improvement [11, § 8, 12, § 5]. Even though gathering and analyzing the data for this
use case might take some time, the answers to such a set of pre-defined standardized
questions can be provided with a very short response time as the required data can
be pre-collected and pre-processed.

Questioner Data about the execution of software is not only interesting for software
evolution decisions but also for other purposes. Thus besides developers and product
owners other roles are also interested in accessing software runtime data ideally
using the same infrastructure, such as a customer license auditor [11, § 3] or customers
wanting to justify their software investments [11, § 8]. Different roles may also have
different requirements on how which data is presented. Thus there are currently
efforts at SAP to build a dashboard providing information to different roles [11, § 3].
Receivers of answers may also be other software components. Such a component
might automatically correlate measurement results with development artifacts or
combine them with results from software analytics. But the interviews showed that
the content artifacts are not prepared for this use case, yet and no demand for this
kind of support was recognized [7, § 1, 14, § 7, 13, § 12].

Object of the question Software evolution questions are related to different ob-
jects, for example parameter settings and how they deviate from default or best prac-
tice configurations [13, § 2]. Also system setups are of interest, for example which
software packages are integrated [9, § 5, 15, § 4] and which versions are used [14,
§ 11]. The interviews also indicate that usage patterns are particularly relevant [13,
§ 12], from functionality invocation frequencies [14, § 2] to actual business process
workflows [9, § 13, 8, § 1].

Answer accuracy The accuracy of an answer to a question can be determined by
several factors. For example analyzing runtime data from all customer systems would
provide an exact picture of how the software is used. Nevertheless analyzing the
data of a comparatively very small subset of customers might already yield a suffi-
ciently representative result [13, § 7] while consuming significantly less resources.
Also the measurement frequency can contribute to the accuracy ranging from one-
time queries over regular samplings to permanent observation. Close related to the
frequency is also the required duration of the observation, which can be from a
week [13, § 8] to several years [14, § 5].

Validity of the question The validity of a question shall mean if it is generally
applicable to several software packages or if it is very specific to a particular package.
It seems that the product owners’ questions about software usage are very package

39

Thomas Brand: Runtime data-driven software evolution in enterprise software ecosystems

specific [14, § 6]. Also general usage patterns have not been identified [12, § 2] which
could have been used to provide guidelines on how to measure for software evolution
decisions. Ultimately it has not been systematically examined, how data about the
execution of software can influence and enhance software development, yet [12, § 1].

Measure versus discover The fact whether the question itself is known before
the data collection or not has a big impact on the amount of required data and
the infrastructure coping with it. In the first case when the question is known only
structured data is upfront goal-oriented collected. For the second case, where the
question is unknown, the rule can be applied the more data is collected the better.
In this case also unstructured data may be gathered, for example entire log files, to
later recognize new patterns and search for correlations. According to the interviews
the first case is currently more relevant to understand software usage [12, § 3] while
the second case is promising [11, § 4].

3 Conclusion and outlook

The development of SAP Best Practices packages content is mainly driven by new soft-
ware packages and software package features as well as by established relationships
with partner companies and customers, who provide feedback or directly submit
change requests. The results of the conducted empirical study indicate that runtime
data currently does not play a role when for example (a) identifying the need for
new content and (b) validating assumptions as part of the development cycle and
(c) obtaining feedback for evolutionary adaptation of existing content, neither from
delivering the content to the customers nor from its utilization in the their software
systems. The study results also indicate that further support for assumption vali-
dation and understanding actual usage within customers systems is considered as
especially helpful. In both cases runtime data should be a valuable additional source
for insights to help with decisions concerning content and software evolution.

Investigating questions related to evolutionary adaptation adumbrated a set of par-
ticular question properties. It appears that those properties determine requirements
for the system architecture which is useful to answer those questions with the help
of runtime data. Further work is required to specify a question classification system.
In conjunction with such a classification system then a maturity model is thinkable
which would allow rating system architectures by their support for different question
classes. The intend behind such a maturity model is to help software manufacturers
to derive steps to evolve their software package to a higher maturity level and after-
wards to enable customers to adapt their software systems individually to the level
which fits their needs.

Additionally due to allowing flexibility and handling complexity the adaptive
monitoring described in [6] seems to be a very interesting approach to gather run-
time data not only for the individual adaptation of a software system but also for
evolutionary adaptation of its underlying software package. Furthermore analyz-
ing the knowledge of multiple operating monitoring adaptation engines could be

40

References

helpful to determine or improve the usefulness of the recommended monitoring
configuration, which can be part of a SAP Best Practices package for all customers.
This is just one example for the very appealing idea that the knowledge gained by
multiple self-adaptable systems during their individual adaptation can be utilized
as runtime data by the software manufacturer for the evolutionary adaptation of the
underlying software package.

References

[1] C. Gacek, H. Giese, and E. Hadar. “Friends or Foes? – A Conceptual Analysis
of Self-Adaptation and IT Change Management”. In: Proceedings SEAMS ’08,
Leipzig, Germany. ACM Press, 2008.

[2] J. Gläser and G. Laudel. Experteninterviews und qualitative Inhaltsanalyse. 4. Aufl.
Wiesbaden: VS Verlag für Sozialwissenschaften, 2010.

[3] IBM. An architectural blueprint for autonomic computing. USA, 2005.
[4] M. M. Lehman and L. A. Belady. Program Evolution: Processes of Software Change.

London: Academic Press, 1985.
[5] F. Shull, J. Singer, and D. I. K. Sjøberg. Guide to advanced empirical software

engineering: Forrest Shull, Janice Singer, Dag I.K. Sjøberg. London: Springer, 2008.
[6] G. Tamura, N. M. Villegas, H. A. Müller, L. Duchien, and L. Seinturier. “Improv-

ing Context-Awareness in Self-Adaptation using the DYNAMICO Reference
Model”. In: Proceedings of SEAMS ’13, San Francisco, CA, USA. IEEE Press, 2013.

[7] Thomas Brand. Interview summary - IS01. Walldorf, 28.04.2015.
[8] Thomas Brand. Interview summary - IS02. Walldorf, 28.04.2015.
[9] Thomas Brand. Interview summary - IS03. Walldorf, 28.04.2015.

[10] Thomas Brand. Interview summary - IS04. Walldorf, 29.06.2015.
[11] Thomas Brand. Interview summary - IS05. Walldorf, 30.06.2015.
[12] Thomas Brand. Interview summary - IS06. Walldorf, 1.07.2015.
[13] Thomas Brand. Interview summary - IS07. Walldorf, 1.07.2015.
[14] Thomas Brand. Interview summary - IS08. Walldorf, 4.08.2015.
[15] Thomas Brand. Interview summary - IS09. Walldorf, 5.08.2015.

41

See-Through Lenses for Massive 3D Point Clouds

Sören Discher

Computer Graphics Systems Group
Hasso Plattner Institute
soeren.discher@hpi.de

3D point clouds as a digital representation of our world are used in a variety
of applications. They are captured with LiDAR or derived by image-matching
approaches to get surface information of objects, e.g., indoor scenes, buildings,
infrastructures, cities, and landscapes. To allow for the efficient exploration of
heterogeneous, time variant, and semantically rich 3D point clouds novel inter-
action and visualization techniques are required. In this report, interactive and
view-dependent see-through lenses are introduced as exploration tools to enhance
recognition of objects, semantics, and temporal changes within 3D point cloud
depictions. Novel filtering and highlighting techniques are presented that allow to
dissolve occlusion to give context-specific insights. All techniques can be combined
with existing point-based rendering approaches as exemplified on an out-of-core
real-time rendering system for massive 3D point clouds.

1 Introduction

Applications for environmental monitoring [5], urban planning and develop-
ment [13], as well as disaster and risk management [1] require precise and up-to-date
surface information for objects, sites, and landscapes. 3D point clouds are digital
discrete surface representations that fulfill these requirements. They can be created
automatically and efficiently by means of in-situ and remote sensing technology
(e.g., laser scanning or photogrammetric approaches) with high density (e.g., 400
points per m2) and high capturing frequency (e.g., once a month). Due to the mas-
sive amount of data managing, processing, and visualizing 3D point clouds poses
challenges for hard- and software systems [7].

Traditionally, geoinformation applications and systems reduce the density and
precision, or extract generalized, mesh-based 3D models in a time-consuming pro-
cess [6]. Hence, they do not use the full potential of the data. Out-of-core and external
memory algorithms on the other hand are designed to cope with massive amounts of
data [8]. As an example, arbitrarily large 3D point clouds can be explored in real-time
by combining specialized spatial data structures with Level-of-Detail concepts [4,
10]. Most of these approaches render all points in a uniform way giving an equal
amount of significance to every point. However, points within a 3D point cloud typ-
ically differ in terms of relevance. The relevance of a point depends on the kind of
information it carries (e.g., timestamp, surface category, color, position) as well as
the current use case and visualization task. Common use cases are for example:

Different Acquisition Types Surface information for a site could be available from
different surveys such as an airborne, mobile mapping, terrestrial, outdoor and

43

mailto:soeren.discher@hpi.de

Sören Discher: See-Through Lenses for Massive 3D Point Clouds

Figure 1: Multi-temporal 3D point cloud: building points that are not present in the
old scan (upper left) but captured in the new scan (lower right) are highlighted
with a red color scheme and by tracing their boundaries.

indoor data acquisition. On a broader scale, 3D point clouds of spatial envi-
ronments might consist of overground as well as subterranean structures (e.g.,
mine shafts, sewers). By allowing users to see through occluding structures
(i.e., by masking out corresponding points) the in-depth exploration of such
3D point clouds can be facilitated.

Multi-temporal Data Many applications require frequent scans and simultaneous
use of 3D point clouds taken at different points in time. To assist users in
exploring differences and structural changes of the captured site within such
multi-temporal 3D point clouds (e.g., constructed, demolished, or modified
buildings), points indicating such changes should be highlighted (Figure 1).

Classification-dependent Rendering Typically, points represent different surface
categories (e.g., ground, building, vegetation, water, city furniture interior,
façade). By applying different point-based rendering techniques and color
schemes to each point, taking into account characteristics of its surface category
(e.g., fuzzyness of vegetation, smooth ground surfaces or planar building roofs),
different objects within a 3D point cloud depiction and relations between these
objects can be distinguished more efficiently [3, 10]. However, relevant objects
might still be not visible due to occlusion by less relevant objects (e.g., buildings
below vegetation). To facilitate the identification of full and partly occluded
objects, users need to see through occluding structures (Figure 2).

To filter points within a 3D point cloud based on their relevance to the given use
case, see-through lenses for massive 3D point clouds are defined as follows:

44

2 Overview

Figure 2: 3D point cloud with semantics: vegetation points are masked out in the
lower right part to show hidden building points.

• A see-through lens defines a space within a 3D point cloud, in which points
of higher relevance are emphasized by masking out less relevant points com-
pletely or in parts.

• The area of a see-through lens can be defined interactively by the user or auto-
matically with respect to the current view position (e.g., center of the screen).

In the following several interactive and view-dependent see-through lenses for
massive 3D point clouds are presented and their specific advantages and disad-
vantages in different scenarios are discussed (Section 2). Building upon an existing
out-of-core rendering approach for the classification-dependent visualization of mas-
sive 3D point clouds, it is shown how see-through lenses can be efficiently combined
with existing point-based rendering approaches as a post processing step (Section 3).

2 Overview

Points may feature different, precomputed attributes such as an individual color,
temporal information describing the date of collection, or the most likely surface
category a point represents. These surface categories may range from basic ones
such as indoor, outdoor, overground, subterranean, airborne, or terrestrial to more
specific ones such as building, ground, or vegetation. These per-point attributes can
be used to customize the appearance of points individually at runtime [10]. Hence,
points that are related to each other (e.g., representing the same surface category
or being created at the same point in time) can be identified more easily. If points
are occluding each other, these attributes can also serve as a means to assess and
highlight the significance of each point for a given use case.

45

Sören Discher: See-Through Lenses for Massive 3D Point Clouds

2.1 Priority Levels

Depending on the application, use-case, and kind of information that needs to be
explored, the significance of a point may vary. To describe the significance of a point
the following priority levels are used:

Figure 3: Illustration of compositions for different priority levels in occlusion situa-
tions. Context information is (b) masked out in favor of or (c) blended with focus
information. Neutral information is neither highlighted nor filtered.

Focus Essential information of interest and exploration aim (e.g., interior objects
occluded by walls, subterranean structures or buildings that have been demol-
ished between consecutive scans). The more points carrying such information
are occluded, the less information can be gathered, i.e., the less effective the
exploration becomes (Figure 3).

Context Information that increases the overall realism of the visualization without
being the main focus of the exploration (e.g., vegetation in densely forested
areas). Points carrying such information can be safely masked out in favor of
focus information (Figure 3).

Neutral Depending on the use case, users might want to focus on specific occlusion
scenarios, such as solely on buildings that are occluded by vegetation. This
requires to define all other information as neutral, i.e., points representing
such information are treated as solid geometry that is neither masked out or
highlighted (Figure 3).

These priority levels are used to define the composition of the data for the render-
ing and visualization of different occlusion scenarios (Figure 3): occlusions with the
same priority level or including points carrying neutral information are solved by

46

2 Overview

displaying the nearest point to the view position (i.e., similar to the default behavior
in 3D rendering). Points carrying context information on the other hand (so-called
context points) are masked if focus points are occluded.

2.2 Interactive and View-Dependent See-Through Lenses

Simply masking out all context points in occlusion scenarios limits the correct es-
timation of depth differences and does not provide information about the object
shape and boundaries within a 3D point cloud depiction (Figure 3a). Blending con-
text points and focus points by a certain factor addresses these limitations, however,
areas with blended structures might be difficult to recognize during the exploration
(Figure 3b).

2.2.1 Blueprints
Blueprints are a traditional form of technical drawings and known for their character-
istic style which originating from the historical contact print process [9]. Construction
elements are visualized by tracing outlines using different line widths and a color
contrasting favorably with the background. Thus, the focus of the viewer is directed
towards the most significant construction elements. This concept can be adapted
to highlight areas where focus and context points have been merged by tracing the
boundaries of those areas with a configurable line width and color (Figure 3c). This
approach is especially effective to highlight changes within multi-temporal 3D point
clouds (Figure 1).

2.2.2 Halos
A stronger emphasis on focus points can be obtained by masking out additional
context points in a defined local proximity (Figure 5d). As a result, groups of neigh-
boring focus points are surrounded with a halo effect, similarly to the real-world
phenomenon and the technique used by artists throughout history to emphasize
certain individuals. Techniques that highlight objects by removing occluders are
known as cut-away-views [12, 14]. So far, they have not been applied to point-based
rendering. The typical use case to apply this technique is the exploration of complex
structures that are completely occluded by their surroundings, such as subterranean
structures.

2.2.3 Interactive See-Through Lenses
All techniques that have been introduced are applied automatically to the data where
focus information is occluded by context information. Naturally, the number, posi-
tion, and extent of these areas varies depending on the view position. As opposed
to that automated, view dependent approach, interactive see-through lenses (also
commonly known as ‘magic lenses’) can be moved freely across the screen. Within
an interactive see-through lens, context points are masked out completely, whereas
in the surrounding no blending is applied at all (Figure 5f+e). This is required to
focus on occlusions within certain areas whose position is known beforehand (e.g.,
to explore and show a former state for a certain area). However, if those areas are

47

Sören Discher: See-Through Lenses for Massive 3D Point Clouds

Figure 4: Schematic overview of the classification-dependent point-based render-
ing system by Richter et al. [10] and our modifications. Categorized by surface
categories, points are transferred to GPU memory and rendered into separate
G-Buffers that are merged based on the respective priority levels before being
composed to synthesize the final image.

unknown, interactive see-through lenses are inefficient as the entire 3D point cloud
has to be traversed manually to identify all areas.

3 Compatibility to Existing Point-Based Rendering
Approaches

The proposed see-through lenses can be integrated into existing rendering systems
for 3D point clouds. This is demonstrated by extending a rendering approach for
massive 3D point clouds with surface category information introduced by Richter
et al. [10] Figure 4. The approach is based on a layered, multi-resolution kd-tree
to efficiently select relevant points of different surface categories for a given view
position and rendering budget. To render selected points multi-pass rendering in
combination with G-Buffers [11], i.e., specialized frame buffer objects (FBO), is used.
Multiple 3D textures store information for color, depth, or normal values. For each
surface category a separate rendering pass is applied, allowing to combine different
rendering techniques. Originally, Richter et al. [10] use a separate G-Buffer for each
surface category and apply a compositing pass to combine these G-Buffers into a final
image. To apply see-through lenses, the compositing logic is extended. See-through
lenses are implemented via programmable fragment shaders and can be activated

48

4 Conclusion and Outlook

and configured at runtime. To guarantee interactive frame rates even for massive 3D
point clouds with a variety of thematic attributes and surface categories, the original
approach was modified to have only one G-Buffer for each priority level (instead of
one for each surface category). Thus, the compositing pass always combines three
G-Buffers, independently from the overall number of surface categories within a
3D point cloud depiction. A performance evaluation conducted by Discher et al. [2]
based on 3D point clouds from several real-world data sets of different size and point
density showed the applicability of the proposed see-through lenses for arbitrarily
large 3D point clouds.

4 Conclusion and Outlook

As shown in this report, the exploration of heterogeneous, time-variant, and seman-
tically rich 3D point clouds can be facilitated by taking into account the relevance of
a point for different use cases. The relevance of a point can be assessed based on a
point’s spatial position or any additional per-point attribute such as its surface cate-
gory or timestamp. By introducing the concept of see-through lenses to interactive
point-based rendering the visual recognition of relevant, occluded objects within a
3D point cloud depiction can be facilitated. The proposed see-through lenses can
be integrated into existing rendering systems for massive 3D point clouds as addi-
tional post processing effects and offer many degrees of freedom for graphics and
interaction design as they can be configured and selected at runtime. Therefore,
they are highly adaptive and applicable to a variety of use cases and visualization
tasks from different domains. Future work includes investigating how to efficiently
apply alternative techniques to highlight occluded objects (e.g., multiple views or
multi-perspective projections) to point-based rendering.

5 Acknowledgements

This work was funded by the Federal Ministry of Education and Research (BMBF),
Germany within the InnoProfile Transfer research group “4DnD-Vis”. I would like to
thank virtualcitySYSTEMS and the Faculty of Architecture at the Cologne University
of Applied Sciences for providing datasets.

References

[1] E. Canli, B. Thiebes, B. Höfle, and T. Glade. “Permanent 3D Laser Scanning
System for Alpine Hillslope Instabilities”. In: 6th International Conference on
Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. 2015.

49

Sören Discher: See-Through Lenses for Massive 3D Point Clouds

[2] S. Discher, R. Richter, and J. Döllner. “Interactive and View-Dependent See-
Through Lenses for Massive 3D Point Clouds”. In: Proceedings of the 3D GeoInfo
2015. Accepted. 2015.

[3] Z. Gao, L. Nocera, M. Wang, and U. Neumann. “Visualizing aerial LiDAR
cities with hierarchical hybrid point-polygon structures”. In: Proceedings of the
2014 Graphics Interface Conference. 2014, pages 137–144.

[4] P. Goswami, F. Erol, R. Mukhi, R. Pajarola, and E. Gobbetti. “An efficient multi-
resolution framework for high quality interactive rendering of massive point
clouds using multi-way kd-trees”. In: The Visual Computer 29.1 (2013), pages 69–
83.

[5] K. König, B. Höfle, M. Hämmerle, T. Jarmer, B. Siegmann, and H. Lilienthal.
“Creating large-scale city models from 3D-point clouds: a robust approach
with hybrid representation”. In: IISPRS Journal of Photogrammetry and Remote
Sensing 104 (2015), pages 112–125.

[6] F. Lafarge and C. Mallet. “Creating large-scale city models from 3D-point
clouds: a robust approach with hybrid representation”. In: International journal
of computer vision 99.1 (2012), pages 69–85.

[7] F. Leberl, A. Irschara, T. Pock, P. Meixner, M. Gruber, S. Scholz, and A. Wiechert.
“Point Clouds: Lidar versus 3D Vision”. In: Photogrammetric Engineering &
Remote Sensing 76.10 (2010), pages 1123–1134.

[8] S. Nebiker, S. Bleisch, and M. Christen. “Rich point clouds in virtual globes–
A new paradigm in city modeling?” In: Computers, Environment and Urban
Systems 34.6 (2010), pages 508–517.

[9] M. Nienhaus and J. Döllner. “Blueprint Rendering and ‘Sketchy Drawings’”.
In: GPU Gems II: Programming Techniques for High Performance Graphics and
General-Purpose Computation. 2004, pages 235–252.

[10] R. Richter, S. Discher, and J. Döllner. “Out-of-Core Visualization of Classified
3D Point Clouds”. In: 3D Geoinformation Science: The Selected Papers of the 3D
GeoInfo 2014. 2015, pages 227–242.

[11] T. Saito and T. Takahashi. “Comprehensible rendering of 3-D shapes”. In: ACM
SIGGRAPH Computer Graphics 24.4 (1990), pages 197–206.

[12] S. Sigg, R. Fuchs, R. Carnecky, and R. Peikert. “Intelligent cutaway illustra-
tions”. In: IEEE Pacific Visualization Symposium 2012. 2012, pages 185–192.

[13] I. Tomljenovic, B. Höfle, D. Tiede, and T. Blaschke. “Creating large-scale city
models from 3D-point clouds: a robust approach with hybrid representation”.
In: Remote Sensing 7.4 (2015), pages 3826–3862.

[14] M. Vaaraniemi, M. Freidank, and R. Westermann. “Enhancing the Visibility
of Labels in 3D Navigation Maps”. In: Progress and New Trends in 3D Geoinfor-
mation Sciences. 2013, pages 23–40.

50

Formal Approaches and Failure Cause Models for Software
Dependability

Lena Feinbube

Operating Systems and Middleware
Hasso-Plattner-Institut

lena.feinbube@hpi.uni-potsdam.de

The importance of software dependability grows as we increasingly rely on com-
plex software systems in our daily lives. This article compares four different ap-
proaches to formally guaranteeing that a software system obeys its specification.
After highlighting the advantages and drawbacks of state-of-the-art formal meth-
ods, we shift our focus to failure cause models for real world software. The impor-
tance of understanding the details of environment-dependent fault activation is
discussed in the context of fault injection testing.

1 Introduction

As software is becoming more and more ubiquitous in our daily lives, our depen-
dence on it has also grown. Increased effort is needed to ensure its dependability.
Software complexity is human-made, but nevertheless increasingly hard to handle.
Modern software systems are next to impossible to grasp as a whole, let alone by
a single person. The consequences of even the smallest bug may lead to a failure
which is arbitrarily related in space, time and severity to the original fault [3].

The complexity of software arises from the following three factors: First, there is
the internal state space of the program, given by all variables and the values they can
possibly have. Second, there is the space of input and output values of the program,
which may be infinite. Third, programs never execute in isolation but interact with
their environment, being influenced for instance by scheduling, resource states and
interfaces to other software components.

Formal approaches to software dependability research try to demonstrate the
correctness of a software system in all cases. More precisely, software verification
aims at proving that a program (an implementation) obeys a specification. Desirable
properties of a system can be formulated either as safety properties: something bad
should never happen, or as liveness properties: eventually, something good should
happen.

Many efforts towards complete and sound software verification have been made,
despite seemingly discouraging theoretical results: It is well established that not only
is program termination undecidable [36], so is any nontrivial program property [33],
which holds even for while-programs containing only two counter variables [29].
Thus, the quest for proving software correct may seem futile. In practice, much
progress has nevertheless been made by reducing the state space under considera-
tion. In contrast to hardware systems, the state space of software is infinite – leading

51

mailto:lena.feinbube@hpi.uni-potsdam.de

L. Feinbube: Formal Approaches and Failure Cause Models for SW Dependability

to the above mentioned theoretical impossibility results. However, some realistic op-
timizing assumptions can be made to abstract and constrain the state space, making
verification feasible.

This article attempts to provide a broad overview of existing formal approaches
to software dependability. Sections 2 to 5 are largely based on the proceedings and
insights from two Marktoberdorf Summer Schools [23, 24]. There, four broad classes
of formal approaches are discussed with a focus on their applicability and impact in
real software systems.

The article concludes by presenting own research on the topic of software failure
cause models (section 6). In the author’s opinion, a better understanding of software
failure causes can aid in making the existing software dependability means – formal
as well was experimental ones – more targeted and applicable in real-world scenarios.

2 Static Analysis

In the most general sense, static analysis is the reasoning about the behaviour of
programs without running them. Since not all information about the execution envi-
ronment is available before runtime, static analysis is always an over-approximation
of the actual program behaviour. This means that some behaviours which can never
occur in practice are assumed to be possible. In contrast, dynamic analysis, which
builds upon traces from actual execution(s) is an under-approximation: some possi-
ble behaviours may not be captured.

Reasoning statically about the behaviour of programs is desirable because it can
efficiently uncover bugs in early phases of software development, because it is rela-
tively cheap and because details about the execution environment may not be known
beforehand. Static analysis can find violations of safety properties and is also used
to assert the reachability of desirable liveness properties.

A typical approach to achieve this is by abstract interpretation [8]:

1. Define an abstract domain where the concrete program values are mapped
to. For the sake of performance, this domain is usually much smaller than
the original domain. Termination is guaranteed for finite abstract domains,
but infinite domains can also be used (together with additional convergence
theorems).

2. Define an abstract language semantics in this domain. It needs to be clear
how operators in the program transform the abstract values obtained from the
concrete variables.

3. Apply the above defined operators on the abstract input until a fix point is
reached, i.e. until no new abstract states are visited anymore.

The example in Figure 1 illustrates this process.
As already mentioned, the beauty of static analysis lies in the fact that it can be

applied without running the program. This makes the approach both scalable and

52

2 Static Analysis

1 int foo(int i) {
2 int x = 3;
3
4 while (i >= 0) {
5 i--; x++;
6 }
7 assert(x >= 0);
8 }

Figure 1: Example for abstract interpretation: in this program, the property in line 7
can be checked by mapping the concrete domain of integer values to the abstract
domain of signs. Initially, i and x are both of unknown sign. After the initialization
this changes and it becomes known that x is positive. Thus, transformers according
to the program operators are applied to the symbolic values, until all states have
been explored. It can be observed that no state where x is negative in line 7 is
reachable, therefore the assertion holds true.

applicable to small code fragments early in the development process. Static analysis
can be found in various bug-hunting tools [10].

Device drivers are a popular application area for most formal methods: they are
obviously relevant to the dependability of the operating system, and they have a
comparatively small state space. A prominent success story of static analysis is the
SLAM project [2], where correct API usage in Windows device drivers is verified.

Because static analysis is inherently over-approximating, false positives are an
issue which can hinder the applicability of purely static tools in practice [25].

Static and Dynamic Analysis It has been argued that static and dynamic ap-
proaches to program analysis should be combined more often, in order to lever-
age the advantages of both: the scalability and locality of static analysis, and the
increased precision and avoidance of false positives of dynamic analysis.

One challenge here is that dynamic analysis requires the program or code snippet
of interest to be executed easily. Micro Execution [13] is a technology which allows
for the execution of arbitrary code without writing dedicated test drivers. The code
is run inside a VM which intercepts all memory operations at the binary level and
controls memory allocation. Custom memory policies can be defined. Therefore,
micro execution is also suitable as a fault injection or fuzzing tool which works on
any compilable code.

53

L. Feinbube: Formal Approaches and Failure Cause Models for SW Dependability

3 Software Model Checking

In contrast to static analysis, model checking assumes that a system is described
formally – for instance, as an automaton or petri net. Model checkers can then an-
swer the question whether this system satisfies a formal specification. If it does not,
a counterexample is provided. A systematic, exhaustive exploration of the entire
state space takes place, returning the counterexample as soon as a violating state is
reached.

Model checkers inherently suffer from the state space explosion problem – the ex-
ponential increase in the state space caused by all possible combinations of variable
assignments. Model checking originates from hardware research, where systems are
usually finite state. Software, at least in theory, is inherently infinite state. Therefore,
traditional model checking approaches need to be adapted before being usable for
complex software systems.

Software model checking is the application of model checking to “real code”. This
means that source code written in commonly used languages is checked without
requiring a manual translation to an automaton representation. There are two general
classes of approaches towards automatically extracting a state space model from a
piece of software [12]: The first class uses static analysis on the source code, whereas
the second class explores the state space dynamically, e.g. by employing a runtime
scheduler to cover many interleavings.

3.1 Verifying Concurrent Systems

With the advent of multi-core and parallel programming, verification of concurrent
software has become an increasingly important topic. Model checking a concur-
rent program is computationally even more challenging because the possibility of
many execution orders, depending on scheduling, further enlarges the state space.
In this aspect, shared memory concurrency is harder to handle than message passing
paradigms: while it is not obvious from the code which variables in shared memory
are indeed modified by multiple threads, the length and amount of messages is
generally well-defined and kept low to avoid latencies.

Current approaches to model checking concurrent software employ partial order
reduction techniques (discussed below in 3.2) to handle the large number of possible
interleavings, one example being the Impact algorithm [38]. Another idea – bounded
model checking – is to search for property violations heuristically only to a certain
depth in the transition system [28].

3.2 Partial Order Reduction

In contrast to hardware, software exhibits a much larger, theoretically infinite state
space. Consequently, much effort is put into finding finite state abstractions. Partial-
order reduction (POR) [1] is one such technique which reduces the state space. It is
based on the observation there may be different orderings of concurrently enabled
transitions which are equivalent. When exploring the state space to find property

54

3 Software Model Checking

violations, it is sufficient to check one ordering from each equivalence class. Finding
equivalent orderings is usually based on a notion of dependence between transitions.
For instance, two write operations on a shared variable are mutually dependent, but
two read operations are independent. Methods for pruning equivalent orderings
during partial order reduction are based on stubborn sets [37], persistent sets [16]
or ample sets [31]. Partial-order reduction is implemented in state of the art model
checkers such as SPIN [4] and Verisoft [14].

Detecting dependence between variables can be hard in higher level programming
languages or in the presence of pointer arithmetics. Either, a sophisticated aliasing
model is needed, which complicates and slows down analysis, or conservative de-
pendency analyses quickly make all variables potentially dependent, which hinders
partial order reduction. Therefore, dynamic partial-order reduction [12] has been in-
troduced, which monitors accesses to shared memory locations in a multi-threaded
program during runtime. A backtracking algorithm then determines which addi-
tional schedules should be explored, while avoiding equivalent execution traces.

3.3 Compositional Approaches

To tackle the state space explosion problem, divide-and-conquer approaches to
model checking have been discussed. One such approach [7] is based on the Assume-
Guarantee framework. Here, the system is modeled as a composition of various subsys-
tems. Thus, the model checking question becomes: does a composite system M1∣∣M2
consisting of subsystems M1 and M2 satisfy a property p? Since software compo-
nents rarely work correctly in isolation, assumptions about the environment need to
be introduced to decompose the problem as follows:

1. Does M1 satisfy p under an assumption A?

2. Does M2 satisfy A?

3. Then, M1∣∣M2 satisfy p.

To perform these checks, the system is usually modeled as a labeled transition sys-
tem (LTS). The approach is limited to safety properties, which are also transformed to
LTSs. Another central question is how to find the assumption A. Such assumptions
are learned incrementally. A model checker performs the two checks mentioned
above, starting with an empty assumption. If a counterexample is found in the first
step, the assumption can be strengthened, meaning that fewer traces are allowed by
A. On the other hand, if a counterexample is found in the second step, it is checked
whether the counterexample composed with M1 satisfies the property. This would
indicate a real violation of the property in M1∣∣M2. Otherwise, the counterexample
is used to weaken the assumption.

Compositional model checking is attractive because it reduces the state space
which needs to be kept in memory at one point in time. Its application to behavioural
UML models – which often represent larger software systems – has also been demon-
strated [20].

55

L. Feinbube: Formal Approaches and Failure Cause Models for SW Dependability

4 Test Case Generation and Fault Injection

In software engineering practice, most faults are still found and removed by testing.
Testing is an under-approximation of the system behaviour – meaning that some
faulty behaviours may never be encountered by testing. Hence, one well-known
issue is how to increase and maintain adequate test coverage. To achieve this, formal
methods can be applied to build test drivers which systematically maximize coverage
of the input space.

In large systems, software model checking can be applied as a testing and bug-
hunting tool, which finds errors (counterexamples) even before it has exhaustively
traversed the entire state space. Here, the term “model checking” is used in a much
broader sense: the state space is not checked as a whole, but explored systematically.
Triggering unlikely execution paths, as during dynamic partial order reduction, can
also be viewed as a form of fault injection.

Verisoft [14] is an early tool for systematic testing which maintains a model of the
system behaviour based on dynamically gathered information. Here, the assump-
tion is that all externally relevant system behaviour is manifested as system calls,
which are intercepted during runtime and analysed. The Verisoft tool then drives the
system towards yet unexplored execution paths. Deadlocks, livelocks and violations
of assertions are detected automatically. Verisoft is restricted to safety properties (no
liveness properties), where a violation is detected when the system reaches a forbid-
den state during runtime. Verisoft has been applied with success in the telecommuni-
cation domain – both to exhaustively check smaller systems [15], and to inject many
potentially fault-triggering schedules into a large phone call processing system [5].

Symbolic execution [26] maximizes path coverage during testing by harnessing
SAT solving. The program is executed with symbolic instead of concrete values. At
each branching condition, a path condition for the different paths is derived, from
which new input values are generated. Under certain assumptions, this reduces the
undecidable question of finding a test input covering some program statement to
the decidable problem of finding a satisfying assignment for the path conditions.
However, some functions, such as cryptographic ones, random number generation
or simply unknown code, are too complex to be executed on symbolic values. To
solve this problem, concolic execution techniques [34] combine symbolic with concrete
execution, resorting to concrete execution when no symbolic value can be computed.
Symbolic execution is implemented (among many others) in the prominent white-
box fuzzing tool SAGE [17], which has been useful in identifying many Windows
application bugs.

5 Program Synthesis

Instead of finding flaws in an existing program, program synthesis attempts to gen-
erate a correct implementation automatically from a formal specification. While
program synthesis is becoming an attractive research topic due to the increased
computational power available, its theoretical complexity is still restrictively high

56

6 Fault Injection and Software Failure Cause Models

for most cases. The synthesis of a system from an LTL specification is 2EXPTIME-
complete. This currently prohibits synthesizing systems larger than a single con-
troller, or a protocol implementation. One recent success has been the synthesis of
the state-of-the-art AMBA bus protocol for embedded systems [18].

Many synthesis problems can be mapped to the solving of 2-player-games against
an adversarial environment. State changes are represented by the players taking turns
to decide their next action. A winning strategy against the environment corresponds
to a feasible implementation [9]. Quantitative games make it possible to synthesize
not only any program satisfying the specification, but programs which optimize for
certain values, for instance minimizing the number of message sends in a protocol
implementation.

A divergent, pragmatic approach to program synthesis can be found in the domain
of end-user programming. Based on the observation that non-programmers should
be aided more in completing repetitive tasks, programming by examples is the approach
of synthesizing a small program from user-provided examples, which serve as a
partial specification. It is mainly applicable in “data wrangling” scenarios, such as
the generation of Excel scripts [21]. In order to synthesize correct software, i.e., code
which corresponds to the users’ expectations, the focus in this synthesis domain lies
upon appropriate user interfaces and the design of simple yet sufficiently expressive
DSLs from which to synthesize.

6 Fault Injection and Software Failure Cause Models

When designing dependable software, three aspects need to be considered:

• The specification of the desired system behaviour,

• its implementation – as code, which can be executed,

• the assumed fault model, describing what can go wrong during execution.

The previously discussed approaches largely focus on ensuring that the imple-
mentation obeys the specification. In practice, however, formulating complete and
sound specifications is extremely demanding – one might argue that it is just as
hard as writing correct implementations in the first place. In the formal techniques
mentioned above, the fault model is often implicit or simply the “negation of the
specification”. In reality, however, specifications are usually partial in the sense that
they do not cover all aspects of the desired system behaviour. The simplest and most
common forms of specification in real-world software are a couple of assertions in
the source code, or some API documentation.

The degree of specification and test coverage ultimately becomes question of bud-
get: how much are we willing to pay for software dependability in terms of develop-
ment and specification effort, computational complexity and hardware resources?
Non-exhaustive dependability means such as fault injection, dependability model-
ing including uncertainty, and testing are cheaper alternatives to formal methods.

57

L. Feinbube: Formal Approaches and Failure Cause Models for SW Dependability

Rather than relying on a formal specification, such approaches most importantly
require a well-defined fault model.

Even if exhaustive formal methods are applied to one software component, its
interaction with foreign code, errors in the execution environment or malformed
user input can still cause it to fail. Consequently, understanding failure cause models
is an important step towards dealing with a major class of software failures – those
caused by complex interaction, Heisenbugs [19] or code which is outside one’s con-
trol. It has been noted that every test case selection strategy corresponds to a fault
model [32]. For example, boundary testing assumes that faults tend to be activated at
the boundaries of the input range, whereas random testing is based on the heuristic
that fault occurrence is uniformly distributed across all inputs. We believe that mod-
els of software failure causes need to go beyond fault models which are purely input-
or code-based. Besides the bug (fault) in the source code, the conditions leading to
its activation, the resulting error state and failure severity should be studied for more
efficient error detection, fault tolerance and targeted fault injection experiments. Ta-
ble 1 illustrates the importance of distinguishing between fault, activation condition,
error and failure.

To make this distinction more explicit, we have proposed an extension of the clas-
sical fault-error-failure concepts which also accommodates environment-dependent
activation conditions [35]. Based on this terminology, a systematic literature study
of software failure cause models [11] has been conducted, which reveals that mod-
els of static code flaws are prevalent in literature. Research on fault-activating state
conditions and error states is rare.

In practice, even a thoroughly verified software system usually depends on envi-
ronment components which are outside one’s control and potentially untrustworthy.
The seL4 project [27], which built a fully verified micro-kernel operating system, has
shown that thorough verification of an entire software stack requires immense de-
velopment and maintenance effort. Consequently, experimentally evaluating system
dependability, for instance using fault injection, will always remain relevant.

As Table 1 shows, the circumstances leading to an observable software failure can
be complicated. Fault representativeness has been identified as a major challenge for
fault injection [30]: which faults should be injected, and when? Should the focus lie
on high coverage – potentially uncovering irrelevant corner-case bugs, or on realism
and a notion of severity and failure modes?

We have implemented a fault injector [22] which operates at the interfaces to third-
party libraries. Based on the community-maintained CWE database [6], several error
classes, which are relevant in software engineering, are injected into a dynamically
linked library. This library may not be available as source code, and misbehave in
arbitrary ways.

In future research, I intend to use further fault injection experiments and software
failure case studies to investigate the detailed mechanics of fault activation and error
propagation in complex software systems.

58

6 Fault Injection and Software Failure Cause Models

Table 1: Examples of software faults, their activation conditions, resulting error
states and failure modes

Name Description Fault (code) Activation
Condition Error Failure

CWE:
Stack-based
Buffer
Overflow
http://cwe.mitre.org/data/
definitions/121.html

Missing range
check:
Omission

#define BUFSIZE 256
int main(int argc, char **argv)
{
char buf[BUFSIZE];
// No check that input data
// does not exceed BUFSIZE
strcpy(buf, argv[1]);

}

Input data
exceeds
intended buffer
size

Overwritten
data on the
stack

Data
corruption,
security
problem

CWE: Memory
Leak
http://cwe.mitre.org/data/
definitions/401.html

Insufficient
tracking of
allocated
memory

char* str = new char [256];
// ...
// missing delete []

Leaving scope
without
deallocation

Memory
allocated which
can never be
freed

Out of memory,
loss of
performance

CWE: Race
Condition
http://cwe.mitre.org/data/
definitions/362.html

Missing or
improper syn-
chronization
primitives

// thread 1
if (global != 0) {
local = global;
//...

}
// thread 2
if (someCondition) global = 0;

Problematic
interleaving of
concurrent
operations
scheduled

Unexpected
state of shared
data

Arbitrary

CWE: Improper
Initialization
http://cwe.mitre.org/data/
definitions/665.html

Missing or
improper
initialization
code of a
variable

char str[20]; // no initialization
strcat(str, ”hello world”);
printf(”%s”, str);

The runtime
does not
initialize the
variable as
expected

Unexpected
variable
content,
undefined
behaviour, or
overflow

Arbitrary

GnuRadio:
Error allocating
memory
https://gnuradio.org/
redmine/issues/692

Missing
handling of
architecture-
dependent
memory
alignment

// missing check: alignment can be 1
int err = posix_memalign(&ptr,

alignment, size);

Execution on
ARM
architecture

Invalid
parameter
passed to
posix_mema-
lign

Crash
(Segmentation
fault)

Linux kernel:
Kernel panic on
highly loaded
webserver in
task_rq_lock
https://bugzilla.kernel.org/
show_bug.cgi?id=27142

Missing wait,
making race
condition
possible

sma = sem_lock(ns, semid);
// missing wait until
// wake_up_sem_queue_do()
// missing wait
if (IS_ERR(sma)) {
error = -EIDRM;
goto out_free;

}

error = get_queue_result(&queue);

A semaphore
array is
removed and in
parallel a
sleeping task is
woken up

Stale pointer Crash/Kernel
panic

Gnome: Pango
segfaults on
Korean
example from
testgtk
https:
//bugzilla.gnome.org/
show_bug.cgi?id=388702

No handling of
corner case:
unknown
glyph in
fallback code
for missing font

if (n_jamos > 0)
render_syllable (font, start,

n_jamos, glyphs,
&n_glyphs,
start - text);

// missing handling of corner case

Input includes
a specific
character
sequence and
no Hangul
fonts are
installed

Invalid state in
render_sylla-
ble

Crash

Firefox OS:
Crash when
turning on
Bluetooth in
Settings app
https:
//bugzilla.mozilla.org/
show_bug.cgi?id=875251

Missing call to
push JSContext

User enables
bluetooth

Passing of
JSContext to a
function in a
bad state

Crash

PostgreSQL:
Weak memory
ordering bug
http://www.postgresql.
org/message-
id/24241.1312739269@sss.
pgh.pa.us

Race condition
due to missing
memory
barriers

for (;;)
{
ResetLatch();
// missing barrier
if (/*work to do*/)
DoStuff();

WaitLatch();
}

“a lot of
contention for
the cache line
containing the
flag, but not for
the cache line
containing the
latch”

write to flag
propagates to
memory later
than write to
latch

Failure of the
token ring
protocol

59

http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/665.html
http://cwe.mitre.org/data/definitions/665.html
https://gnuradio.org/redmine/issues/692
https://gnuradio.org/redmine/issues/692
https://bugzilla.kernel.org/show_bug.cgi?id=27142
https://bugzilla.kernel.org/show_bug.cgi?id=27142
https://bugzilla.gnome.org/show_bug.cgi?id=388702
https://bugzilla.gnome.org/show_bug.cgi?id=388702
https://bugzilla.gnome.org/show_bug.cgi?id=388702
https://bugzilla.mozilla.org/show_bug.cgi?id=875251
https://bugzilla.mozilla.org/show_bug.cgi?id=875251
https://bugzilla.mozilla.org/show_bug.cgi?id=875251
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us
http://www.postgresql.org/message-id/24241.1312739269@sss.pgh.pa.us

L. Feinbube: Formal Approaches and Failure Cause Models for SW Dependability

References

[1] R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani. “Partial-
order reduction in symbolic state-space exploration”. In: Formal Methods in
System Design 18.2 (2001), pages 97–116.

[2] T. Ball and S. K. Rajamani. “The SLAM Project: Debugging System Software via
Static Analysis”. In: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL ’02. Portland, Oregon: ACM,
2002, pages 1–3. doi: 10.1145/503272.503274.

[3] B. Beizer. “Software is Different”. In: Annals of Software Engineering 10.1-4 (Jan.
2000), pages 293–310. doi: 10.1023/A:1018999919169.

[4] M. Ben-Ari. Principles of the Spin model checker. Springer Science & Business
Media, 2008.

[5] S. Chandra, P. Godefroid, and C. Palm. “Software model checking in practice:
an industrial case study”. In: Proceedings of the 24th International Conference on
Software Engineering. ACM. 2002, pages 431–441.

[6] S. Christey, J. Kenderdine, J. Mazella, and B. Miles. Common Weakness Enumer-
ation.

[7] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. “Learning assump-
tions for compositional verification”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2003, pages 331–346.

[8] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints”.
In: Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages. ACM. 1977, pages 238–252.

[9] L. Doyen and J.-F. Raskin. “Games with imperfect information: Theory and
algorithms”. In: Lecture Notes in Game Theory for Computer Scientists (2011),
pages 185–212.

[10] P. Emanuelsson and U. Nilsson. “A comparative study of industrial static
analysis tools”. In: Electronic notes in theoretical computer science 217 (2008),
pages 5–21.

[11] L. Feinbube, P. Tröger, and A. Polze. “The landscape of software failure cause
models”. submitted.

[12] C. Flanagan and P. Godefroid. “Dynamic Partial-order Reduction for Model
Checking Software”. In: SIGPLAN Not. 40.1 (Jan. 2005), pages 110–121. doi:
10.1145/1047659.1040315.

[13] P. Godefroid. “Micro execution”. In: Proceedings of the 36th International Confer-
ence on Software Engineering. ACM. 2014, pages 539–549.

[14] P. Godefroid. “Model checking for programming languages using VeriSoft”.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM. 1997, pages 174–186.

60

http://dx.doi.org/10.1145/503272.503274
http://dx.doi.org/10.1023/A:1018999919169
http://dx.doi.org/10.1145/1047659.1040315

References

[15] P. Godefroid, R. S. Hanmer, and L. J. Jagadeesan. “Systematic software testing
using VeriSoft—An analysis of the 4ESS™ heart-beat monitor”. In: Bell Labs
Technical Journal 3.2 (1998), pages 32–46.

[16] P. Godefroid, J. van Leeuwen, J. Hartmanis, G. Goos, and P. Wolper. Partial-order
methods for the verification of concurrent systems: an approach to the state-explosion
problem. Volume 1032. Springer Heidelberg, 1996.

[17] P. Godefroid, M. Y. Levin, D. A. Molnar, et al. “Automated Whitebox Fuzz
Testing.” In: NDSS. Volume 8. 2008, pages 151–166.

[18] Y. Godhal, K. Chatterjee, and T. A. Henzinger. “Synthesis of AMBA AHB from
formal specification: a case study”. In: International Journal on Software Tools for
Technology Transfer 15.5-6 (2013), pages 585–601.

[19] M. Grottke and K. S. Trivedi. “A classification of software faults”. In: Journal
of Reliability Engineering Association of Japan 27.7 (2005), pages 425–438.

[20] O. Grumberg, Y. Meller, and K. Yorav. “Applying Software Model Checking
Techniques for Behavioral UML Models”. In: FM 2012: Formal Methods: 18th
International Symposium, Paris, France, August 27–31, 2012. Proceedings. 2012,
pages 277–292.

[21] S. Gulwani. “Automating String Processing in Spreadsheets Using Input-
output Examples”. In: SIGPLAN Not. 46.1 (Jan. 2011), pages 317–330. doi:
10.1145/1925844.1926423.

[22] L. Herscheid, D. Richter, and A. Polze. “Hovac: A Configurable Fault Injection
Framework for Benchmarking the Dependability of C/C++ Applications”. In:
Proceedings of the 2015 International Conference on Software Quality, Reliability,
and Security. IEEE, 2015.

[23] M. Irlbeck, D. Peled, and A. Pretschner, editors. Dependable Software Systems
Engineering (Summer School Marktoberdorf 2014). NATO Science for Peace and
Security Series — D: Information and Communication Security. IOS Press,
2015.

[24] Verification and Synthesis of Correct and Secure Systems (Summer School Markto-
berdorf 2015). https://asimod.in.tum.de/2015/index.shtml, to appear.

[25] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge. “Why don’t software
developers use static analysis tools to find bugs?” In: Software Engineering
(ICSE), 2013 35th International Conference on. May 2013, pages 672–681. doi:
10.1109/ICSE.2013.6606613.

[26] J. C. King. “Symbolic execution and program testing”. In: Communications of
the ACM 19.7 (1976), pages 385–394.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, R. Kolanski, M. Norrish, et al. “seL4: Formal verification
of an OS kernel”. In: Proceedings of the ACM SIGOPS 22nd symposium on Oper-
ating systems principles. ACM. 2009, pages 207–220.

61

http://dx.doi.org/10.1145/1925844.1926423
http://dx.doi.org/10.1109/ICSE.2013.6606613

L. Feinbube: Formal Approaches and Failure Cause Models for SW Dependability

[28] D. Kroening and M. Tautschnig. “CBMC–C bounded model checker”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2014, pa-
ges 389–391.

[29] M. L. Minsky. Computation. Prentice-Hall Englewood Cliffs, 1967.
[30] R. Natella, D. Cotroneo, J. Duraes, H. S. Madeira, et al. “On fault representa-

tiveness of software fault injection”. In: Software Engineering, IEEE Transactions
on 39.1 (2013), pages 80–96.

[31] D. Peled. “All from one, one for all: on model checking using representatives”.
In: Computer Aided Verification. Springer. 1993, pages 409–423.

[32] A. Pretschner, D. Holling, R. Eschbach, and M. Gemmar. “A generic fault
model for quality assurance”. In: Model-Driven Engineering Languages and Sys-
tems. Springer, 2013, pages 87–103.

[33] H. G. Rice. “Classes of Recursively Enumerable Sets and Their Decision Prob-
lems”. In: Transactions of the American Mathematical Society 74.2 (Feb. 1953),
pages 358–366.

[34] K. Sen. “Concolic testing”. In: Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engineering. ACM. 2007, pages 571–
572.

[35] P. Tröger, L. Feinbube, and M. Werner. “What activates a bug? A refinement
of the Laprie terminology model”. In: Software Reliability Engineering (ISSRE),
2015 IEEE 26th International Symposium on. to appear. IEEE. 2015.

[36] A. M. Turing. “On computable numbers, with an application to the Entschei-
dungsproblem”. In: J. of Math 58.345-363 (1936), page 5.

[37] A. Valmari. “Stubborn sets for reduced state space generation”. In: Advances
in Petri Nets 1990. Springer, 1991, pages 491–515.

[38] B. Wachter, D. Kroening, and J. Ouaknine. “Verifying multi-threaded software
with Impact”. In: Formal Methods in Computer-Aided Design (FMCAD), 2013.
IEEE. 2013, pages 210–217.

62

Checks and Balances: Object-Constraints Without Surprises

Tim Felgentreff

Software Architecture Group
Hasso-Plattner-Institut

Tim.Felgentreff@hpi.uni-potsdam.de

Systems that integrate constraint solving with general purpose programming lan-
guages must strike a balance between exposing the full power of solvers and how
aware programmers need to be of the solving process to write understandable
and correct programs. To integrate with imperative languages, this balancing act
extends to how freely programmers can express constraints versus how aware
they need to be of the transition between the imperative and declarative parts
of the program in order to understand its limits. Babelsberg is a framework that
integrates constraints with a standard object-oriented language. Experience with
Babelsberg, as well as with earlier constraint imperative languages, revealed the
potential for complex interactions between constraints and the object-oriented core,
in particular powerful constraints involving object identity, multiple types, and
change over time.

In this work we present design principles that tame the power of the constraint
solver and of the translation between imperative and declarative expressions,
avoiding difficult corner cases and surprising solutions while retaining the key
features and capabilities of the approach. We provide an informal description of
these principles, with the full semantics given in a standalone technical report.
We validate the utility of our principles by applying them to existing Babelsberg
programs.

1 Introduction

Babelsberg is a family of object-constraint languages, with current instances being
Babelsberg/R (a Ruby extension) [1], Babelsberg/JS (a JavaScript extension) [2], and
Babelsberg/S (a Squeak extension) [5]. The Babelsberg design integrates constraint
satisfaction with common object-oriented constructs such as inheritance and poly-
morphism, and inherits many properties from the earlier Kaleidoscope [10] and
Turtle [6] constraint imperative programming languages. It is motivated by the ob-
servation that a number of key aspects of interactive applications can be concisely
specified using constraints, but that other aspects are more easily specified using stan-
dard imperative constructs (assignment, loops, and so forth). Its goal is to provide
both paradigms in a cleanly integrated fashion, within an object-oriented framework
that respects standard object-oriented features such as messages, encapsulation, and
inheritance. However, experience with Babelsberg has shown that interactions be-
tween the object-oriented core and constraints can be difficult to understand — it
is easy to formulate constraints that allow the system to come up with surprising
solutions, but also to write constraints that produce no solutions at all, because they

63

mailto:Tim.Felgentreff@hpi.uni-potsdam.de

Tim Felgentreff: Checks and Balances: Object-Constraints Without Surprises

would need to be formulated differently for the translation from imperative code to
constraints to work as intended.

In this paper we propose a set of design principles to avoid such surprising solu-
tions, along with a set of restrictions on the behavior of object-constraint program-
ming systems that enforce these principles. The principles and restrictions are as
follows:

• Structure preservation: Asserted constraints cannot change the structure of any
objects (meaning the number and names of their fields). This property is en-
forced through a form of dynamic structural typechecking, along with implic-
itly generated extra constraints that implement frame axioms.

• Identity preservation: Similarly, newly asserted constraints cannot change what
object a particular variable or field stores (such changes can only flow from
assignments). This property is enforced by requiring constraints on object iden-
tity to already be satisfied at the point where they are asserted.

• Structural/identity determinism: The structure of objects as well as the particu-
lar objects stored by variables and fields must be allowed to change through
imperative updates, and such changes can in turn cause existing constraints
to be re-solved. However, the results of constraint solving are deterministic
in terms of the final structures of objects and the identities of objects stored
in each variable/field. This property is enforced through a novel two-phase
solving process that first deterministically solves identity constraints and then
solves the remaining constraints in the updated environment and heap.

2 Background

As an example to illustrate some of the kinds of surprising behavior that can arise
when integrating constraints with an object-oriented language, consider a bank ac-
count application in which we want to prevent changes that would make the account
balance drop below a certain threshold. Additionally, we want to track the current
interest the account produces, but not allow it to rise above 1000 units of currency.
(This example is simple enough that we can show the listing easily, but is designed
to illustrate some complexities around object identity, as well as constraint features
such as soft constraints and read-only annotations on variables.)

Listing 1: Ensuring domain requirements on a bank account

1 var acc = new Account(), minBalance = 100, curInterest = 0;
2 always: { acc.balance >= minBalance? }
3 always: { priority: "medium"
4 curInterest == acc.balance? * 0.01 }
5 always: { curInterest <= 1000 }

Here, the solver will ensure the property balance remains larger than minBalance
after line 2. The read-only annotation on minBalance (indicated by the question mark)

64

2 Background

prevents the solver from changing it to satisfy the constraint. Thus, any change to
the account that would drop the result of balance below minBalance is rejected by
the system. Conversely, the system is not allowed to change the result of balance
to satisfy the second constraint. The current interest is always determined from the
current balance, but not vice versa. Note also that we assign a priority to the second
constraint. This tells the system that it should satisfy this relation if possible, but it
is no error not to do so. Due to the third constraint, if the interest were to rise above
1000, the system can leave the second constraint unsatisfied.

We discovered that Babelsberg would sometimes find unintuitive solutions that
the human programmer did not even consider. Its design requires programmers to
consider the solving as well as the translation process of the framework to use con-
straints effectively; even the small examples above contain the potential for surprising
solutions.

To help address this, we define a set of restrictions on the language to rule out a
significant number of such solutions. For example, in Listing 1, we intuitively expect
the solver to reason about the balance of the newly created Account object. However,
in the absence of additional restrictions there are other valid solutions. First, the
solver might change the variable acc to point to another object that has the right
balance. Second, the solver may correct the balance, but also add or remove fields
from the account that are not relevant to the constraint. Third, even if the initial
balance was already higher than minBalance and a change is unnecessary, the solver
may still choose to make the balance equal to minBalance, as this also satisfies the
constraint.

All three solutions are clearly undesired: imperative programmers do not expect
the identity of the acc variable to change or the solver to change the object structure.
Neither do they expect the property to change, if the constraint is already satisfied.

To address this problem, we restrict the power of the solver so it finds the expected
solution in cases such as these. First, we separate constraints involving object identity
from those involving only values, and solve those independently, so that a solution
that changes the identity of acc would not be valid. Second, we use a non-standard
form of structural type-checking at run-time to ensure the solver cannot add or
remove fields from objects. Third, we implicitly add a low priority “stay” constraint
to each variable, so that its value only changes if required by some higher-priority
constraint.1

The Kaleidoscope language, particularly the early versions, was arguably too com-
plex in part because it was too powerful in ways that were interesting, but not useful
in practice. This made it difficult to understand what the result of a program might
be and also difficult to implement efficiently. A heuristic for the present work is that
when there is a choice, we favor simplicity over power.

1The formulation of the first two restrictions is new in this work; the third has been present
in Babelsberg since the original language definition, as well as in the earlier Kaleidoscope
design.

65

Tim Felgentreff: Checks and Balances: Object-Constraints Without Surprises

3 Solution Overview

A goal of this work is to clarify design decisions of Babelsberg to guide language
users and implementers. However, it is not intended to be a complete description of
a practical object-constraint language, and we omit aspects of the language that are
inherited from the host language and that are not core to the interaction between
constraints and object-oriented programming, such as class and method definitions,
exception handling, and IO.

A guiding principle in our design has been to adhere to the original goal of Babels-
berg: in the absence of constraints, it should behave like a regular object-oriented
language. This work focuses on how object-oriented constructs need to be modified
to support the Babelsberg design. Where there is a choice, we aim to make the small-
est possible changes while still accommodating constraints in a clean and powerful
way. Beyond this, we favor simplicity of the rules over support for interesting features
that are rarely used in practice.

At the core of our design is the idea that the solver determines the entire heap and
environment after each statement. However, for an imperative programmer it would
be surprising if variables change more than they have to, or if objects unnecessarily
lose or gain fields or change their types — the solver should always pick a solution
that is “close” to the current state of the system.

3.1 Object Structure

Listing 1 includes a constraint on a field. However, in the absence of other restrictions,
nothing prevents the solver from finding a solution that adds or removes fields of
the object. Consider setting the acc variable to an empty object and asserting the
constraint. Should the solver invent a balance field and constrain it?

To tame the power of the solver so that it does not (for example) invent new fields
for objects, we add structural compatibility checks that are dynamically asserted before
sending the constraints involving objects to the solver. They ensure, for example, that
field accesses occur only on objects (and not primitive values), and that those objects
have the necessary fields. These assertions, unlike constraints, are only checked — if
one is violated it is an error and the constraint solving fails. The programmer must
ensure that objects used in constraints have all the referenced fields.

3.2 Object Identity

A central issue in the design of an object-constraint language is the interaction be-
tween constraints and object identity. Object identity plays an essential role when
using an object-oriented language to model aspects of the real world and so, in a
language that integrates constraints with object-oriented features, we need to resolve
the tensions between these fundamental features [9]. Additionally, making explicit
identity constraints available to the programmer allows for useful capabilities such
as specifying that two variables refer to the same identical object, or describing cir-
cular structures. However, experience with Kaleidoscope in particular suggests that

66

3 Solution Overview

allowing powerful constraints on object identity and types can lead to non-obvious
consequences. As an example, consider the following program:

Listing 2: Constraining two variables to be identical

1 var account1 = {credit: 10}, account2 = {debit: 100};
2 always: { account1 === account2 }
3 account1.withdraw(1);
4 always: { account1.debit >= 0 }

This adds a constraint on line 2 that account1 and account2 be identical. However,
it is not clear if account1 and account2 will afterwards refer to an account with debit
balance or an account with credit balance (or both, or none). It is thus not clear which
account we withdraw from in line 3 (or even if this variable still refers to an account
object — the solver might let both variables might refer to null). If both now refer
to a debit account, the constraint on line 4 will not pass our structural compatibility
checks. If we allow the solver to change the identities again to make the second
constraint valid, we may withdraw from the credit account first and then assert
that the debit account be above 0. The choice of identity in one place would thus
determine the meaning of the second constraint and introduce non-determinism
and thus make the programs more difficult to understand.

To tame the power of constraints on object identity and type, we set the following
goals for this aspect of our design:

a) Constraints on object identity must be declared explicitly using the host lan-
guages identity check method (=== in the case of JavaScript). They cannot be
hidden within a method.

b) The solution to the constraints is deterministic as far as object identity and type
are concerned — there should never be multiple correct solutions in which a
given variable refers to objects with different identities in the different solu-
tions. Thus, the programmer must first ensure the identity constraint is already
satisfied, before asserting it.

c) Any change to the identities of the objects referred to by variables can only
flow from an assignment statement — the constraint solver may not otherwise
alter object identities.

d) To make Babelsberg programs more understandable for programmers, the
identities of objects in value constraints should be clear. We thus first solve all
the identity constraints (with a deterministic solution, in keeping with goal
b)), and then the value constraints. In the second step, identities are fixed, and
thus method lookup follows regular object-oriented semantics. This requires
all identity constraints to be declared separately from value constraints.

To preview the results of our rules, the program in Listing 2 would then be illegal,
since the identity constraint account1 === account2 is not satisfied at the time it
is asserted. If the programmer uses an assignment to first make both account1 and

67

Tim Felgentreff: Checks and Balances: Object-Constraints Without Surprises

account2 refer to the debit account, the program succeeds; if the programmer makes
them refer to the credit account, it halts with a structural compatibility check error;
in either case it becomes deterministic and straightforward to reason about.

3.3 Structural and Identity Determinism with Stay Constraints

As in Kaleidoscope, Babelsberg adds an implicit weak stay constraint to each variable
to keep it at its current value, if possible. This satisfies the desire that the solver should
not change a variable, if no constraint on it is violated.

4 Evaluation

Our aim in developing these principles has been primarily a practical one, including
clarifying the desired behavior of the language, providing a guide for language
implementors, and proving useful language properties that then can be relied on by
programmers.

As one form of evaluation, we have adapted the currently existing suite of ex-
ample programs for Babelsberg/JS to the revised language. We demonstrate that
nearly all of the programs continue to work without modification, or work with min-
imal adjustments. (These adjustments are described below.) Those programs that
do not work anymore stopped doing so because they use constructs we explicitly
decided to disallow. These programs demonstrate various aspects of constraint use
in Babelsberg/JS, and include a simulation for a radial engine, a simple temperature
converter, a simulator for electrical circuits, a generator for color schemes, and a
layouting example.

Argument Checking One issue we encountered is that many LivelyKernel meth-
ods have, besides a return statement, some statements that check the number, types,
or structure of arguments. Because allowing the solver to reason about the number
and types of arguments would be a source of surprising solutions, such methods do
not work multi-directionally. As an example, consider the frequently used method
to add two points in LivelyKernel:

Listing 3: The lively.Point.addPt method

1 function addPt(p) {
2 if (arguments.length != 1) throw ('addPt() only takes 1 parameter');
3 return new lively.Point(this.x + p.x, this.y + p.y);
4 }

A future improvement to our design that may increase compatibility with existing
applications may allow such statements that simply do argument checking, without
adding them to the constraint. For now, although it is not semantically clean, the
practical implementation allows such tests on arguments. The resulting constraints

68

5 Application to Related Work

are not truly multi-directional, but in practice we think they exhibit the expected
behavior.

Branching We encountered a similar issue with methods that return one of two ex-
pressions, depending on a test. Our new design principles does not allow branching
in constraints, because the effect of solving and which branch is solved for is not al-
ways clear from looking at the constraint. One such method encountered frequently
is getPosition:

Listing 4: The lively.morphic.Morph.getPosition method

1 function getPosition() {
2 if (!this.hasFixedPosition() || !this.world()) {
3 return this.morphicGetter('Position');
4 } else {
5 return this.world().getScrollOffset().
6 addPt(this.morphicGetter('Position'));
7 }
8 }

Moving the test outside of the method and adding the constraint only for the branch
that is chosen fixes the issue for cases where the branch condition does not change.

Benign Side Effects Lazy initialization and caching are used in the constraints in
some of the example applications. Prior work has explicitly allowed such benign side
effects [1, 2], but we now disallow them, because we found their effect in constraints
is often confusing. For example, the LivelyKernel method Morph.getBounds is used
(often indirectly) in many of the examples (the code below was adapted to focus on
the caching):

Listing 5: Shortened lively.morphic.Morph.getBounds method

1 function getBounds() {
2 if (this.cachedBounds && !this.hasFixedPosition())
3 return this.cachedBounds;
4 // ... other code paths
5 return this.cachedBounds = this.innerBounds();
6 }

A workaround that we use here is to call innerBounds directly, and circumvent the
caching. For Morphs for which all child Morphs are contained within the bounds of
their parent, this returns the same result.

5 Application to Related Work

There are a large number of related systems that integrate constraints with imperative
languages, ranging from dsls, to constraint satisfaction libraries, and to syntactic and

69

Tim Felgentreff: Checks and Balances: Object-Constraints Without Surprises

semantic integration similar to Babelsberg. How these systems choose to balance the
power of solvers and how aware the programmers need to be of the solving process
differs greatly, as does their balance between how freely programmers can express
new constraints versus how aware they need to be of the fact that they are writing
constraints rather than ordinary statements in the host language.

Kaleidoscope [4] was an early constraint-imperative programming (cip) language,
and as such had to address many of the issues that arise when integrating declarative
constraints with an imperative system that includes mutable state. Kaleidoscope uses
soft constraints to ensure that, in the absence of other constraints, the solver does not
change the values of existing variables. We adapted this in our principles. In contrast
to ocp, Kaleidoscope separates methods that generate constraints from ordinary
methods. This avoids having to give rules for when a method may work multi-
directionally or only in the forward direction as we have done. The disadvantage
is that it puts the burden on the programmer to develop and maintain two sets of
interfaces, one for use in constraints and one for use in imperative statements.

Kaleidoscope’93 [10] also adds support for identity constraints, to express the dis-
tinction in object-oriented languages between object equality and identity. However,
the Kaleidoscope system still allowed the solver to determine the identity of method
arguments when solving value constraints, and it used multi-method dispatch to
decide which methods to call in a constraint. In combination, while this gave the
system much power, it also made it sometimes hard in practice to understand which
solution the system might come up with. Babelsberg does not use multi-method dis-
patch, removing one dimension of freedom from the solver (as well as conforming
to a more standard semantics for an object-oriented language). Furthermore, with
our principles, the solver cannot change the identity or structure of arguments for
value constraints, because identities are fixed and structure is typechecked before
value constraints are interpreted. We believe the same solution could be applied to
the Kaleidoscope design.

Turtle [6] is a more recent cip language developed from scratch, while Kaplan [8]
provides constraints in Scala. Both separate the declaration of constrainable variables
from ordinary variables to make it clearer what may happen when a variable is used.
Neither addresses issues of object identity, however. Like Babelsberg, the Turtle
system provides constraint priorities; Kaplan does not. Because ordinary variables
in Turtle are not determined by the solver, only constrainable variables have low-
priority stay constraints on them. (Kaplan does not currently support constraints
over mutable data types, so stay constraints are not relevant for it.) Analogous to
Kaleidoscope and in contrast to ocp, both languages separate constraint functions
from ordinary functions. In Kaplan, only such specifically annotated functions can
be used in constraints. Turtle does allow ordinary methods and variables to be used
in constraints; however, their values are treated as constants, making all ordinary
methods work only in the forward direction. We believe the simple rules for using
methods in constraints used in ocp could be used with these systems as well to allow
a restricted set of ordinary object-oriented methods to be used in constraints.

BackTalk [13, 14] and Squander [12] explicitly allow the constraint solver to deter-
mine object structure, and even to create new objects that satisfy a set of constraints.

70

6 Conclusion and Future Work

While these systems have many differences, they are more similar to each other than
to Babelsberg. Both use object-oriented methods in constraints merely as tests for
the backtracking algorithm as it tries different objects and object structures as as-
signments for the constrained variables. Thus, it is a basic property of these systems
to allow actions that we prohibit in Babelsberg. However, this does not represent
such a problem in those systems, because the transition from declarative variables
to ordinary variables is explicit, so the programmer can check for surprising results
at that time.

Finally, αRby [11] is a language that embeds the Alloy specification language [7] in
Ruby. Its goal is to allow Alloy users to easily pre- or post-process their models using
imperative libraries, for example to experiment with visualizations for Alloy models.
αRby translates Ruby programs into Alloy, but the programs are written in a dsl
that closely mimics the Alloy language rather than using ordinary Ruby classes and
methods. In contrast to Babelsberg, αRby aims to provide imperative constructs to
Alloy users, whereas Babelsberg provides declarative constructs to object-oriented
programmers.

6 Conclusion and Future Work

We have presented design principles to control the power of the solver in object-
constraint programming languages to avoid surprising or non-deterministic behavior
by ensuring that object structure and identity are preserved when adding constraints,
and that any changes to them are deterministic. A formalization of our principles
in a natural semantics is about to appear [3]. With this semantics we also include
two theorems that formalize two key properties of the first principle, namely that
we never allow the solver to find solutions that would needlessly add or remove
fields from existing objects. Our rules also ensure that the only way for a variable to
change its structure is through an assignment statement — thus, solving constraints
outside of an assignment can never lead to solutions in which variables change their
structure.

These restrictions are stronger than the earlier versions we used in the practical
implementations of ocp. They do allow us to express a wide range of useful programs,
but we suspect we can do better, and a direction for future work is to relax some of
them while still retaining clarity and precision.

References

[1] T. Felgentreff, A. Borning, and R. Hirschfeld. “Specifying and Solving Con-
straints on Object Behavior”. In: Journal of Object Technology 13.4 (Sept. 2014),
1:1–38. doi: 10.5381/jot.2014.13.4.a1.

71

http://dx.doi.org/10.5381/jot.2014.13.4.a1

Tim Felgentreff: Checks and Balances: Object-Constraints Without Surprises

[2] T. Felgentreff, A. Borning, R. Hirschfeld, J. Lincke, Y. Ohshima, B. Freudenberg,
and R. Krahn. “Babelsberg/JS”. In: ECOOP. Springer, 2014, pages 411–436. doi:
10.1007/978-3-662-44202-9_17.

[3] T. Felgentreff, T. Millstein, A. Borning, and R. Hirschfeld. “Checks and Bal-
ances: Constraint Solving without Surprises in Object-Constraint Program-
ming Languages”. In: Proceedings of the 2015 ACM International Conference on Ob-
ject Oriented Programming Systems Languages & Applications. OOPSLA’15. Pitts-
burgh, Pennsylvania, USA: ACM, 2015, pages 771–786. doi: 10.1145/2814270.
2814311.

[4] B. N. Freeman-Benson. “Kaleidoscope: Mixing Objects, Constraints, and Im-
perative Programming”. In: ACM SIGPLAN Notices 25.10 (1990), pages 77–
88.

[5] M. Graber, T. Felgentreff, R. Hirschfeld, and A. Borning. “Solving Interactive
Logic Puzzles With Object-Constraints: An Experience Report Using Babels-
berg/S for Squeak/Smalltalk”. In: REBLS. ACM, 2014, 1:1–1:5.

[6] M. Grabmüller and P. Hofstedt. “Turtle: A constraint imperative programming
language”. In: RDIS. Springer, 2004, pages 185–198. doi: 10.1007/978-0-85729-
412-8_14.

[7] D. Jackson. “Alloy: A Lightweight Object Modelling Notation”. In: ACM Trans-
actions on Software Engineering and Methodology 11.2 (2002), pages 256–290.

[8] A. S. Köksal, V. Kuncak, and P. Suter. “Constraints as control”. In: Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL). ACM,
2012, pages 151–164.

[9] G. Lopez, B. Freeman-Benson, and A. Borning. “Constraints and Object Iden-
tity”. In: Proceedings of the 1994 European Conference on Object-Oriented Program-
ming (ECOOP’94). Springer. July 1994, pages 260–279. doi: 10.1007/BFb0052187.

[10] G. Lopez, B. Freeman-Benson, and A. Borning. “Kaleidoscope: A Constraint
Imperative Programming Language”. In: Constraint Programming. Volume 131.
NATO Advanced Science Institute Series, Series F: Computer and System Sci-
ences. Springer-Verlag, 1994, pages 313–329. doi: 10.1007/978-3-642-85983-0_12.

[11] A. Milicevic, I. Efrati, and D. Jackson. “αRby–An Embedding of Alloy in Ruby”.
In: Abstract State Machines, Alloy, B, TLA, VDM, and Z. Volume 8477. Lecture
Notes in Computer Science. Springer, 2014, pages 56–71.

[12] A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. “Unifying Execution of
Imperative and Declarative Code”. In: 33rd International Conference on Software
Engineering (ICSE). May 2011, pages 511–520.

[13] F. Pachet and P. Roy. “Integrating constraint satisfaction techniques with com-
plex object structures”. In: 15th Annual Conference of the British Computer Society
Specialist Group on Expert Systems. Dec. 1995, pages 11–22.

[14] P. Roy, A. Liret, and F. Pachet. “A Framework for Object-Oriented Constraint
Satisfaction Problems”. In: Computing Surveys Symposium on Object-Oriented
Application Frameworks. ACM, 2000, pages 1–22.

72

http://dx.doi.org/10.1007/978-3-662-44202-9_17
http://dx.doi.org/10.1145/2814270.2814311
http://dx.doi.org/10.1145/2814270.2814311
http://dx.doi.org/10.1007/978-0-85729-412-8_14
http://dx.doi.org/10.1007/978-0-85729-412-8_14
http://dx.doi.org/10.1007/BFb0052187
http://dx.doi.org/10.1007/978-3-642-85983-0_12

Towards Efficient Processing of Multi-Temporal 3D Point
Clouds: Refactoring the Processing Workflow

Dietmar Funck

Computer Graphics Systems Group
Hasso-Plattner-Institut
dietmar.funck@hpi.de

Recent developments in remote-sensing technologies lead to an increased captur-
ing frequency and wider coverage of our environment, making 3D point clouds
more available and up-to-date. Applications such as change detection or other
kinds of difference analysis benefit from the availability of 3D point clouds repre-
senting the same area, created at different points in time— typically denoted as
multi-temporal 3D point clouds. A side effect is the large amount of data since multi-
temporal 3D point clouds typically contain billions of points for each point in time
and each point has a set of attributes. Service-oriented computing is a reasonable
opportunity to face the trade-off between high requirements on processing hard-
ware and keeping the costs of processing software and hardware within reasonable
limits. In this report, concepts are presented to exploit the processing hardware
and to increase maintainability of processing services to deploy and establish a
variety of applications. The results of a case study for improving the efficiency of
neighbourhood analysis are presented as well.

1 Introduction

Remote-sensing technologies are used to capture areas of interest for further analyses
such as urban planning, deriving building or terrain models and change detection
since decades. A large variety of systems is used for capturing, such as airborne
(e.g., by using a plane), mobile (e.g., by using a car) or terrestrial (e.g., by using a
tripod) systems. While laser-scanning (e.g., Light Detection and Ranging, LIDAR) was
almost the only popular remote-sensing technology to generate 3D point clouds, in
recent years dense image-matching approaches [5, 6, 7, 13, 16] are more and more in
use. Although LIDAR technology has been improving with respect to accuracy and
point cloud density since the early days, there are still some advantages of dense-
image matching over LIDAR [10]: lower acquisition costs, higher point density and
simultaneous acquisition of orthophotos and 3D point clouds. Therefore, dense
image-matching makes even capturing of whole countries feasible and the capturing
frequency can be increased. The availability of orthophotos and 3D point clouds
enables analyses of forests [2, 21]., such as determining the species, health and age
of trees, as well. The major disadvantage of dense-image matching to LIDAR is that
dense-image matching tends to represent forest canopies overly smooth and ground
under dense forest canopies is not captured [2, 17, 21]. Apart from that, remote-
sensing technologies typically capture not much more than the point coordinates,

73

mailto:dietmar.funck@hpi.de

Dietmar Funck: Towards Efficient Processing of Multi-Temporal 3D Point Clouds

which is why most applications of 3D point clouds require deriving of additional
per point attributes and meta information (e.g., connectivity information).

A subset of 3D point cloud applications are based on difference analyses, which
detect changes (e.g., in buildings, trees or landscapes in general) or differentiate
between dynamic and temporary objects, on the one hand, and static structures on
the other hand. The basis are multi-temporal 3D point clouds: a set of 3D point clouds
representing the same area, created at different points in time. Since a single 3D point
cloud typically consists of billions of points, algorithms and hardware for processing
multi-temporal 3D point clouds have to deal with a large amount of data. However,
customers are typically not interested in maintaining their own high-end processing
software and hardware just for the processing of 3D point clouds. Service-oriented
computing architectures offer a more flexible way for processing large amounts of
point data since no software and hardware infrastructure specialized on 3D point
clouds has to be maintained and idle times are avoided. However, traditional pro-
cessing software is monolithic and developed for running on a local machine.

This report presents concepts to fulfil the following main requirements:

1. Providing processing on local as well as remote (e.g., server) machines.

2. Reusing frequently used tasks (e.g., neighbourhood analysis).

3. Reusing of frequently used derived attributes (e.g., neighbourhood informa-
tion).

4. Providing solutions for different optimization goals such as quality and short
processing time.

5. Providing concurrent processing whenever possible.

The central concept is to introduce a modular architecture. The first requirement
aims at improving the maintainability and code reuse of processing software since
the only difference between a local running software and a remote running pro-
cessing service is the type of user interface. The back-end, e.g., importers, exporters,
converters and analysers, can have the same implementations. Using a modular
architecture it is easier to separate the user interface and the back-end.

The second and third requirement target different kinds of reusability: related
to tasks, reusability has the meaning of can be used multiple times and freely within a
processing workflow by calling it whenever needed. There should be as few restrictions for
combining tasks as possible. The loose coupling between modules, which implement
the tasks, within a modular architecture supports this kind of flexibility. Related to
attributes reusability has the meaning of is calculated once and can be used multiple times.
While the processing time can be reduced significantly, the memory consumption
may increase. Therefore, the applicability of reusing attributes strongly depends on
the specific attributes and applications.

The fourth requirement aims at providing flexibility and customizability for the
construction of processing workflows. Depending on the available hardware and
optimization goals, such as quality and short processing time, different kinds of

74

2 Modular Architecture for Processing 3D Point Clouds

algorithms may be suitable to fulfil a task within a processing workflow. The mod-
ular architecture can provide different and exchangeable variants of tasks, while
minimizing the additional implementation effort. The fifth requirement points out
the goal to provide for all tasks concurrent variants. Therefore, it is closely related
to requirement four.

In the following the modular 3D point cloud processing architecture is described
in further detail (section 2). The results of a case study for improving the efficiency
of the fundamental, frequently used neighbourhood analysis are presented as well
(section 3).

2 Modular Architecture for Processing 3D Point Clouds

This section describes the modular architecture for processing 3D point clouds in
detail. An overview is shown in Figure 1. A processing workflow, e.g., classification or
change detection, may consist of an arbitrary number of major steps, denoted as tasks.
For example, a classification requires usually preprocessing including tasks such as
outlier filtering or point normals estimation. Tasks are implemented as modules.
Each module defines data constrains for input and output, e.g., point coordinates
and normals are required as input and segment IDs are provided as output. Modules
can be combined freely as long as the input and output constrains of the modules are
met. Therefore, the input and output constrains specify the limits within modules
can be combined. Tasks may contain subtasks which are unique (e.g., Analysing Local
Surface Membership) and are implemented in the module of the corresponding task,
as well as reusable and frequently used subtasks (e.g., Gathering Neighbours), which
are implemented as stand-alone, auxiliary objects.

The tasks provided by the modular architecture can be grouped into three dif-
ferent major categories: importing & exporting, transforming and analysing. The
following subsections provide further details for these three major categories.

ProcessingbWorkflowbLe.g.,bPreprocessingM

Tasks

3DbPointbCloud
Processed
3DbPointbCloud

Gathering
Neighbours

Point
Filtering

OutlierbFiltering PointbNormalsbEstimation

Gathering
Neighbours

Analysing
Spatial

Distribution

Calculating
Point

Normals

Analysing
LocalbSurface
Membership

Figure 1: With the proposed modular architecture we can create processing work-
flows by combining often used activities called tasks (e.g. Outlier Filtering), which
are implemented as modules. Tasks may contain subtasks which are either unique
(e.g., Analysing Local Surface Membership) or reusable (e.g., Gathering Neighbours) to
provide the desired result.

75

Dietmar Funck: Towards Efficient Processing of Multi-Temporal 3D Point Clouds

2.1 Importing & Exporting Tasks

The objective of the I/O tasks is to serialize and deserialize data as well as to translate
between different file formats. There is a variety of file formats for 3D point clouds,
some are specialized for the serialization or the CPU-based, respectively GPU-based
analysis. The most popular file formats are XYZ, PLY and LAS. The XYZ file format
stores point coordinates and optional per point colour in a plain ASCII mode. The
PLY file format supports almost the same features as the XYZ file format: in addition,
it supports a binary mode and storing per point normals. The LAS file format1 is
standardize by the ASPRS (American Society for Photogrammetry and Remote Sensing)
and cannot only store point coordinates or per point colour, but also attributes such
as acquisition dates or pulse information. Since all these file formats for 3D point
clouds have their shortcomings, the modular architecture uses internally its own
format. Therefore, importers are supported for all common file formats for 3D point
clouds. There are importers for file formats which are often used for supplementary
data (e.g., building footprints) as well.

Exporters are used to store the results in the original file formats or in a file format
based on the internal format. Although exporting to external formats is required for
compatibility with other processing software or viewers, the file format based on the
internal format offers additional opportunities for visualizing 3D point clouds and
their supplementary data. For example, there are attributes (e.g., distance to another
3D point cloud) which are directly supported by other file formats and there is no
standardized file format for visualizing 3D point clouds out-of-core.

2.2 Transforming Tasks

Transforming tasks are a group of smaller, rather schematic, auxiliary tasks. The
most important task is converting between different georeference systems since 3D
point clouds as well as their supplementary data may be referenced by different
approaches. First time georeferencing is usually already conducted during data
acquisition. Therefore, the presented modular architecture assumes that the input
data is already georeferenced. Further examples are bounding box based splitting
of 3D point clouds, merging without consideration of point semantics, removing
obsolete per point attributes or inserting the points into a spatial hierarchy to support
out-of-core rendering and processing.

2.3 Analysing Tasks

Analysing tasks derive additional per point attributes or general information for
3D point clouds. The main categories are data filtering, general attribute generation

1http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf (last accessed 2015-
10-01)

76

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

2 Modular Architecture for Processing 3D Point Clouds

Figure 2: Outliers in a point cloud scanned from a gear model [20]

and difference analysis. The following subsections discuss these categories in more
detail.

2.3.1 Data Filtering
There are often noise, outliers and duplicates in 3D point clouds due to inherent
inaccuracies of remote-sensing technologies. While the impact of outliers and du-
plicates can be significantly reduced by data filtering during a preprocessing step,
noise has to be treated by each analysing algorithm.

There is no generally adopted, strict definition of outliers in the context of 3D
point clouds. Geometrically outliers can be roughly defined as follows: “outliers in
a point cloud are false measurement points that do not belong to the scanned surface” [20].
Whether outliers can be filtered out depends on the type of outliers (Figure 2). Sparse
outliers are isolated points which can be easily detected. Isolated outlier clusters are
groups of points which are not close to the scanned surface and can be detected by
using this information. However, detecting outlier-clusters which are close to the
scanned surface is almost not possible since the object surface is typically unknown
and estimation is inaccurate in the presence of extensive outliers. The difference
from noise to outliers is that noise originates from measurement errors with small
magnitude and is local, whereas outliers are large deviations from the surface [20].
A common approach to outlier filtering is to search for neighbouring points in a local
point proximity (e.g., 2 m) [14]. If not enough other points are found, the point is
defined as an outlier and not considered for further processing. A more sophisticated
approach is presented by Yutao Wang [20].

Duplicates typically occur in overlapping captured areas since 3D point clouds
are usually acquired by capturing the environment in several stripes. The filtering
is conducted by comparing the positions of points within a small proximity (e.g.,
0.01 m) [14].

77

Dietmar Funck: Towards Efficient Processing of Multi-Temporal 3D Point Clouds

Figure 3: KNN adapts the region of interest for k-neighbours: areas with high density
(left) result in a smaller region of interest, while areas with low density (right) result
in a larger region of interest. [12]

Outlier as well as duplicates filtering are suitable for concurrent processing on the
GPU.

2.4 General Attribute Generation

The neighbourhood analysis is the fundamental task of 3D point cloud analysis.
Almost every analysis requires information about the neighbourhood of a point.
Therefore, neighbourhood analysis is implemented as a reusable subtask, which can
be used by every task. The most basic variants of neighbourhood information are
the K-Nearest neighbours (KNN) and the Fixed Distance Neighbours (FDN) [12]. Since
KNN uses a fixed k, the region of interest adapts to the local point density (Figure 3).
Related to 3D point clouds FDN uses a fixed volume size for the region of interest.
Typical volumes are spheres and cylinders [4]. While cylinders weight the upwards
direction most and are suitable to detect upstanding structures, spheres are more
computation efficient and favour no direction. In contrast to KNN, FDN variants
are more suitable if the point density is almost constant within the 3D point cloud.
Although KNN adapts to the local point density, the k has to be adapted to the
average point density of the 3D point cloud to get a sufficient number of points, but
no more. Besides, almost every kind of neighbourhood can be derived from a KNN
neighbourhood of an appropriate size and shows the benefit of reusing results of a
KNN search instead of recalculating it.

Especially robust point normal estimation algorithms [1, 19, 24] have their own
definition of neighbourhood. In this context robust means that sharp features are
preserved (Figure 4) and the influence of outliers and noise is minimized. The neigh-
bourhood is defined as points belong to the same local surface and the point normal
denotes the estimated local surface normal at the position of the point. Since the

78

2 Modular Architecture for Processing 3D Point Clouds

Figure 4: A sharp features is preserved by a robust point normals estimation ap-
proach [24].

local surface is usually unknown, estimation approaches are used. In the case of ro-
bust point normal estimation algorithms heuristically and stochastically approaches
(e.g., the Randomized Hough Transform (RHT) [22]) are used. The main disadvan-
tage of robust point normal estimation approaches is the larger processing time. It
depends on the current application whether the quality of robust point normal esti-
mation approaches or the short processing time of ordinary point normal estimation
approaches are sufficient. Providing a variety of modules implementing different
kinds of point normal estimation approaches, the most suitable approaches can be
used.

Point normals are often used as an input for segmentation approaches. “Segmen-
tation is the process of labeling each measurement in a point cloud, so that the points
belonging to the same surface or region are given the same label.” [12]. Therefore,
segmentation is closely related to point normal estimation. The difference is the scale
of surface estimation. While point normals estimation focuses on the local surface of
a point, segmentation intends to group points of whole surfaces together. The esti-
mated point normals are used as the main indicator for surface membership. Spatial
proximity is usually used as an indicator as well. Region-growing based approaches
are usually used to group points together. They require a neighbourhood analysis
to collect spatially close candidates.

Segments are often used by object category detectors [14, 23] for examining the
object category of a point since for a group of points which belong to the same
surface more meaningful attributes can be derived than for a single point [18]. Typi-
cal object categories are building, vegetation and ground. Not for all segments can
reliable object categories be estimated, e.g., for small segments. Therefore, the spa-
tial relationship between segments with unreliable and reliable object categories is
examined. This requires an iterative approach as well as a neighbourhood analysis.

Overall, the different flavours of neighbourhood analysis are the basis for almost
all analysing tasks.

79

Dietmar Funck: Towards Efficient Processing of Multi-Temporal 3D Point Clouds

2.5 Difference Analysis

Difference analyses are specific to multi-temporal 3D point clouds. Typical kinds
of difference analyses are change detection, merging and detecting different types
of structures and objects regarding time. Point-based as well as segment-based ap-
proaches are used for difference analyses. For example, there is a point-based change
detection approach to derive the difference between 3D point clouds measured in spa-
tial distance per point [15] and a GPU-based implementation is suggested. However,
results of point-based change detection are often not sufficient to be used directly for
further analyses [8]. Segment information is combined with the point-based change
detection results to derive more meaningful information, e.g., changes of buildings
or landscapes.

Since multi-temporal 3D point clouds contain billions of points and require a
large amount of memory, redundant structures are identified to reduce memory
requirements. To detect redundant structures per point cloud segmentation and
the spatial relationship amongst all segments is used. Voxelgrids [3, 9] aid by the
examination of the spatial relationship. Typically redundant structures are static as
well and dynamic objects are only part of one or very few 3D point clouds. Therefore,
detecting redundant structures is linked to the detection of static structures and
dynamic objects. Especially mobile acquired 3D point clouds may contain dynamic
objects such as driving cars or pedestrians. Processing workflows such as deriving
of building facades may require to leave dynamic objects aside.

3 Case Study

The neighbourhood analysis is a fundamental and frequently used task. Therefore,
the question arises if a naive GPU-based implementation is sufficient to reduce com-
putation time compared with a CPU-based implementation. The case study was
implemented within a student project and a algorithms for counting neighbours
within a spherical neighbourhood was used. Two GPU-based implementations were
developed: a CUDA-based as well as an OpenCL-based. The CPU-based implemen-
tations is based on the Point Cloud Library (PCL)2 and uses a spatial datastructure.

The test data is a 3D point cloud acquired in 2013 by using airborne dense image-
matching with 100 points/m2. The prototypical GPU-based implementation has no
out-of-core mechanism. Therefore, a small region with ∼142,000 points and an area
of ∼1,420 m2 was used. The processing tasks was evaluated on a system with an Intel
Xeon W3530 CPU with 4 x 2.8 GHz, 24 GB main memory, and a NVIDIA GeForce
GTX 660 with 2 GB device memory and Debian Stretch 64-Bit. In Table 1, the average
computation times for the three implementations and varying radii are shown. Since
the kernel is updated automatically everytime when the code or the parameters (not
the input data) have changed, the computation time of the first execution differs

2http://pointclouds.org (last accessed 2015-10-01)

80

http://pointclouds.org

4 Conclusions and Outlook

Table 1: Average computation times (in ms) for counting neighbours within a spher-
ical neighbourhood for the test area with different implementations and varying
radii (in m)

Radius CUDA OpenCL CPU

0.5 ∼ 635 ∼ 660 ∼ 1, 020
1.0 ∼ 635 ∼ 660 ∼ 3, 000
2.0 ∼ 635 ∼ 660 ∼ 11, 300
5.0 ∼ 635 ∼ 660 ∼ 69, 000

from the average computation time of subsequent executions. Therefore, the average
computation times shown in Table 1 are only based on the subsequent executions. On
average, the first execution took about 50 ms for CUDA and 1,800 ms for OpenCL. The
reason for the large difference between both first execution times is that the OpenCL
kernel is compiled during runtime, while the CUDA kernel is almost precompiled.

The computation times of the CUDA-based and the OpenCL-based implemen-
tation are only slightly different. Increasing the radius has no impact to both of
the GPU-based implementations. In contrast, the CPU-based implementation is not
only slower for all radii, but also significantly increasing. For the selected radii the
CPU-based implementation is about 1.7 to 107 times slower than the GPU-based
implementations.

To enable experiments with large datasets, out-of-core concepts have to be incorpo-
rated. There is a CUDA-based approach for detecting differences between points of
multi-temporal 3D point clouds [15]. This approach transfers chunks of appropriate
size to the GPU. It is stated as well, that the chunk size has to be chosen carefully. At
first the computation times decrease while the chunk size increases until a minimum
is reached. Afterwards, the computation times increase together with the chunk size.

4 Conclusions and Outlook

In this report concepts for the analysis of multi-temporal 3D point clouds were pre-
sented. It is shown that 3D point cloud processing workflows contain frequently used
tasks, such as neighbourhood analysis, point normal estimation and segmentation.
The presented modular architecture provides means to reuse and flexibly combine
tasks for specifying processing workflows.

Future steps include the implementation of all tasks required for typical difference
analysis workflows as well as providing them as a web processing service (WPS) [11].
An important issue is to integrate out-of-core concepts.

81

Dietmar Funck: Towards Efficient Processing of Multi-Temporal 3D Point Clouds

References

[1] A. Boulch and R. Marlet. “Fast and Robust Normal Estimation for Point Clouds
with Sharp Features”. In: Computer Graphics Forum 31.5 (2012), pages 1765–
1774.

[2] J. Breidenbach and R. Astrup. “Small area estimation of forest attributes in the
Norwegian National Forest Inventory”. In: European Journal of Forest Research
131.4 (2012), pages 1255–1267.

[3] B. Curless and M. Levoy. “A Volumetric Method for Building Complex Models
from Range Images”. In: Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques. SIGGRAPH ’96. 1996, pages 303–312.

[4] S. Filin and N. Pfeifer. “Neigborhood Systems for Airborne Laser Data”. In:
Photogrammetric Engineering & Remote Sensing 71.6 (2005), pages 743–755.

[5] S. Gehrke, K. Morin, M. Downey, N. Boehrer, and T. Fuchs. “Semi-global match-
ing: An alternative to LIDAR for DSM generation”. In: ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
XXXVIII (2010).

[6] A. Grün. “Development and Status of Image Matching in Photogrammetry”.
In: The Photogrammetric Record 27 (137 2012), pages 36–57.

[7] H. Hirschmüller. “Semi-Global Matching — Motivation, Developments and
Applications”. In: Photogrammetrische Woche (2011), pages 173–184.

[8] Z. Kang and Z. Lu. “The Change Detection of Building Models Using Epochs
of Terrestrial Point Clouds”. In: International Workshop on Multi-Platform/Multi-
Sensor Remote Sensing and Mapping (M2RSM). 2011, pages 1–6.

[9] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. “Feature Sensitive
Surface Extraction from Volume Data”. In: Proceedings of the 28th Annual Con-
ference on Computer Graphics and Interactive Techniques. SIGGRAPH ’01. 2001,
pages 57–66.

[10] F. Leberl, A. Irschara, T. Pock, P. Meixner, M. Grubber, S. Scholz, and A.
Wiechert. “Point Clouds: Lidar versus 3D Vision”. In: Photogrammetric Engi-
neering and Remote Sensing 76 (2010), pages 1123–1134.

[11] M. Müller. OGC WPS 2.0 Interface Standard. Open Geospatial Consortium. 2015.
[12] T. Rabbani, F. A. van den Heuvel, and G. Vosselman. “Segmentation of

Point Clouds using Smoothness Constraint”. In: International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences 36 (2006),
pages 248–253.

[13] F. Remondino, M. Spera, E. Nocerino, F. Menna, and F. Nex. “State of the art
in high density image matching”. In: The Photogrammetric Record 29 (146 2014),
pages 144–166.

[14] R. Richter, M. Behrens, and J. Döllner. “Object class segmentation of massive
3D point clouds of urban areas using point cloud topology”. In: International
Journal of Remote Sensing 34.23 (2013), pages 8394–8410.

82

References

[15] R. Richter, J. Kyprianidis, and J. Döllner. “Out-of-Core GPU-based Change
Detection in Massive 3D Point Clouds”. In: Transactions in GIS 17.5 (2013),
pages 724–741.

[16] T. Rosnell and E. Honkavaara. “Point Cloud Generation from Aerial Image
Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and
a Digital Still Camera”. In: Sensors 12.1 (2012), pages 453–480.

[17] M. Vastaranta, M. Wulder, J. White, A. Pekkarinen, S. Tuominen, C. Ginzler, V.
Kankare, M. Holopainen, J. Hyyppä, and H. Hyyppä. “Airborne laser scanning
and digital stereo imagery measures of forest structure: comparative results
and implications to forest mapping and inventory update”. In: Canadian Journal
of Remote Sensing 39.5 (2013), pages 382–395.

[18] G. Vosselman. “Point cloud segmentation for urban scene classification”. In:
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XL-7/W2 (2013), pages 257–262.

[19] Y. Wang, H.-Y. Feng, F.-É. Delorme, and S. Engin. “An adaptive normal estima-
tion method for scanned point clouds with sharp features”. In: Computer-Aided
Design 45.11 (2013), pages 1333–1348.

[20] Y. Wang. “Outlier Formation and Removal in 3D Laser Scanned Point Clouds”.
PhD thesis. University of British Columbia, 2014.

[21] J. White, M. Wulder, M. Vastaranta, N. Coops, D. Pitt, and M. Woods. “The
Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with
Airborne Laser Scanning”. In: Forests 4.3 (2013), pages 518–536.

[22] L. Xu and E. Oja. “Randomized Hough Transform (RHT): Basic Mechanisms,
Algorithms, and Computational Complexities”. In: CVGIP: Image Understand-
ing 57.2 (1993), pages 131–154.

[23] S. Xu, S. Oude Elberink, and G. Vosselman. “Entities and Features for Clas-
sifcation of Airborne Laser Scanning Data in Urban Area”. In: ISPRS Annals
of Photogrammetry, Remote Sensing and Spatial Information Sciences I-4 (2012),
pages 257–262.

[24] J. Zhang, J. Cao, X. Liu, J. Wang, J. Liu, and X. Shi. “Point cloud normal estima-
tion via low-rank subspace clustering”. In: Computers & Graphics 37.6 (2013),
pages 697–706.

83

Utility-Driven Modularized MAPE-K loop architectures for
Self-adaptive systems

Sona Ghahremani

System Analysis and Modeling Group
Hasso-Plattner-Institut

sona.ghahremani@hpi.uni-potsdam.de

A self-adaptive software is capable of evolving and modifying itself at runtime to
obtain a specific level of quality of service and achieve certain functional goals. A
MAPE-K loop, consisted of four adaptation activities (Monitor/Analyze/Plan/Ex-
ecute) supported by a knowledge repository is an efficient way to employ a control
loop in the adaptation engine. The adaptation strategies applying feedback loops
are categorized as either rule-based approaches which follow an event-condition-
action policy or search-based approaches which have certain goals they are banned
to fulfill. Here we propose the idea of pursuing a hybrid adaptation strategy in
which we benefit from the strong points of each approach and let them compensate
for each others’ weaknesses. We run a fast rule-based approach on the architecture
model of the adaptable software and a utility-driven planning phase also runs
in parallel to the rule-based approach and makes it possible to ensure some nice
property for the executed rules such as optimality and highest expected utility of
the system. We use the rule-based planning as a tool to conform system goals in
a safe and fast manner. Triggering the adaptation process according to the occur-
rences of events rather than the state of the system also leads to faster adaptation
of the software.

1 Introduction

A self-adaptive software is capable of evolving and modifying itself at runtime to
obtain a specific level of quality of service and achieve certain functional goals [4, 7].
Therefore, self-adaptive systems that are able to adjust their behavior in response to
their perception of the environment and the system itself, has become a trending is-
sue in software engineering domain. Self-adaptation capabilities are recognized as an
effective methodology to manage the increasing complexity and runtime challenges
of many modern software systems which are either changing themselves, interacting
with dynamic environments or their requirements are changing constantly which
can not be forseen at design time. [3] models the self-adaptive software architecture
as a hyper graph using graph grammars. [6] models self-healing systems by typed
graph grammars applying systems rules. We follow similar approach and model
the self-adaptive software as a graph. State of the system is represented as a specific
graph structure and each occurrence of events in the system or the environment
indicates formation of most likely new graph patterns in the architecture.

A multi-purpose self-adaptive software can be modularized into smaller single-
purpose components each representing certain behavior of the system. In a modular-
ized self-adaptive system, modules can trigger reconfiguration based on either the

85

mailto:sona.ghahremani@hpi.uni-potsdam.de

S. Ghahremani: Utility-Driven Modularized MAPE-K loop arch. for Self-adaptive systems

current state (current graph) or history or can adapt independent of the system state
and only based on occurrences of events. Modularization can be beneficial when
applying incremental adaptation in which changes only affect restricted components
and are local. Here, modularity helps to avoid excess processing and this is impor-
tant because in self-adaptive systems the whole reconfiguration process occurs at
runtime and incrementality is the key solution [8]. Modules in an event-based self-
adaptive system keep track of the changes occurring at each reconfiguration and do
not require to be aware of the current state of neither the system nor the environment.
In this study, we pursue an event-based adaptation of a modularized self-adaptive
system. The adaptation policies however can be based on utility optimization or goal
conformance which will be discussed further in the text.

2 Backround

2.1 Basics in self-adaptive systems

Self-adaptive software has developed the ability to observe the changes at runtime,
reason about itself and autonomously evolve accordingly to fulfill its goals and
expected requirements. To be able to do so, software needs to have certain char-
acteristics which [10] describes them as “self-* properties”. These properties are
supposed to enable the software to evolve towards achieving the expected goals in
spite of dynamic/runtime changes, which are the basis for self-adaptive systems.
Considering the high cost of software management at runtime and the fact that
anticipating and coding all the probable adaptation steps at design time is hardly
feasible, applying a proper monitoring approach to trace the changes which is later
followed by an adaptation plan to cope with new circumstances is the main idea
behind self-adaptation [10].

[9] introduces an influential approach which structures the adaptation engine as
feedback loop consisted of four adaptation activities (Monitor/Analyze/Plan/Exe-
cute) supported by a knowledge repository as depicted in figure 1. The monitoring
component monitors the system through the sensors and gathers information on
the occurring events and updates set of models in the knowledge repository accord-
ingly. The analyze module investigates the models created in the monitoring phase
and based on the system goals, decides whether there is need for adaptation or
not, if so, the planning component is triggered to come up with an adaptation plan
which includes one or several actions to deal with the rising software issues and the
execute component is in charge of taking the plan to action and reconfiguring the
software [14].

2.2 Goals and utility in search-based self-adaptive systems

A search-based self-adaptive system includes several goals which can be either soft
or hard. [1] describes soft goals as those which there is no clear-cut condition to de-

86

2 Backround

Adaptable Software

Adaptation Engine

Knowledge

Monitor

Analyze Plan

Execute

sensors effectors

Figure 1: MAPE-K architecture

cide whether they have been satisfied such as the utility of a software or the energy
consumption of a factory. Soft goals are typically used to model non-functional re-
quirements of a system and we could always identify how much or up to which degree
they have been satisfied/violated. The utility of a software system is a measure of
relative satisfaction which tells us how good the system is operating and to which
degree the soft goals have been satisfied, it can be representative of high level specifi-
cation of system behavior [13].

Hard goals are the strict system goals which act like boolean variables, they are
either satisfied or not, there is no degree in the level of fulfillment for hard goals in self-
adaptive systems. In order to avoid any confusion and for the purpose of simplicity
in the rest of this document, goals refer to hard goals.

2.3 Options for utility optimization

In a utility-based adaptation, all the reconfiguration efforts aim to maximize the
total utility of a system so that the software can meet the required criteria. When
the solution space is well defined and there are not many local optima, we can
guarantee that local search-based approaches lead us to optimal utility, therefor
Hill climbing-based approaches work. On the other hand, when there are multiple
local optima, local search-based approaches do not work and we need other search
heuristics to find the global optimum solution.

Defining the proper and precise utility function is of high importance since in an
optimization problem, it is always the utility function that is maximized not the real
utility value of the components. Utility function assigns a real-valued scalar desir-
ability to each state which identifies how good or appropriate that specific state or
configuration is as opposed to others. There have been plenty of research on utility
functions and utility-driven decision-making policies, the notion of multi attribute util-
ity function is a common term in the optimization context refers to a multi-variant

87

S. Ghahremani: Utility-Driven Modularized MAPE-K loop arch. for Self-adaptive systems

utility function and is often considered as an implementation bottleneck for intelli-
gent systems since it requires complex preference analysis among number of most
possibly uncertain outcomes. So far plenty of schemes have been proposed for multi
attribute utility functions but those following the Bayesian and Markov models seem
to have achieved the most success in doing so. [2] introduces the notion of conditional
utility and applies it for defining utility difference networks by satisfying additive
analogues of the chain rule and bays rule which rely on their concept of conditional
independence and results in a natural utility function elicitation.

[5] proposed an utility function elicitation method and tool, they measured
both application-level and environment-level characteristics and generated multi-
dimensional graph through automatically mapping the vector of application-level
attributes which provide utility, and characteristics of its runtime environment and
the curve which fits the best, provides the utility function. [15] evolved the util-
ity function through genetic algorithm in a self-healing task, the evolution process
included the training of specific genomes to identify the anomalous (undesirable)
states.

There are also some design schemas on how to apply a utility-driven approach
on control loops of a system, [13] presented a two-layer architecture for distributed
self-adaptive systems consisting of independent modules. At the lower level, the
scheme includes several separated application environments each having a service-level
utility function providing particular service. The utility function of each module acts
independently of the one of the others but sharing the same scale quantification. The
system goal is to optimize the overall utility of the modules which means that the
global optimization is distributed among several autonomic modules. Each module
manages its own behavior and collaboration policy with other modules. At the higher
level of the architecture, there is a global resource arbiter which is not aware of the
details in the lower level and only takes as input the utility functions of the lower
level modules. It acts as a global coordinator and periodically computes the optimum
solution (resource allocation R∗) that maximizes the global utility of the system.

2.4 Modularization

Being a growing and complex system requires handling many runtime issues which
means the adaptation engine must include several feedback loops each responsi-
ble for one issue at a time to be able to keep up with the speed of environment
changes and software demands. However, control engineering defines the systems
with only one feedback loop easier to reason about, but still the multiple feedback
loops are more common [4]. In cases where the software is complex and requires
many feedback loops, it makes sense to run them as separate individual modules
and not as one big module with a central control on top of them. Following a proper
engineering practice, the multiple feedback loops need to either be reduced to a
single one ore be considered as independent individuals modules. Each module is
a complete MAPE-K loop including monitoring, analyzing, planning and execut-
ing phase which operates on a knowledge repository which is normally a reflection
model that reflects the adaptable software and its environment [12].

88

3 Approach

Decomposing a multi-concern module into several smaller ones requires deter-
mination of a proper ordering policy which schedules the modules in a way that
they do not interfere with each other’s output in an unwanted manner. There could
also exist several implicit dependencies among modules which requires a particular
order for executing the modules to achieve the desired output. These dependencies
are either static (known at design time) or dynamic (rise at runtime). Inter-module
dependencies lead to situations where if one module is executed before other one,
the latter would interfere the output of the former. These dependencies can be in-
terpreted as set of execute commands which need to be applied in the correct order.
Here the system can benefit from adding a scheduler element to the system architec-
ture which would be responsible to develop the proper ordering policy to execute
modules or specific elements of a module.

3 Approach

3.1 graph architecture

Consider a sequence of architectural models of a complex modular self adaptive
software where each of its modules include multiple components in different layers
of architecture. What happens is that as a result of the software interacting with the
observable domain (environment) it observes series of changes in the domain and
some local changes in the software itself referred to as regular behavior. The software,
being a self-adaptive system, expresses series of configuration changes as a response
to the regular behavior which is called adaptation behavior. The architectural models
can be presented as graphs in abstract level and the occurrence of certain patterns in
this architecture indicates certain events and carries some observable information
for us to notice. In this domain, the state is one concrete architecture pattern.

3.2 Goal conformance vs. Utility optimization

Goals are described as strict achievements system is required to gain, otherwise it
would fail to meet its requirements. Goal-driven or goal-based self-adaptive systems
are those which follow one or several goals and adaptation is required whenever
a goal violation occurs. If a self-adaptive system is pursuing a goal conforming ap-
proach, it has a goal model which wishes to conform. In case of the graph structures,
system goals are defined as avoiding/keeping certain graph structures identified by
the general goal model. The reflection model needs to be constantly updated and
monitored to see if the goals are fulfilled or not and in case of any goal violation,
the adaptation is required to bring the system in the goal conformance zone where
there are no banned structures in the graph representation of the system.

As described earlier, utility function of a self-adaptive system is an objective policy
which expresses the value of each possible state of the system in its domain and
generalizes the goal policies in a sense that they do not classify the system states,

89

S. Ghahremani: Utility-Driven Modularized MAPE-K loop arch. for Self-adaptive systems

or in our case the possible system configurations in a binary manner into desired vs.
undesired states. Following an utility-based adaptation requires monitoring the graph
structures and ranking them based on their desirability and likelihood of occurrence.
When there is the chance of applying a more desirable graph structure which is also
most likely to result in an increase in the system utility, the adaptation engine is
triggered to for a reconfiguration.

In the utility-based adaptation there is a utility function which maps any possible
configuration of the system to a scalar value belonging to [−∞,+∞]. Here the optimal
configuration gains the maximum utility and failing of constraints or violations
of hard goals result in negative utilities which implies that the goal-conformance
dominates utility optimization.

3.3 Modular utility-driven adaption

A behavior is a sequence of changes and considering the size of adaptable softwares
we are focusing on, which are finite but not necessarily small architectural models, it
is not possible to guarantee that we can be fully aware of the whole adaptation behav-
ior of the system and all the possible sequence of changes proper for each probable
situation. Therefor we are looking for some restrictions on choosing and applying
the adaptation strategies to make it possible to apply them at the architectural level.
Most complex software systems have scalability issues, in order to cope with them,
optimization based approaches can be applied. These approaches use utility func-
tions to conform the high level goals of the system and they to not explicitly capture
adaptation rules. In our approach we pursue a hybrid adaptation approach in which
we explicitly capture adaptation rules and in the meanwhile the utility of each rule
is computed and later considered as dynamic weight to rank the rules based on
their effectiveness and desirability regarding the circumstances under which they
are triggered.

3.3.1 State-based vs. event-based adaptation
In general there can be strategies which are pure state-based, event-based or consider
an accumulative past experience. In the state-based view, through considering the
current state of the adaptation engine, the optimal strategy can be chosen among all
possible options, but in the pure event-based view, it gets more complicated since
each event has different effects in each state. Therefor it depends on the information
each event provides and if there is enough, we can be pure state-independent. Being
pure event-based or state-based also depends very much on how the utility function
is defined. If an event occurs and decreases the utility of the system, we need to
have a strategy which guarantees if we act to that event by applying a certain adap-
tation action, the local increase in utility out weights other local effects. In context of
the graph structure, addressing the undesired graph pattern which leads to highest
increase in the overall utility is the preferable choice. Here, having some given knowl-
edge about the current situation enables us to determine which adaptation action
has better effect (The greedy perspective). Switching between state-based to event
based also requires a change in the monitoring policy, in the state-based adaptation

90

3 Approach

we need to be aware of the global state of the whole system but in the event-based
case we are only required to observe the changes in the system and environment and
compute the delta.

3.3.2 General Formalization
We have a certain configuration and some environment or local changes represented
as certain graph patterns which occur and it is desired to find out (1) whether the
system is still optimal or it should adapt and if so, (2) how to proceed? In the worst
case scenario, the cost of finding out whether the current configuration is the optimal
one can be almost the same as finding better configuration.

We suggest to look for some phenomena or certain graph structures which tell
us to optimize. We look for patterns that although we cannot know for sure that
the performance is not optimal, but they still indicate there are some problems with
the performance. It could also be the other way around, which means if we do not
observe any signs triggering occurrence of certain pattern, we can conclude that the
performance is good enough.

We define the overall utility function as a weighted sum of multiple sub-utility
functions. The architectural model is presented as a graph and we are looking for
certain graph patterns which are interpreted as occurrences of undesired events in
the observable domain/system itself. For each module we define its related utility
as a function of number of occurrences of the undesired patterns in its underlying
components. As any change occurs in the architecture, we need to be able to detect
whether there has been any change in the count of these certain monitored patterns or
not. We count the occurrences of certain patterns and define the utility in proportion
to that. Therefor u = f (count) in which the variable count defines the number of
occurrences. There are several scenarios to define function f :

• Utility is a monotonous function of count without any weight. u = count.

• Utility is defined as u = β × count where β is a negative factor which identifies
the weight (importance) of the occurred pattern which later will be used as a
factor indicating the dominance of the related component to others.

• Instead of having a fixed ordering defined by β in the second scenario, there
can be a re-ordering or scheduling phase each time a change in the counts occurs.
This scenario could be interpreted in various ways, it could be the case that
frequent changes in a certain count means that the changes in the status of the
related component are not that important and after four or five occurrence of
change in the count we might ignore the sixth one. The frequent changes in the
count can lead to increasing the weight of the related component and hence its
priority because it might become a more serious issue as the count increases.

Each occurrence of the certain patterns in the model increases the count by one and
applying the proper adaptation action to resolve it reduces the count by one. There
for in this formalization, the maximum utility of a module would be u = 0 which is
when there are no undesired patterns in that module or its observable domain. Under
the assumption that resolving one pattern does not affect other patterns, we can say

91

S. Ghahremani: Utility-Driven Modularized MAPE-K loop arch. for Self-adaptive systems

that the pattern with highest weight is the one which needs to be resolved first (this
is of course when we do not take time into consideration). Therefor based on this
formalization, a certain dominance relation should hold. The factor β multiply the
change in the utility (β×∆u), is always larger or equal other changes. In other words,
we claim that if a change event occurs and there is a sequence of adaptation actions,
action a is the local dominant if in this sequence the effect on utility caused by a is
higher than or equal to other possible actions. In this formalization regardless of the
state of the system, if any of these certain patterns occur, utility drops in proportion
to the frequency of the occurrences, this allows us to assume that by applying the
idea of counting certain structures we can be state-independent.

To guarantee optimality of the proposed approach we need to present some as-
sumptions :

• After the occurrence of each event (pattern) we know which adaptation actions
are applicable to resolve the issue.

• It is inherently assumed that applying one adaptation action does not affect
more than one utility function.

• If the more than one pattern are occurring and we apply an adaptation action,
that action would only resolve one issue at a time and alter the one specific
related utility function.

• For each adaptation action we assume that we know how that will affect the
utility.

• We assume that the future environment behavior and evolution of the system is
not responding to the adaptation in a particular way and they are independent.

• The occurring patterns also should be independent from each other which
means that one pattern cannot be included in another because then the applied
adaptation action which resolves one would simultaneously resolve other one
as well which would violate the first and second assumption. Therefor we
assume that all the patterns are disjoint cases.

4 Planed Experiments

The rule-based adaptation can be developed as an event-based or state-based pro-
cess. In case of event-based, occurrence of the events or symptoms trigger rules
that eventually/directly result in reconfiguration requests. In the case of state-based,
symptoms attached to the reflection models finally result in pre-planned reconfig-
uration in a reflection model by means of executing rules. In the state-based rule
application, rules are triggered based on the current state of the system. A version
of the state-based adaptation considers a history of the system states instead of one
current state. Implementation wise, system’s history can be encoded in the model.
In this section we present our solution along with other adaptation scenarios which

92

4 Planed Experiments

are planned to to be conducted, in each case a second dimension regarding the rule
selection policy is involved.

4.1 Experimental setting

The adaptable software we use for experimental results is mRUBiS developed by [11],
which is an auction site benchmark modeled after eBay. mRUBiS has a modular-
ized architecture containing multiple components (modules) and implements the
core functionality of an auction site: selling, browsing and bidding. This adaptable
currently consist of to modules: self-healing and self-optimization both applying
rule-based MAPE-K feedback loops. The applied adaptation strategy is focused on
fulfilling the soft goals of high availability and low response time. The self-healing
capabilities aim for automatically identifying and analyzing runtime failures in the
running shops and for automatically planning and enacting an adaptation to heal
these failures. On the other hand, self-optimization capabilities aim for automatically
identifying and analyzing performance issues such as bottlenecks in the running
shops and for automatically planning and enacting an adaptation to resolve these
issues.

4.2 None incremental state-based adaptation

In none incremental state-based adaptation, for every change in the system, we
have to run over the complete model and check if any of the rules are applicable.
After finding the matches there are three scenarios to execute the the matched rules;
Our approach suggests a utility driven selection of the rules, here we order these
matches according to their utility values or the impact they they have on the overall
utility which is represented as a dynamic weight for each rule and execute them.The
alternative scenarios are applying the matched rules in random order or based on
an static ordering which is defined at design time.

4.3 Type-incremental event-based adaptation

Here we have modular incrementality or as [8] describes it, syntax-driven incremen-
tality where each event that occurs can be categorized as one of the recognized event
types and then the rule checking process is limited tho class of rules which can only
be triggered by these type of events. After a new exception occurs, the related rule
set is checked to find and mark the triggered rules, the same scenarios as presented
in the state-based adaptation will be applied here.

4.4 Incremental event-based adaptation

In this scenario we only look at the events occurring in the system or its environment
regardless of the state of the system. Occurrence of events tigers the adaptation in
this case, we search the rule set for the matches that only address that specific event

93

S. Ghahremani: Utility-Driven Modularized MAPE-K loop arch. for Self-adaptive systems

and execute the rules following the three utility-driven, random or static ordering
scenarios.

5 Conclusion and Outlook

The proposed approach is an incremental/type-incremental event-based adaptation
approach which benefits from applying a utility function to optimize the reconfig-
uration of the adaptable software. Compared to the state-based adaptation, it is
expected to have the benefit of less efforts and in case of the complex architectures
where the scalability is a serious issue, our approach can show its benefits the best.
The improvement with incrementally will make our approach noticeably faster. Re-
garding the utility-driven approach we proposed, which falls into the category of
hybrid adaptation approaches, we introduce a utility function and use it as a dy-
namic weight to rate the rules. Comparing our approach with more straight forward
solutions like static ordering of the rules or the random ordering, we claim that
the dynamic weighting provides the opportunity to actively update the preferences
among the rules and the orthogonality of all the overhead in computing and using
the utility function is valuable. Finally we argue that in systems with simple architec-
tures our solution will be competitive with other alternatives while in complex cases
it will definitely perform better. Currently we assume all the rules are orthogonal
and applying one does not change the applicability or the impact of the others which
makes things much easier to handle, as the next step we would like to consider the
case where this orthogonality does not exist anymore. In this case we know that a
number of rules are not independent and the order in which we apply them has an
impact on the overall utility of the system or applying one rule would change the
improvement or the utility increase which is expected from another rule.

References

[1] L. Baresi, L. Pasquale, and P. Spoletini. “Fuzzy Goals for Requirements-Driven
Adaptation”. In: Requirements Engineering, IEEE International Conference on. Los
Alamitos, CA, USA: IEEE Computer Society, 2010, pages 125–134.

[2] R. Brafman and Y. Engel. “Directional Decomposition of Multiattribute Utility
Functions”. In: Algorithmic Decision Theory. Edited by F. Rossi and A. Tsoukias.
Volume 5783. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2009, pages 192–202.

[3] A. Bucchiarone, P. Pelliccione, C. Vattani, and O. Runge. “Self-Repairing sys-
tems modeling and verification using AGG”. In: Software Architecture, 2009
European Conference on Software Architecture. WICSA/ECSA 2009. Joint Working
IEEE/IFIP Conference on. 2009, pages 181–190.

94

References

[4] B. H. Cheng et al. “Software Engineering for Self-Adaptive Systems: A Re-
search Roadmap”. In: Software Engineering for Self-Adaptive Systems. Edited by
B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee. Volume 5525.
Lecture Notes in Computer Science (LNCS). Springer, 2009, pages 1–26.

[5] P. deGrandis. “Elicitation and Utilization of Application-level Utility Func-
tions”. In: Proceedings of the 6th International Conference on Autonomic Computing.
ICAC ’09. New York, NY, USA: ACM, 2009, pages 107–116.

[6] H. Ehrig, C. Ermel, O. Runge, A. Bucchiarone, and P. Pelliccione. “Formal
Analysis and Verification of Self-Healing Systems”. In: Fundamental Approaches
to Software Engineering, 13th International Conference, FASE 2010, Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010
Paphos, Cyprus, March 20-28, 2010. Proceedings. Edited by D. S. Rosenblum and
G. Taentzer. Volume 6013. Lecture Notes in Computer Science. Springer, 2010,
pages 139–153.

[7] A. Elkhodary, N. Esfahani, and S. Malek. “FUSION: a framework for engineer-
ing self-tuning self-adaptive software systems”. In: Proceedings of the eighteenth
ACM SIGSOFT international symposium on Foundations of software engineering
(FSE ’10). New York, NY, USA: ACM, 2010, pages 7–16.

[8] C. Ghezzi. “Evolution, Adaptation, and the Quest for Incrementality”. In: Large-
Scale Complex IT Systems. Development, Operation and Management. Edited by
R. Calinescu and D. Garlan. Volume 7539. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2012, pages 369–379.

[9] J. O. Kephart and D. Chess. “The Vision of Autonomic Computing”. In: Com-
puter 36.1 (Jan. 2003), pages 41–50.

[10] M. Salehie and L. Tahvildari. “Self-adaptive software: Landscape and research
challenges”. In: ACM Trans. Auton. Adapt. Syst. 4.2 (2009), pages 1–42.

[11] T. Vogel. Modular Rice University Bidding System (mRUBiS). 2013. url: http :
//www.mdelab.de (last accessed 2013-11-02).

[12] T. Vogel and H. Giese. “Model-Driven Engineering of Self-Adaptive Software
with EUREMA”. In: ACM Trans. Auton. Adapt. Syst. 8.4 (Jan. 2014), 18:1–18:33.

[13] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das. “Utility functions in au-
tonomic systems”. In: Autonomic Computing, 2004. Proceedings. International
Conference on. May 2004, pages 70–77.

[14] D. Weyns and J. Andersson. “On the Challenges of Self-adaptation in Systems
of Systems”. In: Proceedings of the First International Workshop on Software En-
gineering for Systems-of-Systems. SESoS ’13. New York, NY, USA: ACM, 2013,
pages 47–51.

[15] S. Wong, M. Aaron, J. Segall, K. Lynch, and S. Mancoridis. “Reverse Engi-
neering Utility Functions Using Genetic Programming to Detect Anomalous
Behavior in Software”. In: Reverse Engineering (WCRE), 2010 17th Working Con-
ference on. Oct. 2010, pages 141–149.

95

http://www.mdelab.de
http://www.mdelab.de

Editing Metamaterials, Creating Mechanisms

Alexandra Ion

Human Computer Interaction
Hasso-Plattner-Institut

alexandra.ion@hpi.uni-potsdam.de

Recent advances in fabrication technology, such as high-resolution 3D printers,
allow fabricating objects with internal microstructure, also known as mechanical
metamaterials. In this paper, we argue that the key to more complex metamaterials
is to allow users to manipulate individual cells and sub-cell elements interactively.
We make two main contributions. First, we present a simple system that converts
metamaterials to (stacks of) images and back. This allows users to edit metamate-
rials using traditional raster graphics editors, such as Adobe Photoshop. This is
efficient, but more importantly also allows users to engineer structures on per-cell
level, giving them the fast and precise control required to develop new structures.
Second, we use our own approach to create a new class of metamaterials: mech-
anisms, i.e., devices that transform forces and movement. Our mechanisms are
all based on one specific type of asymmetric cell the only ability of which is to
shear. We add these cells to our image processing approach; we achieve this by
representing cells as color pixels instead. We then use our raster graphics approach
to engineer a series of mechanisms each of which combines asymmetric cells in a
different way, ranging from four-bars and hinges to door latches and pliers.

1 Introduction

Recently, researchers moved beyond merely designing the shape of 3D printed ob-
jects and started to also specify their interior. This has allowed them to create ob-
jects, for example, that stand [17] or spin [2]. Researchers in mechanical engineer-
ing and graphics have started to push the concept of internal structures even fur-
ther. They explore how to design the microstructure of materials, typically in the
form of repetitive cell patterns. These have been referred to as “metamaterials”. Re-
searchers showed how to create objects with unusual behavior, such as objects that
pull rather than resist when compressed (negative stiffness [6, 13]) or shrink in two
dimensions upon one-dimensional compression [5, 11]. Unfortunately, designing
new metamaterials is difficult and inefficient. Users currently structure by scripting
it (e.g. using Matlab [13]) or by specifying forces or displacements [18]. While these
approaches perform well for optimizing already defined structures, they are of limited
use when exploring new types of metamaterials. In this paper, we tackle this issue. We
demonstrate how to edit metamaterials interactively, using raster graphics editors.
We demonstrate, how the resulting visual control allows us to implement a new class
of metamaterials, i.e., mechanisms.

97

mailto:alexandra.ion@hpi.uni-potsdam.de

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

2 Editing Metamaterials, Creating Mechanisms

Figure 1a shows an example object we have created using the proposed image ma-
nipulation approach, a simple door latch made from a single block of metamaterial.

Figure 1: (a) A simple door latch made from a single block of metamaterial. (b) Ro-
tating the handle causes the large cell rectangle in the middle to deform and pull
the latch towards the left. (c) We created this mechanism by converting its outline
to a stack of bitmap images, which allowed us to place with pixel accuracy in a
bitmap raster graphs editor, here Adobe Photoshop. Here we just filled the center
region with purple color, allowing it to shear left-right.

As shown in Figure 1b, the mechanism is functional, i.e., pushing the handle down
causes it to rotate and pull the latch on the top right towards the left, unlocking the
door. This behavior is the result of the interplay of several elements, a key element
being the purple rectangular block of cells in the middle. It consists of cells with the
sole ability to shear, which is what allows the mechanism to transform torque applied
to the handle into the horizontal force on the latch required to unlock the door. The
entire assembly consists of a single block of metamaterial— an arrangement of cube-
shaped cells on a regular 3D grid. The functionality of the device is the result of the
interplay between different types of cells. Figure 1c illustrates one step out of the

98

3 Related Work

process we used to create this mechanism. We are editing the latch in a bitmap raster
graphics editor, here Adobe Photoshop. The latch is represented as a stack of layers
(right) and we are currently editing the layer that contains the rectangular element
discussed above. In the shown step, we are filling this rectangle with purple color.
As we discuss in detail later, this eliminates the diagonal from these cells, allowing
them to shear and thus perform their necessary mechanical function in the door
latch mechanism. The raster graphics editor implicitly provides us with a visual
overview of the inner workings of the device as we are editing it, allowing us to
engineer the device directly in the editor. In addition, pixel-accurate tools allow us
to assemble cells with the precision required to obtain a functional result. Figure 2
summarizes the workflow of our simple system. (a) Users start by modeling the
outer shape of the latch mechanism in an arbitrary 3D modeling program, such as
“Blender” (b) Users use our custom slicer to convert the 3D model to (multi-layer)
bitmap file that contains one pixel for each voxel in the 3D model. (c) Users designs
the mechanism using an arbitrary raster graphics editor, as discussed above. (d-e)
Finally, users export the edited bitmap file through our custom mesh-generation
pipeline based on OpenJSCAD [15] and (f) 3D print the model (we use a Titan 1 DLP
printer with Spot-e resin).

Figure 2: The workflow of our simple system

Although the door latch we printed is rather small due to the limited build size
in current printers, we envision that in the future 3D printers would fabricate the
whole door including the functional door latch in one piece.

3 Related Work

Our work builds on previous work in interactive personal fabrication, in particular
on techniques that modify the internal structure of 3D printed objects, multi-material
printing, and mechanical metamaterials.

99

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

3.1 Personal fabrication and User Interaction

Researchers in HCI and computer graphics explored how to define the behavior
of printed objects. In particular they changed the rigid inside structure of objects
in order to optimize the object’s strength-to-weight ratio [10], to balance the object
(e.g. “make it stand” [17]) or to allow it to spin [2]. One of the key contributions of
our work is to allow users to interactively define the behavior of 3D printed objects.
Since this requires users to interact with a large number of discrete elements, we are
building on user interface concepts based on painting [3].

3.2 Compliant mechanisms and flexures

Our work builds on deformable struts that transfer forces. Similar mechanical struc-
tures have been examined in the context of compliant mechanisms, i.e. monolithic
structures that transfer motion, force and energy without traditional hinges, but
using flexure hinges (thin regions allowing for rotation) [9].

3.3 Mechanical Metamaterials

Metamaterials are artificial structures, usually repetitive patterns. Their unusual
properties originate from their geometry, rather than the material they are made of.
Researchers in the fields of mechanical engineering and material science discovered
designs for negative stiffness materials through pattern transformation [13] (materi-
als “pull” in the direction of compressing rather than resisting it) or materials with
auxetic behaviour [5, 11, 19] (materials that compress in the orthogonal direction
of the compression force too. These are properties that can only be achieved using
metamaterials. These metamaterial structures were designed by a mathematical for-
mulation of the desired behavior or empirical experimentation. The evolution of
metamaterials has been further driven by recent advances in high-resolution 3D
printing. An example of this is a printed material by Bickel et al. with structured
pores that lowers the material’s resistance to uniform compression, i.e. its bulk stiff-
ness [4]. Recently, Schumacher et al. and Panetta et al. focused on elastic properties
and created cell families where they computationally varied these properties [16,
18]. In these systems, users specify metamaterials either by applying a force to the
object’s boundaries in a 3D editor or by specifying forces (not cells) using color.
Similarly, there are other editors that either optimize the stiffness of an homoge-
nous internal structure [1, 12, 14] based on force vectors. We build on the idea of
coloring objects with desired material behavior properties, but take it a step further,
allowing for per-cell and per-edge control, which allows us to leverage powerful
image-processing functionality.

100

4 Editing Metamaterials— in 2D

4 Editing Metamaterials— in 2D

In this section, we present (1) the metamaterial structures we use in our tool, (2) how
we map color values to material structure, and most importantly, (3) new types of
metamaterials that the resulting framework suggests. We start our discussion with
2-dimensional materials.

4.1 Grayscale: Localized Compliance

A considerable amount of related work focuses on 2D materials, i.e. materials that
consist of a 2-dimensional cell structure which can be extruded in the third dimension
to obtain a desired thickness, e.g. [4].

A practical example is shown in Figure 3 where users produces a custom shoe sole,
made from metamaterials, similar to [4], but using our bitmap representation: (a)
users start from a 2D imprint of their foot from a pressure sensor. Then, they directly
manipulate the cells by using standard image processing tools. (b) Users blur the
image to create smooth transitions between pressure regions. (c) They add extra
softness around the foot’s corn by manually touching it up with various brushes. (d)
At any time, users may export the bitmap image through the mesh-generator and ob-
tain a 3D model of a custom sole with localized compliance. Note that this was done
entirely using standard image manipulation (e.g. Adobe Photoshop) and did not re-
quire the typical scripting workflow currently involved in designing metamaterials.

Figure 3: Users create a shoe sole by (a) importing pressure data. (b) They smooth
it using Gaussian blur, and (c) retouch the toe area to relieve their corn. (d) Our
mesh-generator create the 3D geometry of the metamaterial.

101

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

Because our approach leverages existing image manipulation tools, we can benefit
from the many other image processing operations and macros that move pixels,
such as scaling using different types of filters, translation by a sub-pixel amount, any
type of band pass, including sharpening and directional or symmetric blurring, any
type of distortion (e.g. “Liquify”), polar transforms, and so on. Our approach takes
advantage of the correlation that adjacent pixels and cells share and leverages all
these existing image processing tools as manipulators of physical matter for creating
metamaterials. Image processing tools allow users to edit metamaterials efficiently.
In addition, they allow for precision down to the edge level. This allows us to create
new types of metamaterials, i.e. materials that implement mechanisms.

4.2 Color: Anisotropic Cells allow Making Mechanisms

Rather than manipulating the stiffness of cells as a whole, we will now use image
processing to manipulate individual elements inside of cells, i.e. individual edges.
We start out with a basic mesh structure that is stiff, i.e. resists compressive, tensile,
and shearing forces. The minimal mesh that resists these forces consists of three
edges per cell, as illustrated by Figure 4. To manipulate individual cell edges, we
map each of the three edges to their own color channel; we thereby manipulate a
piece of metamaterial by representing it as a RGB color image. We add degrees of
freedom to our initially stiff mesh by weakening its beams as to allow it to deform.
By manipulating the value of one of the color channels of a pixel, we manipulate the
stiffness of one of its beam individually.

Figure 4: We map the three edges of our grid to a color channel each. The color value
defines the stiffness of the corresponding beam, where the softest setting is not
having the beam at all.

This is an important step, because it gives the user control over each beam indi-
vidually and thus allows for creating anisotropic cells, i.e., cells that deform non-
uniformly. As we demonstrate in the following, such cells are key to creating mecha-
nisms, i.e., devices designed to transform input forces and movement into a desired
set of output forces and movement. An interactive interface that offers access to in-
dividual cells is crucial here. While metamaterials with localized compliance can be
designed by specifying a few control points and obtaining the rest through interpola-
tion [1, 18], devising mechanisms from metamaterial requires per-cell and per-edge
control.

102

4 Editing Metamaterials— in 2D

4.3 The Four-Bar Cell Shears

Figure 5 shows the basic element for most mechanisms we have explored so far: the
four-bar. The four-bar allows a piece of metamaterial to compress in a well-defined
way. Since the individual beams in the cell support each other as they bend, the entire
assembly shears in a controlled motion rather than buckling in an unpredictable way.
Given that a cell of metamaterial may be arbitrarily small, a single cell cannot take
much of a load. We concatenate multiple four-bars, resulting in an element that can
take additional load. Similarly, we achieve additional compression by using multiple
rows of such cells. The four-bar’s ability to compress and shear in a controlled way
matters, because it allows us to redirect a force, rather than simply turning it into
deformation. This is the essence that allows us to create mechanisms.

Figure 5: The four-bar. Its bitmap representation is always either red, green, or blue,
as exactly one beam has been taken out, which we represent by setting the corre-
sponding color component to 255.

4.4 Rotation: Hinges based on Four-bars

As illustrated by Figure 6, users can implement a hinge by using the four-bar element.
(a) The naïve way of implementing a hinge is in the form of a single living hinge;
however, with the same reasoning as before, a single living hinge can take only a
small amount of force. (b) We address the issue by filling in larger region with four-
bars. This replicates the hinge, allowing the resulting assembly to take a higher load.

In Figure 7 we used this concept to create a functional pair of pliers. This design
connects each of four levers the pliers are made of to the four individual sides of the
same four-bar array.

103

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

Figure 6: (a) Thin flexures allow for bending, (b) we add multiple flexure points to
enable taking higher loads.

Figure 7: (a) This pair of pliers is based on a metamaterial hinge. (b) When we apply
a force, the array of shearing cells in the center transmits the force, and the pliers
close.

104

5 Editing Metamaterials— in 3D

5 Editing Metamaterials— in 3D

We handle 3D metamaterials as a direct extension of 2D metamaterials. While editing
a 2D metamaterial required manipulating a bitmap image, editing a 3D metamaterial
requires manipulating a volumetric image, i.e. a 3D arrangement of pixels (or voxels).
While there are a few volumetric editors in the graphics community (e.g. [21]), we
would like to preserve the interaction model that served us well in 2D, i.e. use the
powerful image processing tools. We thus instead slice 3D models into a stack of 2D
layers. Figure 8 shows a simple example of a 3D object. Again, we are starting with
a single parameter (stiffness) per cell. Here we use it to create a simplified notion of
a button: essentially just a soft spot.

Figure 8: (b-c) Users create a simple push button by using the gradient tool to paint
a soft (compressible) spot. Again, all image processing tool can be used. The layers
are simply copied to add volume to the button. After exporting through our mesh-
generation system, the user can (a) print the button.

5.1 Importing 3D Objects

As discussed earlier (Figure 2), our pipeline for 3D metamaterial objects imports 3D
models by means of our custom slicer. As illustrated by Figure 9, this slicer breaks
down a 3D model into equally spaced slices, creating a multi-layer bitmap image as
output, i.e. one layer per slice.

The original purpose of layers in image processing tools is to allow users to break
down the elements of an image (e.g. a collage) into individual layers, manipulate
these individually, then collapse into a single layer upon export. In analogy, we
use each layer to represent a different slice of a 3D model instead and at export we
“collapse” the information that is contained in the layer into the 3-dimensional object.
To represent the actual shape of the 3D object, our slicer generates a so-called layer

105

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

Figure 9: Our slicer slices an importaed 3D model along its z-direction and the out-
line of each slice is used as a layer mask.

mask to represent the actual shape of the object. Layer masks are a standard image
processor feature; we use them here to prevent the user from creating visible contents
in the regions located outside the object geometry, thus preserving the user’s visual
thinking. Our system’s import functionality, including the generation of layer masks,
also works for 2D objects.

5.2 Anisotropic 3D Metamaterials Based on Color

In order to create 3D mechanisms we again choose the model with the smallest
number of edges. In 3D, this means six edges. As shown in Figure 10a, we have the
three edges that together form a 2D square cell; on top of that there are three edges
that connect the triangle, resulting in (b) a cube mesh with diagonals. In analogy
to the three-edge cells in 2D, the 6-edge cells in 3D are minimal, i.e. removing any
edge results in a material that is not stiff anymore. Ideally, one would use 6 color
channels to store our 6-edge cells, as depicted in Figure 10a. However, we now have
more edges than the number of color channels the human eye can perceive (Adobe
Photoshop supports multi-channel images; unfortunately, these are restricted to a
single layer though). Thus, to allow users to manipulate the 6 edges, we divide them
into two layers: one for vertical axis and one for horizontal, each featuring three RGB
channels as depicted in Figure 10b.

Figure 10: (a) Minimal 3D square cells are based on 6 edges and would ideally be
stored in 6-channel bitmaps. (b) We store them in two RGB layers.

106

6 Extending to Meshes from Related Work

6 Extending to Meshes from Related Work

So far, we covered examples in which metamaterials were made from square/cubic
or triangular/tetrahedral meshes that were edited using our image processing ap-
proach. However, the system we propose is modular and not limited to these meshes.
By replacing the mesh-generator with one that, for instance, creates parametrized
holes [6] (Figure 11), we can edit a very different mesh using the same image pro-
cessing tools. This allows us to edit a variety of meshes shown in related work.

Figure 11: (a) The “auxetic” mesh [6] is characterized by an alternating pattern of
small and big holes, which in our approach renders as a checkerboard. (b-c) Using
the “Levels” dialog, we adjust the hole diameter to tune the material.

Figure 12 shows a range of exemplary meshes from the related work [11, 20] and
the parameters that are mapped to color and varied by image processing.

Figure 12: Examples of different meshes from the related work that can be generated
with our system

107

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

7 System Implementation

To help readers replicate our approach, we use the following section to provide
details of our software implementation. In the following we describe the internal
processes implemented in our software to generate metamaterials from an image
processing software, in our case Photoshop CC 2014. We offer an extension for Pho-
toshop, which handles: import of .stl files, mesh selection, and export. Our extension
builds on Adobe’s Common Extensibility Platform 5.0 using a HTML5 engine and
Node.js.

7.1 Import and Voxelize

Our system imports .stl files to be edited in Photoshop. With our mesh generator, we
support two types of meshes, namely a cubical, where the voxels are stacked, and a
triangular mesh, where cells undergo a phase shift. If the imported 3D object should
be edited on a triangular mesh, we shear each vertex of the .stl model by

⎡⎢⎢⎢⎢⎢⎢⎣

x′

y′

z′

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

x + y
2 +

z
2

y ⋅ p + z ⋅ r
z ⋅ h

⎤⎥⎥⎥⎥⎥⎥⎦

where r is the inradius and p is the height of a equilateral triangle (r = (1
6

√
3), p =

(1
2

√
3)), and h is the height of a regular tetrahedron (h = (1

3

√
6)). After shearing, we

voxelize the model based on Bresenham’s line algorithm, which we use to find voxels
on each face edge in the .stl file. This way we find the voxels for the outer shape of
the 3D model. We fill the inside of the model with voxels by evaluating the average
of the face normals [22].

7.2 Voxels to Layered Bitmaps

After voxelization, we return the voxel data to our Photoshop extension. We iterate
over the voxels layer-wise along the z-axis and generate black and white bitmaps
consisting of white pixels for each voxel. This bitmap is masking the generated Photo-
shop layers. For each group of voxels found at the same height we generate a layer in
Photoshop. In every pixel, each layer encodes three edges of the cube or tetrahedral
mesh.

7.3 Image processing using Photoshop’s tools

Once the layers are prepared for editing the 3D model, the user can use all stan-
dard Photoshop tools to edit the object’s material including image adjustments and
resampling, as discussed before.

108

7 System Implementation

7.4 Generating the metamaterial’s internal structure

7.4.1 Interpret color and create beams
Our color-interpreter reads every pixel’s color and writes a file containing function
calls for our mesh-generator, which is based on OpenJSCAD [15]. The cell size, grid
type (cubic or triangular), and the described edges per pixel (isotropic or anisotropic
cell) are passed from the Photoshop extension through the color-interpreter to our
mesh-generator. If a triangular mesh is selected, the generated beams are sheared
back to form the original 3D model. We offer a simple library that creates parametric
cells by taking a vector defining the stiffness of beams and the cell’s position on the
grid. We calculate the thickness of the beams to correspond to the user-defined linear
stiffness values by

tdesired =
4
√

i ∗ tmin,

where
i = x ∗ iscaled,

and

x = (tmax

tmin
)

4
100

.

The user-defined stiffness i is given as a ratio of the desired stiffness over the mini-
mum stiffness. We calculate the thickness of the beam t by scaling it by the fourth
root for beams in bending [8] and in buckling [7]. We normalize the input stiffness i
to cover the full range of stiffness the user’s printer can produce, given by tmin and
tmax. We now correct tdesired because as the thickness grows, the length of a beam
is subsumed into the thickness its neighbors. This shortens the apparent length, in-
creasing the stiffness. We correct beams in bending (beams of triangles, diagonal of
the square mesh) by

tcorrected = (
lcellsize

lcurrent
)

3
4
⋅ tdesired,

and beams in buckling (the axes-aligned beams of the square mesh) by

tcorrected = (
lcellsize

lcurrent
)

1
2
⋅ tdesired.

7.4.2 Completing border cells
Since our cell definition contains only edges that are unique to a cell, the cells at the
object’s border are missing some edges (these would normally be specified by its
neighboring cells). Our system automatically completes all border edges by adding a
cell adjacent to the border cell and replicating the edge in the corresponding direction.
Border cells are defined as being at the margin of the image, or as having adjacent
cells that are empty (transparent or white). Note that only cells in the right and top
side must be evaluated.

7.4.3 Generate a printable file
Finally, we generate a .stl file from the .jscad file using OpenJSCAD’s built-in render
engine (based on CGAL) which we invoke directly from our Photoshop extension.

109

Alexandra Ion: Editing Metamaterials, Creating Mechanisms

8 Conclusions and Future Work

We made two main contributions. First, we presented a simple system that converts
metamaterials to (stacks of) images and back. This allows users to edit metama-
terials using traditional raster graphics editors, such as Adobe Photoshop. This is
allows users to engineer structures on per-cell level, giving them the fast and precise
control required to develop new structures. Second, we used our own approach to
create a new class of metamaterials: mechanisms, i.e., devices that transform forces
and movement. We then use our raster graphics approach to engineer a series of
mechanisms each of which combines asymmetric cells in a different way, ranging
from four-bars and hinges to door latches and pliers. For future work, we plan to
investigate metamaterials that create mechanisms that possess dynamic properties.

8.1 Publications

• Alexandra Ion, Jack Lindsay, Louis Kirsch, Moritz Hilscher, David Stangl,
Arthur Silber, Hsiang-Ting Chen, Pedro Lopes, Patrick Baudisch. Editing Meta-
materials, Creating Mechanisms. Submitted to CHI’16. Under review.

• Pedro Lopes, Alexandra Ion, Patrick Baudisch. 2015. Impacto: Simulating Phys-
ical Impact by Combining Tactile Stimulation with Electrical Muscle Stimula-
tion. In Proceedings of UIST’15, Charlotte, USA.

References

[1] Autodesk Within. url: http://www.autodesk.com/products/within/overview (last
accessed 2015-09-20).

[2] M. Bächer, E. Whiting, B. Bickel, and O. Sorkine-Hornung. “Spin-It: Optimiz-
ing Moment of Inertia for Spinnable Objects”. In: ACM Transactions on Graphics
33.4 (July 2014), 96:1–96:10. doi: 10.1145/2601097.2601157.

[3] P. Baudisch. “Don’t click, paint! Using toggle maps to manipulate sets of toggle
switches”. In: Proceedings of the 11th annual ACM symposium on User interface
software and technology. 1998, pages 65–66. doi: 10.1145/288392.288574.

[4] B. Bickel, M. Bächer, M. Otaduy, H. R. Lee, H. Pfister, M. Gross, and W. Matusik.
“Design and fabrication of materials with desired deformation behavior”. In:
ACM Transactions on Graphics 29.4 (2010), page 63. doi: 10.1145/1833351.1778800.

[5] J. C. Á. Elipe and A. D. Lantada. “Comparative study of auxetic geometries
by means of computer-aided design and engineering”. In: Smart Materials and
Structures 21.10 (2012), page 105004. doi: 10.1088/0964-1726/21/10/105004.

[6] B. Florijn, C. Coulais, and M. van Hecke. “Programmable Mechanical Meta-
materials”. In: Physical review letters 113.17 (2014). doi: 10.1103/PhysRevLett.113.
175503. arXiv: 1407.4273.

110

http://www.autodesk.com/products/within/overview
http://dx.doi.org/10.1145/2601097.2601157
http://dx.doi.org/10.1145/288392.288574
http://dx.doi.org/10.1145/1833351.1778800
http://dx.doi.org/10.1088/0964-1726/21/10/105004
http://dx.doi.org/10.1103/PhysRevLett.113.175503
http://dx.doi.org/10.1103/PhysRevLett.113.175503
http://arxiv.org/abs/1407.4273

References

[7] M. F. Gibson, Lorna J and Ashby. Cellular solids: structure and properties. Cam-
bridge university press, 1997.

[8] R. C. Hibbeler. Engineering Mechanics. Prentice Hall, 2001.
[9] L. L. Howell, S. P. Magleby, and B. M. Olsen. Handbook of Compliant Mechanisms.

John Wiley and Sons, 2013.
[10] L. LLu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu, D. Cohen-Or,

and B. Chen. “Build-to-Last : Strength to Weight 3D Printed Objects”. In: ACM
Transactions on Graphics 33.4 (2014), pages 1–10. doi: 10.1145/2601097.2601168.

[11] M. Mir, M. N. Ali, J. Sami, and U. Ansari. “Review of Mechanics and Applica-
tions of Auxetic Structures”. In: Advances in Materials Science and Engineering
(2014), pages 1–17. doi: 10.1155/2014/753496.

[12] Monolith. url: http://www.monolith.zone/#introduction (last accessed 2015-09-20).
[13] T. Mullin, S. Deschanel, K. Bertoldi, and M. Boyce. “Pattern transformation

triggered by deformation”. In: Physical Review Letters 99.8 (2007), pages 1–4.
doi: 10.1103/PhysRevLett.99.084301.

[14] netfabb: Selective Space Structures. url: http://www.netfabb.com/structure.php (last
accessed 2015-09-20).

[15] OpenJSCAD. url: http://www.openjscad.org (last accessed 2015-09-20).
[16] J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, and D. Zorin. “Elastic

Textures for Additive Fabrication”. In: ACM Transactions on Graphics 34.4 (2015),
pages 1–12. doi: 10.1145/2766937.

[17] R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung. “Make It Stand:
Balancing Shapes for 3D Fabrication”. In: ACM Transactions on Graphics 32.4
(2013), pages 1–10. doi: 10.1145/2461912.2461957.

[18] C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross. “Mi-
crostructures to Control Elasticity in 3D Printing”. In: ACM Transactions on
Graphics. 2015, pages 1–13. doi: 10.1145/2766926.

[19] J. Shim, C. Perdigou, E. R. Chen, K. Bertoldi, and P. M. Reis. “Buckling-induced
encapsulation of structured elastic shells under pressure”. In: Proceedings of
the National Academy of Sciences 109.16 (2012), pages 5978–5983. doi: 10.1073/
pnas.1115674109.

[20] J. Shim, S. Shan, A. Košmrlj, S. H. Kang, E. R. Chen, J. C. Weaver, and K. Bertoldi.
“Harnessing instabilities for design of soft reconfigurable auxetic/chiral mate-
rials”. In: Soft Matter 9.34 (2013), pages 8198–8202. doi: 10.1039/c3sm51148k.

[21] K. Takayama, O. Sorkine, A. Nealen, and T. Igarashi. “Volumetric modeling
with diffusion surfaces”. In: ACM Transactions on Graphics 29.6 (2010), page 1.
doi: 10.1145/1882261.1866202.

[22] H. Widjaya. “Accurate incremental voxelization in common sampling lattices”.
PhD thesis. Simon Frasier University, 2006.

111

http://dx.doi.org/10.1145/2601097.2601168
http://dx.doi.org/10.1155/2014/753496
http://www.monolith.zone/#introduction
http://dx.doi.org/10.1103/PhysRevLett.99.084301
http://www.netfabb.com/structure.php
http://www.openjscad.org
http://dx.doi.org/10.1145/2766937
http://dx.doi.org/10.1145/2461912.2461957
http://dx.doi.org/10.1145/2766926
http://dx.doi.org/10.1073/pnas.1115674109
http://dx.doi.org/10.1073/pnas.1115674109
http://dx.doi.org/10.1039/c3sm51148k
http://dx.doi.org/10.1145/1882261.1866202

Profiling the Web of Data

Anja Jentzsch

Information Systems Group
Hasso-Plattner-Institut

anja.jentzsch@hpi.uni-potsdam.de

The Web of Data contains a large number of openly-available datasets covering a
wide variety of topics. In order to benefit from this massive amount of open data
such external datasets must be analyzed and understood already at the basic level
of data types, constraints, value patterns, etc.

For Linked Datasets such meta information is currently very limited or not avail-
able at all. Data profiling techniques are needed to compute respective statistics
and meta information. However, current state of the art approaches can either not
be applied to Linked Data, or exhibit considerable performance problems. This
paper presents my doctoral research which tackles these problems.

1 Problem Statement

Over the past years, an increasingly large number of data sources has been published
as part of the Web of Data. This trend, together with the inherent heterogeneity of
Linked Datasets and their schemata, makes it increasingly time-consuming to find
and understand datasets that are relevant for integration. The true value of Linked
Data becomes apparent when datasets are analyzed and understood already at the
basic level of data types, constraints, value patterns etc. For Linked Datasets and
other Web data meta information is currently quite limited or not available at all. Such
data profiling is especially challenging for RDF data, the underlying data model on
the Web of Data. In comparison to other data models, e.g., the relational model, RDF
often lacks explicit schema information that precisely defines the types of entities
and their attributes.

Existing work on data profiling often can not be applied to Linked Datasets due
to their different nature. To overcome this gap we introduce a comprehensive list of
data profiling tasks which compute the most important statistical properties along
different groupings.

Finding information about Linked Datasets is an open issue on the constantly
growing Web of Data. While most of the Linked Datasets are listed in registries as
for instance at the Data Hub (datahub.io), these registries usually are manually
curated. Existing means and standards for describing datasets are often limited in
their depth of information. We present approaches and challenges for cataloging
Linked Datasets and retrieving basic metadata.

Data profiling often exhibits considerable performance problems. We introduce
three common techniques for improving performance, and present an approach that
relies on parallelization and adapts multi-query optimization for relational data to
optimize execution plans of Linked Data profiling tasks.

113

mailto:anja.jentzsch@hpi.uni-potsdam.de

Anja Jentzsch: Profiling the Web of Data

As Linked Datasets are usually sparsely populated, key candidates often consist
of either multiple low-density properties or cannot be found at all. We present two
approaches for key discovery, a traditional unique column combination adaption
and an approach that tackles the sparsity on the Web of Data by combining the
uniqueness and density of properties. Furthermore, since ontologies are topically
clustered by their underlying ontologies, we analyze how to retrieve key candidates
per topic cluster.

Graph analysis can be used to gain more insight into the data, induce schemas,
or build indices. We present an approach for frequent graph pattern mining, and
a set of common and re-occuring graph patterns that can be considered the core
of most Linked Datasets. Finally, we analyze patterns that are dominant for certain
class-combinations across multiple datasets.

All presented approaches are evaluated thoroughly on real-world datasets, and
are implemented in the interactive Linked Data profiling suite ProLod++.

2 Related Work

While many general tools and algorithms already exist for data profiling, most of
them cannot be used for graph datasets, because they assume a relational data struc-
ture, a well-defined schema, or simply cannot deal with very large datasets. Nonethe-
less, some Linked Data profiling tools already exist. Most of them focus on solving
specific use cases instead of data profiling in general.

One relevant use case is schema induction, because the lack of a fixed and well-
defined schema is a common problem with Linked Datasets. One example for this
field of research is the ExpLOD tool [6]. ExpLOD creates summaries for RDF graphs
based on class and property usage as well as statistics on the interlinking between
datasets based on owl:sameAs links.

Li describes a tool that can induce the actual schema of an RDF dataset [8]. It
gathers schema-relevant statistics like cardinalities for class and property usage, and
presents the induced schema in a UML-based visualization. Its implementation is
based on the execution of SPARQL queries against a local database. Like ExpLOD, the
approach is not parallelized. Both solutions still take approximately 10h to process a
10 million triples dataset with 13 classes and 90 properties. These results illustrate
that performance is a common problem with large Linked Datasets.

An example for the query optimization use-case is presented in [7]. The authors
present RDFStats, which uses Jena’s SPARQL processor to collect statistics on Linked
Datasets. These statistics include histograms for subjects (URIs, blank nodes) and
histograms for properties and associated ranges.

Others have worked more generally on generating statistics that describe datasets
on the Web of Data and thereby help understanding them. LODStats computes
statistical information for datasets from the Data Hub [2]. It calculates 32 simple
statistical criteria, e.g. cardinalities for different schema elements and types of literal
values (e.g. languages, value data types).

114

owl:sameAs

3 Large Scale Data Profiling

In [3] the authors automatically create VoID descriptions for large datasets us-
ing MapReduce. They manage to profile the BTC2010 dataset in about an hour on
Amazon’s EC2 cloud, showing that parallelization can be an effective approach to
improve runtime when profiling large amounts of data.

3 Large Scale Data Profiling

The process of running data profiling tasks for large Linked Datasets can take hours
to days, depending on the complexity of task and the size of the respective datasets.
Data set characteristics highly influence the profiling task runtime. As an example,
our Property Cooccurrence by Resource script runs 16 hours for only 1 million triples of
the Web Data Commons RDFa dataset in contrast to 5 min on Freebase and 9 min
on DBpedia.

We have compiled a list of 56 data profiling tasks implemented in Apache Pig
to be executed on Hadoop. At this point Apache Pig only applies some basic logi-
cal optimization rules, like removing unused statements [5]. We present Lodop, a
framework for executing, optimizing, and benchmarking such a set of profiling tasks,
highlight reasons for poor performance when executing the scripts sequentially, and
develop a number of optimization techniques. In particular, we developed and eval-
uated three multi-script optimization rules for combining logical operators in the
execution plans of profiling scripts.

3.1 Multi-query optimization for Apache Pig

A prevalent goal for relational database optimization is to reduce the amount of
required full table scans, which for file-based database systems effectively means
reducing the amount of disk operations. Sellis introduces Multi-Query Optimization
for relational databases as the process of optimizing a set of queries which may share
common data [9]. The goal is to execute these queries together and reduce the overall
effort by executing similar parts only once. The optimization process consists of two
parts: identifying shared parts in multiple queries and finding a globally optimal
execution plan that avoids superfluous computation.

Apache Pig1 is a platform for performing large-scale data transformations on top
of Hadoop clusters. It provides a high-level language (called Pig Latin) for specifying
data transformations, e.g. selections, projections, joins, aggregations and sorting
on datasets. Pig Latin scripts are compiled into a series of MapReduce tasks and
executed on a cluster.

The main goals for our multi-query optimization rules for Pig are the following
two: First, we attempt to minimize the dataflow between operators. In our evaluation
we identified the dataflow between MapReduce jobs as a reasonable indicator for
the performance of Pig scripts, as it is closely related to the amount of required

1http://pig.apache.org/ (last accessed 2015-10-01)

115

http://pig.apache.org/

Anja Jentzsch: Profiling the Web of Data

HDFS operations. Second, we try to avoid performing identical or similar operations
multiple times. The idea behind this is to free up cluster resources for other tasks.
All optimization rules presented in this section, are based on optimizing the logical
plans of Pig scripts.

Three optimization rules have been implemented: Rule 1 merges identical oper-
ators in logical plans of different scripts, Rule 2 combines FILTER operators, and
Rule 3 combines aggregations, i.e. FOREACH operators. Rule 1 is a prerequisite for the
other two rules, which work on pairs of siblings operators, i.e. operators that have
the same parent operator in a respective logical plan. For all optimization rules, it
was important to make sure that their usage does not affect the intended output of
scripts.

Rule 1 – Merge identical operators: In order to better utilize cluster resources, it
makes sense to submit jobs to Hadoop in parallel. Lodop supports this by merging
logical plans of different scripts into a single large plan. In our experiments, execut-
ing scripts in parallel as part of one large plan cuts execution time down to 25 % to
30 % of the time required to execute scripts sequentially. Once all plans have been
merged together, it’s possible to also merge identical operators. For 52 of our Pig
scripts, this reduces the number of operators from 365 to 267.

Rule 2 – Combine filters: FILTER operators reduce the amount of data that needs to
be processed in later steps of the execution pipeline. This optimization rule aims to
avoid iterating over large sets multiple times. From our selection of profiling scripts,
25 scripts perform filtering operations on the full initial dataset.

First, we identify all suitable sibling filters, i.e. all FILTER operators that have
the same parent operator. Second, a combined filter is created and we attach it to
the same parent operator. This combined filter contains all boolean expressions of
existing filters concatenated via OR. The expression of the combined filter is cleaned
up by transforming it into disjunctive normal form. Finally, we re-arrange all previous
filters and move them after the combined filter.

Rule 3 – Combine aggregations: FOREACH operators can be used for projections and
aggregations. Some instances perform identical aggregations, but project different
properties. This can happen, e.g. if the aggregation itself is only a preprocessing
step to another aggregation. These operators are not exactly identical, so the rule for
merging identical operators will not be able to merge them. However, these cases
can be optimized by separating the aggregation from the projection, i.e. performing
the aggregation only once with all projected columns, and then projecting the exact
columns afterwards. For our set of scripts, this rule can be applied in seven different
cases and combines varying numbers of FOREACH operators from the minimum of
two to a maximum of eleven siblings operators.

While our goal is to optimize the performance of profiling tasks, the optimization
rules can be applied on any Pig script.

116

4 Uniqueness, Density, and Keyness of Data

Figure 1: Execution time for all optimizations (52 scripts)

3.2 Evaluation

The number of MapReduce jobs and the amount of dataflow in the operator pipeline
are good indicators for the performance of Apache Pig scripts. Our evaluation shows
that improving only on these factors does not necessarily improve overall perfor-
mance. Merging identical operators reduces both the total number of operators and
the number of MapReduce jobs. It comes at the cost of less parallelism. Combining
filter operators was shown to reduce the execution time of map/reduce functions
(i.e. CPU time). Combining aggregations can reduce the amount of HDFS I/O, and
improves overall execution time for certain combinations of scripts and datasets. Fig-
ure 1 shows execution times when optimizations are applied for all scripts. Overall
in our experiments, executing scripts in parallel and applying all optimization rules
cuts execution time down to 25 % to 30 % of the time required to execute scripts
sequentially.

4 Uniqueness, Density, and Keyness of Data

As Linked Datasets are usually sparsely populated, minimal unique property com-
binations (key candidates) often consist of either multiple low-density properties or
cannot be found at all. Novel property attributes, such as the uniqueness, density,
and keyness of a property are needed to discover the set of properties that likely
identifies an entity, the key candidates. Furthermore, since ontologies are topically
clustered by their underlying ontologies, these attributes can be determined per clus-
ter and give some detailed insights into the properties that serve as key candidates
per topic.

A Linked Dataset’s class hierarchy is the taxonomy defined by its ontology and
therein the rdfs:subClassOf relations between the classes. A cluster Cc for a class c

117

Anja Jentzsch: Profiling the Web of Data

consists of all the entities e that are of rdf:type c, which includes all subclasses of c.

Cc = {e∣e
rd f ∶type
ÐÐÐÐ→ c}

Clusters can contain entities e that are not in any of its subclusters d. We cluster these
entities separately and call the resulting clusters unspecialized clusters, denoted as C′c.

C′c = Cc ∖ {e ∣ e
rd f ∶type
ÐÐÐÐ→ d, d

rd f s∶subClassO f
ÐÐÐÐÐÐÐÐ→ c}

We omit the c subscript where it is irrelevant in the context. As an additional compli-
cation, properties on the Web of Data can have multiple property values. E.g., in the
DBpedia dataset we find the following four values for the property dbpedia:birthPlace
for the entity of Albert Einstein:
dbpedia:Albert_Einstein dbpedia:birthPlace dbpedia:Ulm,

dbpedia:Kingdom_of_Wuerttemberg,
dbpedia:German_Empire
dbpedia:Baden-Wuerttemberg .

We denote the set of property values of an entity e and property p as V(e, p). To
count the number of entities in a cluster C that have at least one value for p, we define
V(C, p) = {e ∣ ∣V(e, p)∣ > 0, e ∈ C}. Property values of a property p and two entities
e1 and e2 are equal if V(e1, p) = V(e2, p), i.e., if the two sets are identical. With this
definition we further define the set of unique value sets as Vuq(C, p) = {V(e, p) ∣ e ∈ C}.

We are now ready to define the three attributes, uniqueness, density, and keyness,
of a property. The uniqueness uq of a property p for a cluster C is the number of unique
value sets Vuq(C, p) per number of total value sets V(C, p) for the given property.

Uniqueness: uq(C, p) =
∣Vuq(C, p)∣
∣V(C, p)∣

(1)

The density d of a property p for a cluster C is the ratio of entities in C that have p to
the overall number of entities in C.

Density: d(C, p) =
∣V(C, p)∣
∣C∣

(2)

We call a property full key candidate if its density and uniqueness are both 1. For
cases where they are not both 1 we define its keyness as a useful attribute. The keyness
k of a property p for a cluster C is the harmonic mean of its uniqueness and density.
The harmonic mean emphasizes that both parameters must be high to achieve an
overall high keyness:

Keyness: k(C, p) =
2 ⋅ uq(C, p) ⋅ d(C, p)
uq(C, p) + d(C, p)

(3)

We call a property key candidate if its keyness is above some threshold.
We investigate the three attributes of an RDF property, uniqueness, density, and

keyness, for the given cluster types C, and C′. Determining uniqueness, density, and

118

5 Graph Structures in Linked Datasets

keyness for a property p in a cluster Cc requires analyzing all property value sets for
all entities in the given cluster. We observe all kinds of specificities of properties for
clusters and their subclusters that allow for a fine-grained, cluster-based retrieval of
key candidates.

Our evaluation shows that the property keyness can help discovering key candi-
dates for Linked Datasets. It also highlights the advantages of analyzing the class
hierarchy in order to observe property behaviour for classes along it and make better
choices when identifying key candidates for specific classes.

5 Graph Structures in Linked Datasets

Graph patterns are of interest to many communities, e.g. for protein structures,
network traffic, crime detection, modeling object-oriented data, and querying Rdf
data. We leverage the graph pattern mining approaches gSpan [10] and GRAMI [4],
to analyze Linked Datasets. To this end, we have significantly extended our prototype
ProLod++, which features many basic as well as specific profiling tasks for a given
Rdf dataset, such as schema discovery for user-generated attributes, association rule
discovery to uncover synonymous predicates, and key discovery along ontology
hierarchies [1]. ProLod++ now is a Play application and allows easy extension by
further techniques. It is available at http://prolod.org. We implemented and added the
GraphLod library, which provides the following new functionality:

• Basic graph statistics, such as the number of connected components and
strongly connected components, their corresponding diameter, chromatic num-
ber, and node degree distribution.

• Connected components are visualized, and grouped if isomorphic.

• Three graph pattern mining algorithms.

• Visualization of mined patterns with class coloring.

• Interactive graph structure exploration in a faceted fashion.

ProLod++ allows exploring the graphical structures of Linked Datasets by visu-
alizing the connected components and the graph patterns mined from them. Given
the underlying graph for a Linked Dataset, containing all entities as nodes and object
properties between them as links, we detect graph patterns for its directed as well
as undirected version. The latter allows for pattern mining on a more general level.
Bigger graph components (> 1000 nodes) are mined for subgraph patterns using
three different approaches: gSpan, GRAMI, and a new approach that mines for pre-
defined patterns. Our goal is to define a set of graph patterns that can be considered
the core of most Linked Datasets. We identify graph patterns such as paths, cycles,
stars, siamese stars, antennas, caterpillars, and lobsters. Figure 2 is a screenshot of
ProLod++ showing all occurrences of a selected pattern and their class distribution
along with some statistical information.

119

http://prolod.org

Anja Jentzsch: Profiling the Web of Data

Figure 2: Occurrences of a pattern in Diseasome visualized by ProLod++

ProLod++ allows faceted browsing through the graph patterns. Patterns are
grouped when isomorphic, first based on their underlying structure and then based
on the class membership (color). This allows for finding not only common, re-
occurring patterns but also patterns that are dominant for certain class-combinations.
E.g., astronomers in DBpedia are often to be found in star patterns, surrounded by
their discovered astronomical objects.

Based on the graph features provided by ProLod++ and its underlying GraphLod
library, an overall model for Linked Datasets can be given: We observe that most
of the Linked Datasets consist of a number of small satellite graphs and a giant
component that contains more than 80 % of the nodes and thus resemble scale-free
networks as they occur in social networks.

When jointly profiling multiple datasets, ProLod++ highlights the connectivity of
connected components across them based on inter-dataset links. This, for instance,
identifies the potential of dataset integration.

6 Reflections and Conclusion

The main difference in my approach with existing work on Linked Data profiling is
to address the shortcomings mentioned in section 2, in particular gathering compre-
hensive metadata in an efficient way. Within my research I am building on existing
profiling techniques for relational data and adapting them according to the different
nature of Linked Datasets.

This paper has presented the outline and preliminary results of my doctoral re-
search, in which I am focussing on profiling the Web of Data.

120

References

We have specified and implemented a comprehensive set of Linked Data profiling
tasks and illustrated the Web of Data’s diversity with the results for four different
Linked Datasets. Furthermore we introduced three common techniques for improv-
ing performance of Linked Data profiling and implemented three multi-query opti-
mization rules, reducing profiling task runtimes by 70 %.

We have introduced the concept of keyness (and therein uniqueness and density)
of a property to address the sparsity on the Web of Data and thus create the possibil-
ity to find key candidates where traditional approaches fail. Our approach has been
implemented in ProLod++ and provides users with the uniqueness, density, and
keyness for all properties. Having these profiling results at hand helps users in find-
ing key candidates and analyzing the relevance of properties along class hierarchies
in Linked Datasets.

We presented the GraphLod extension for ProLod++, which offers Rdf graph anal-
ysis features. It allows for interactively exploring the graphical structures of Linked
Datasets by visualizing the connected components and the graph patterns mined
from them. Furthermore it offers basic graph statistics as node degree distribution,
pattern diameter, and more. Furthermore we defined a set of graph patterns that
can be considered the core of most Linked Datasets.

References

[1] Z. Abedjan, T. Grütze, A. Jentzsch, and F. Naumann. “Mining and Profiling
RDF Data with ProLOD++”. In: Proceedings of the International Conference on
Data Engineering (ICDE). Demo. 2014.

[2] S. Auer, J. Demter, M. Martin, and J. Lehmann. “LODStats – an extensible
framework for high-performance dataset analytics”. In: Proceedings of the Int.
Conf. on Knowledge Engineering and Knowledge Management (EKAW). 2012.

[3] C. Böhm, J. Lorey, and F. Naumann. “Creating VoiD Descriptions for Web-scale
Data”. In: Journal of Web Semantics 9.3 (2011), pages 339–345.

[4] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. “GRAMI: Frequent
Subgraph and Pattern Mining in a Single Large Graph”. In: PVLDB 7.7 (2014),
pages 517–528.

[5] A. Gates, J. Dai, and T. Nair. “Apache Pig’s Optimizer”. In: IEEE Data Engineer-
ing Bulletin 35.1 (2013), pages 34–45.

[6] S. Khatchadourian and M. P. Consens. “ExpLOD: Summary-Based Exploration
of Interlinking and RDF Usage in the Linked Open Data Cloud”. In: Proceedings
of the Extended Semantic Web Conference (ESWC). Heraklion, Greece, 2010.

[7] A. Langegger and W. Wöß. “RDFStats – An Extensible RDF Statistics Generator
and Library”. In: Proceedings of the International Workshop on Database and Expert
Systems Applications (DEXA). Los Alamitos, CA, USA, 2009, pages 79–83.

[8] H. Li. “Data Profiling for Semantic Web Data”. In: Proceedings of the International
Conference on Web Information Systems and Mining (WISM). 2012.

121

Anja Jentzsch: Profiling the Web of Data

[9] T. K. Sellis. “Multiple-query optimization”. In: ACM Transactions on Database
Systems (TODS) 13.1 (1988), pages 23–52.

[10] X. Yan and J. Han. “gSpan: Graph-Based Substructure Pattern Mining”. In: Pro-
ceedings of the International Conference on Data Mining (ICDM). 2002, pages 721–
724.

122

BottlePrint: Scaling Personal Fabrication by Embedding
Ready-Made Objects

Robert Kovacs

Human Computer Interaction Lab
Hasso-Plattner-Institut
robert.kovacs@hpi.de

BottlePrint is a fabrication system that allows users to produce large-scale objects
on desktop-scale fabrication ma-chines. The key idea behind bottlePrint is to com-
plement 3D printing with ready-made objects, in our case empty plastic bottles.
BottlePrint considers 3D models as wireframe models; it then fabricates only the
hubs of this wireframe model, while it implements all edges as bottles. The re-
sulting large-scale objects are sturdy enough to carry human users. We present a
furniture set with table and chairs, a truss strong enough to bridge a 3m gap while
a human walks on it, and a functional boat sealed with tarp that seats two. To ex-
tend our approach to even larger ob-jects we fabricate hubs on a laser-cutter, which
speeds up fabrication by another factor of 20. This allowed us to fabricate a 12 m2
tent. Benefits of our approach include (1) Scale: bottlePrint allows 3D printing of
large-scale objects on desktop-scale devices. (2) Speed: as the bulk of the objects
volume is ready-made. (3) Environ¬mentally conscious: as materials can be up-
cycled. (4) Ubiquitous: since plastic bottles can be acquired anywhere worldwide,
users setting up large installations elsewhere can travel lightly, carrying only the
hubs.

1 Introduction

Personal fabrication tools, such as 3D printers have achieved a desktop form factor.
As a result, they have spread to the maker community, as well as increasingly also to
consumers [10]. In contrast, the fabrication of large objects has remained a privilege
of industry, which has access to specialized equipment, such as concrete printers to
make houses [3], as well as fabrication robots [4]. The owners of the wide-spread
desktop devices, in contrast, cannot participate in this step in evolution, as the un-
derlying technology does not scale. Even if we break down large models into parts
that fit into a desktop-scale device [5] fabricating a large model consumes time and
material proportional to the size of the model, quickly rendering 3D printing and
related techniques intractable for larger-than-desktop-scale models.

In this paper, we address this issue. We allow users of desk-top-size fabrication
machines to fabricate objects as large as several meters by embedding ready-made
objects into the fabricated objects.

123

mailto:robert.kovacs@hpi.de

R. Kovacs: BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects

Figure 1: BottlePrint allows users to create large-scale objects using desktop-scale
3D printers by integrating ready-made objects, here up-cycled bottles, so that only
the hubs are 3D printed.

2 BottlePrint

The key idea behind bottlePrint is to complement fabricated parts with ready-made
objects, in our case empty plastic bottles, such as the ones used to sell water or soda.

Figure 1 shows a furniture set and a tent, all of which were created using bot-
tlePrint. Figure 2 shows the resulting objects. The furniture set, comprised of a table,
two chairs, and a hat stand was fabricated using desktop 3D printers. The tent was
created from a mix of 3D printed and laser cut parts. As illustrated by these exam-
ples, bottlePrint considers 3D objects as wireframe models. It then fabricates only the
hubs of these wireframe models, and implements all edges as bottles. The hubs, how-
ever, account for only a small fraction of the original volume of our structure; they
are small enough to allow for fabrication using desktop ma-chines in a manageable
amount of time.

2.1 Workflow

BottlePrint allows users to create structures either by modeling from scratch or by
converting existing 3D models.

Step 0 Conversion (optional). One way to create bottlePrint structures is to convert
an existing 3D model into a bottle mesh using our custom bottlePrint converter
program. As illustrated by Figure 3, this results in a node link graph. The image
shows a volume approximation, i.e., the entire volume of the model is filled with
a honeycomb bottle structure, allowing it to bear a substantial load. Alternatively,

124

2 BottlePrint

Figure 2: The objects from Figure 1 fabricated

users may choose shape approximation, in which case only the outer shape of the
model is represented as a bottle mesh.

Step 1 Editing. Users may refine the result of the conversion in the bottlePrint
editor (Figure 4); alternatively, they may start a new object in the editor from scratch.
We have implemented the bottlePrint editor as an extension to the 3D editing soft-
ware Trimble SketchUp1 It offers all the functionalities of the original 3D editor, plus
a range of bottle-specific functions, such as functions for placing predefined bottle
primitives or automatic snapping geometry to bottle-compatible lengths.

Step 2: Hub generation. In order to fabricate, we first run the output of the bot-
tlePrint editor (or converter) through bottlePrint’s hub generator. This tool automat-
ically generates the 3D models of all hubs required to fabricate the structure. The
hub generator generates models in STL format for 3D printing and in SVG format
for laser cutting. Figure 5 shows our three different connector types: (a) threaded,
(b) snap-fit, and (c) laser-cut design.

Step 3 Fabrication. The output of the hub generator is sent to a 3D printer and/or
laser cutter.

Step 4 Manual assembly. Finally, users assemble their object by matching up
unique IDs embossed on each hub with the IDs they see in bottlePrint editor (Fig-
ure 6). These IDs are generated by the bottlePrint editor, which hands them down to
the hub generator, which embosses them into the physical 3D print.

Figure 7 shows our assembled chair design from Figure 1. It consists of 8 hubs
and 18 bottle pairs. To remove the load from the bottles on the ground, we place
“pods” on the bottom hubs. The sitting plate is a piece of particle board, which is
also supported by pods at the corners.

1http://www.sketchup.com (last accessed 2015-10-01)

125

http://www.sketchup.com

R. Kovacs: BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects

Figure 3: (a) Our custom bottlePrint converter software automatically turns this trun-
cated cone, into (b) the table from Figure 1. Here the converter was configured to
volumetric tessellation.

Figure 4: User refining the curvature of the tent from Figure 1 in the bottlePrint
editor.

Figure 5: (a) Threaded bottle connector, (b) snap-fit connector, and (c) Laser cut
connector

126

2 BottlePrint

Figure 6: (a) Hub and edge IDs shown in the editor. (b) Embossed IDs help users
assemble the structure.

Figure 7: Assembled chair with backrest

127

R. Kovacs: BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects

3 Contribution, Benefits, and Limitations

Our main contribution is that we enable large-scale fabrication on desktop-size fab-
rication devices. The key idea is to include ready-made objects, in particular empty
plastic bottles as the main building element. Our software system bottlePrint allows
users to create bottle-based 3D objects by converting an existing 3D model or by
modeling from scratch. We have created objects consisting of 30 to 500 bottles. We
have validated their structural integrity through actual use (Figure 6). In addition to
enabling users to fabricate large-scale objects on conventional desktop-scale devices,
our approach offers the following benefits: (1) Fast: the bulk of the objects volume is
ready-made. (2) Light: can be moved around even in assembled form. (3) Modular:
modify, extend, combine, or fix objects with only local changes. (4) Environmentally
conscious: most of the materials are up-cycled. (5) Ubiquitous: plastic bottles can
be acquired anywhere worldwide, so users setting up large installations elsewhere
can travel lightly, carrying just the hubs. For example, all the 3D printed hubs for the
boat from Figure 6 fit into a backpack and weight less than 3 kg. Users may obtain
everything else on site. The limitations of our technique include: (1) the creation of
objects with solid surfaces requires additional material, such as the tarp that forms
the boat’s hull in Figure 6. (2) Our approach cannot reproduce details smaller than
a bottle. (3) Only some of our techniques keep the bottles intact.

4 Implementation

To help readers replicate out results, we now describe the implementation of the
three main components of the bottlePrint work flow: bottlePrint editor, 3D model
converter and the hub generator. BottlePrint Editor

4.1 BottlePrint editor

We have implemented bottlePrint as a plug-in to the 3D editor SketchUp. The plug-
in is written in Ruby and JavaScript. It allows users to create bottle models and to
trigger the bottlePrint Hub Generator.

4.2 BottlePrint Converter

The Volumetric conversion procedure is in general similar to traditional voxeliza-
tion methods. However, instead of intersecting the given 3D model against a regular
cubical grid, bottlePrint intersects the model against a tetrahedral-octahedral honey-
comb. All edges in this honeycomb are of equal length, so the result can always be
fabricated using bottlePrint.

Our surface conversion procedure reproduces the object’s facades as bottle, as
illustrated by Figure 8. The main challenge here is to ensure that every edge of the

128

4 Implementation

3D model either fits the length of one of the bottle primitives or is slightly longer, in
which case the converter will lengthen the edge by extending the respective hub.

Figure 8: Stanford bunny converted using the bottlePrint converter in surface con-
version mode

The conversion consists of two stages: mesh simplification and surface remeshing.
In the mesh simplification stage, we use the quartic-based edge collapse function
in MeshLab until it reaches the desired number of edges. In cases where we would
like to preserve certain features, e.g., the ears of the bunny in Figure 8, we manually
simplify the 3D model using the simplification brush in the Autodesk MeshMixer2.
In the surface remeshing stage, we optimize the vertex position of the model so that
all edges are of the valid length of bottle primitives and the distortion of the final
mesh is minimized. The energy function has two terms, where the first term is the
minimum distance between an edge and the bottle primitives and the second term
is the distance between the vertex position and the original simplified mesh.

More specifically, the energy function is of the form:

E(V) =
m
∑
i=1

min(∣Ei − B∣) + α
n
∑
i=1

Dist(vi, S)

where V are the vertices of the simplified 3D model, n and m are the number of
vertices and edges respectively, Ei is the length of the edge i, B is the set of valid
length for all bottle primitives, Dist(vi, S) is the distance between vertex i and the
surface S of the given 3D model. We calculate the optimized vertex positions using
Powell’s COBYLA optimization routine [8]. To reduce the computational load, our
optimization does not check for self-intersections, which must be removed manually
using the bottlePrint editor. The converted models are exported to the bottlePrint
editor in the form of a JSON file.

2http://www.meshmixer.com (last accessed 2015-10-01)

129

http://www.meshmixer.com

R. Kovacs: BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects

4.3 BottlePrint Hub Generator

BottlePrint Hub Generator generates the 3D models of the hubs using a mathematical
solid modeling tool called OpenSCAD3. OpenSCAD is an open source 3D-compiler
that creates and renders solid 3D CAD objects from parametric functions using a
textual description language. The Hub Generator receives its input from the bot-
tlePrint editor one hub at a time in an OpenSCAD data file format. (1) For 3D printed
hubs, this data file describes each connector using a vector annotated with connector
type, elongation, and ID. (2) For Laser cut hubs, the plug-in projects all connections
onto a plane before exporting all connectors as a 2D geometry. The bottlePrint Hub
Generator generates hubs by arranging the individual connector primitives around
a sphere. The connector geometry is loaded from separate modular files, allowing
users to include their own ready-made objects by importing the respective geometry.

4.4 3D Printing

We fabricate hubs on a MakerBot 2X desktop FDM 3D printer. Each hub consumes
about 50 g to 120 gof filament. Using a 0.5 mmnozzle, hubs print in about 1.5 h to
2.5 h. We mostly print ABS, but include recycled PET and ABS materials from Refil4
as a means of environmentally-friendly fabrication.

5 Related Work

Large scale fabrication receives lots of attention in both academia and industry. We
categorize previous efforts on scaling-up fabrication into three main branches: scal-
ing fabrication with large-scale device, scaling fabrication with existing objects and
scaling fabrication with construction kits.

5.1 Scaling Fabrication with Larger Printers

Architects and engineers have made efforts to scale up the additive manufactur-
ing process for constructing large-scale structure such as houses or sculptures.
These efforts mostly involve a scaled up version of the machinery [11]. For example,
Minibuilders [4] and MeshMold [3] scales up the printing area of 3D printers by
making printers mobile with wheels underneath and the Mataerial project [7] scales
up a hand-held 3D filament extruder with an industry robot arm that extrudes a
fast-curing polymer. Commercial companies also introduced specialized large-scale
3D printers into traditional manufacturing industries such as automobile and home
building.

3http://www.openscad.com (last accessed 2015-10-01)
4http://www.refil.com (last accessed 2015-10-01)

130

http://www.openscad.com
http://www.refil.com

6 Conclusion and Outlook

5.2 Scaling Fabrication with Existing Objects

Aggregating existed objects into a larger object for decorative or functional purposes
is an emerging research field due to economical and ecological reasons [1]. Yoshida et
al. [12] proposes a computer-assisted fabrication method for large-scale architecture
that combines a chopstick dispenser and a projector-based guiding system. Dierichs
et al. [2] creates the desired form by aggregating a large quantity of spike-shaped
elements. Song et al [9] describes a computational framework for creating reciprocal
frame structures. Finally, the Annual Burning Man gathering famously demonstrates
large-scale art pieces built from wood planks, recycled aluminum can and bottles.

5.3 Scaling Fabrication with Construction Kit

Construction kits, such as Lego and Geomag, are perhaps the most popular personal
fabrication tools. Zimmer et al. [13] propose a geometry processing method that
converts freeform surfaces into polygonal Zomes thereby enabling users to construct
large-scale objects using the Zometool construction kit. FaBrickation [6] further com-
bines Lego and 3D printing to accelerate design iterations.

6 Conclusion and Outlook

We presented bottlePrint, a system that allows users to produce large-scale objects on
desktop-scale fabrication machines. The key idea behind bottlePrint is to complement
3D printing with ready-made objects, in our case empty plastic bottles. Our software
system bottlePrint allows users to create bottle-based 3D objects by converting an
existing 3D model or by modeling from scratch. As future work, we plan to extend
bottlePrint with mechanisms, so as to allow users to design and build large-scale
machines.

References

[1] E. Blevis, S. Bødker, J. Flach, J. Forlizzi, H. Jung, V. Kaptelinin, B. Nardi, and
A. Rizzo. “Ecological Perspectives in HCI: Promise, Problems, and Potential”.
In: Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human
Factors in Computing Systems. ACM. 2015, pages 2401–2404.

[2] K. Dierichs and A. Menges. “Material computation in architectural aggregate
systems”. In: Formation, Proceedings of the 30th Conference of the Association for
Computer Aided Design (ACADIA). 2010, pages 372–378.

[3] N. Hack and W. V. Lauer. “Mesh-Mould: Robotically Fabricated Spatial Meshes
as Reinforced Concrete Formwork”. In: Architectural Design 84.3 (2014), pa-
ges 44–53.

131

R. Kovacs: BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects

[4] S. Jokic, P. Novikov, S. Maggs, D. Sadan, S. Jin, and C. Nan. Robotic positioning
device for three-dimensional printing. 2014. arXiv: 1406.3400 [cs.RO].

[5] M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi. “Converting 3D furniture
models to fabricatable parts and connectors”. In: ACM Transactions on Graphics
(TOG). Volume 30. 4. ACM. 2011, page 85.

[6] S. Mueller, T. Mohr, K. Guenther, J. Frohnhofen, and P. Baudisch. “faBrickation:
fast 3D printing of functional objects by integrating construction kit building
blocks”. In: Proceedings of the 32nd annual ACM conference on Human factors in
computing systems. ACM. 2014, pages 3827–3834.

[7] P. Novikov and S. Jokić. Mataerial. url: http : / /mataerial . com (last accessed
2015-09-25).

[8] M. J. Powell. “An efficient method for finding the minimum of a function of
several variables without calculating derivatives”. In: The computer journal 7.2
(1964), pages 155–162.

[9] P. Song, C.-W. Fu, P. Goswami, J. Zheng, N. J. Mitra, and D. Cohen-Or. “An
Interactive Computational Design Tool for Large Reciprocal Frame Structures”.
In: Nexus Network Journal 16.1 (2014), pages 109–118.

[10] J. G. Tanenbaum, A. M. Williams, A. Desjardins, and K. Tanenbaum. “Democ-
ratizing technology: pleasure, utility and expressiveness in DIY and maker
practice”. In: Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems. ACM. 2013, pages 2603–2612.

[11] Top 10 Biggest 3D Printers. url: http://3dprintingindustry.com/2015/08/19/top-10-
largest-3d-printers (last accessed 2015-09-25).

[12] H. Yoshida, T. Igarashi, Y. Obuchi, Y. Takami, J. Sato, M. Araki, M. Miki, K.
Nagata, K. Sakai, and S. Igarashi. “Architecture-scale human-assisted additive
manufacturing”. In: ACM Transactions on Graphics (TOG) 34.4 (2015), page 88.

[13] H. Zimmer, F. Lafarge, P. Alliez, and L. Kobbelt. “Zometool shape approxima-
tion”. In: Graphical Models 76.5 (2014), pages 390–401.

132

http://arxiv.org/abs/1406.3400
http://mataerial.com
http://3dprintingindustry.com/2015/08/19/top-10-largest-3d-printers
http://3dprintingindustry.com/2015/08/19/top-10-largest-3d-printers

Robustness of Estimation of Distribution Algorithms to
Noise

Martin Krejca

Algorithm Engineering
Hasso-Plattner-Institut

martin.krejca@hpi.uni-potsdam.de

Traditional optimization algorithms, for example for finding good solutions for the
traveling salesperson problem, are designed by carefully analyzing the problem
and then tailoring an algorithm for exploiting the problem structure. Research
on optimization has progressed sufficiently so that, for many classic optimization
problems, very good specific algorithms are available.

However, practical optimization problems frequently include uncertainty about
the quality measure, for example due to noisy evaluations. Thus, they do not al-
low for a straightforward application of traditional optimization techniques. In
these settings, meta-heuristics are a popular choice for deriving good optimiza-
tion algorithms, most notably evolutionary algorithms, which mimic evolution in
nature.

This report summarizes some of our results, published at GECCO’15 and
ISAAC 2015, where we, overall, showed that a classical evolutionary algorithm
explicitly storing a population fails in optimizing a simple noisy function, whereas
certain Estimation of Distribution Algorithms, implicitly storing a population, suc-
ceed.

1 Introduction

In real-world optimization problems, there is sometimes a large degree of uncertainty
present due to the complexity of candidate solution generation, noisy measurement
processes, and rapidly changing problem environments. This is why heuristic opti-
mization is widely used in practice for solving hard optimization problems for which
no efficient problem-specific algorithm is known.

Jin and Branke [11] survey a number of sources of uncertainty that randomized
search heuristics must often deal with in practice: (1) noisy objective functions, (2)
dynamically changing problems, (3) approximation errors in the objective function,
and (4) a requirement that an optimal solution must be robust to changes in design
variables and environmental parameters that occur after optimization is complete.

Arguably, the two most important sources of uncertainty are (1) and (2), namely,
stochastic problems and dynamic problems. In stochastic problems, the objective func-
tion value of a search point follows a random distribution, and that distribution
does not change over time. In dynamic problems, the evaluation of the quality of a
solution is deterministic but changes over time.

[2] shows that Evolutionary Algorithms (EAs) are very popular in settings including
uncertainties. So, in order to address these practical issues, the theoretical analyses

133

mailto:martin.krejca@hpi.uni-potsdam.de

Martin Krejca: Robustness of Estimation of Distribution Algorithms to Noise

of randomized search heuristics under uncertainty has recently gained momentum.
For example, a number of recent papers rigorously analyzed the performance of EAs
in stochastic environments [3, 8].

EAs have been successfully applied to a wide range of complex engineering and
combinatorial problems [1, 7, 13]. Like Darwinian evolution in nature, evolutionary
algorithms construct new solutions from old ones and select the fitter ones to con-
tinue to the next iteration. The set of solutions is also called the population of the
algorithm.

We analyzed a popular simple fitness function, namely OneMax, perturbed by
some additive zero-mean Gaussian noise. A cornerstone of the analysis of any search
heuristic is an analysis of its performance on the OneMax function [5, 14], and study-
ing the class of OneMax functions has also lead to several breakthroughs in the field
of black-box complexity [4, 6].

We could show that the (µ + 1)-EA – a classical EA storing a population of µ

solutions – is not able to optimize OneMax efficiently in our setting with a high
probability. However, two other Algorithms, that just implicitly store a population,
i.e., Estimation of Distribution Algorithms (EDAs), can cope with the noise and are able
to optimize the function efficiently as long as the variance of the noise is polynomial.

2 Backround

We analyzed the search space {0, 1}n, i.e., all bit strings of length n, since it is the
underlying search space of many optimization problems. Many problems (including
combinatorial ones such as the minimum spanning tree problem) have a straight-
forward formulation as an optimization problem on {0, 1}n. Many evolutionary al-
gorithms are applicable to this search space without further modification adaption,
and most formal analyses of evolutionary algorithms consider this search space.

As mentioned in the introduction, we focused on analyzing the OneMax function,
which simply yields the number of ones in a bit string of length n, with some zero-
mean Gaussian noise added to it. More formally, our objective function, also called
fitness function, is f ∶ {0, 1}n → R with x ↦ OneMax(x) +N, where N ∼ N(0, σ2).

We considered three different algorithms. The first one is a classical EA that only
uses mutation and stores µ solutions each round: the (µ+1)-EA. It initially generates
a uniformly at random drawn population of µ solutions called individuals. Each
iteration, it picks one of its µ individuals uniformly at random and mutates it. Then
an individual with minimal fitness gets discarded; breaking ties uniformly at random
as well. The pseudo-code of the (µ + 1)-EA can be seen in Algorithm 1.

The other two algorithms are EDAs. That means that they implicitly store a pop-
ulation via a distribution over {0, 1}n. Our two algorithms, namely MMAS-fp and
cGA, assume independency of the single bit positions, and each just stores a vector
τ ∈ [0, 1]n of n different probabilities, sometimes truncated to some interval [`, u].
Individuals are generated by τ in that fashion that an individual has a one at position
i with probability τi, or it has a zero with probability 1− τi. Each generation, a certain

134

2 Backround

Algorithm 1: The (µ + 1)-EA, for optimizing f

1 P ← µ elements of {0, 1}n uniformly at random;
2 while optimum not found do
3 Select x ∈ P uniformly at random;
4 Create y by flipping each bit of x independently with probability 1

n ;
5 P ← P ∪ {y};
6 Let z ∈ P be chosen such that ∀v ∈ P∶ f (z) ≤ f (v);
7 P ← P ∖ {z};

amount of individuals is generated. Their fitness is then analyzed, and τ is updated
according to that outcome.

MMAS-fp and cGA differ from one another in how many offspring they produce
each iteration and in how they update τ.

MMAS-fp is a special variant of the ant-inspired algorithm MMAS, which sends
ants across a so-called contrsuction graph. These ants lay pheromones on the edges
they traverse and choose edges with a preference relative to the amount of pheromone
on each edge. MMAS enforces upper and lower bounds on the pheromone values
of each edge. The name states these, since MMAS stands for Max-Min Ant System.

Our MMAS-fp sends each iteration just one ant along a construction graph which
is a multi-path with two directed edges between two neighboring nodes; one edge
standing for a zero in the bit string that gets constructed, the other edge standing for
a one. Figure 1 shows an example of how such a construction graph in our setting
looks like. However, this viewpoint does not show the similarities to cGA. So we
follow with a description of constructing individuals via the probability vector τ.

MMAS-fp generates only one individual x each iteration and updates τ propor-
tional to the fitness of x, f (x). This is called fitness-proportional, hence the suffix fp
in the name. It uses a parameter ρ, called the evaporation factor, that regulates the
impact of the fitness-proportional update and can be thought of as the step size, i.e.,
the greatest difference that can occur per τi in one iteration. Algorithm 2 shows the
pseudo-code of MMAS-fp.

e1,1

e1,0

e2,1

e2,0

e3,1

e3,0

e4,1

e4,0

e5,1

e5,0

v0 v1 v2 v3 v4 v5

Figure 1: Construction graph for optimization of f with n = 5 bits

135

Martin Krejca: Robustness of Estimation of Distribution Algorithms to Noise

Algorithm 2: MMAS-fp with ρ ∈ (0, 1], for optimizing f

1 for i ∈ {1, . . . , n} do
2 τi ← 1

2 ;
3 while optimum not found do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability τi, xi ← 0 with probability 1− τi;
6 for i ∈ {1, . . . , n} do
7 if xi = 1 then
8 τi ←min{τi (1− ρ

f (x)
n) + ρ

f (x)
n , u};

9 else
10 τi ←max{τi (1− ρ

f (x)
n) , `};

cGA stands for compact Genetic Algorithm. A Genetic Algorithm is an algorithm
that produces a new individual out of more than one old individual. This process is
often called crossover, recombination, or sexual reproduction. Since the cGA is an EDA
and, thus, has no explicit population, it only imitates crossover in the following way:
each iteration, it produces two offspring and compares their bits for each position.
If the bits are the same, τi does not get updated. However, if the bits are different,
τi gets adjusted in favor of the bit of the fitter individual, i.e., if the fitter individual
has a one, τi gets increased, else decreased. The parameter K can be thought of as
the population size of the algorithm. The pseudo-code is depicted in Algorithm 3.

Algorithm 3: cGA with parameter K, for optimizing f

1 for i ∈ {1, . . . , n} do
2 τi ← 1

2 ;
3 while optimum not found do
4 for i ∈ {1, . . . , n} do
5 xi ← 1 with probability τi, xi ← 0 with probability 1− τi;
6 yi ← 1 with probability τi, xi ← 0 with probability 1− τi;
7 if f (x) < f (y) then swap x and y;
8 for i ∈ {1, . . . , n} do
9 if xi > yi then τi ← τi + 1/K;

10 if xi < yi then τi ← τi − 1/K;
11 if xi = yi then τi ← τi;

We analyzed the expected time of each algorithm when optimizing f , that is, until
the optimum is sampled the first time. The resulting run time is not only a function

136

3 Results

of the dimension of the search space, n, but also a function of the variance σ2 of the
noise. The analysis was thus a multivariate analysis, trying to see which levels of
noise can be handled and which cannot.

We say that an algorithm optimizes f efficiently when the expected optimization
time is a multivariate polynomial in n and σ2. We coined this property graceful scaling
to show that the algorithm can cope with any polynomial variance (in n) such that
the expected run time still remains polynomial in n.

3 Results

One of our results is that the (µ+ 1)-EA is not able to efficiently optimize f if σ2 ≥ n3.
If the variance is this large, then it is quite likely that the fitness of one of the best
individuals of the population is worse than the fitness of all other individuals. Thus,
such an individual will be discarded, prolonging the optimization process. To be a
bit more precise: for a constant fraction of the population, it holds that the number
of good individuals decreases exponentially in n. So it is very unlikely for a good
individual to be chosen for mutation and to survive long enough to reach the opti-
mum within polynomial time. Therefore, the (µ + 1)-EA does not scale gracefully
with noise.

MMAS-fp and cGA, on the other hand, do scale gracefully with noise if their
respective parameters ρ or K, respectively, get adjusted with respect to σ2.

Our run time results for MMAS-fp are worse than for cGA, but they are also
more general. MMAS-fp can basically cope with any additive posterior noise as
long as the probability of generating very large polynomial amounts of noise (in n)
decreases at some point exponentially. This is because of the fitness-proportional
update rule. The main property of the algorithm that makes it succeed is that each
bit independently contributes more to its corresponding τi if it is set correctly with
respect to the optimum then otherwise. This property does not only hold for the
OneMax function, so further research in that direction is desirable.

The fitness-proportional update scheme can be thought of as some kind of re-
sampling. So in the long run, the resulting fitness value of a solution will be its
noise-free fitness value with the added expected value of the noise. The addition of
the expected value of the noise does not do any harm, since it does not destroy the
ordering of the fitness values; better fitness values still remain better than worse ones.
Because the update rule gains more from better fitness values, the τi get pushed in
the correct direction, resulting in an efficient optimization.

One drawback of the fitness-proportional update scheme, however, is that the
evaporation factor ρ has to be somewhat small to make sure that the update steps are
not too large. If they were, some unlucky sampling of bad solutions could decrease
some τi pretty fast, such that it would be unlikely for the algorithm to recover from
that. That is why our run time results for MMAS-fp are worse than for cGA; a small
step size results in more steps to reach the optimum.

Although MMAS-fp and cGA are both EDAs and roughly have the same layout,
cGA optimizes f efficiently due to completely other reasons. A major difference

137

Martin Krejca: Robustness of Estimation of Distribution Algorithms to Noise

between these two algorithms is that MMAS-fp always makes an update according
to the last sampled solution, whereas cGA compares different solutions and then
makes an update accordingly. Comparisons of noisy fitness values can be risky if
the fitness of the best-so-far solution is stored [10]. If a bad solution is, by chance,
evaluated as very good, updates are done with respect to this bad solution, thus
making it even harder to generate a good solution to win against the bad one.

Even if the fitness is re-evaluated each time, efficient optimization may still fail,
due to high variance. This can be seen in our result for the (µ+1)-EA: each individual
gets re-evaluated each iteration, but if the variance is high enough, it is likely that a
very good individual will lose against a bad one.

cGA, however, does not store a best-so-far solution. It just compares two individu-
als that were generated in the same iteration. So their noise-free fitness values are
expected to be the same. In addition to that, cGA only updates τi if the two individ-
uals differ at position i. This way, it makes sure to only update if there is a visible
tendency to either preferring a zero over a one or vice versa. The whole update pro-
cess can be thought of as a so-called gene pool recombination, as introduced in [12]. That
is why cGA is called a Genetic Algorithm (GA); it performs some kind of crossover.

Since the beginning of EAs, it has been argued that GAs should be more powerful
than pure EAs, which use only mutation [9]. This was debated for decades, but the-
oretical results and explanations on crossover are still scarce. The robustness of GAs
to noise lies intuitively in the diversity of the population. However, the concept of di-
versity changes from problem to problem and follows no true definition. Additional,
analyses of diversity and crossover operators is often hard. So our result for cGA
could give an additional explanation why crossover can be so good. The concept
of diversity is compactly hold in the probability vector τ. (Note that the (µ + 1)-EA
does not do crossover but only mutation.)

We also ran experiments with cGA, comparing it against a standard meta-heuristic
that is not inspired by nature: RLS – Random Local Search. RLS used re-evaluations
of function values, to kind of cancel out the noise, cGA just used our results and no
further adjustments, since it already scales gracefully. The outcome of these experi-
ments can bee seen in Figure 2. Note that we did not measure wall-clock time but the
number of function evaluations, since this often is the point of interest in theoretical
analyses. These results show empirically for a wide range of noise intensities that
crossover is beneficial.

The NO-variant of each algorithm stands for the noise-oblivious version of the
respective algorithm. The NO-scheme does not know of the real value of σ2 and
just starts an algorithm with the parameters set for σ2 = 1. If the optimum is not
found during an upper run time bound that should hold with a high probability, the
algorithm doubles its guess for σ2 and completely re-starts, including the resetting
of the parameters. So the scheme basically makes an uninformed search for σ2. Note
that this scheme can be implemented for a variety of different algorithms, such as
MMAS-fp.

This is the way to go in real-world applications, since the variance is usually not
known. The theoretical run time of an NO-variant of an algorithm is just worse by
a constant factor, compared to the original algorithm. The experiments, however,

138

4 Conclusion and Outlook

100 101 102 103 104
103

105

107

109 σ2 =
√

n

σ2

#
ev

al
ua

tio
ns

of
f

reRLS
NO-reRLS
cGA
NO-cGA

100 101 102 103
100

103

106

109 n = 100

n

reRLS
NO-reRLS
cGA
NO-cGA

Figure 2: Median run time as a function of noise variance for n = 100 (left) and as
a function of n for σ2 =

√
n (right). 100 runs at each point. Shaded area denotes

interquartile range.

show that the NO-variant is usually even faster. This is likely a result from run time
bounds for one run of an algorithm being worst case bounds and, thus, somewhat
pessimistic. The NO-variant often succeeds with a rough approximation of σ2 and
therefore has a larger step size or does not do that many re-evaluations, resulting in
a faster run time (with respect to number of function evaluations).

4 Conclusion and Outlook

We showed that the EDAs MMAS-fp and cGA scale gracefully for optimizing f , while
this is not the case for the (µ+ 1)-EA. Our results may hint that EDAs in general may
be robust against noise in certain scenarios. The results for cGA show that crossover
can help against noise.

It would be interesting to further investigate diversity and crossover in general to
get an idea of why exactly it is preferable in many situations. This should ideally not
only focus on EDAs but on GAs in general in a certain sense. Research in that area
could answer questions that have been open for a long time.

Another extension to our work could be an even grander generalization of our
results for MMAS-fp to not just optimizing f but a greater class of functions. It seems
that the algorithm should be able to also optimize more functions. A generalization
actually looks quite promising, since our proof concept is not that restrictive. Suc-
ceeding in doing so would result in a nice classification of robustness of MMAS-fp
to a large noise model and function class, which would be nice to have.

Last, a closer look on EDAs in general, not necessarily under noise, would be
interesting, because the framework can encapsulate quite an amount of algorithms.
It would be good to know limits and merits and what properties suffice to achieve

139

Martin Krejca: Robustness of Estimation of Distribution Algorithms to Noise

certain goals. This would shift the focus from very algorithm-specific analyses to a
far more general viewpoint.

Overall, there are still many challenging opportunities left to be looked into.

References

[1] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary
Computation. 1st. IOP Publishing Ltd., 1997.

[2] L. Bianchi, M. Dorigo, L. Gambardella, and W. Gutjahr. “A Survey on Meta-
heuristics for Stochastic Combinatorial Optimization”. In: Natural Computing
8 (2009), pages 239–287.

[3] D.-C. Dang and P. K. Lehre. “Evolution under partial information”. In: Proc.
of GECCO’14. 2014, pages 1359–1366.

[4] B. Doerr and C. Winzen. “Playing Mastermind with Constant-Size Memory”.
In: Proc. of STACS’12. 2012, pages 441–452.

[5] S. Droste. “A rigorous analysis of the compact genetic algorithm for linear
functions”. In: Natural Computing 5.3 (Aug. 2006), pages 257–283. doi: 10.1007/
s11047-006-9001-0.

[6] S. Droste, T. Jansen, and I. Wegener. “Upper and Lower Bounds for Random-
ized Search Heuristics in Black-box Optimization”. In: Theory of Computing
Systems 39 (2006), pages 525–544.

[7] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer,
2003.

[8] C. Gießen and T. Kötzing. “Robustness of populations in stochastic environ-
ments”. In: Proc. of GECCO’14. 2014, pages 1383–1390.

[9] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

[10] C. Horoba and D. Sudholt. “Ant Colony Optimization for Stochastic Short-
est Path Problems”. In: Genetic and Evolutionary Computation Conference
(GECCO’10). ACM, 2010, pages 1465–1472.

[11] Y. Jin and J. Branke. “Evolutionary optimization in uncertain environments —
a survey”. In: IEEE Trans. on Evol. Comp. 9 (2005), pages 303–317. doi: 10.1109/
TEVC.2005.846356.

[12] H. Mühlenbein and H.-M. Voigt. “Gene Pool Recombination in Genetic Algo-
rithms”. In: Meta-Heuristics. Springer US, 1996, pages 53–62. doi: 10.1007/978-
1-4613-1361-8_4.

[13] F. Neumann and C. Witt. Bioinspired Computation in Combinatorial Optimization
– Algorithms and Their Computational Complexity. Springer, 2010.

[14] C. Witt. “Optimizing Linear Functions with Randomized Search Heuristics:
The Robustness of Mutation”. In: Proc. of STACS’12. 2012, pages 420–431.

140

http://dx.doi.org/10.1007/s11047-006-9001-0
http://dx.doi.org/10.1007/s11047-006-9001-0
http://dx.doi.org/10.1109/TEVC.2005.846356
http://dx.doi.org/10.1109/TEVC.2005.846356
http://dx.doi.org/10.1007/978-1-4613-1361-8_4
http://dx.doi.org/10.1007/978-1-4613-1361-8_4

Impacto: Simulating Physical Impact by Combining Tactile
Stimulation with Electrical Muscle Stimulation

Pedro Lopes

Human Computer Interaction
Hasso-Plattner-Institut

pedro.lopes@hpi.uni-potsdam.de

We have advanced our research on wearable computing and proprioceptive inter-
action (i.e., interacting solely using the user’s muscles for both input and output)
by developing impacto, a device designed to render the haptic sensation of hitting
and being hit in virtual reality. The key idea that allows the small and light impacto
device to simulate a strong hit is that it decomposes the stimulus: it renders the
tactile aspect of being hit by tapping the skin using a solenoid; it adds impulse to
the hit by thrusting the user’s arm backwards using electrical muscle stimulation.
The device is self-contained, wireless, and small enough for wearable use, and
thus leaves the user unencumbered and able to walk around freely in a virtual
environment. The device is of generic shape, allowing it to also be worn on legs so
as to enhance the experience of kicking, or merged into props, such as a baseball
bat. We demonstrate how to assemble multiple impacto units into a simple haptic
suit. Participants of our study rated impacts simulated using impacto’s combina-
tion of a solenoid hit and electrical muscle stimulation as more realistic than either
technique in isolation.

1 Introduction

The objective of virtual reality systems is to provide an immersive and realistic
experience. While research in virtual reality has traditionally focused on the visual
and auditory senses, many researchers argue that the next step towards immersion
must include haptics, i.e., to allow users to experience the physical aspects of the
world. In this paper we focus on one specific category of haptic sensation, namely
impact, i.e., the sensation of hitting or being hit by an object. Impact plays a key role
in many sports simulations such as boxing, fencing, football, etc.

Simulating impact is challenging though. Creating the impulse that is transferred
when hit by a kilogram-scale object, such as a boxer’s fist, requires getting a kilogram-
scale object into motion and colliding it with the user. This requires a very heavy
device. In addition, building up an impulse requires an anchor to push against
(Newton’s Third Law), typically resulting in a tethered device, e.g., SPIDAR [7]. Both
clash with the notion that today’s virtual reality hardware is already wearable and
wireless.

In this paper, we propose a different approach. The key idea is to decompose the
impact stimulus into two sub stimuli, each of which we can render effectively.

141

mailto:pedro.lopes@hpi.uni-potsdam.de

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

2 Impacto: electrical muscle & tactile stimuli

Impacto is designed to render the haptic sensation of hitting or being hit.

Figure 1: Impacto is wearable device designed to render the haptic sensation of hit-
ting and being hit

Figure 1 illustrates our approach, here at the example of a boxing simulation. The
key idea that allows the small and light impacto device to simulate a strong hit is
that it decomposes the stimulus. It renders the tactile aspect of being hit by tapping
the skin using a solenoid; it adds impulse to the hit by thrusting the user’s arm
backwards using electrical muscle stimulation. Both technologies are small enough
for wearable use.

Figure 2: The solenoid component that we have in Impacto features a “knuckle”
tip (c), which has a 90-degree lever to hit the skin orthogonally. The other four
interchangeable tips are (a) generic surface, (b) small generic surface, (d) rounded,
and (e) sharp.

142

2 Impacto: electrical muscle & tactile stimuli

Figure 2 shows the solenoid component in detail. To achieve a compact form factor,
the solenoid is mounted parallel to the user’s skin. A lever mechanism redirects its
impact by 90 degrees, allowing it to hit the user’s skin at a perpendicular angle.

Furthermore, we provide a set of exchangeable 3D printed tips to refine the de-
sired tactile experience, e.g., to simulate boxing without gloves we use a tip that
resembles human knuckles (Figure 2c). In addition to the knuckles, Figure 2 shows:
(a) a generic surface, e.g., for punching a virtual avatar, (b) a small generic surface,
e.g., for receiving a sharp impact, (d) a rounded surface, e.g., for jugging a ball, and
(e) a sharp tip, e.g., for getting hit by a fencing weapon.

Figure 3: We show a detail of the electrical muscle stimulation component. Here,
it stimulates the user’s biceps brachii muscles causing an involuntary contraction
that resembles force feedback.

Figure 3 shows the electrical muscle stimulation component. Its electrodes are
mounted to the specific muscle that is able to render the impulse response that
matches the solenoid. Here the solenoid is mounted to the outside of the arm, and
therefore matches the impulse that would cause the arm to flex. Hence, we use the
muscle that can flex the user’s arm, i.e., we attach the EMS component to the user’s
biceps. When activated, the electrodes trigger an involuntary contraction of those
muscles, simulating the transfer of impulse by thrusting the arm backwards.

Figure 4: The Impacto bracelet opened to reveal its contents: Arduino microcon-
troller, bluetooth, electrical muscle stimulation, batteries, solenoid and electrodes.

143

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

Figure 4 shows the control unit that drives both solenoid and EMS components. We
built impacto as a stand-alone and wearable device, with all electronics embedded
in a bracelet. The solenoid module features a Velcro closure, allowing the device to
be strapped to the user’s upper arm, back of the hand, the user’s leg and so forth.

2.1 Impacto’s two components are mutually beneficial

Even though both technologies are small enough to allow for mobile or wearable
use, it is their combination that creates a very strong sensation— in fact, stronger
than either of the technologies by themselves (see “User Study”). However, solenoid
and EMS play well together in more than one way:

1. Impacto simulates an impulse. The EMS component actually moves the arm.
To create the required impulse, it creates a mechanical system between the
limb and the user’s torso. Given that the torso is comparably massive, there is
very little effect on the torso and a strong effect on the limb.

2. The physical response produced by EMS is strong, despite the small form factor.
It achieves this by leveraging the user’s skeleton and muscles.

3. Because of the EMS, the solenoid can be small, wearable. Because the EMS is
small but does the “heavy lifting”, the task of the solenoid is limited to tapping
the skin. This keeps the size of the solenoid down. With a small solenoid and
EMS, we achieve a compelling simulation in a mobile/wearable form factor.

2.2 Benefits and Contribution

Our main contribution is the concept of impact simulation, its decomposition into
tactile and impulse components, and the implementation of these two components
using solenoid and electrical muscle stimulation. The main benefit of our approach
is that it makes the simulation of a strong impact feasible in a small form factor. Our
user study suggests that our approach generates a stronger sensation than either
component in isolation. We demonstrate the use of our device in a series of virtual
reality sport simulators.

On the flipside, simulating multiple impact locations requires multiple units,
which places a natural limit on the spatial resolution of the simulation. Also, us-
ing a solenoid as a tactile feedback source adds inherent latency, which needs to
be compensated for. Lastly, the use of EMS requires electrodes, which need to be
manually placed by the user and calibrated prior to use.

3 Application Examples

We have implemented a few virtual reality sport simulators to demonstrate the
potential use of impacto. All our examples use impacto for haptic feedback, an Oculus

144

3 Application Examples

Rift for visuals and a Kinect for tracking. We now describe the applications from the
perspective of what the user feels.

3.1 Being hit— Boxing

Boxing is a sport for which the notion of impact is crucial. Figure 5 shows a screen-
shot of the simple boxing simulator we created to experiment with impacto. In this
simulator, users can fight a virtual avatar by boxing. The avatar keeps its guard up
and attacks periodically. Users must choose the right moment to unleash a success-
ful attack. It takes ten successful hits to take down the avatar, which causes a new
opponent to appear and the simulation continues.

Figure 5: Stereo headset view from our simple boxing simulation. It allows users to
attack the avatar and to block the avatar’s attacks. Here, we see the avatar attacking
the user’s right arm.

Figure 6 illustrates how impacto adds a haptic component to the simulation: (a)
the simulator provides haptic feedback when the user blocks the avatar, as discussed
earlier. (b) The same impacto unit allows the user to hit the avatar using the part of
the arm that wears the impacto unit, here the back of the arm.

Figure 6: (a) Impacto allows users to feel the impact of blocking the avatar’s hit by
thrusting the user’s arm backwards by operating the user’s biceps. (b) The same
impacto unit allows simulating the sensation of attacking. In both cases the impacto
unit activates the user’s biceps. This time, this causes the user’s hand to stop in
mid-air, as if it had hit the opponent.

145

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

3.2 Feeling Impact on Props— Baseball

The decomposition of impulse and tactile sensation transfers readily to hand-held
props. Figure 7 illustrates this at the example of a simple baseball simulator.

Figure 7: User hitting a virtual baseball.

In the baseball simulator, by wearing an impacto unit, the user experiences the
impact of an incoming baseball against the bat. To enable the prop, here a stand-in
for a baseball bat, we mount the solenoid onto the prop; the EMS unit, in contrast,
stays with the user and stimulates the wrist extension muscle (extensor digitorium).

As illustrated by Figure 8, the same prop and electrode placement can power
additional applications: by replacing the visuals in the virtual world and adjusting
impacto’s response, we can reuse the same prop to simulate a baseball bat, a fencing
weapon, or a ping-pong paddle.

Figure 8: (a) Adjusting impacto’s response and updating visuals turns the same prop
into a range of different experiences, such as (b) a baseball bat, (c) a fencing weapon
or (d) a ping-pong paddle

146

4 Related Work

4 Related Work

The work presented in this paper builds on tactile stimulation, force feedback, virtual
reality, and electrical muscle stimulation.

4.1 Tactile Stimulation

Tapping on the user’s skin was, for example, used by Li et al. in order to convey
messages [4]. Tapping is a special case of tactile feedback and it generally leads to
a better tactile sensation than vibrotactile actuation because the tapping stimulates
the SA1 receptors (Merkel cells) that sense pressure. Vibrotactile feedback, in con-
trast, is only sensed by the Pacinian corpuscles, which do not contribute to pressure
sensing [3].

A common approach to recreate tapping is to emulate it using vibration. Linde-
man et al. simulate impact in virtual reality using a suit that contains vibrotactile
actuators [5]. In their virtual reality shooting application the suit communicates the
spatial location of shots by activating the respective vibrotactile cell. However, there
is no net force, thus no displacement of the user’s limbs.

4.2 Force feedback

Impacto’s way of simulating the transfer of impulse is a special case of force feedback.
Force feedback systems attach to the users’ limbs using exoskeletons, such as the

Utah Dextrous Hand Master [2] or pulley systems, such as SPIDAR [7]. Mechanical
force feedback actuators of this kind tend to use an external apparatus mounted on
the user, such as pulleys or an exoskeleton.

4.3 Force feedback using electrical muscle stimulation

More recently, researchers started administering force feedback using electrical mus-
cle stimulation (EMS) to achieve force feedback in a compact form factor (e.g., Muscle
Propelled Force Feedback [6]). Farbiz et al. used EMS on the wrist muscles to ren-
der the sensation of a ball hitting a racket in an augmented reality tennis game [1].
However, this system does not create a tactile component that supports the impact
experience.

4.4 Transmitting impact through handheld props

Teck et al. simulate the impact of a virtual ball on a tennis racquet by attaching a
solenoid to the prop [8]. They found that the output force generated by the high-
power solenoid is two orders of magnitude below the force of a real ball hitting the
prop [8]. This is why impacto is inspired by such approaches, but, additionally, uses
EMS to render the strong force feedback sensation.

147

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

5 Implementation Details

To help readers replicate our design, we now provide the necessary technical details.

5.1 Impacto’s Hardware

Figure 9 shows the circuitry inside the impacto bracelet. The bracelet uses three
7.4 V LiPo cells in series for a total of 22.2 V and 1050 mAh to drive the solenoid in
the boxing simulation; for simulations that involve weaker impacts, such as foot-
ball, we used half the voltage. The estimated power consumption is: EMS (0.1 A),
solenoid (0.5 A to 0.7 A) and microntroller & bluetooth (0.2 A), allowing the unit to
run for ≈ 2000 hits. The Arduino Pro Micro microcontroller (3.3 V, 8 MHz) receives
commands from the virtual reality applications via a bluetooth module (RN42XVP).

Figure 9: Schematic of impacto’s circuitry

The microcontroller and EMS unit (TrueTens V3) are powered through a 9 V
voltage regulator (LM7809). The solenoid receives power directly from the battery
(22.2 V). Optionally, the solenoid power can be regulated down to 20 V via another
adjustable voltage regulator (LM317).

The unit can control EMS and solenoid intensity separately. One non-volatile digi-
tal potentiometer (X9C103) controls the intensity of the electrical muscle stimulation;
the microcontroller controls it via a 3-wire protocol. One relay (HFD4/3) switches
the EMS channel on/off in 3 ms.

An N-Channel MOSFET (BUZ11) controls the intensity of the solenoid. It is sensi-
tive enough to trigger at the low current output from the ATMEGA and can switch
30 A, which lies comfortably below the drain of our solenoid. The solenoid is bridged
with a N4007 flyback diode to prevent the microcontroller from resetting due to the
electromotive force that builds up when the solenoid is switched off. Modules that

148

5 Implementation Details

feature two solenoid outputs can switch between them using an additional relay
(ommited from schematic).

5.2 VR Simulators and Tracking

We implemented all sports simulators in Unity 3D. All our applications use a Kinect
to track the user’s skeleton; it is connected to Unity 3D via the Microsoft’s Kinect SDK
Wrapper. The Unity3D system detects collisions using collider objects attached to the
skeleton of the user as represented in the virtual world. When a collision is detected,
the system sends a serial message over bluetooth to the impacto unit attached to that
limb (each unit has its own bluetooth address). The message contains which EMS
channel and solenoid to trigger as well as the desired intensity. Users experienced
all applications through an Oculus V1 head mounted display.

The solenoid mechanics and wireless communication are inherently subject to
60 ms of lag. One way to make the system appear instantly responsive is to have
Unity3D using colliders with bounding volumes 25 % larger than the actual limb,
causing the collider to trigger ≈30 ms early, thereby compensating for the lag of the
system. On the flipside, this technique does not work for targets spatially clustered
together or if the user stops abruptly before the target, as it creates a false positive.

5.3 Measuring latency

We determined the device’s lag using a series of measurements on the apparatus
depicted in Figure 10. This apparatus drives impacto’s solenoid, making it tap a
load-cell (MSP6951-ND) sampled at 1 kHz by an ATMEGA328 microcontroller, and
measures the time difference.

Figure 10: Apparatus for measuring force and latency

As a baseline we compare latency over bluetooth to direct serial connection, i.e.,
tethered over USB. Using a high-speed camera we measured 11 ms for the micro-
controller to receive a single byte over USB and to turn on an LED in response. The
HFD4/3 relays take a maximum of 3 ms to actuate (from datasheet). Using our ap-
paratus, we measured that the solenoid takes 10 ms to 20 ms to extend fully and hit

149

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

the load cell. Finally, our apparatus measured a latency of 50 ms to 60 ms for a tactile
hit (bluetooth + solenoid mechanics), which lies within the haptic threshold of 50 ms
to 200 ms, as set by psychophysics research.

5.4 Measuring loss at the 90° lever

To validate the mechanical design, in particular the deflection lever, which pulls
the tip using a fishing string, we conducted a series of force measurements. The
deflection lever redirects the solenoid’s impulse by 90°, allowing the solenoid to be
mounted parallel to the user’s skin providing a much more compact form factor. We
reused the apparatus shown in Figure 10 in two conditions, i.e., with and without
the deflection lever.

Our measurements show that force exerted by the vertical hit (as in “User Study”)
is 26 N, while for the horizontally mounted solenoid, which hits through the 90°
lever, we measured 21.1 N. Measurements are an average of 10 hits on the load-cell
using the knuckle tip. These measurements clarify that both setups are comparable.

6 User Study

To validate the core idea behind impacto, i.e., the idea of decomposing an impact’s
haptic feedback into a tactile component (solenoid) and an impulse component
(EMS), we conducted a user study. To do so, we immersed participants in a sim-
plified study version of our boxing simulator in which they blocked punches by an
avatar opponent. We varied the intensity of solenoid (no, low, high) and EMS (no,
low, high) in a full-factorial design and asked participants to assess the realism of
the punches. We hypothesized that the combination of both stimuli would lead to a
more realistic experience.

6.1 Apparatus

Figure 11a shows our apparatus. Participants wore a head-mounted display (Oculus
Rift V1). A single impacto unit was mounted to their right forearm, with the elec-
trodes of the EMS component attached to the participant’s biceps brachii muscle. We
used an earlier design of impacto, however, it used the same EMS component and
produced similar output force conditions as the bracelet (see previous section). For
the tactile sensation we used the knuckle tip. To ensure a controlled experience, we
used a scripted version of our boxing simulation, in which a video avatar repeatedly
punched the participant (Figure 11b) on the dorsal side of their right forearm.

Participants were seated and held their arms in a guard position, so as to match
the hands they saw in the video experience. Participants rested their elbows on the
table between trials to reduce fatigue.

150

6 User Study

Figure 11: Experiment setup: (a) Participant wearing the head mounted display, elec-
trodes on the biceps and the impact module on the right forearm. (b) The visual
stimuli participants received through the head mounted display showed a first-
person-view of a boxing experience.

6.2 Interface conditions

There were nine interface conditions, i.e., the full-factorial design of solenoid inten-
sity (no, low, high) and EMS intensity (no, low, high).

In the high EMS conditions, the EMS component was calibrated to perform a full
biceps curl, i.e., a 45 degrees movement from the default guard pose. In the low EMS
conditions, the EMS component was calibrated so as to create the weakest visible
contraction of the participant’s biceps. In the no EMS conditions, the EMS component
was off.

During setup, we made sure that participants felt comfortable with the setup and
reached 45 degrees without any discomfort. This was the case for all participants.

In the high solenoid condition we overdrove the 12 V solenoid with 32 V for 200 ms,
resulting in a strong (≈26 N) tap. In the low solenoid condition we operated the
solenoid at its nominal voltage of 12 V for 200 ms resulting in a weaker (≈13 N) tap.
In the no solenoid condition, the solenoid remained off.

6.3 Task and Procedure

For each trial, participants observed a 9 seconds video experience of being punched
against their guard 3 times. This was accompanied by the respective haptic feedback
created using the impacto unit. Participants then rated the realism of the punches
on a 7-point Likert scale (1 = artificial, did not feel like being punched, 7 = realistic,
like being punched).

Each participant performed a total of 27 trials: 3 force feedback settings (no EMS,
low, or high EMS strength setting) × 3 tactile feedback settings (no solenoid, low, or
high) × 3 repetitions. This yields a 3 × 3 within-subjects design.

The EMS calibration procedure took about 4 minutes during which the biceps
contraction was repeated ten times to ensure that a similar contraction was found.

151

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

6.4 Participants

We recruited 12 participants (3 female), between 22 and 35 years old (M = 26.9 years)
from a nearby organization. We excluded a thirteenth participant from the analysis
who had stated that he/she had started with too high ratings, thereby producing a
ceiling effect. One of the participants had boxing experience (sparring) and another
was trained in martial arts. Two participants had never experienced a VR headset
before and only one had experienced EMS before (in physiotherapy). With consent
of the participants we videotaped the study sessions.

6.5 Results

Figure 12 shows the resulting data, i.e. participants’ assessment of the realism of
the punches as a result of the different haptic feedback conditions. We analyzed
the data using a 3 (EMS) × 3 (solenoid) × 3 (repetition) repeated measures ANOVA
(α = .05). Since we found no learning effect as there was no main effect of repetition
(F2, 25 = 0.225, p = .800), we used all three repetitions as data. As expected, we found
main effects for force feedback (EMS, F2, 14 = 89.726, p = .000) and tactile feedback
(solenoid, F2, 14 = 56.840, p = .000, Greenhouse-Geisser corrected for sphericity), i.e.,
higher solenoid intensity and higher EMS intensity both led to more realism. We did
not find any interaction effect of EMS * solenoid (F2, 14 = 1.524, p = .210).

Figure 12: Realism ratings in dependence of force feedback (EMS) and tactile feed-
back (solenoid) conditions

152

6 User Study

Post hoc pair-wise comparisons using the test (Bonferroni corrected) confirmed the
statistical differences across intensity levels for both, EMS (all pairwise comparisons,
p < .001) and solenoid (all pairwise comparisons, p < .001).

6.6 Participants’ feedback after the experience

After finishing all trials we interviewed participants about their experience.
Seven participants stated that they found the experience “immersive”. Referring

to the first time he/she had felt the combined effect P4 stated “it got immersive after
a while, when I felt a stronger hit for the first time”. P7 said “the first time I felt it,
it was surprising, felt like a realistic force”. P4 also added “I felt I needed to protect
myself from the hits, it got real for me”. P10 went further and stated: “this seems
to really help VR, it is the most realistic VR experience I’ve ever had”. P3, who was
acquainted with boxing/sparring, stated “I know the feeling [impact] from sparing
and this was really cool, could be even stronger [the solenoid hit]” and added “it
is really impressive that this actually moves my arm”. All participants stated that
they liked the combined effect better than the individual effects, as suggested by
their earlier assessments of “realism”, P5 explained “the stimulation does not feel
like a hit, but the combination really feels real because I suppose if you get hit your
muscle moves back after the skin is hit”. P8 said “I clearly felt that a hit [solenoid]
and response [EMS] made it much more real”. P7: “The solenoid feels like a punch
and so its more important but then only with the EMS it felt real”. Similarly, P9, who
had 10 years of martial arts experience, said “solenoid is more important because
it is like getting hit, but I prefer when both are on.” P10 said “The EMS helps, but
the primary thing is that it touched me.” P12: “if you have solenoid, then the EMS
really helps me to feel [that it is] real”. P2 said “I was skeptical of the EMS during the
calibration, but when I saw it in combination with the VR video and the solenoid, it
was impressive”.

Four participants stated that without the solenoid the experience feels unrealistic,
such as “without the solenoid it was hard to understand when [the virtual boxer]
hit me” (P3).

Three participants pointed out that the EMS tingling had slightly affected their
sense of realism “I felt it vibrating, so that is a bit different from the pure movement”
(P4).

When asked “what is missing for a fully realistic experience” participants an-
swered: “resolution of the headset” (P10, P8), “remove the tingling caused by the
EMS” (P12, P13), “it should also actuate my shoulder” (P4), and “the tactile part
should be a larger surface, like a fist model” (P11, P9).

6.7 Discussion

Our study found main effects on both EMS and solenoid, suggesting that increasing
the intensity of either of the haptic effects increases the perceived realism. The highest
score, however, was achieved by combining both stimuli, supporting our hypothesis.

153

P. Lopes: Impacto: Simulating Physical Impact by Combining Tactile with EMS

Participants’ comments further support that hypothesis in that all participants stated
that the combined effect had felt more realistic than either individual effects.

7 Conclusion and Outlook

We furthered our agenda on using muscles as I/O devices by introducing Impacto,
a wearable device that allows users to experience impact in virtual reality. The key
idea that allows the small and light impacto device to simulate a strong hit is that it
decomposes the stimulus. It renders the tactile aspect of being hit by tapping the skin
using a solenoid; it adds impulse to the hit by thrusting the user’s arm backwards
using electrical muscle stimulation. Both technologies are small enough for wearable
use. We demonstrated a proof-of-concept module in three VR applications, each
demonstrating that impacto enables a variety of haptic sensations, such as being hit
or hitting back, by directly attaching it onto the user’s body or even mediated through
a passive prop. As future work, and to increase the fidelity of the force feedback, we
plan to apply impacto to other locations such as the abdominal muscles or shoulders,
as to generate a larger output motion.

As of the next steps we plan to: (1) expand upon the quality of EMS-based in-
tearctive system to allow for spatial output; note that: all the EMS-systems I have
developed or present in the related work, do not provide spatial output, such as,
for instance, plotting a function; and, (2) investigate deep down what is the differ-
ent between being actuated by electrical muscle stimulation and by a motor-based
approach (e.g., an exoskeleton)?

7.1 Publications

Lopes, P., Ion, A., Baudisch, P.
Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electri-
cal Muscle Stimulation.
at Proc. UIST’15, Charlotte, USA. Full Paper.

7.2 Leading a Workshop

Let your body move: electrical muscle stimuli as haptics
Pedro Lopes, Max Pfeiffer (Leibniz University Hannover), Michael Rohs (Leibniz
University Hannover), Patrick Baudisch
Let your body move - a tutorial on electrical muscle stimuli as haptics, at IEEE World
Haptics, Chicago, USA, 2015.

154

References

References

[1] F. Farbiz, Z. H. Yu, C. Manders, and W. Ahmad. “An electrical muscle stim-
ulation haptic feedback for mixed reality tennis game.” In: Proc. SIGGRAPH
(posters). 2007.

[2] H. J. and J. S. “Haptic Interfaces for Tel-eoperation and Virtual Environments.”
In: Proc. Workshop on Simulation and Interaction in Virtual Environments. 1995,
pages 13–15.

[3] S. Kuroki, H. Kajimoto, H. Nii, N. Kawakami, and S. Tachi. “Proposal for tactile
sense presentation that combines electrical and mechanical stimulus”. In: Proc.
World Haptics. 2007, pages 121, 126.

[4] K. Li, P. Baudisch, W. Griswold, and J. Hollan. “Tapping and Rubbing : Ex-
ploring New Dimensions of Tactile Feedback with Voice Coil Motors.” In: Proc.
UIST. 2008, pages 181–190.

[5] W. Lindeman, Y. Yanagida, H. Noma, and K. Hosaka. “Wearable vibrotactile
systems for virtual contact and information display.” In: In Virtual Reality 9(2).
2006, pages 203–213.

[6] P. Lopes and P. Baudisch. “Muscle-propelled force feedback: bringing force
feedback to mobile devices.” In: Proc. CHI. 2013, pages 2577–2580.

[7] J. Murayama, L. Bougrila, Y. Luo, K. Akahane, S. Hasegawa, H. B., and M. Sato.
“SPIDAR G&G: a two-handed haptic interface for bi-manual VR interaction.”
In: Proc. EuroHaptics. 2004, pages 138–146.

[8] F. Teck, C. Ling, F. Farbiz, and H. Zhiyong. “Un-grounded haptic rendering
device for torque simulation in virtual tennis.” In: Proc. SIGGRAPH Emerging
Technologies’12, Article 26. 2012.

155

Integrating Complex Event Processing to Case Management

Sankalita Mandal

Business Process Technology
Hasso-Plattner-Institut

sankalita.mandal@hpi.uni-potsdam.de

In recent years, more and more systems are following event-driven approach. They
produce events, consume events, react on events, take decisions based on events
and also predict future paths from event-logs. On the other hand, case management
is an approach where we don’t consider the whole process at once. Instead, we
break the process into smaller process fragments. Based on the case instance, a
subset of these process fragments is executed. Here, an initiative is taken to connect
the two worlds of complex event processing and case management. The approach
emerges based on a scenario from logistic domain and evolves around the process
fragments describing the scenario, events occurred during the execution of those
fragments and the impacts created by the events on the fragments and associated
data objects.

1 Introduction

Complex event processing (CEP) has been an emerging field in recent years and it
is being more visible in different application domains every day. As truly said by
D. Luckham, “Today, any kind of information system, from Internet to a cell phone,
is driven by events” [5]. If we look around our everyday life, we can trace events
everywhere. Starting from having a coffee in the morning, driving to office, submit-
ting an assignment, withdrawing money from ATM or having an awesome retreat –
everything can be interpreted as an event. Simple events can be aggregated to create
higher level and more complex events. Using these events we can get relevant infor-
mation, take decisions based on the information and react according to our decisions.
Thus, complex event processing is considered to be a simple yet very powerful tool.

Now, business process management (BPM) is another field which has gained enor-
mous popularity in the last decade. This is a key approach to organize work, and
many companies represent their operations in business process models. But there
are many domains where the processes often do not follow the routine or predictable
path. Rather, depending on the situation, some variabilities of the intended process
are executed. Therefore, the idea of case management (CM) is introduced [7]. For
example, in many domains such as logistics, health care, agriculture; the processes
cannot be always prescribed. They can vary extensively based on different situation.
Some of the situations can be predicted based on historical data, but some may be
completely unexpected. Therefore, the cases in these domains are treated separately,
most of the time with the help of knowledge-workers. To avoid the high complexity
and redundancy of a single process model describing all the variable situations, case

157

mailto:sankalita.mandal@hpi.uni-potsdam.de

Sankalita Mandal: Integrating Complex Event Processing to Case Management

management offers smaller process fragments which gives better understandability,
more flexibility and efficient handling of changing situation.

Though complex event processing and case management appear to be two sep-
arate areas, there are strong connections between them. The variabilities in case
management can often occur due to the occurrence of an event. The events can result
in executing or aborting certain process fragments. If we can predict the occurrence
of the events in a case and determine which set of fragments are to be executed in
which order for this case, then we can have a far better control over the situation.
We will be able to react to the changing situation in a faster and more efficient way.
Undoubtedly, being able to react on time in today’s changing situation adds a lot of
business value to the organizations.

The structure of the report is as following. Section 2 introduces the fundamental
concepts in the area of complex event processing as well as case management. Sec-
tion 3 describes the motivating scenario based on which the connection between CEP
and CM is explained in Section 4. The challenges and current approach of research
are detailed in Section 5. Finally, Section 6 concludes the report.

2 Background

At this point, it is helpful to have a basic understanding of the two areas which
are supposed to be connected through ongoing research, namely, complex event
processing and case management. In this section, some fundamental definitions and
concepts are introduced which will guide us through the rest of the paper.

2.1 Complex Event Processing

Before coming to the idea of complex event processing, let’s make a few concepts
clear. The following definitions will help creating a base for understanding event
processing better [2].

Event An event is an occurrence within a particular system or domain; it is some-
thing that has happened, or is contemplated as having happened in that do-
main.

Event object The event object is an entity that represents such an occurrence in a
computing system.
In the context of computing systems, we use the terms event and event object
as synonyms.

Event processing Event processing is computing that performs operations on events.
Common event processing operations include reading, creating, transforming
and deleting events.

Event stream An event stream is a set of associated events; often a temporally totally
ordered set.

158

2 Background

event stream

event streamSimple ESP CEP

Figure 1: Event stream processing

Depending on the nature of input event stream, event processing can be of
three different types. These are shown in Figure 1 and also described below.

Simple Event processing If the processing is done based on a single event then it
is called simple event processing.
For example, a social network site wants to get notified whenever a user is
logged in. Here, we have to act only on the individual login events.

Event Stream Processing (ESP): If the input source is a single event stream, but we
need to act on multiple events in it, then it is named as event stream processing.
For example, a user wants a notification when the weekly withdrawal is more
than 500 Euros. Now, we have an event stream with withdrawal events. For
each week, these events are read. When the sum of withdrawn money exceeds
500 Euro, a notification is generated.

Complex Event Processing (CEP): Complex event processing signifies acting on
multiple events from multiple event streams.

Let’s think of a scenario where we need to notify a driver if there is an accident
ahead of his path. Here, we need one event stream that informs us about any accident
occurring on a specified route, also another event stream informing about the car’s
position at a regular interval. Only with these two event streams, we can determine
if the accident has happened and it is ahead of the car or not. This is an example of
complex event processing.

2.2 Case Management

Talking about case management, let’s first look at the definition of a case.

Case: A Case is a proceeding that involves actions taken regarding a subject in a
particular situation to achieve a desired outcome [8].

The framework of case management represents a complex business process in
smaller process fragments that are easier to understand. The fragments are intercon-
nected by control and data flow. These fragments collectively describe the process
behavior. Depending on each individual scenario, a subset of the fragments can be

159

Sankalita Mandal: Integrating Complex Event Processing to Case Management

chosen for the specific case. During execution, it can be decided based on the path
to follow [6].

The design phase for case management approach is very crucial. Here, the frag-
ments composing predicted path are designed first. Then the exceptional behaviors
are also taken into account and corresponding process fragments are modeled.

The aspects to be considered while designing the fragments can be listed as fol-
lowing:

Standard Procedures This covers the so called ‘happy path’ which should be fol-
lowed if there is no exceptional situation during the process execution.

Variant Procedures In some cases, there can be additional activities to follow or
certain activities to skip during execution. For example, if we consider a process
of accepting a job application at HPI, for some cases, the research school can
directly take the decision. But there can be cases where the applicant is more
suitable for a particular group and the application is therefore forwarded to
the chair.

Optional Procedures Sometimes, there can be some activities which may or may
not be executed depending on the case. In above example of job application at
HPI, if the applicant is from outside Germany, then the process may include
an additional step of residence permit check. For the national applicants, this
activity should be skipped.

3 Motivating Scenario

This section introduces the motivating scenario that runs throughout the paper.
The source of the scenario is the EU project ‘Green European Transportation’ (GET
Service) [3] in which our chair was one of the participants. GET service project came
up with more efficient means for planning transportation in logistic domain thus,
reducing CO2 emission. The scenario presented here is a simpler version of Inland-
Waterway Scenario from the GET project.

According to the current scenario, there are two orders to deliver. They start from
the industrial park in Kechnec and should be delivered at Regensburg. The orders
are transported from Kechnec to the port of Budapest via two different trucks and
then they take the same vessel from Budapest to Regensburg. The order details along
with the start time and delivery deadline are presented in the table below:

Order No. Origin Destination Release Time Delivery Time

1 Kechnec Regensburg Friday 09:00 am Wednesday 09:00 am
2 Kechnec Regensburg Friday 12:00 pm Wednesday 09:00 am

According to the order, an offline plan is made which includes the transportation
details for each of the orders. The offline plan informs about the specific vehicles

160

4 Interaction between CEP and CM

assigned to each order, the source and destination for each part of transportation
and also the estimated time or arrival (ETA) scheduled for each destination. Figure
2 shows all these information and helps to understand the scenario better.

Now, the truck with order 1 starts from Kechnec on Friday at 9:00 am and drives
towards Budapest. The truck with order 2 is ready to start at 12:00 pm. Both of
them should take the vessel that leaves Budapest at 6:00 pm. At 11:00 am, a big
accident takes place on the highway between Miskolc and Budapest. We call it event
‘RoadTrafficDisruption’. The roads get closed due to the accident and it causes 2
hours and 15 min of delay. If we add this delay to the ETA of both of the trucks, then
we see that the truck with order 1 can still reach Budapest before the vessel leaves.
But in case of order 2, the new ETA is 6:15 pm and according to the current plan, it
will miss the vessel. Definitely, we need to re-plan this transportation.

1. Fri 9 am
2. Fri 12 pm

RoadTrafficDisruption
Fri 11 am
Length – 4 hours
Delay – 2:15 hours

1. Fri 1 pm
2. Fri 4 pm

1. Fri 3:15 pm
2. Fri 6:15 pm

Vessel leaves
on Fri 6 pm

Regensburg

Linz

Vienna

Budapest

Kechnec

After the event
RoadTrafficDisruption

Offline Plan

Figure 2: Event ‘RoadTrafficDisruption’ during transportation of orders

The planner gets the information about the event ‘RoadTrafficDisruption’ and re-
plans so that order 2 now does not take the vessel from Budapest. Instead, the truck
drives till port of Vienna and takes the vessel from there.

4 Interaction between CEP and CM

The scenario described above introduces us to the problem space of connecting event
processing and case management. The event ‘RoadTrafficDisruption’ has important
consequences on the transportation process execution.

Using BPMN 2.0 [4], we can model the whole scenario for order 2 as shown in
Figure 3. As we can see, the process is quite long and several activities are being
repeated. First, let’s break down the whole process of transportation via truck and

161

Sankalita Mandal: Integrating Complex Event Processing to Case ManagementComparison of Approaches

Reserve Vessel
from Budapest

Reserve Truck
till Budapest Confirm Truck Drive to Harbor

of Budapest Confirm Vessel Take Vessel

Cancel Vessel
from Budapest

Reserve Vessel
from Vienna

Re-plan
Transportation

Reserve Truck
till Vienna

Drive to Harbor
of Vienna Confirm Vessel Take Vessel

Reserve
Vessel

Reserve
Truck

Confirm
Truck

Drive to
Harbor

Confirm
Vessel

Take
Vessel

Re-plan Adapt Vessel
Reservation

Adapt Truck
Reservation

Plan
Transportation

Re-plan
Transportation

Figure 3: Process model for the motivating scenario

take into account the possible variants of that. If we split the process into smaller
fragments, then we get the fragments described in Figure 4.

Based on the scenario, events can have three types of effects on process fragments.
Each of them is described below:

4.1 Triggering Fragment

In the normal situation, we execute the fragments F1 and F2. But once we get notified
about the event ‘RoadTrafficDisruption’, we need to execute F3 as well. Thus, the
event triggers the execution of a certain process fragment.

4.2 Aborting Fragment

Due to the event ‘RoadTrafficDisruption’, we may need to stop executing some sched-
uled activities like driving to harbor, unloading from truck, loading to vessel etc.
Here, an event can abort execution of one or more fragments.

4.3 Updating Data Object

In our scenario, after re-planning, the truck does not drive to the port of Budapest;
instead it goes to the port of Vienna. Therefore, the fragment with activities ‘Drive
to Harbor’, ‘Confirm Vessel’, ‘and Take Vessel’ is still executed, but the destination,
route, estimated time of arrival etc. are updated according to the new plan. If we
consider the data object ‘Transportation Plan’, then basically, the attribute values of
this data object are updated due to the event occurred.

5 Challenges and Current Approach

Going by the described problem space, there are several questions to answer, several
challenges to overcome. The most important ones are listed below:

162

5 Challenges and Current Approach

Comparison of Approaches

Reserve Vessel
from Budapest

Reserve Truck
till Budapest Confirm Truck Drive to Harbor

of Budapest Confirm Vessel Take Vessel

Cancel Vessel
from Budapest

Reserve Vessel
from Vienna

Re-plan
Transportation

Reserve Truck
till Vienna

Drive to Harbor
of Vienna Confirm Vessel Take Vessel

Drive to
Harbor

Confirm
Vessel

Take
Vessel

Re-plan Adapt Vessel
Reservation

Adapt Truck
Reservation

Plan
Transportation

Re-plan
Transportation

Reserve
Vessel

Reserve
Truck

Confirm
TruckF1

F2

F3

Figure 4: Process fragments for motivating scenario

5.1 Types of events

The first question that we need to address is, ‘What are the relevant events for the
approach?’ According to BPMN 2.0 [4], there are start events, intermediate events, and
end events which can occur at the beginning, during or end of a process, respectively.
Those three event types can again be catching and/or throwing events.

Catching events are events with a specific trigger. We consider they take place
when the trigger is fired. For example, a timer event is fired after a specified time is
over. On the other hand, the throwing events trigger themselves instead of reacting
to a trigger. A throwing message event can be an example of this. Now, there are
various events for each of the categorization start, intermediate or end events and
again sub-categorized by catching or throwing.

There can also be boundary events, which interrupt the execution of an activity
or a sub-process. For example, during the activity ‘Drive to Harbor’ the exception
event ‘RoadTrafficDisruption’ occurs, and it interrupts the ongoing activity.

Figure 5 gives an overview of the different event types included in BPMN 2.0. Now,
it is required to find out the subset of relevant events that can be connected to case
management approach from this vast pool of events. After classifying the BPMN
events by relevance, the next step would be to sketch the exceptional events that
can occur according to the use case at hand. Till now, we have considered only the
‘RoadTrafficDisruption’ event. But there can be, rather there will obviously be other
exceptional events which can take place in the scope of the scenario. For example,
the truck can be broken, the driver can fall sick or there can even be a storm. There
can be events that occur only once, like the accident. But there can also be events
that occur periodically and we need to take action based on that. An example can
be the event notifying the driver taking a break. If we see that the driver is taking

163

Sankalita Mandal: Integrating Complex Event Processing to Case Management

None: Untyped events,
indicate start point, state
changes or final states.

Message: Receiving and
sending messages.

Timer: Cyclic timer events,
points in time, time spans or
timeouts.

Error: Catching or throwing
named errors.

Cancel: Reacting to cancelled
transactions or triggering
cancellation.

Compensation: Handling or
triggering compensation.

Conditional: Reacting to
changed business conditions
or integrating business rules.

Signal: Signalling across differ-
ent processes. A signal thrown
can be caught multiple times.

Multiple: Catching one out of
a set of events. Throwing all
events defined

Link: Off-page connectors.
Two corresponding link events
equal a sequence flow.

Terminate: Triggering the
immediate termination of a
process.

Escalation: Escalating to
an higher level of
responsibility.

Parallel Multiple: Catching
all out of a set of parallel
events.

Start EndIntermediate

Ca
tc

hi
ng

Th
ro

w
in

g

Ev
en

t
Su

b-
Pr

oc
es

s
In

te
rr

up
ti

ng

St
an

da
rd

Ev
en

t
Su

b-
Pr

oc
es

s
N

on
-I

nt
er

ru
pt

in
g

Bo
un

da
ry

In

te
rr

up
ti

ng

Bo
un

da
ry

 N
on

-
In

te
rr

up
ti

ng

St
an

da
rd

Figure 5: Event types according to BPMN 2.0

164

5 Challenges and Current Approach

unusually frequent breaks, then we need to trigger a fragment with activities like
checking if the driver is sick, replacing the driver and so on. Thus, the first step of
the research would be to list and categorize all relevant events for the approach.

5.2 Realization of Fragments

The second challenge in the scope of current research approach would be to realize
the process fragments. There are different aspects to consider in this regard. Some
of them are described below.

Size First of all, we need to determine how to break down a process into efficient
process fragments. There is no specification about the lower/upper bound of activ-
ities in a process fragment. There are unanswered questions like, ‘Do we consider a
single activity as a fragment?’ or ‘What should be the ideal number of activities in one frag-
ment?’. We need to balance between reducing redundancy and grouping connected
activities.

Mode If we think about the scenario stated earlier, the event ‘RoadTrafficDisrup-
tion’ happens when the truck with order 1 is already on its way to Budapest. So,
fragment 2 has already started. Modeling this situation is a difficult task as the event
interrupts the activity and as a result, the whole fragment is being aborted. But af-
terwards, the fragment is executed with the new plan. Now, the question is, ‘What
should be the mode of the fragment before and after the event has happened?’. We need to
think about the appropriate time to enable and disable a fragment. May be, we need
to enable/disable few activities of the fragment instead of the whole fragment.

Order The next question in this series can be, ‘How to determine the order of executing
the fragments?’. According to the current scenario, the fragments were supposed to
be executed with the order F1 → F2. But after the event occurs, the fragments are
executed as following: F1 → F3 → F2. We have to come up with a way to determine
the scheduled order of fragments, change of order due to an event and the means to
model both of them.

5.3 Role of data object

We still need to find out a lot more about the role of data object in the approach, both
from modeling aspect and executing aspect. Generally, the data objects are modeled
in BPMN without their attribute values, as attribute values are determined at instance
level, not model level. In our approach, the specific values will be determined at
instance level as well, but the intended change of certain attribute values may be
generalized over the instances. For example, whenever there is an exceptional event
of road accident, the plan is changed. Now, how the plan changes may be an instance
specific decision by the planner, but the change in the data object ‘Transportation
Plan’ is always there. The solution for modeling the above problem and connecting

165

Sankalita Mandal: Integrating Complex Event Processing to Case Management

events with data object attribute values during execution would be a big challenge
in this case.

5.4 Requirements for integration

After answering the conceptual questions, there will obviously be some technical
challenges while implementing the approach. Included in this challenge will be the
requirements for integrating the existing event processing platform Unicorn [9] and
case management engine Chimera [1] – both developed in our chair, the architecture
of the whole system, the technologies to be used, the input/output specification etc.

6 Conclusion

Case management is an approach where instead of the whole process; the focus
is on smaller process fragments. The emerging trend of systems with event-driven
approach calls for an integration of events with process fragments scoped by indi-
vidual cases. Several aspects are to be considered while both the worlds of events
and processes try to interact with each other, some of them being the selection of
relevant events, their impact on the process fragments and the realization of efficient
splitting of processes into fragments.

References

[1] Chimera. 2014. url: https : / / bpt . hpi . uni - potsdam .de /Public / JEngineDoc (last
accessed 2015-10-01).

[2] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Co.,
2010.

[3] GET Service: Efficient Transportation Planning and Execution. 2015. url: http://
getservice-project.eu/ (last accessed 2015-10-01).

[4] ISO/IEC. 19510:2013: Information technology – Object Management Group Business
Process Model and Notation. International Organization for Standardization,
Nov. 2013.

[5] D. C. Luckham. Event Processing for Business: Organizing the Real-Time Enterprise.
John Wiley & Sons, 2011.

[6] A. Meyer, N. Herzberg, F. Puhlmann, and M. Weske. “Implementation Frame-
work for Production Case Management: Modeling and Execution”. In: Enter-
prise Distributed Object Computing (EDOC). IEEE, 2014, pages 190–199.

[7] H. R. Motahari-Nezhad and K. D. Swenson. “Adaptive Case Management:
Overview and Research Challenges”. In: (2013). doi: http://doi.ieeecomputersoci
ety.org/10.1109/CBI.2013.44.

166

https://bpt.hpi.uni-potsdam.de/Public/JEngineDoc
http://getservice-project.eu/
http://getservice-project.eu/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CBI.2013.44
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/CBI.2013.44

References

[8] OMG. Case Management Model and Notation CMMN. Object Management
Group, May 2014.

[9] UNICORN: A platform for event processing in business process management. 2012.
url: https://bpt.hpi.uni-potsdam.de/UNICORN (last accessed 2015-10-01).

167

https://bpt.hpi.uni-potsdam.de/UNICORN

Exploring Latent Factors in Code Artifacts

Toni Mattis

Software Architecture Group
Hasso-Plattner-Institut

toni.mattis@hpi.uni-potsdam.de

Complex software poses a significant mental challenge when programmers need
to understand which parts of the software interact in which way. Certain high-level
concepts and connections are difficult to study because they might be scattered
across many code artifacts, hidden in non-obvious places or implemented multi-
ple times. We consider how probabilistic models, e.g. the widely used LDA topic
model from natural language processing, can be applied to improve program com-
prehension. We discuss limitations, possible extensions and use cases for applying
these models to source code artifacts.

1 Introduction

In order to understand complex software, tools can help to navigate and visualize
code artifacts and their connections. They may also provide information retrieval and
recommendation capabilities to satisfy the developer’s information need. In order
to be more useful than just showing a class diagram or enable full-text search, these
tools should be based on a semantic model of the source code, which has to deal with
problems like inconsistently named identifiers, missing types, meta-programming,
or functionality which is scattered across numerous modules, so called cross-cutting
concerns.

Natural language has been mined for structures and connections for decades. Among
the most effective techniques to uncover similarities and links between documents
are probabilistic latent factor models, such as the PLSA and LDA topic models. These
will be investigated in the following sections, as they receive a growing attention
from the software engineering community. They could eventually provide tools with
models that can deal with inconsistencies and uncertainty, as in natural language,
give new insights into large code bases and even generate new code.

2 Background

2.1 Probabilistic Models

Probabilistic models describe observable data X by approximating the underlying
real distribution, from which X is a sample, with a function P(X). Most of the time,
these models are parametrized by a set of unobserved (latent) variables Θ, such that
the model describes a formula P(X∣Θ) or P(X, Θ). Depending on the structure of

169

mailto:toni.mattis@hpi.uni-potsdam.de

Toni Mattis: Exploring Latent Factors in Code Artifacts

the model, the values given to Θ often allow to deduce high-level insights into the
data.

Good Fit When discussing a probabilistic model, we consider the objective to
choose parameters which maximize the probability P(X, Θ) or P(X∣Θ) for any ob-
servable X. When a probabilistic model consists of multiple steps and layers, inferring
good parameters is usually solved using step-wise approximations. As the inference
is well understood, we focus only on the models.

2.2 Discriminative and Generative Models

In a probabilistic setting, models come in two flavors: discriminative and generative
models.

Discriminative Models describe the probability distribution of “output” variables
(Y) given the observations (X); they explicitly model P(Y∣X). A well-known discrim-
inative model is Logistic Regression.

Generative Models model the joint probability P(X, Y) of data and latent variables.
They are suited for probability estimation and sampling in both directions, giving
either P(X∣Y) or P(Y∣X) once fitted.

Especially with respect to our goal of assisting the developer, the ability to sample
new data (e.g. example code) from our model is desirable. Therefore, we will focus
on generative models in this work.

2.3 Topic Models

Topic models are the primary technique to detect high-level concepts in text artifacts
based on the words they contain. The central idea is to model a topic as group of
words which frequently occur alongside each other and subsequently assign topics
to each text based on the words it contains.

In a probabilistic setting, topics are (multinomial) distributions over words, assign-
ing each word a probability that it would occur in a text about exactly this topic:

φ = (φ1, φ2, ..., φK)
φk = (pk,w1 , pk,w2 , ..., pk,wV)

where K is the number of topics in the model, φk describes the word distribution in
the k-th topic, pk,wj is the probability of word wj occurring in topic k. Consequently, φ

can be seen as a matrix having a row per topic and a column per word in a vocabulary
of size V. Typically, K is chosen to be much smaller than V.

Text artifacts, also called documents, are also a (multinomial) distribution over
words:

di = (qi,1, qi,2, ..., qi,V)

170

2 Background

where di denotes the i-th document among M distinct documents and qi,w is the
probability of word w occurring in the i-th document. Hence, the document-word-
matrix d has V columns and M rows, making it a very large, sparse matrix.

Common topic models approximate document distributions di as mixture of top-
ics, thus compressing the V-dimensional document vectors to K-dimensional topic
vectors θi, each topic vector describing the weights (or probabilities) θik of each topic
k occurring in the document.

The PLSA Model A common model based on this decomposition of documents
into topics is the Probabilistic Latent Semantic Analysis (PLSA) model [8]. Here, the
topic-word-probabilities φk are interpreted as conditional pk,w = P(w∣φk). The doc-
ument-topic-vectors θi store the conditional probabilities of a topic being selected
given the document: P(φk∣di).

For each word in a document, the probability of the word w occurring in the i-th
document is modeled as the following equation, which represents our decomposition
into k topics:

qi,w = P(w∣di) = ∑
k

P(φk∣di)P(w∣φk)

This represents a process where for each word position in the text of di a topic k is
first sampled from the multinomial distribution θi and subsequently the word w is
sampled from the topic multinomial φk.

PLSA models are usually trained using the Expectation Maximization (EM) algo-
rithm, also Tempered Expectation Maximization (TEM) has proven to generate good
fits.

The LDA Model Latent Dirichlet Allocation (LDA) [2] extends PLSA by modeling
how topic distributions are generated. The LDA model introduces two dirichlet pri-
ors, the K-dimensional α and the V-dimensional β vectors. The document-topic-
mixtures θi are distributed according to Dir(α) and the topic-word-mixtures φk ac-
cording to Dir(β).

The following process describes document generation according to the LDA model:

1. For i ∈ {1, ..., M} choose θi ∼ Dir(α), M being the number of documents.

2. For k ∈ {1, ..., K} choose φk ∼ Dir(β), K being the number of topics.

3. For each word at position j ∈ {1, ..., Ni} in document i ∈ {1, ..., M}, Ni being the
number of words in the i-th document:

a) Choose topic zij ∼ Mult(θi)

b) Choose word wij ∼ Mult(φzij)

where Dir is the Dirichlet and Mult the Multinomial distribution.
Algorithms for fitting the LDA model include variational Bayesian approxima-

tions [2], Gibbs Sampling and Collapsed Gibbs Sampling [20]. The latter is particulary
easy to implement in software.

171

Toni Mattis: Exploring Latent Factors in Code Artifacts

Link-LDA Especially in the context of hypertext, it might be beneficial to capture
links to other documents in the model. One possible extension called Link-LDA [17]
adds extra generation steps to LDA:

1. For each link l in the document i:
a) Choose a link topic zil ∼ Mult(θi)

b) Choose target document dil ∼ Mult(Ωzil)

The newly introduced K ×M-matrix Ω defines the probabilities of a document
being linked by a topic, which is not truly generative anymore as it serves as input
to the model rather than being generated by topics.

Pairwise Citation LDA Pairwise Citation LDA [17] introduces a procedure for
modeling linkage between documents in a more generative fashion. The topic affinity
model η is a K ×K matrix, such that ηz→,z← denotes the probability that there is a link
from topic z→ (source topic) to z← (target topic).

The link-generating procedure adds these steps to the typical LDA procedure:

1. For each document pair (ds, dt):
a) Choose topic z→ ∼ Mult(θs)

b) Choose topic z← ∼ Mult(θt)

c) Generate link ds → dt ∼ Bernoulli(ηz→,z←)

A serious weakness of this model is the high number of potential links (in O(M2))
which makes randomized fitting nearly ineffective and non-randomized approxima-
tions computationally expensive.

Hierarchical Topic Models There are often latent hierarchies embedded in doc-
ument graphs. Such hierarchy denotes a tree H, which is a subgraph of the full
document-link-graph G = (V, E), where one document node droot ∈ V is chosen as
root node of the hierarchy and other nodes di≠root ∈ V select a single incoming vertex
as their parent.

The Hierarchical Document Topic Model (HDTM) [23] models random walks from
the root to a leaf and operates as follows. γ is the probability a random walk restarts
at the root document, η and α are Dirichlet priors to the topic-word and topic-mixture
distributions:

1. For each document i ∈ G choose a topic βi ∼ Dir(η)

2. For each document i ∈ G:
a) Choose path ci ∼ RandomWalk(γ), let L be its length.
b) Choose an L-dimensional topic mixture θi ∼ Dir(α)

c) For each word j ∈ 1, ..., Ni:
i. Choose topic zij ∼ Mult(θi)

172

3 Related Work

ii. Choose word wij ∼ Mult(βcd,zij)where βci ,zij denotes the topic at the
zij-th position in ci

By identifying documents with topics and sampling documents higher up the
hierarchy more often, more general terms will be assigned to more general topics in
the upper hierarchy levels, while more specific terms will end up at the leafs. The
restart probability γ adjusts the tree structure, with high γ resulting in a very flat
hierarchy and low γ resulting in a deep hierarchy.

2.4 Probabilistic Context-free Grammars

Probabilistic Context-free Grammars (PCFGs) [9] are models meant to capture the struc-
ture of textual information.

Normal context-free grammars consist of production rules (→) which map non-
terminals to terminals, non-terminals, the empty string (ε), or any sequence (AB)
or alternative (A∣B) of them. PCFGs assign each alternative a probability vector
indicating the chance of each choice being taken during a parse or while generating
a string. A PCFG thus describes probability distributions over parse trees or strings.

As an example, consider the grammar of balanced parentheses (productions num-
bered for reference):

P →1 PP

P →2 (P)
P →3 ()

By putting high probability on P(→1), one gets a flat, long sequence of parentheses.
Increasing P(→2)will increase the depth of nesting within randomly sampled strings,
and increasing P(→3)will shorten the length of the string.

Learning PCFGs PCFGs can be parametrized by methods such as Markov-Chain
Monte Carlo (MCMC) [10] or spectral methods [6]. When no base grammar is at hand,
a minimal context-free grammar can be constructed from examples using genetic
algorithms or ant colony optimization [1, 12].

3 Related Work

There have been multiple approaches in exposing the high-level structure of source
code to the developer.

3.1 Aspect Mining

Similar to topic models, an aspect mining algorithm tries to group code artifacts into
concerns (with focus on cross-cutting concerns that may impede maintainability) [5, 11,
14]. Most aspect miners employ discriminative models, e.g. clustering of methods

173

Toni Mattis: Exploring Latent Factors in Code Artifacts

according to similarity measures based on call-graph similarity [18, 24], locality
sensitive hashing (LSH) [18], and history [3]. Also execution traces [4] and formal
concept analysis have been employed [22].

Aspect mining results can be consulted to refactor scattered concerns into mod-
ules using aspect-oriented programming (AOP) or context-oriented programming
(COP) [7]. The features used in aspect mining can give insights in which direction
(generative) probabilistic models can be adapted.

3.2 LDA on Code

Linstead et al. [13] have demonstrated the effectiveness of LDA on Java projects. A
source file is treated as a document and words are extracted by tokenizing the source
code into identifiers and filtering out common stop words.

Clean topics, such as database handling (with words “sql”, “database”, “jdbc”)
or file handling (“file”, “path”, “dir”) were apparent. Other concerns related to
server-client-architectures, thread pools, listener-event-structures, JSP templating
and logging were clearly identifiable based on their words.

Tangling and Scattering as Entropy Topics provide a new approach to measure
two important modularity metrics, tangling (amount of functionality in a module)
and scattering (how distributed a concern is), as the information-theoretic entropy of
a document’s topic mixture and the entropy of how a topic is distributed across all
documents [13] .

3.3 HDTM on Code

The Hierarchical Document Topic Model has been applied by McBurney et al. [15,
16] to facilitate automated source code summarization. In contrast to Linstead’s
approach using source files, this approach uses methods as documents. Links are
represented by method invocations. The HDTM model fitted on the JHotDraw source
code has been used to draw the five most important identifiers describing each
method. In a preliminary study, three experienced developers rated the proposed
words according to accuracy and contribution to a method’s understanding, resulting
in good overall ratings.

All in all, HDTM exhibits the potential to improve source code comprehension by
tagging methods with the words that best describe the method’s purpose.

4 Explaining Code

Motivated by the promising preliminary research in the area of employing latent
factor models to code, the main questions are how to adapt the existing models to
better fit the structure of code and how to employ them in tools.

174

4 Explaining Code

4.1 Limitations and Possible Extensions of NLP Models

PLSA, LDA, its extensions, and HDTM originate from the analysis of natural lan-
guage. They exhibit a range of limitations in their expressive power when applied
to code, which suggests numerous possible improvements.

Structure Preservation In order to apply the models to source code, its structure
must be flattened to match the notion of a document. Hence, none of the models
is capable of explaining the structure of code. Also, it is unclear where document
boundaries can be drawn: around a statement, a method, a class, or a source file?

An obvious choice might be the incorporation of PCFGs, which can encode the
underlying grammar of the language and thus be able to reproduce syntactically
valid code. Also, a topic model based on production probabilities rather than word
distributions seems like an interesting choice to be explored.

Static Structure and Dynamic Behavior There is no concept yet which captures
behavior seen at runtime alongside static source code. Especially models using ran-
dom walks, e.g. HDTM, can easily be extended by replacing the random walk part
with actual execution traces.

Code History and Authorship Source code artifacts often have multiple versions,
which in turn are associated with developers. Extending models to consider the
evolution of a code artifact, e.g. by modeling code updated at the same time as
closely related, might be useful. Adding temporal factors to a topic model might offer
additional use cases, e.g. grouping commits according to their topic, or determining
which authors are specialized in which topic.

Auxiliary Artifacts Auxiliary artifacts, such as commit messages, related tickets in
an issue tracker, hand-written documentation, or questions and answers on a Q&A
platform, are often written in natural language and contain important information
about the code related to these artifacts. Including these texts as side-information
into probabilistic code models might not only improve topics, hierarchies and other
latent factors, but also cluster and correlate all auxiliary artifacts in a way that can
be useful to the developer.

4.2 Use Cases

A number of potential use cases that benefit from improved, code-aware models, can
be imagined:

Navigation Navigation tools may, instead of showing the apparent structure of
packages, classes and methods, also offer latent topical and hierarchical views on the
system, allowing the developer to navigate code that is similar or related to certain
topic, or to learn about some high-level connections inside a large code base. For an
example of how such navigation can be presented to the user, see Figure 1. Auxiliary

175

Toni Mattis: Exploring Latent Factors in Code Artifacts

Figure 1: Proposed presentation of a code hierarchy (left) and a topic hierarchy (right)
with topics and dependencies highlighted

information drawn from commit messages, tickets and authors may be displayed
and support navigation and high-level system comprehension.

Code Artifact Recommendation Code recommendation can occur at multiple lev-
els of immediacy, ranging from in-line code completion, over alerts popping up, to the
use of external tools to explicitly obtain a recommendation [21]. Some of them may
benefit from improved models, e.g. a context-aware code completion might rank
proposed methods more prominently that are more probable in the current context.

Duplication prevention can recommend code which does a similar thing as the
developer is currently trying to implement.

Aspect Recommendation can possibly be improved by probabilistic models to rec-
ommend code passages that may be refactored into layers, aspects or simply into a
separate class.

Information Retrieval Related to code recommendation are use-cases where the
developer explicitly formulates a question to the system. Questions that can be an-
swered using latent probabilistic models are for example:

• How do I use this data type/method/API?

• How did the code that implements certain concern change over time?

• Which developers know most about certain code?

• How do unit tests look like for this kind of functionality?

• Has someone else already written code similar to this one?

• Which code artifacts might be related to a ticket?

Synonym Detection and Homonym Disambiguation Synonyms (different words
having the same meaning) and Homonyms (same words having different meanings)
make both navigation and understanding of source code difficult. Probabilistic mod-
els can detect which words probably occur interchangeably, e.g. if the user searches

176

5 Conclusion

for usages of “offset”, the search might also find ”index” and ”position”. Also, if an
overloaded term is searched, e.g.“lines”, the model may reveal whether this means
“number of lines” or an actual collection of lines.

Inferring Unobserved Types Especially when test coverage is limited, tools for
dynamic languages have difficulties inferring which types the programmer is dealing
with in the current context. Execution traces, e.g. from test runs, can be used to
harvest type information. Probabilistic models can subsequently help to infer most
probable types and other dynamic information for unobserved code based on what
has been seen during execution of other parts of the system.

Cross-Language Operations Topic models can be trained on multiple languages
simultaneously, allowing cross-language recommendation and retrieval of code arti-
facts. Especially in the context of domain-specific languages (DSLs) a language-agnostic
semantic code model can extend the capabilities of current DSL tools. Also, trans-
lation into other DSLs or natural language, like demonstrated by Oda et al. [19] can
benefit from probabilistic models.

5 Conclusion

Probabilistic models originating from natural language processing can be augmented
to give new insights into code bases and allow new and improved variants of devel-
opment tools. Especially generative models are particularly interesting and start to
gain traction in the domain of software engineering. We observe a wide range of yet
unexplored extensions and usage scenarios of such models. Which of them actually
improve the current state of the art in software engineering has yet to be explored.

References

[1] F. Benz and T. Kötzing. “An Effective Heuristic for the Smallest Grammar Prob-
lem”. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation. GECCO ’13. New York, NY, USA: ACM, 2013, pages 487–494. doi:
10.1145/2463372.2463441.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. “Latent Dirichlet Allocation”. In: J. Mach.
Learn. Res. 3 (2003), pages 993–1022.

[3] S. Breu and T. Zimmermann. “Mining Aspects from Version History”. In: 21st
IEEE/ACM International Conference on Automated Software Engineering, 2006.
ASE ’06. Sept. 2006, pages 221–230. doi: 10.1109/ASE.2006.50.

[4] S. Breu and J. Krinke. “Aspect Mining Using Event Traces”. In: Proceedings of the
19th IEEE International Conference on Automated Software Engineering. ASE ’04.

177

http://dx.doi.org/10.1145/2463372.2463441
http://dx.doi.org/10.1109/ASE.2006.50

Toni Mattis: Exploring Latent Factors in Code Artifacts

Washington, DC, USA: IEEE Computer Society, 2004, pages 310–315. doi: 10.
1109/ASE.2004.12.

[5] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. “Ap-
plying and combining three different aspect Mining Techniques”. In: Software
Quality Journal 14.3 (Sept. 2006), pages 209–231. doi: 10.1007/s11219-006-9217-3.

[6] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. “Spectral Learning
of Latent-variable PCFGs: Algorithms and Sample Complexity”. In: J. Mach.
Learn. Res. 15.1 (Jan. 2014), pages 2399–2449.

[7] R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-oriented program-
ming”. In: Journal of Object Technology 7.3 (2008).

[8] T. Hofmann. “Probabilistic Latent Semantic Indexing”. In: Proceedings of the
22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval. SIGIR ’99. New York, NY, USA: ACM, 1999, pages 50–57.
doi: 10.1145/312624.312649.

[9] M. Johnson. “PCFGs, Topic Models, Adaptor Grammars and Learning Topical
Collocations and the Structure of Proper Names”. In: Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics. ACL ’10. Strouds-
burg, PA, USA: Association for Computational Linguistics, 2010, pages 1148–
1157.

[10] M. Johnson and T. L. Griffiths. “Bayesian inference for PCFGs via Markov
chain Monte Carlo”. In: In Proceedings of the North American Conference on Com-
putational Linguistics (NAACL ’07). 2007.

[11] A. Kellens, K. Mens, and P. Tonella. “A Survey of Automated Code-Level
Aspect Mining Techniques”. In: Transactions on Aspect-Oriented Software De-
velopment IV. Edited by A. Rashid and M. Aksit. Lecture Notes in Computer
Science 4640. Springer Berlin Heidelberg, 2007, pages 143–162.

[12] B. Keller and R. Lutz. “Evolutionary induction of stochastic context free gram-
mars”. In: Pattern Recognition. Grammatical Inference 38.9 (Sept. 2005), pa-
ges 1393–1406. doi: 10.1016/j.patcog.2004.03.022.

[13] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi. “Mining Concepts
from Code with Probabilistic Topic Models”. In: Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering. ASE ’07.
New York, NY, USA: ACM, 2007, pages 461–464. doi: 10.1145/1321631.1321709.

[14] M. Marin, L. Moonen, and A. van Deursen. “A common framework for aspect
mining based on crosscutting concern sorts”. In: 13th Working Conference on
Reverse Engineering, 2006. WCRE ’06. Oct. 2006, pages 29–38. doi: 10.1109/WCRE.
2006.6.

[15] P. W. McBurney, C. Liu, C. McMillan, and T. Weninger. “Improving Topic
Model Source Code Summarization”. In: Proceedings of the 22Nd International
Conference on Program Comprehension. ICPC 2014. New York, NY, USA: ACM,
2014, pages 291–294. doi: 10.1145/2597008.2597793.

178

http://dx.doi.org/10.1109/ASE.2004.12
http://dx.doi.org/10.1109/ASE.2004.12
http://dx.doi.org/10.1007/s11219-006-9217-3
http://dx.doi.org/10.1145/312624.312649
http://dx.doi.org/10.1016/j.patcog.2004.03.022
http://dx.doi.org/10.1145/1321631.1321709
http://dx.doi.org/10.1109/WCRE.2006.6
http://dx.doi.org/10.1109/WCRE.2006.6
http://dx.doi.org/10.1145/2597008.2597793

References

[16] P. W. McBurney and C. McMillan. “Automatic Documentation Generation via
Source Code Summarization of Method Context”. In: Proceedings of the 22nd

International Conference on Program Comprehension. ICPC 2014. New York, NY,
USA: ACM, 2014, pages 279–290. doi: 10.1145/2597008.2597149.

[17] R. M. Nallapati, A. Ahmed, E. P. Xing, and W. W. Cohen. “Joint latent topic
models for text and citations”. In: Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, 2008, pages 542–
550.

[18] T. T. Nguyen, H. V. Nguyen, H. A. Nguyen, and T. N. Nguyen. “Aspect Rec-
ommendation for Evolving Software”. In: Proceedings of the 33rd International
Conference on Software Engineering. ICSE ’11. New York, NY, USA: ACM, 2011,
pages 361–370. doi: 10.1145/1985793.1985843.

[19] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura.
“Learning to Generate Pseudo-code from Source Code using Statistical Ma-
chine Translation”. In: 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). Lincoln, Nebraska, USA, Nov. 2015.

[20] Z. Qiu, B. Wu, B. Wang, C. Shi, and L. Yu. “Collapsed Gibbs Sampling for
Latent Dirichlet Allocation on Spark”. In: Journal Machine Learning Research 36
(2014), pages 17–28.

[21] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, editors. Recom-
mendation Systems in Software Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014.

[22] P. Tonella and M. Ceccato. “Aspect mining through the formal concept analysis
of execution traces”. In: 11th Working Conference on Reverse Engineering, 2004.
Proceedings. Nov. 2004, pages 112–121. doi: 10.1109/WCRE.2004.13.

[23] T. Weninger, Y. Bisk, and J. Han. “Document-topic Hierarchies from Document
Graphs”. In: Proceedings of the 21st ACM International Conference on Information
and Knowledge Management. CIKM ’12. New York, NY, USA: ACM, 2012, pa-
ges 635–644. doi: 10.1145/2396761.2396843.

[24] C. Zhang and H.-A. Jacobsen. “Efficiently Mining Crosscutting Concerns
Through Random Walks”. In: Proceedings of the 6th International Conference on
Aspect-oriented Software Development. AOSD ’07. New York, NY, USA: ACM,
2007, pages 226–238. doi: 10.1145/1218563.1218588.

179

http://dx.doi.org/10.1145/2597008.2597149
http://dx.doi.org/10.1145/1985793.1985843
http://dx.doi.org/10.1109/WCRE.2004.13
http://dx.doi.org/10.1145/2396761.2396843
http://dx.doi.org/10.1145/1218563.1218588

Adaptive Data Structure Optimization for
Evolving Dynamic Programming Languages

Tobias Pape

Software Architecture Group
Hasso-Plattner-Institut

tobias.pape@hpi.uni-potsdam.de

Dynamic programming languages evolve over time. Using meta-programming
is a common way of implementing new concepts that may ease the implementa-
tion and maintenance of large systems. However, these meta-level constructs can
cause a performance overhead, as most execution environments are optimized for
non-meta–level programs— with a potential impact on the programs using it. To
alleviate this, a common approach is to adapt the execution environment, resorting
to lower-level implementation means, handling special cases and optimizations for
each new language element for better performance. On the other hand, program-
ming language implementations are harder to maintain with every new special
case for a certain feature. With adaptive data structure optimizations, that take
ordinary, generic data structures and optimize them in the execution environment,
no special cases in the execution environment nor in the programming language
are necessary to obtain acceptable performance when using meta-level facilities to
implement new programming concepts.

1 Introduction

Few programming languages remain unchanged over time. New concepts of pro-
gramming, paradigms and methodologies, require adaption to languages and, hence,
their implementations. The typical implementation process for programming lan-
guages, however, is complex, since a large number of programming languages are
written in lower-level languages such as C or C++ mainly for reasons of perfor-
mance. This holds especially for dynamic languages that typically run hosted on a
Virtual Machine (vm). Sophisticated memory management, garbage collector (gc),
multi-stage interpreters and just-in-time (jit) compilers are complex tasks common to
typical dynamic language vms. These can make implementation complicated. More-
over, these implementations commonly have large dimensions. For example, the
jdk8 implementation of Java amounts to half a million lines of code C/C++/Java
and the V8 implementation of JavaScript to one million lines of C++, even excluding
commentary. The sheer size is a challenge to the maintainability of programming
language implementations and actually make the implementation of new concepts,
language features, or changed semantics expensive, if not error prone.

On the other hand, dynamic programming languages typically have meta-level
programming facilities that allow changing the language “from within”. As such
meta-level programs are written in the same high-level, dynamic language for which
they are written, they can benefit from already present concepts from automatic

181

mailto:tobias.pape@hpi.uni-potsdam.de

T. Pape: Adaptive Data Structure Opt. for Evolving Dynamic Programming Languages

memory management to extensive standard libraries, to name a few. Typically, these
meta-level implementations of programming language elements and features have
worse performance characteristics when compared with lower-level, in-vm imple-
mentations. There are several reasons for this. First, vm implementations often as-
sume that programs do not change much during their execution, yet meta-level
programs typically do exactly that, change the program. When meta-level programs
are rare, this is typically no problem for program performance. However, implement-
ing whole paradigms using meta-level facilities can lead to often-changing code. An
example is the Squeak/Smalltalk implementation of context-oriented programming
(cop) [14], ContextS, that uses meta-level handler of Squeak/Smalltalk to alter control
flow based on contextual information; the performance impact is substantial [1]. The
experience for other languages, such as JavaScript, Python, or Ruby has been simi-
lar. Second, beyond changing programs at execution time, meta-level programs for
language concepts typically rely on layering behavior and data structures to alter or
enhance existing language behavior or data structures, respectively. The application
of Design by Contract (dbc) to the Racket language, a Scheme dialect, for example,
has been done in a pure meta-level fashion. Yet a single contract for a procedure
resulted in several hundred layered procedures [2]. Third, vm-level implementations
allow introducing special cases new for language features and subsequently provid-
ing better performance. This has been done for context-oriented programming (cop)
changes to a Java vm [13] and was proposed for dbc-support in Python.

We argue that fast generic vm optimizations, such as adaptive data structure opti-
mizations [18] can alleviate the performance impact of meta-level implementations
of programming language elements and support the evolution of dynamic program-
ming language in a maintainable fashion.

2 Background

We provide some background information on selected programming language ex-
periments as considered in this work and tracing jit compilers

Design by Contract Design by contract [16] is a view on programming that aug-
ments typical declarations of state (for example, abstract data types) and behavior
(for example, functions or method) with executable pre- and post-conditions. Origi-
nally part of the Eiffel language, several “native” implementations exist, for example
in D, Fortess, or Clojure, but also as libraries, for example in Java, Common Lisp, or
Racket, to name a few.

Context-oriented Programming Context-oriented Programming [14] provides a
means for software modularity to cope with shortcomings of software decomposition
dominated by one design factor. As such, cop focuses of the dynamic nature of
software decomposition, taking in account dynamic stimuli to activate and deactivate
specific control flow paths within one application while at the same time collocating
the implementation of this context-dependent behavior.

182

3 Adaptive Data Structure Optimizations

Meta-tracing JITs Tracing just-in-time (jit) compilers [3, 11, 17] optimize appli-
cations by observing the actual actions carried out by the program, recording, and
optimizing these action for subsequent re-use. Meta-tracing jits [6] differ in the appli-
cation observed: rather than recording for the actual application, the programming
language’s interpreter is observed, making it possible to provide rather generic opti-
mizations a broad range from applications and even programming languages can
benefit from. For example, the meta-tracing jit from the RPython toolchain pow-
ers implementations of Python (PyPy), Ruby (Topaz), PHP (HippyVM), Smalltalk
(RSqueak), or statically typed languages such as Haskell (PyHaskell), to name a few.

3 Adaptive Data Structure Optimizations

Experience with language implementations mentioned above shows that new con-
structs or language elements are typically implemented with simple data structures
provided by the runtime environment. This contrasts the “special-casing” approach
that is typical when using the vm level for implementations Hence, providing a higher
performance for generic data structures and faster execution for generic behavior
should lower the impact of language element implementation on the meta-level.

Our approach of adaptive data structure optimization [18] shows that the overhead
of more delegation-based data structures, such as trees and lists, can be reduced so
much that other data structured such as vectors can be avoided.

3.1 Approach

Our optimization detects common patterns of how data structures objects reference
each other. It then introduces short forms for these patterns, which we call shapes,
that make it possible to represent these patterns more efficiently in memory.

A straightforward object representation would be a chunk of memory that stores
pointers to all the fields. We call the contents storage. A descriptor contains informa-
tion how many fields there are and how they are to be interpreted. This representa-
tion corresponds to the programmers’ view.

In our approach, the storage area remains, but the descriptor is replaced by a
shape. Like in the regular representation, the shape determines the meaning of
its contents. There is a default shape that has no additional information compared
to the straightforward representation. If the default shape was always used, the
representation would be completely equivalent to the straightforward one. The dif-
ference to the straightforward representation is that a shape can additionally describe
the shape of referenced objects, recursively. If a referenced object’s shape is not
specified in the referencing object’s shape, it is stored as a reference in the storage.
If the shape is specified, that object’s content is inlined into the referencing object’s
storage. This process can be applied recursively.

To actually save memory, a shape has to be shard by as many objects as possible.
Indeed, if every shape was used by only one object, the memory use is not improved.

183

T. Pape: Adaptive Data Structure Opt. for Evolving Dynamic Programming Languages

Therefore, a new shape must only be introduced after runtime profiling makes sure
that it occurs often enough.

3.1.1 Shapes and Recognition
A shape describes the abstract, structural representation of composite objects and is
shared between all identically structured objects. Shapes are recursive; they consist
of sub-shapes for each field in an object’s storage. A special type of shapes denotes
unaltered access to object content and termination of shape recursion. Objects with
these shapes are treated as black boxes, for example, scalar data or unoptimized
objects, they are stored directly in the storage. Storing the shape of objects may seem
redundant given that the shape matches what it tries to describe. This only holds as
long as no optimization has taken place. In this case, a object’s shape is the default
shape of its class and solely consist of direct access sub-shapes. Further, a mapping of
replacement options for inlining (the transformation rules), and profiling data built
up during object creation to aid the creation of new transformation rules (the history)
are supplementary structures that we use to aid the inlining process.

The immutability of objects demands that all to-be-referenced objects that will
constitute its content have already been constructed beforehand. Hence, their shapes
will be available at construction time and we can count occurrences of sub-shapes
at specific positions in the object. That way, we obtain a histogram of all possible
shapes a referenced object can have. When a certain threshold of encounters has
been reached, we generate a new transformation rule.

The transformation rules are mapping that drive the inlining process. When con-
structing a new object, they are consulted by the inlining algorithm. These mappings
can be specified prior to program execution or inferred dynamically based on shape
history.

Upon object creation, just after updating the shape history, we check whether the
sub-shape counters hit a certain threshold, and if so, proceed to create a new shape
that combines the object’s current shape with the sub-shape that hit the threshold. In
this new shape, we replace the direct access sub-shape at the position of the threshold
hit with the sub-shape found in the history entry. The position of the hit, the sub-
shape at that position, and the newly created shape are then recorded as new rule
in the transformations table.

We call the process of recording the shape history and inferring transformation
rules shape recognition.

3.1.2 Compaction
Since objects are immutable, compaction does only need to happen when creating
new ones. With this premise, our optimization technique works by inlining the to-
be-referenced objects into the to-be-created object upon its creation. The effect of
this process is shown simplified with the example in Figure 1: creating a new node
consisting of “1” and a rest list as in the figure. We start with a list of “1” and the rest
list as initial content for the new object and a default shape. We iterate over the list and
encounter “1” at position 0. For this example, we assume that the transformation table
does not contain a mapping for “1” at position 0 and continue to the next position. At

184

3 Adaptive Data Structure Optimizations

2
1 3 n

⊥
1 + 2 3

⊥
n

◊ ◊
Node/2

◊ ◊
Node/2Node/2

◊ ◊
◊

Figure 1: When creating a new node object that should contain “1” and the list as
shown, a new object that merges the “1” with the “2” object and a different shape
is created instead.

position 1, we find the rest list with the sub-shape we have a transformation rule for.
Thus, we inline the current object’s storage into the current content with now three
elements. Crucially, the shape of the rest list remains unchanged while the shape of
the to-be-created object is replaced.

The shape of thusly optimized objects are themselves subject to the shape recogni-
tion process and eventually, transition rules to more optimized shapes can be created
in the default shapes for the classes. Thus, more specific shapes are directly avail-
able for the inlining process. Objects can be more directly transitioned into the most
optimized shape compared to working off a long transition chain.

This inlining technique has two main advantages. First and foremost, inlined ob-
jects take up less space than individual, inter-referenced objects. But even more, the
shape of a object provides structural information in a manner the meta-tracing jit
compiler can speculate on. This is crucial for optimizing the access to references of a
object.

3.1.3 Transparent Field Access
While optimization of data structures takes place during construction, we have to
apply the reverse during deconstruction, that is, when accessing a object referenced
by another. This is no longer trivial, as several (formerly referenced) object may
have been inlined into their referencing objects. Therefore, we construct new objects
whenever a reference is navigated, essentially reifying it. We use the information a
object’s shape provides to identify which parts of the object’s storage comprise the
object to be reified. The structural information allows a direct mapping from the
language view of the data structure to the actually stored elements.

3.2 Implementation and Results

We implemented our optimization approach in a simple execution model. It provides
a λ-calculus with pattern matching as sole control structure and is implemented as
a direct application of the control, environment, and continuation (cek)-machine [9].
We used the RPython tool chain to incorporate its meta-tracing jit compiler [4].

Our implementation has to interact with the jit compiler. The first step is to treat
the transformation tables as constant, which allows to compile object creation down
to a series of type checks for the types of the referenced objects. Second, we have to
avoid the otherwise necessary reification of referenced objects when it is being read

185

T. Pape: Adaptive Data Structure Opt. for Evolving Dynamic Programming Languages

0

2

4

6

8

10

12

14

16

18

20

append filter map reverse tree

E
x
e
c
u

ti
o

n
 t

im
e
 (

s
)

Implementation

Prototype

OCaml

Racket

Pycket

Pypy

0
1

3

5

7

9

11

13

15

append filter map reverse tree

M
e
m

o
ry

 c
o

n
s
u

m
p

ti
o

n
 (

G
B

)

Implementation

Prototype

OCaml

Racket

Pycket

Pypy

Figure 2: Benchmarking results. Each bar shows the arithmetic mean of ten runs for
execution time (left) and memory consumption (right). Lower is better

from a object it has been inlined into. For that, the observation that most of these
intermediate objects are actually short-lived is crucial; most object are created just
to be either immediately discarded or consumed in another, typically larger data
structure. This allows the tracing jit compiler to optimize the reading of fields that
need reification. Since the objects allocated when reifying a field are short-lived, the
built-in escape analysis [5] will fully remove their allocation and thus remove the
overhead of reification.

We tested five micro-benchmarks with our implementation and investigated their
execution time and their maximal memory consumption (resident set size): append,
filter, map, and reverse on very long linked lists and creation/complete traversal of
a binary tree. In the left part of Figure 2, the execution time of all benchmarks is
reported. Our implementation, labeled prototype ○ , is significantly faster — from
two to ten times faster— for all but the tree benchmark, where our implementation
is second to just the ahead-of-time (aot) compiled OCaml version. For memory
consumption, shown in the right part of Figure 2, our implementation always uses
significantly less memory than the other implementations.

Impact The results suggest that the otherwise typical overhead of deeply nested
structures can be remedied. Pure delegation based systems, for example delegation-
based multi-dimensional separation of concerns (delMDSOC) [19], create exactly
such structures to facilitate the implementation of concepts like cop. It seems now
possible to provide feasible and performant implementations of cop on the meta-level
using this approach.

3.3 Fast Enough jits for Meta-level

The meta-tracing jit compiler — as employed to drive the implementation of our
approach— has already proven itself to be useful to support meta-level language
concept implementations in selected cases. This includes the implementation of
Pycket [2], an implementation of the Racket [10] language. The careful optimization

186

4 Related Work

Table 1: Benchmark times (in ms)

Pycket ± Racket ±

Bubble
direct 564 5 1384 4
chaperone 656 6 6668 5

Church
direct 656 10 1243 6
chaperone 5280 53 38497 66

Struct
direct 114 1 527 0
chaperone 116 1 5664 68

ODE
direct 2113 33 5476 91
contract 2564 31 12235 128

Binomial
direct 1371 19 2931 24
contract 17563 112 52827 507

of certain basic structures (loop finding)
of the Racket language reduced the over-
head of the Racket-level dbc implementa-
tion with Chaperones, stand-in objects that
check contracts upon procedure invocation.
In Table 1 we present execution times for
micro-benchmarks, testing the chaperone
implementation, and macro-benchmarks
that measure the impact of contracts on
larger programs. While the impact of the
new construct (chaperone/contract) tend
to be substantial (up to 30 times slower),
the implementation with meta-tracing jit
can mitigate this impact to a maximum of
13 times slower. For some benchmarks, the
overhead is nearly completely eliminated.

We now consider the meta-tracing jit to be powerful enough to just eliminate the

overhead of several often used yet simple data structures and behavioral patterns
that tend to be used in today’s programming language experiments. Especially the
adaptive data structure approach suggest that commonly used proxy patterns for
delegation could be used without the now typical overhead. Yet, the requirements
on the language level to create a synergy with the vm level optimizations still require
more in-depth investigation.

4 Related Work

Homogeneous Collection Specialization Storage strategies [7] have similar goals
as adaptive data structure optimization and in fact benefit from one another. While
they target different data structures, they are similar in spirit. The effect of storage
strategies on meta-level implemented language concepts remains future work.

vm Frameworks and Language Evolution With the Klein VM [21], the Truffle VM
framework and its Substrate VM approach [23], or the VMKit [12], there are ef-
forts to on one hand ease the implementation of vms, making fast, approachable
programming language implementations feasible. While being similar in spirit, this
work approaches the augmentation of programming languages and experimentation
with new concepts on the level of the programming language itself rather than at
the vm level.

The concept of meta-object protocols [15] approaches the augmentability of pro-
gramming languages in terms of that very same language. However, typical imple-
mentations of meta-object protocols incur performance penalties when used heavily,
as might be necessary for new programming language concepts and experiments.

187

T. Pape: Adaptive Data Structure Opt. for Evolving Dynamic Programming Languages

Data Structure Optimization Wimmer has proposed object inlining [22] as a gen-
eral data structure optimization for structured objects in Java. Superficially, this
approach is similar to this work, yet object inlining is restricted to statically typed
object oriented languages like Java, as the approach needs full knowledge of all class
layouts.

The idea to improve data structures to gain execution speed was proposed espe-
cially to improve operations on linked lists in functional languages, for example by
unrolling [20]. Typically, those optimizations are restricted to linked lists.

One of the key effects in our optimization is avoiding to allocate intermediate data
structures. In that respect, hash consing [8], as used in functional languages for a long
time, is related to this work. However, hash consing typically works at the language
level using libraries, coding conventions, or source-to-source transformations. It is
not adaptable at runtime.

5 Outlook

Generic vm optimizations are yet at an early stage of development, however, we con-
sider the findings of previous work compelling enough to generalize the approaches
taken by the adaptive data structure and Racket implementation examples and try-
ing to transplant the findings from each to the other to find synergies and common
patterns.

Following that, existing benchmarks from both approaches should give insight to
what extent precisely other generic vm optimizations are feasible. Given they are at
least as feasible as each approach on its own, we expect to apply the optimizations
to other meta-tracing based implementations to then implement programming lan-
guage concepts, such as cop, to assess specifically whether generic vm optimization
meet their goal at facilitating programming-language level language experiments.

References

[1] M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid. “A Com-
parison of Context-oriented Programming Languages”. In: COP ’09: Interna-
tional Workshop on Context-Oriented Programming. Genova, Italy: ACM, 2009,
pages 1–6. doi: 10.1145/1562112.1562118.

[2] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Krilichev, T. Pape, J. Siek, and S. Tobin-
Hochstadt. “Pycket: A Tracing JIT For a Functional Language”. In: Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming.
ICFP ’15. to appear. Vancouver, British Columbia, Canada: ACM, 2015.

[3] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte, N. Tillmann,
and H. Venter. “SPUR: A Trace-based JIT Compiler for CIL”. In: SIGPLAN
Notices 45.10 (Oct. 2010), pages 708–725. doi: 10.1145/1932682.1869517.

188

http://dx.doi.org/10.1145/1562112.1562118
http://dx.doi.org/10.1145/1932682.1869517

References

[4] C. F. Bolz. “Meta-tracing just-in-time compilation for RPython”. PhD thesis.
Mathematisch-Naturwissenschaftliche Fakultät, Heinrich Heine Universität
Düsseldorf, 2012.

[5] C. F. Bolz, A. Cuni, M. Fijałkowski, M. Leuschel, S. Pedroni, and A. Rigo. “Allo-
cation Removal by Partial Evaluation in a Tracing JIT”. In: Proceedings of the 20th
ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation. PEPM
’11. Austin, Texas, USA: ACM, 2011, pages 43–52. doi: 10.1145/1929501.1929508.

[6] C. F. Bolz, A. Cuni, M. Fijałkowski, and A. Rigo. “Tracing the Meta-level: PyPy’s
Tracing JIT Compiler”. In: Proceedings of the 4th Workshop on the Implementation,
Compilation, Optimization of Object-Oriented Languages and Programming Systems.
ICOOOLPS ’09. Genova, Italy: ACM, 2009, pages 18–25. doi: 10.1145/1565824.
1565827.

[7] C. F. Bolz, L. Diekmann, and L. Tratt. “Storage Strategies for Collections in
Dynamically Typed Languages”. In: Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages & appli-
cations. OOPSLA ’13. Indianapolis, Indiana, USA: ACM, 2013, pages 167–182.
doi: 10.1145/2509136.2509531.

[8] A. P. Ershov. “On Programming of Arithmetic Operations”. In: Communications
of the ACM 1.8 (Aug. 1958), pages 3–6. doi: 10.1145/368892.368907.

[9] M. Felleisen and D. P. Friedman. “Control operators, the SECD-machine and
the λ-calculus”. In: Proceedings of the 2nd Working Conference on Formal De-
scription of Programming Concepts Pt. III. Edited by M. Wirsing. Elsevier, 1987,
pages 193–217.

[10] M. Flatt. Reference: Racket. Technical report PLT-TR-2010-1. PLT Design Inc.,
2010.

[11] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B.
Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W. Smith, R. Reit-
maier, M. Bebenita, M. Chang, and M. Franz. “Trace-based Just-in-time Type
Specialization for Dynamic Languages”. In: SIGPLAN Notices 44.6 (June 2009),
pages 465–478. doi: 10.1145/1543135.1542528.

[12] N. Geoffray, G. Thomas, J. Lawall, G. Muller, and B. Folliot. “VMKit: A Sub-
strate for Managed Runtime Environments”. In: SIGPLAN Notices 45.7 (Mar.
2010), pages 51–62. doi: 10.1145/1837854.1736006.

[13] M. Haupt. “Virtual Machine Support for Aspect-Oriented Programming Lan-
guages”. PhD thesis. Software Technology Group, Darmstadt University of
Technology, 2006.

[14] R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-oriented Program-
ming”. In: Journal of Object Technology 7.3 (2008), pages 125–151.

[15] G. Kiczales, J. Des Rivieres, and D. G. Bobrow. The art of the metaobject protocol.
MIT press, 1991.

189

http://dx.doi.org/10.1145/1929501.1929508
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/2509136.2509531
http://dx.doi.org/10.1145/368892.368907
http://dx.doi.org/10.1145/1543135.1542528
http://dx.doi.org/10.1145/1837854.1736006

T. Pape: Adaptive Data Structure Opt. for Evolving Dynamic Programming Languages

[16] B. Meyer. “Design by Contract”. In: Advances in Object-Oriented Software En-
gineering. Edited by D. Mandrioli and B. Meyer. Prentice Hall, 1991, pages 1–
50.

[17] J. G. Mitchell. “The Design and Construction of Flexible and Efficient Inter-
active Programming Systems”. PhD thesis. Pittsburgh, PA, USA: Carnegie
Mellon University, 1970.

[18] T. Pape, C. F. Bolz, and R. Hirschfeld. “Adaptive Just-in-time Value Class Opti-
mization: Transparent Data Structure Inlining for Fast Execution”. In: Proceed-
ings of the 30th Annual ACM Symposium on Applied Computing. Volume 2. SAC
’15. Salamanca, Spain: ACM, 2015. doi: 10.1145/2695664.2695837.

[19] H. Schippers, T. Molderez, and D. Janssens. “A graph-based operational se-
mantics for context-oriented programming”. In: Proceedings of the 2nd Interna-
tional Workshop on Context-Oriented Programming. ACM. 2010, page 6.

[20] Z. Shao, J. H. Reppy, and A. W. Appel. “Unrolling lists”. In: SIGPLAN Lisp
Pointers VII.3 (July 1994), pages 185–195. doi: 10.1145/182590.182453.

[21] D. Ungar, A. Spitz, and A. Ausch. “Constructing a metacircular Virtual ma-
chine in an exploratory programming environment”. In: Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications. OOPSLA ’05. San Diego, CA, USA: ACM, 2005, pa-
ges 11–20. doi: 10.1145/1094855.1094865.

[22] C. Wimmer. “Automatic object inlining in a Java virtual machine”. PhD thesis.
Linz, Austria: Johannes Kepler Universität, 2008.

[23] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G.
Richards, D. Simon, and M. Wolczko. “One VM to Rule Them All”. In: Pro-
ceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software. Onward! ’13. Indianapolis, Indiana,
USA: ACM, 2013, pages 187–204. doi: 10.1145/2509578.2509581.

190

http://dx.doi.org/10.1145/2695664.2695837
http://dx.doi.org/10.1145/182590.182453
http://dx.doi.org/10.1145/1094855.1094865
http://dx.doi.org/10.1145/2509578.2509581

Trading Something In for an Increased Availability

Daniel Richter

Operating Systems and Middleware
Hasso-Plattner-Institut

daniel.richter@hpi.uni-potsdam.de

One way to increase the availability— the readiness for and continuity of correct
service— of an IT system instead of rely on highly-available infrastructure and
fault-free components is to question whether you can trade something in for it—
like strong consistency guarantees, service quality, preciseness, or even correctness.
The key idea is that in case of errors and failures one tries to ensure that the system
does not turn off completely but degrades the provides set of functionality and
ensures the efficient use of remaining intact resources.

To benefit from relaxed consistency, one has to identify different roles of com-
ponents or code paths and their need for a specific level of consistency.

With flexible computation mandatory and optional parts are defined, where
some optional parts can be deactivated. Imprecise computation means that de-
pending on the runtime an algorithm is provided with, the accuracy of the result
increases. Such algorithms usually are interruptible and can provide a result at
any point in time. The most “extreme” approach is resilient computation, where
the focus is to deliver a result under all circumstances— it is guaranteed to get a
result, but that may is not correct.

1 Introduction

Besides reliability, availability— readiness for and continuity of correct service—
is a dependability attribute [1] that is very important to modern IT-applications.
Because of Availability = Uptime/Li f etime = Uptime/Uptime +Downtime, increasing an applica-
tion’s availability respectively guaranteeing a certain amount of availability means
to reduce the downtime— the periods when a system cannot perform its primary
function.

One mean to deal with faults, errors, and failures is to use highly-available in-
frastructure. But this solution usually is very expensive and cannot prevent the
appearance of all classes of faults (e.g. design faults).

Another way to increase the availability is to question whether you can trade
something in for it— for examples system properties like service quality, (strong)
consistency, preciseness, or even correctness. Here, the key idea is that in case of
errors and failures one tries to ensure that the system does not turn off completely but
degrades the provides set of functionality and ensures the efficient use of remaining
intact resources— error recovery and error mitigation.

In the following sections, we will focus on relaxed consistency guarantees and
relaxed computation guarantees like flexible, imprecise, and resilient computation.

191

mailto:daniel.richter@hpi.uni-potsdam.de

Daniel Richter: Trading Something In for an Increased Availability

Figure 1: The Dependability and Security Tree shows the schema of the complete
taxonomy of dependable and secure computing as outlined in [1]

2 Background

Our key idea to increase the availability of software systems without having highly-
available infrastructure is to relax other system properties. This section will focus on
consistency models, which targets at distributed applications with shared state or
storage; and on service quality, preciseness, and correctness, which targets on the
results of computing.

2.1 Consistency

According to the CAP theorem [3], one can only choose two out of the three CAP-
properties: consistency (all nodes of a distributed system have the same view on
memory), availability (every request receives a response), and partition tolerance
(the system can deal with network partitioning). To have an available and partition
tolerant (every distributed system has to be partition tolerant) system, one has to
disclaim strong consistency.

While strong consistency requires that a read operation must return the value
written by the most recent write operation, there are several other more relaxed
consistency guarantees: [14]

Strong Consistency guarantees that a read operation returns the value that was last
written. A read observes the effects of all previously completed writes.

Consistent Prefix guarantees that a read operation returns the value that was writ-
ten at some time in the past. A read observes the effects of an ordered sequence
of writes starting with the first write to a data object.

Bounded Staleness guarantees that a read operation returns a value that is not too
old. A read observes any values written more than a specific time period ago
or more recently written values.

192

2 Background

Monotonic Reads guarantees that after a read operation a subsequent read opera-
tion returns the same value or the results of later writes. A read observes the
effects of any previously completed writes.

Read my Writes guarantees that a read operation returns a value that was last writ-
ten by the client or some other value that was later written by a different client.
A read observes the effects of all previously completed writes performed by
the same client.

Eventual Consistency means that a read can return any value for a data object that
was written in the past. A read observes the effects of an arbitrary subset of
previously completed writes.

Implementation methods While Strong Consistency and Eventual Consistency
are the strongest respectively the weakest of the guarantees, none of Consistent
Prefix, Bounded Staleness, Monotonic Reads, and Read My Writes is stronger than
any other— they all could lead to read operation that returns a different value. It
is also possible that a programmer wants to have multiple of these guarantees: for
example both Monotonic Reads and Read my Writes, so that it observes a data store
that is consistent with its own actions.

To benefit from relaxed consistency, one has to identify different roles of compo-
nents or code paths and their need for a specific level of consistency. There may
are components that need a global view on data and strong consistency, for other
components it could sufficient to only know what they did, while some components
can work with data that do not have to be up-to-date but should not be too old, and
some other components may only need some value without having to know whether
operations were performed in the correct order.

2.2 Flexible, Imprecise, and Resilient Computation

In context of trade in some properties related to computation and computed results,
we roughly distinguish between the following categories:

Flexible computation Depending on the system state (appearance of errors, system
loads) some optional components may are deactivated or replaced by alterna-
tive components (i.e. faster, smaller, more reliable).

Imprecise computation Depending on the runtime an algorithm is provided with,
the accuracy of the result increases. Such algorithms usually are interruptible
and can provide a result at any point in time.

Resilient computation The focus here is to deliver a result under all circumstances:
it is guaranteed to get a result, but that may is not correct.

2.2.1 Flexible Computation
With flexible computation, an application is divided into parts that are mandatory
and parts that are optional. Optional parts may have a priority. In case of faults

193

Daniel Richter: Trading Something In for an Increased Availability

inside optional parts the application can continue its operation without these parts.
Likewise, in case of resource shortages (e.g. because of heavy load) optional parts
could be (temporarily) deactivated to have more resources available for the required
parts.

Implementation methods Imagine an image processing application: the manda-
tory part (service A) performs computations that are vital for reliable image inter-
pretation. An optional part (service B) highlights several areas of the image that are
convenient for the users. Another optional part (service C) post-processes logging
data. Service C could use spare processing time to process logging data that is not
important for the application, to save some time when the logging data is needed.
Service B is also optional but has a higher priority than service C; in case of heavy
load one could first dismiss instances of service C (because its purpose has nothing
to do with service A) and later dismiss instances of service B (because its purpose is
only for convenience but not mandatory).

Figure 2: Deployment reconfiguration for isolated execution nodes after a fault [2]:
the initial deployment (left) is reconfigured in case that execution node e1 has been
isolated after a fault (right).

The differentiation between mandatory and optional parts inside distributed en-
vironments produces additional challenges: a possible crash of an execution node
itself has to be taken into account (so plenty of parts would become unavailable at
same point in time) as well as the distribution of redundant parts that could take
over the computation in case of errors (see 2, Figure 2).

We can divide the workload models into flexible tasks with 0/1 constraints, where
the goal is to either execute a task to completion or discard the execution entirely,
and imprecise tasks, where the result gets better the longer the computation runs.

2.2.2 Imprecise Computation
Imprecise computation means that a computation could be aborted at any point
in time and also delivers a result; with increased run-time the quality of the result

194

2 Background

will improve (IRIS [8, 9], “Increasing Reward with Increasing Service”; “anytime
algorithms” [15, 16]).

Implementation methods For imprecise computation, there are to basic imple-
mentation methods [9]:

• The milestone method is suitable for iterative algorithms, where the result con-
verges to the precise value over time, e.g. numerical computations, statistical
estimation and prediction, or heuristic search. The idea is to save the result
produced by specific points in time and to return the last stored result in case
of a cancellation of the computation.

• The multiple version method consists of a primary version and one or more
alternatives for the computation. The primary version calculates the precise
result but usually takes more time or needs more resources. The alternatives
are smaller and/or faster, but imprecise. After an alternative has computed a
result, the primary version possibly could be canceled.

2.2.3 Resilient Computation
Flexible and imprecise computation focus on tasks with a flexible resource demands
but hard timing constraints— they degrade gracefully by reducing demands and
result quality. But what happens when the application cannot meet its deadline? First,
one could differentiate between firm deadlines (hard real-time) and the existence
of a failure window (soft real-time). For many applications the result returned after
exceeding the deadline is still useful to a certain degree (see 3, Figure 3).

Resilient computation guarantees that every request receives a response within a
given deadline under all circumstances by executing a safe exit strategy. The goal is
to hold or bring back the system in a stable state, or a state where it is possible for
the system to operate. [11]

Figure 3: Latency utility of a real-time service with tolerance range [7]

195

Daniel Richter: Trading Something In for an Increased Availability

Whereas the usage of fault tolerance patterns [6] can help to hold or bring back the
system in a stable state, acceptability-oriented computing focuses on mechanisms
how continue the execution and hold the system in a state where it is possible to
operate— preciseness and even correctness are of secondary importance. [4, 12]

One way to produce a result within a specific time-window is to discard tasks that
take too long or perforate loops— this could be similar to imprecise computation,
when an iterative task gets canceled, but usually the cancellation point cannot be
controlled by the developer.

Another way to get a result is to generate or estimate a value independently of the
actual algorithm. This could be done by a fixed value, a randomly chosen one, or
based on the history of previously returned values. History-based approaches could
return the most recently returned value, the minimum/maximum/mean/average
value of the returned values within a specific time-frame, or could use prediction
algorithms to make a guess for the most probable value that could be returned.

In order to ensure a continued execution and output sanity, for all these methods
one has to define acceptability properties. In case of acceptability violations further
steps have to be performed.

2.3 Criteria of Optimality

The main challenge to introduce relaxed consistency guarantees; flexible, imprecise,
and resilient computation is to define a criteria of optimality— there are plenty of
options, but how to choose the best one? One objection is to execute as many optional
tasks as possible (flexible computation), get the most precise result (imprecise and
resilient computation), or get a strong consistent view on memory as fast as possible
(relaxed consistency guarantees).

Criteria of optimality could be static error metrics (such as minimize total error,
average error, or maximum error). For approaches such as imprecise computing
usually domain-specific error measures are needed— e.g. confidence intervals or
minimum mean square error).

These criteria then can be used for schedules for task execution (off-line or on-line)
generated with the help of constraint optimization or prioritization. For time-bound
tasks it is also important to distinguish between service time and response time
(service time + waiting time).

3 Case Studies

The following section describes two case studies we implemented: a project with
DB Systel (relaxed consistency guarantees) and Mobility-as-a-Service (flexible and
imprecise computation).

196

3 Case Studies

3.1 DB Systel— Relaxed Consistency Guarantees

The objective of the project with DB Systel, the IT arm of the Deutsche Bahn AG, was
to evaluate a given JEE-like reference architecture if it was possible to replace the
current data storage component, that has strong consistency constraints, with one
that supports weaker consistency guarantees.

A group of students adapted three example applications with different expecta-
tions on consistency and replaced the used relational database with NoSQL databases
such as Cassandra, MongoDB, and NuoDB.

Feasibility evaluation showed that it is possible to use data stores with relaxed
consistency guarantees. The hardest part is to use (or introduce) an application
programmability interface that does not assume that the underlying database system
is relational and strongly consistent.

3.2 Mobility-as-a-Service— Flexible & Imprecise Computation

Mobility-as-a-Service (MaaS) describes a class of applications where traditional real-
time control systems are enhanced by remote (non real-time) backbone services
accessed via the mobile Internet. Wide-distance communication channels cannot
guarantee compliance with any real-time constraints. Using approaches such as
analytic redundancy and safety controllers [5, 13], our architecture (see Figure 4)
employs the concept of cascaded processing stages each with own safety controllers
and allows for decoupling of hard real-time processing on embedded control units
and soft real-time data acquisition on the outer layers. [10]

The idea of flexible computation is to have mandatory and optional parts; im-
precise computing contains the multiple version method, where a primary version
delivers the full functionality respectively a precise result, whereas an alternative
version needs less resources but is imprecise. The Mobility-as-a-Service architecture
is a combination of these two approaches: the application’s logic is separated into
multiple cascading stages that are connected via a communication channel and that
have specific (different) timing constraints. In case any following cascade stage can-
not fulfill its deadline, its result is ignored (= optional part) and instead the result of
a safety controller (= alternative part with less functionality) is used.

We implemented and evaluated the Mobility-as-a-Service scenario with a cus-
tomized Carrera slotcar racetrack with four stages (see Figure 6 and Figure 5). Stage 4
has the weakest timing-constraints, whereas stage 1 has to comply with strict dead-
lines.

Cascade Stage 1

Safety Controller 1

Communication
Channel 1 Cascade Stage 2

Safety Controller 2

Communication
Channel 2 Cascade Stage 3

Safety Controller 3

Communication
Channel 3

Cascade Stage n

Real-Time Constraints
Computation Smartness

Figure 4: Our architecture blueprint for the cascaded interoperation of several layers
of real-time functionality assisted by safety controllers

197

Daniel Richter: Trading Something In for an Increased Availability

Race-Track
Control Unit

Keep State Safety Ctrl

Carrera
D132

Protocol

Sensor/Actuator
Mgmt Boards

Stop Cars Safety Ctrl

Custom
USB

Protocol

PC
C# Application

No-Collide Safety Ctrl

HTTP
TCP/IP

Cloud Service

Figure 5: Our architecture blueprint applied to our concrete real-time simulation
with Carrera slot-cars consisting of four cascade stages

Software-defined sensorsSoftware-defined sensors

Control PCControl PCMicrocontrollerMicrocontroller

Digital control
commands

Digital control
commands

LED emits car ID
as pulsed signal

Phototransistor
receives car ID

Car#, speed, track changeCar#, speed, track change

Position sensorsPosition sensors
Computation
of single car
trajectories

(keep on track)

Computation
of single car
trajectories

(keep on track)

USB
link

Multi-car
scenarios
(convoy,

safety-car)

Multi-car
scenarios
(convoy,

safety-car)
Web
services

Track layoutTrack layout EnvironmentEnvironment

Figure 6: Communication structure among real-time controllers and non-realtime
services. We used an off-the-shelf Carrera racetrack construction kit and extended
it with multiple position sensors.

Stage 4— Cloud Service Consists of a set of web services that implements a variety
of multi-car driving strategies. The cloud manages driving strategies such as
“convoy” or “safety car” where a global world view is needed.

Stage 3— PC Application A .NET application (written in C#) running on commod-
ity PC hardware without any real-time guarantees. It computes the trajectory
for a single car. Communication Channel to stage 4: HTTP/TCP/IP connections,
where no guaranteed response times can be specified. Safety Controller (when
stage 4 misses its deadline or the communication fails): Keeps the car moving
at a steady, slow speed.

Stage 2— Sensor/Actuator Board Consists of a custom made circuit board and mi-
crocontroller firmware. It simulates handheld controllers (speed, brakes, turn
switch points) and analyzes sensor signals. Communication Channel to stage 4: A
custom USB format (neither real-time capable nor providing strict timing guar-
antees) Safety Controller: Keeps all cars within a safe state (sends commands to
stop all cars)

Stage 1— Race-Track Control Unit An off-the-shelf Carrera Digital 132 race-track
including a Carrera control unit extended with several additional position sen-
sors. Communication Channel to stage 2: One RS232 interface and four RJ-12
interfaces are used to transmit standard Carrera D132 protocol commands.
Safety Controller: Repeats the creation of command packets based the last sig-
nal received.

198

4 Conclusion and Outlook

The outcome was that for many real-time applications compute and network capac-
ity of today’s commercial-of-the-shelf hardware allows to meet real-time deadlines
even when operating on a best-effort model. The concept of software-defined sen-
sors— in conjunction with the model of analytic redundancy— allows extensibility
while still guaranteeing fail-safe behavior of the control system.

4 Conclusion and Outlook

To increase the availability of an application one first has to think about the following
things: does the focus lie on reliability or on functionality? Is the goal perfection or
can one accept that software is flawed? Is it still possible to deliver a service even
when the software is partially faulty? Today’s applications usually are distributed
and rely on a set of many (third-party) components. Consequences of errors and
failures are arbitrarily related in time, space, and severity to the cause.

By relaxing system properties like consistency guarantees and result quality, pre-
ciseness, or correctness, there are methods given so one does not have to rely on
highly-available infrastructure or fault-free components. For an adequate implemen-
tation it is important to characterize the workload model and a role model for parts
and components of the application.

Future work contains a more formal description how to identify and model parts
of an application and algorithms that’s properties can be relaxed, evaluate and pri-
oritize which properties can or should be relaxed first or least, as well as providing
patterns and blueprints for implementation.

References

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and
taxonomy of dependable and secure computing”. In: Dependable and Secure
Computing, IEEE Transactions on 1.1 (2004), pages 11–33.

[2] K. Becker and S. Voss. “Analyzing Graceful Degradation for Mixed Criti-
cal Fault-Tolerant Real-Time Systems”. In: Real-Time Distributed Computing
(ISORC), 2015 IEEE 18th International Symposium on. IEEE, 2015, pages 110–
118.

[3] E. A. Brewer. “Towards robust distributed systems”. In: PODC. 2000, page 7.
[4] M. Carbin, S. Misailovic, and M. C. Rinard. “Verifying Quantitative Reliability

for Programs That Execute on Unreliable Hardware”. In: Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications. OOPSLA ’13. New York, NY, USA: ACM, 2013,
pages 33–52. doi: 10.1145/2509136.2509546.

199

http://dx.doi.org/10.1145/2509136.2509546

Daniel Richter: Trading Something In for an Increased Availability

[5] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and P. R. Kumar. “The simplex
reference model: Limiting fault-propagation due to unreliable components in
cyber-physical system architectures”. In: Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International. IEEE, 2007, pages 400–412.

[6] R. Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007.
[7] R. Kirner, S. Iacovelli, and M. Zolda. “Optimised Adaptation of Mixed-

criticality Systems with Periodic Tasks on Uniform Multiprocessors in Case
of Faults”. In: Object/Component/Service-Oriented Real-Time Distributed Comput-
ing Workshops (ISORCW), 2015 IEEE International Symposium on. IEEE, 2015,
pages 17–25.

[8] K.-J. Lin, S. Natarajan, and J. W. Liu. Imprecise results: Utilizing partial compu-
tations in real-time systems. National Aeronautics and Space Administration,
1987.

[9] J. W. S. W. Liu. Real-Time Systems. 1st. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 2000.

[10] D. Richter, A. Grapentin, and A. Polze. “Mobility-as-a-Service: A Distributed
Real-Time Simulation with Carrera Slot-Cars”. In: Real-Time Distributed Comput-
ing (ISORC), 2015 IEEE 18th International Symposium on. IEEE, 2015, pages 276–
279.

[11] M. Rinard. “Acceptability-oriented computing”. In: ACM SIGPLAN Notices
38.12 (2003), pages 57–75.

[12] M. C. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and W. S. Beebee.
“Enhancing Server Availability and Security Through Failure-Oblivious Com-
puting.” In: OSDI. Volume 4. 2004, pages 21–21.

[13] L. Sha. “Using simplicity to control complexity”. In: IEEE Software 18.4 (2001),
pages 20–28.

[14] D. Terry. “Replicated data consistency explained through baseball”. In: Com-
munications of the ACM 56.12 (2013), pages 82–89.

[15] S. Zilberstein. “Operational rationality through compilation of anytime algo-
rithms”. In: AI Magazine 16.2 (1995), page 79.

[16] S. Zilberstein. “Using anytime algorithms in intelligent systems”. In: AI maga-
zine 17.3 (1996), page 73.

200

Analysis of Distributed Algorithms on Scale-free Networks

Ralf Rothenberger

Algorithm Engineering Group
Hasso-Plattner-Institut

ralf.rothenberger@hpi.uni-potsdam.de

Processor design has reached the so called “power wall”: simply increasing compu-
tational power by increasing frequency and power intake of individual processors
is not justifiable anymore since the imposed hardware problems outweigh their
gain. Instead the trend goes to parallelizing IT systems to gain computational
power. These changes in hardware and systems design were also accompanied by
a change in algorithm design.

Although parallel algorithms and parallel computing have been intensively
studied in the 80’s and 90’s, this work was mainly on the PRAM model and for
homogenous networks. Our aim is the analysis of distributed processes and algo-
rithms on heterogeneous networks, more precisely, on scale-free networks. For this
purpose we proposed and analyzed load balancing on Chung-Lu random graphs
as a first specific problem in the context of scale-free networks. At the moment of
writing we are extending our results to satisfiability problems with non-uniform
variable distributions.

1 Introduction

Large Peer-to-peer (P2P) systems like BitTorrent, PAST Storage, RetroShare or Skype
are decentralized and unstructured. The fact that peers are connecting and discon-
necting from the network has implications about the nature of the overlay topol-
ogy. In practice, because peers tend to discover highly available and high-outdegree
nodes, connections are typically formed preferentially. As shown by Barabási and
Albert [5], this results in a scale-free graph in which nodes follow a power-law distribu-
tion [2, 29], meaning that the number of vertices with degree k is proportional to k−β,
where β is a constant intrinsic to the network. Another motivation to study scale-free
graphs is the observation that many real-world networks are power-law networks,
including Internet topologies [17], the Web [5, 26], social networks [1], industrial SAT
instances [4], and literally hundreds of other domains [28].

Although Scale-free networks are omnipresent, surprisingly few rigorous insights
are known about the performance of algorithms or processes on them. Some no-
table exceptions of such rigorous results are Rumor Spreading [18], Information
Diffusion [23] and (amongst others) computing PageRank [11]. These results show
that algorithms and processes on scale-free topologies are often able to outperform
their counterparts on more homogeneous structures. For this reason we propose the
design and analysis of distributed algorithms which exploit the unique structural
properties of scale-free networks. As a first example of such algorithms we looked
into distributed load balancing.

201

mailto:ralf.rothenberger@hpi.uni-potsdam.de

Ralf Rothenberger: Analysis of Distributed Algorithms on Scale-free Networks

~k-α

fra
ct

io
n

of
 n

od
es

node degree k

Figure 1: Power-Law distribution of node degrees

2 Background

2.1 Scale-Free Networks

A popular model for scale-free networks is the preferential attachment (PA) model
introduced in [5], which is currently the fifth most cited article in Science according
to ISI Web of Knowledge. In this model, the graphs are constructed in a random,
‘rich-get-richer’ fashion: a newly entering node connects to m existing ones chosen
randomly, but gives preference to nodes that are already popular, that is, those nodes
that have many neighbors. Note that the parameter m controls the density of the
graph. For these graphs, the authors of [5] empirically discovered that the fraction of
vertices with degree d is proportional to d−3, which was later proven mathematically
by Bollobás, Riordan, Spencer, and Tusnády [9]. There are a number of other models
which lead to a power-law distribution [16, 21, 25]. An interesting alternative is the
model of Aiello, Chung, and Lu [3] where the number of nodes of a given degree is
fixed in advance according to some probability distribution. This model is related to
the well-studied random graphs with given degree sequence [6, 8, 32] and tends to
be easier to analyze than PA graphs as the edges are present independently.

One particular drawback of the previously mentioned models is that the resulting
networks have either a small clustering coefficient, or a rather large average path
length (typically of at least logarithmic order in the size of the network). Hence they
still differ considerably from real networks. In the last few years it has been observed
that complex scale-free network topologies with high clustering coefficients emerge
naturally from hyperbolic metric spaces [13, 33]. There seems to be a close relation-
ship between hyperbolic geometry and complex networks. This can be explained by

202

2 Background

Figure 2: Snippet of the Facebook Graph created with Gephi (data from [27])

observing that the nodes of real-world networks can be often organized hierarchi-
cally, in an approximate tree-like fashion [19]. Based on this and other observations,
Hyperbolic Random Graphs have been suggested in [33] and experimentally studied
in [24]. They seem to combine all desired features of real networks in a natural model.

2.2 Load Balancing

An important prerequisite for the efficient usage of large compute networks is to
balance their work efficiently. Load balancing is a ubiquitous problem which is also
important for scheduling [35], routing [15], numerical computation such as solving
partial differential equations [34, 36, 37], and finite element computations [22]. In
the standard abstract formulation of load balancing, processors are represented by
nodes of a graph, while links are represented by edges. The objective is to balance
the load by allowing nodes to exchange loads with their neighbors via the incident
edges. Particularly popular are decentralized, iterative algorithms where a processor
knows only its current load and that of the neighboring processors and based on this,
decides how many jobs should be sent (or received). Typically, the processors do not
have any information about the structure of the graph, nor any “global” information
about the load distribution such as the average or the total number of jobs.

A very popular load balancing strategy is diffusion, where the load sent along
each edge in each step is proportional to the load difference.If we assume that the

203

Ralf Rothenberger: Analysis of Distributed Algorithms on Scale-free Networks

load can be divided arbitrarily often (continuous model), then the convergence rate
is known to be characterized by the second largest eigenvalue of the diffusion matrix.
The reason is that the iteration of the load vector is equivalent to the evolution of a
(scaled) probability distribution of a simple Markov chain.

Besides diffusion, where a node is allowed to exchange load with all of its neighbors
in each round, several theoretical studies consider the so-called matching model. In
this model, one has to specify, for each round, a matching; load can then be exchanged
only along the edges of the matching. This model reduces the communication in
the network and moreover tends to behave in a more “monotone” fashion than its
diffusive counterpart, since it avoids concurrent load exchanges which may increase
the maximum load. However, the matching model requires the specification of a
matching in each round, and this matching should be computable efficiently and
locally. Fortunately, it was shown in [10, 31] that, if one generates the matchings
by a simple greedy randomized algorithm, then the convergence of the load vector
is asymptotically as fast as in the diffusion model, assuming that the load can be
divided arbitrarily often.

To summarize, we can say that the continuous process is fairly well-understood,
not only in the classical diffusion model, but also in the alternative matching model.
This holds even for an asynchronous model [10, 30, 31], where processors communi-
cate with each other according to a Poisson process with rate 1.

3 Related Work

Most results and developed techniques for theoretically studying load balancing
only apply to regular (or almost-regular) graphs. To bridge this gap, we first observe
that scale-free networks such as power-law graphs typically have a constant average
degree and a polynomial maximum degree. Therefore, it is not obvious what load
balancing should be aimed for. One possibility is that nodes with a larger degree
also have greater computing power and thus should get a larger amount of load. On
the other hand, it is also conceivable that all nodes have equal computational power
and should get the same load even though their connectivity differs significantly.

We decided to use the following balancing model for networks with n nodes:
at the beginning, each node i has some work load x(0)i . The goal is to obtain (a
good approximation of) the balanced work load x ∶= ∑n

i=1 x(0)i /n on all nodes. On
heterogeneous graphs with largely varying node degrees it is also natural to consider
a multiplicative quality measure: We want to find an algorithm which achieves
maxi x(t)i = O(x) at the earliest time t possible.

A first approach to reach this goal could be by using the diffusion model, which
was first studied by Cybenko [15] and, independently, by Boillat [7]. The standard
implementation is the first order scheme (FOS), where the load vector is multiplied
with a diffusion matrix P in each step. For regular graphs with degree d, a common
choice is Pij = 1/(d + 1) if {i, j} ∈ E. Already Cybenko [15] in 1989 shows for regular
graphs a tight connection between the convergence rate of the diffusion algorithm

204

4 Results

and the absolute value of the second largest eigenvalue λmax of the diffusion matrix P.
While FOS can be defined for non-regular graphs, its convergence is significantly
affected by the loops which are induced by the degree discrepancies. We can show,
that, if we define a first order diffusion scheme which converges to a uniform load
distribution, the protocol will require Ω(log n) rounds on a broad class of (only
slightly) non-regular graphs. This especially includes graphs with power-law degree
distributions.

Independently of the load balancing protocol, it is simple to show, that on a d-
regular graph it takes at least Ω(log n) steps to reach an asymptotically uniform
load distribution. This means, that for graphs with constant average degree, like our
scale-free networks, heterogeneity is needed to achieve faster load balancing. At the
same time this heterogeneity forbids the use of a simple first order diffusion scheme.

4 Results

In a first paper [12] we model large scale-free networks by Chung-Lu random graphs
and analyze a simple local algorithm for iterative load balancing. On n-node graphs
our distributed algorithm balances the load within O((log log n)2) steps, which
we call ultra-fast (following the common use of the superlative “ultra” for double-
logarithmic bounds [14, 18, 20]). This distributed algorithm requires only limited
local knowledge on the degrees of the neighboring nodes and some estimates of
global parameters. It does not need to know the exponent β ∈ (2, 3) of the power-law
degree distribution or the weights wi of the graph model. The algorithm assumes
that the initial load is only distributed on nodes with degree Ω(polylog n), which
appears to be a natural assumption in typical load balancing applications. As the
diameter of the graph is Θ(log n), ultra-fast balancing is impossible if the initial
load is allowed on arbitrary vertices. As standard FOS requires Ω(log n) rounds, our
algorithm uses a different, novel approach to overcome these restrictions.

The protocol we propose proceeds in waves, and each wave (roughly) proceeds
as follows. First, the remaining load is balanced within a core of high-degree nodes.
These nodes are known to compose a structure very similar to a dense Erdős-Rényi
random graph and thereby allow very fast balancing. Afterwards, the load is dissem-
inated into the network from high- to low-degree nodes. Each node absorbs some
load and forwards the remaining to lower-degree neighbors. If there are no such
neighbors, the excess load is routed back to nodes it was received from. In this way,
the load moves like a wave over the graph in decreasing order of degree and then
swaps back into the core. We show that each wave needs O(log log n) rounds. The
algorithm keeps initiating waves until all load is absorbed, and we show that with
high probability our random graphs have a structure, such that only O(log log n)
waves are necessary.

There are a number of technical challenges in the analysis of this algorithm, mostly
coming from the random graph model, and we have to develop new techniques to
cope with them. For example, in scale-free random graphs there exist large sparse
areas with many nodes of small degree that result in a high diameter. A challenge is

205

Ralf Rothenberger: Analysis of Distributed Algorithms on Scale-free Networks

Layer 0 (core)

Layer 1

Layer 2

Figure 3: Layering of an example graph. Layer 0 contains all nodes of degree at least
6, Layer 1 all nodes of degrees between 3 and 5 and Layer 2 contains all nodes of
degrees at most 2

to avoid that waves get lost by pushing too much load deep into these periphery areas.
This is done by a partition of nodes into layers with significantly different degrees
and waves that proceed only to neighboring layers. To derive the layer structure, we
classify nodes based on their realized degrees, as can be seen in figure 3. However,
this degree might be different from the expected degree corresponding to the weights
wi of the network model, which is unknown to the algorithm. This implies that nodes
might not play their intended role in the graph and the analysis. This can lead to poor
spread and the emersion of a few, large single loads during every wave. We show
that several types of “wrong-degree” events causing this problem are sufficiently
rare, or, more precisely, they tend to happen frequently only in parts of the graph
that turn out not to be critical for the result. At the core, our analysis adjusts and
applies fundamental probabilistic tools to derive concentration bounds, such as a
variant of the method of bounded variances.

5 Conclusion and Outlook

Our first result shows that it is possible to do load balancing in double logarithmic
time on scale-free Chung-Lu random graphs. The key to this result was designing
and analyzing a novel algorithm which exploits specific structural graph properties
and showing that these properties are present with high probability in the class
of random graphs under consideration. One drawback of the algorithm is, that it
still assumes too much knowledge of some global graph properties, like the number

206

References

of nodes. Another drawback is that it only works on scale-free Chung-Lu random
graphs, which do not model all properties of scale-free networks accurately. Our load
balancing algorithm could therefore be improved in two ways: First, the assump-
tions on global knowledge could be weakened to make the algorithm applicable in
realistic environments, where global properties of the network are unknown. Sec-
ond, the necessary structural properties of the network could be stated explicitly.
By having deterministically validatable graph properties, the algorithm might be
applicable to real networks which fulfill these properties, independently of any ran-
dom graph model. The same idea was successfully used by Brach, Cygan, Lacki, and
Sankowski [11].

Another direction to extend our work is to look into the Satisfiability problem.
Ansótegui, Bonet, and Levy [4] found out that many industrial SAT instances exhibit
power-law distributions in their clause lengths and variable frequencies. They also
showed the efficiency of several heuristics on these instances. It would be interesting
to try and use techniques from the analysis of scale-free networks to show rigorous
results for the satisfiability or unsatisfiability of industrial sat instances depending
on their clause and variable distributions. It might even be possible to design and
analyze algorithms to solve these instances faster under certain circumstances.

References

[1] L. A. Adamic, O. Buyukkokten, and E. Adar. “A social network caught in the
Web”. In: First Monday 8.6 (2003).

[2] L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman. “Search in
power-law networks”. In: Phys. Rev. E 64.4 (2001), page 046135.

[3] W. Aiello, F. R. K. Chung, and L. Lu. “A random graph model for massive
graphs”. In: 32nd Symp. Theory of Computing (STOC). 2000, pages 171–180.

[4] C. Ansótegui, M. Bonet, and J. Levy. “On the Structure of Industrial SAT In-
stances”. In: Principles and Practice of Constraint Programming – CP 2009. Edited
by I. Gent. Volume 5732. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2009, pages 127–141. doi: 10.1007/978-3-642-04244-7_13.

[5] A.-L. Barabási and R. Albert. “Emergence of Scaling in Random Networks”.
In: Science 286 (1999), pages 509–512.

[6] E. A. Bender and E. R. Canfield. “The Asymptotic Number of Labeled Graphs
with Given Degree Sequences”. In: J. Comb. Theory, Ser. A 24.3 (1978), pa-
ges 296–307.

[7] J. E. Boillat. “Load balancing and Poisson equation in a graph”. In: Concurrency:
Pract. Exper. 2 (1990), pages 289–313.

[8] B. Bollobás. “A probabilistic proof of an asymptotic formula for the number
of labelled regular graphs”. In: Europ. J. Combin. 1 (1980), pages 311–316.

207

http://dx.doi.org/10.1007/978-3-642-04244-7_13

Ralf Rothenberger: Analysis of Distributed Algorithms on Scale-free Networks

[9] B. Bollobás, O. Riordan, J. Spencer, and G. E. Tusnády. “The degree sequence of
a scale-free random graph process”. In: Random Struct. Algorithms 18.3 (2001),
pages 279–290.

[10] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. “Randomized gossip algo-
rithms”. In: IEEE/ACM Trans. Netw. 14.6 (2006), pages 2508–2530.

[11] P. Brach, M. Cygan, J. Lacki, and P. Sankowski. “Algorithmic Complexity of
Power Law Networks”. In: CoRR abs/1507.02426 (2015).

[12] K. Bringmann, T. Friedrich, M. Hoefer, R. Rothenberger, and T. Sauerwald.
“Ultra-Fast Load Balancing on Scale-Free Networks”. In: 42nd Intl. Coll. Au-
tomata, Languages and Programming (ICALP). Volume 9135. Lecture Notes in
Computer Science. Springer, 2015, pages 520–531. doi: 10.1007/978-3-662-47666-
6_45.

[13] A. Clauset, C. Moore, and M. E. J. Newman. “Hierarchical structure and the
prediction of missing links in networks.” In: Nature 453.7191 (2008), pages 98–
101.

[14] R. Cohen and S. Havlin. “Scale-Free Networks Are Ultrasmall”. In: Phys. Rev.
Lett. 90 (5 Feb. 2003), page 058701. doi: 10.1103/PhysRevLett.90.058701.

[15] G. Cybenko. “Load balancing for distributed memory multiprocessors”. In:
J. Parallel and Distributed Comput. 7 (1989), pages 279–301.

[16] E. Drinea, M. Enachescu, and M. Mitzenmacher. Variations on Random Graph
Models for the Web. Technical report TR-06-01. Harvard Computer Science, 2001.

[17] M. Faloutsos, P. Faloutsos, and C. Faloutsos. “On Power-law Relationships of
the Internet Topology”. In: Symp. Communications Architectures and Protocols
(SIGCOMM). 1999, pages 251–262.

[18] N. Fountoulakis, K. Panagiotou, and T. Sauerwald. “Ultra-fast Rumor Spread-
ing in Social Networks”. In: Proceedings of the Twenty-third Annual ACM-SIAM
Symposium on Discrete Algorithms. SODA ’12. Kyoto, Japan: SIAM, 2012, pa-
ges 1642–1660.

[19] M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Birk-
haeuser, 2007.

[20] R. van der Hofstad. “Random graphs and complex networks”. 2011.
[21] B. A. Huberman and L. A. Adamic. “Growth dynamics of the World-Wide

Web”. In: Nature 401 (1999), page 131.
[22] K. H. Huebner, D. L. Dewhirst, D. E. Smith, and T. G. Byrom. The Finite Element

Methods for Engineers. Wiley, 2001.
[23] A. Karbasi, J. Lengler, and A. Steger. “Normalization Phenomena in Asyn-

chronous Networks”. In: Automata, Languages, and Programming: 42nd Interna-
tional Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II.
2015, pages 688–700. doi: 10.1007/978-3-662-47666-6_55.

208

http://dx.doi.org/10.1007/978-3-662-47666-6_45
http://dx.doi.org/10.1007/978-3-662-47666-6_45
http://dx.doi.org/10.1103/PhysRevLett.90.058701
http://dx.doi.org/10.1007/978-3-662-47666-6_55

References

[24] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. “Hyper-
bolic geometry of complex networks”. In: Phys. Rev. E 82.3 (2010), page 036106.
doi: 10.1103/PhysRevE.82.036106.

[25] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E.
Upfal. “Stochastic models for the Web graph”. In: 41st Symp. Foundations of
Computer Science (FOCS). 2000, pages 57–65.

[26] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. “Trawling the Web
for Emerging Cyber-Communities”. In: Computer Networks 31.11-16 (1999), pa-
ges 1481–1493.

[27] J. Leskovec and A. Krevl. SNAP Datasets: Stanford Large Network Dataset Collec-
tion. June 2014. url: http://snap.stanford.edu/data (last accessed 2015-10-01).

[28] M. E. J. Newman. “Random graphs as models of networks”. In: Handbooks of
Graphs and Networks. Wiley-VCH, 2003, pages 35–68.

[29] R. Matei, A. Iamnitchi, and P. Foster. “Mapping the Gnutella network”. In:
IEEE Internet Computing 6.1 (2002), pages 50–57.

[30] D. Mosk-Aoyama and D. Shah. “Computing separable functions via gossip”.
In: 25th Symp. Principles of Distributed Computing (PODC). 2006, pages 113–122.

[31] S. Muthukrishnan and B. Ghosh. “Dynamic load balancing by random match-
ings”. In: J. Comput. Syst. Sci. 53 (1996), pages 357–370.

[32] M. E. J. Newman, S. H. Strogatz, and D. J. Watts. “Random graphs with arbi-
trary degree distributions and their applications”. In: Phys. Rev. E 64.2 (2001),
page 026118. doi: 10.1103/PhysRevE.64.026118.

[33] F. Papadopoulos, D. V. Krioukov, M. Boguñá, and A. Vahdat. “Greedy For-
warding in Dynamic Scale-Free Networks Embedded in Hyperbolic Metric
Spaces”. In: 29th IEEE Conf. Computer Communications (INFOCOM). 2010, pa-
ges 2973–2981.

[34] R. Subramanian and I. D. Scherson. “An analysis of diffusive load-balancing”.
In: 6th Symp. Parallelism in Algorithms and Architectures (SPAA). 1994, pages 220–
225.

[35] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp, and I. Stoica. “Load bal-
ancing in dynamic structured peer-to-peer systems”. In: Performance Evaluation
63.3 (2006), pages 217–240.

[36] R. D. Williams. “Performance of dynamic load balancing algorithms for
unstructured mesh calculations”. In: Concurrency: Practice and Experience 3.5
(1991), pages 457–481.

[37] D. Zhanga, C. Jianga, and S. Li. “A fast adaptive load balancing method for par-
allel particle-based simulations”. In: Simulation Modelling Practice and Theory
17.6 (2009), pages 1032–1042.

209

http://dx.doi.org/10.1103/PhysRevE.82.036106
http://snap.stanford.edu/data
http://dx.doi.org/10.1103/PhysRevE.64.026118

Linespace: A Sensemaking Platform for the Blind

Thijs Roumen

Human Computer Interaction
Hasso-Plattner-Institut

thijs.roumen@hpi.uni-potsdam.de

For visually impaired users, making sense of spatial information is difficult as they
have to scan and memorize contents before being able to analyze it. Even worse,
any update to the displayed contents invalidates their spatial memory, which can
force them to manually rescan the entire display. Making display contents persist,
we argue, is thus the highest priority in designing a sensemaking system for the
visually impaired. We present a tactile display system designed with this goal in
mind. The foundation of our system is a very large tactile display (140× 100 cm,
23× larger than Hyperbraille), which we achieve by using a 3D printer to print
raised lines of filament. The system’s software then trades in this space in order
to minimize screen updates. Instead of panning and zooming, for example, our
system creates additional views, leaving display contents intact and thus preserv-
ing users’ spatial memory. We illustrate our system and its design principles at
the example of four spatial applications. We evaluated our system with six blind
users. Participants responded favorably to the system and expressed, for exam-
ple, that having multiple views at the same time was helpful. They also judged
the increased expressiveness of lines over the more traditional dots as useful for
encoding information.

1 Introduction

For visually impaired users, making sense of spatial information is a challenge. While
sighted users’ ability to perceive many items in parallel allows certain similarities
and structures to pop out, visually impaired users have to scan spatial information
displays sequentially and slowly. Only after they have absorbed a relevant portion of
the information can they start to find connections, recognize structure, and ultimately
make sense of the data.

Since building up spatial memory is key, any update to displayed contents is poten-
tially dangerous as it may invalidate users’ spatial memory, in the worst case forcing
them to manually rescan the entire display. Making display contents persist, we ar-
gue, is thus the highest priority in designing a sensemaking system for the visually
impaired. Unfortunately, current systems designed to allow visually impaired users
to browse spatial information (e.g., the Hyperbraille 120× 60 Braille dot array) make
it difficult to persist screen contents. Since they offer only a moderate amount of
display space (30× 15 cm), viewing larger data sets requires users to switch between
views or to zoom and pan, all of which invalidate users’ spatial memory.

In this paper, we present a tactile display system designed to minimize display
updates in order to preserve users’ spatial memory. We achieve this by making the

211

mailto:thijs.roumen@hpi.uni-potsdam.de

Thijs Roumen: Linespace: A Sensemaking Platform for the Blind

Figure 1: Linespace is a sensemaking platform for the blind. Its custom display hard-
ware offers 140× 100 cm display space and it draws lines as its main primitive.
Here linespace runs the homefinder application that enables users to browse maps
in search for a home.

display very large (140× 100 cm) and by designing its software system to leverage
this display space in order to persist displayed contents.

2 Design Principles

Linespace is an interactive system that consists of hardware and software and that
allows visually impaired users to interact with spatial contents.

Linespace’s hardware provides it with a large amount of display space and the
ability to render lines, a primitive particularly well suited for the content types in-
volved in spatial sensemaking tasks, such as graphs, diagrams, maps, and drawings.
Based on this hardware, our objective in designing linespace’s software system was
to allow users to build up and maintain spatial memory.

Primary design rule: leave displayed contents intact In order to not destroy spa-
tial memory linespace’s primary design rule is: “leave printed display contents in-
tact”. We express this using four sub rules:

p1. No panning and scrolling. Instead, extend contents.

p2. No zooming. Instead, add overviews or detail views.

p3. No animation. Instead, use static animation.

p4. No pop-ups and dialogs. Instead, use auditory output.

212

3 Demo Applications

Secondary design rule: spend display space carefully Within all solutions that
satisfy these rules, our secondary design objective is to spent display space carefully,
as it is the display space that allows the system to achieve its primary goal.

s1. No unnecessary scale. Render as small as readable.

s2. No chrome. Instead, structure contents with whitespace

s3. No display windows. Traditional windows are a way of reserving space often-
times before it is really needed. While linespace allows apps to run in parallel,
applications are supposed to start at display size zero and grow their space
use over time as needed. Apps have whatever shape their content has, which
will typically not be a rectangle.

s4. No displaying of text and no displaying of elaborate icons. Instead, use a small
number of simple tactile icons that play back auditory output when touched.

Tertiary design rule: allow for speedy operation Within all solutions that satisfy
these rules, our tertiary design rule is to allow for speedy operation, in particular by
handling the limitations of linespace’s print mechanism.

t1. No printing at app launch: all applications start with a blank display, allowing
apps to start instantaneously.

t2. No printing at app switching: touching content of a different app moves the
focus to that app instantaneously. Remove or relocate an application only when
another application grows into its display space.

t3. Let users interact while system is printing in regions distant enough from the
print arm.

t4. Let system print while user is interacting; prerender contents likely to become
necessary soon.

t5. During printing sonify what is being printed: this allows for immediate feed-
back. Given that the speaker moves with the print head, users also build up
spatial memory of what is printed where.

3 Demo Applications

We now go over our 4 demo applications and use them to explain how they imple-
ment our 3 sets of design rules.

3.1 Minesweeper

Minesweeper is an adapted version of the minesweeper number puzzle that used
to ship with the Windows operating system. Players’ objective is to clear a board

213

Thijs Roumen: Linespace: A Sensemaking Platform for the Blind

containing hidden “mines”, with help from clues about the number of neighboring
mines in each field. While not a sensemaking application, minesweeper does involve
a good amount of spatial reasoning, so we included it as our first example.

To launch minesweeper, users press the foot switch and say “launch minesweeper”.
The app launches with a blank screen (p1) and welcomes users with: “Minesweeper.
Your entire screen now is a mine field. Touch anywhere and say “reveal” to see
whether there is a bomb. Say “usage” to learn more.” (p4).

Figure 2: The Minesweeper app (a) reveals a cell, (b) here a free cell. (c) Users scan
a local neighborhood of cells with their fingers to conclude the location of mines.
(d) The prototype

As shown in Figure 2a users tap onto the board and say “reveal”. Minesweeper
responds by announcing the item that is located there (p5), i.e., either “free”, “mine”,
or a number denoting the mines surrounding that cell. At the same time linespace
persists this information by plotting an icon at the location. To maximize content
density, minesweeper distinguishes only between a “free” cell (a slanted line icon)
and cells that have an adjacent mine (a circle icon); instead, the actual number is
read out loud every time the user touches the cell (p4). (b) In the shown case, the
cell was “free” which causes the app to also reveal surrounding cells. Note how the
app separates cells using whitespace rather than gridlines (p2).

Users spatial task is to locate mines without revealing them. Users scan an area
of interest with their fingers, listen to the number and build up a mental model of
the constraints. When they conclude where a mine must be located they touch that
location and say “mine” (p4). The app responds “marking as mine” and draws a
mine icon (a triangle). As the user continues to reveal more area of the board, the
minesweeper application grows which extends the display space it occupies (p1).
To explore the potential of the system, our version of minesweeper is intentionally
designed to fill the entire display area by default (>9000 cells). If users solve the
entire puzzle, the app plays a congratulatory message and terminates.

214

3 Demo Applications

Figure 3: When an app terminates, linespace’s app manager starts to clean up its
screen space, until (a) the user requests a new application, which (b) causes lines-
pace to interrupt its clean up immediately.

After a brief pause, the app manager starts to free up the app’s display space by
scraping off all its on-screen objects (Figure 3a). Users do not have to wait though.
They can switch to a different app or (b) launch a new app (e.g., re-launch the game)
in a fresh screen region any time. The system accommodates this by interrupting its
clean up, allowing it to respond instantaneously (p3).

3.2 Homefinder

Homefinder is a simple app that allows users to search for real estate, such as a four
bedroom in a city.

When users launch homefinder, the app launches with a blank screen (p1) and
welcomes users with: “Welcome to homefinder. What city or neighborhood to plot
where?” (p4). Users point to an empty screen region and name their city and neigh-
borhood. Homefinder responds by saying, e.g. “63 homes” and plotting a few char-
acteristic landmarks, such as an outline of the city (Figure 4a). The user says “filter
four rooms or more” to reduce the set of houses. The system responds, e.g. with “12
homes found”. (b) When users say “draw”, homefinder plots the homes onto the
map (Figure 4c), each one as a simple icon (a circle).

To learn more about a home, users scan the map with their fingers, pause over a
circle icon and say “reveal”. Homefinder responds with a brief verbal description of
the place, in prioritized order starting with price, number of rooms, etc.

(c) When the query does not find enough homes in the neighborhood, users can
point at a blank space and say “extend”, causing homefinder to sketch an additional
neighborhood and populate it with homes, in this case responding “7 additional
homes found”. Users can also adjust the filters using speech input, e.g. also allowing
three rooms, which causes homefinder to fill in additional homes.

(d) To provide users with a sense of what has changed, the additional homes
are plotted with a modified icon (a dash inside the circle icon). Similarly, users can
reduce the number of homes with the filter, which (e) causes homefinder to scrape
off the icons of the surplus homes and replace them with an icon indicating the
absence of an item (a dash).

(f) To learn more about the relationship between price and number of places, users
can also query a slider by saying “place price slider here”, which causes homefinder

215

Thijs Roumen: Linespace: A Sensemaking Platform for the Blind

to draw a slider at the specified location. Users can now slide their finger up and
down the slider while homefinder is continuously announcing the numbers: “300
thousand— 16 homes… 350 thousand— 12 homes”.

Figure 4: The homefinder application

Note how homefinder always provides an auditory summary first and only then
refreshes the screen. This is very different from similar applications for sighted users,
that tend to update the screen whenever possible, e.g., continuously while users drag
a slider. Such tight coupling is only of limited use for visually impaired users, as
users cannot take in the spatial display at a useful rate (independent of how fast or
slow the system can render the changes).

(g) Finally, when users have found a home that sounds promising and would like
to get a better understanding of its surroundings, they can display additional detail.
For this, users point at the place with one hand and use their other hand to point at a
patch of blank space. When they say “zoom here” linespace responds by (h) plotting
a zoomed in map of the area (p4) in the blank space.

216

3 Demo Applications

3.3 Drawing application

Since our first two applications are focused on allowing users to explore, we added
a drawing app as a means for users to create. As an example drawing, we explain
how to make a bicycle. To draw the front wheel, users place their fingers three inches
apart and say “circle, draw”, causing the drawing application to say “drawing circle”
and drawing a three-inch circle in between. Users create the rear wheel by pointing
at the front wheel and a location eight inches further right, then say “clone, draw”.

Figure 5: Drawing application

To draw the fork, users start by pointing to the center of the front wheel and where
they want the upper end to go. After saying “line, draw”, the app draws the line.

To allow for efficient drawing, users can create the frame by using the line tool in
“polyline style”, i.e. by specifying all five lines before updating the display. This also
allows them to use their fingers as bookmarks as they can keep their fingers on the
display. To save a line for later printing, users say “memorize line”, which causes the
system to respond with “line memorized”. At the end, when users say “draw”, they
get the polyline.

Users can also add freehand drawings, such as the curved handles of the bike, by
using the hand-held extruder pen.

3.4 App manager

The handling of individual applications and their canvases and sub-canvases is
done by a program called app manager. App manager also allows users to launch
and kill other apps, configure them, and switch between apps. App manager loads
automatically whenever linespace starts up.

App manager launches with a blank screen display (p1) and does not occupy any
screen space itself (s2, s3). Instead app manager runs in the background and listens
in on speech input (p4), so that all interactions with app manager itself are based on
speech.

Users, for example, launch an app by saying “start <app name>”. Linespace re-
sponds by loading the respective app and confirms “<app name> loaded” and hands

217

Thijs Roumen: Linespace: A Sensemaking Platform for the Blind

control over to the app, which follows up with a welcome message. The minesweeper
app, for example, says “your entire screen now is a mine field. Touch anywhere and
say “reveal” to see whether there is a bomb. Or say “usage” to learn more.”

While app manager itself does not occupy display space, its apps do. Users conse-
quently interact with the apps by pointing at them, then adding a verbal command,
such as “kill” which causes app manager to terminate the app and remove its screen
contents, or “relocate”, which deletes display contents and redraws it to a new loca-
tion pointed

4 Contribution, Benefits, Limitations

Our main contribution is a sensemaking platform for the blind. The key principle
driving its design is to preserve users’ spatial memory by leaving displayed contents
intact. To allow for this strategy, we provide linespace with a very large display, i.e.,
23× more display space than a Hyperbraille array. We achieve this by basing our
mechanical design on a 3D printer that draws screen contents. Its ability to draw
lines also makes our system particularly suited for the content types involved in
spatial sensemaking tasks, such as graphs, diagrams, maps, and drawings. We also
contribute a software framework that allows developers to quickly build applica-
tions for linespace. Finally, the approach of using a 3D printer allows us to fabricate
the device inexpensively (400 dollar, about 1/200th of a Hyperbraille). The print-
ing material incurs (insignificant) running costs. The main limitation of linespace is
that plotting contents takes time; also the turn taking between user and device re-
quires users to wait. We address these challenges in part using the design principles
mentioned earlier in this paper.

5 Related Work

Linespace builds on research in accessibility and personal fabrication as a tool to
fabricate tactile representations for the blind.

Blind technologies for interacting with spatial content While braille displays are
normally used to sequentially display braille text, HyperBraille [10] is a large Braille
display that can be used to explore spatial content. To make optimal use of the space,
Prescher et al. [10] present a Braille-based windowing system.

Since scaling Braille arrays involves proportional cost, researchers have proposed
to use alternative haptic cues, such as vibration, as a means to communicate spatial
information to visually impaired users. For instance, TGuide [8] uses 8 vibrating
elements to output directional information for navigation purposes. Beside vibra-
tion, researchers also suggested the use of force-feedback devices: Crossan et al. [4]
designed a system that teaches shapes and trajectories using a force feedback arm.
Similarly, Plimmer et al. [9] trained blind users to learn writing using a force feed-

218

6 Software Implementation

back arm. Finally, researchers also suggested to add small braille displays onto force
feedback arms and to update the display in accordance to its current location (Pan-
toBraille [11]). To display 3D geometry with fine texture features, Colwell et al. [3]
introduce a haptic device that provides feedback to the user by monitoring the posi-
tion of hand and altering the force accordingly.

Finally, researchers have also examined how to combine non-computerized means
for displaying spatial content (e.g. swell paper) with a touch screen. By overlaying
swell paper onto the screen, users of TDRAW [7] can simultaneously draw and
annotate their drawings using voice over. Users create drawings using a pen featuring
a hot tip. The hot tip causes the swell paper to buckle, allowing users to feel strokes
produced earlier. However, while the device provides users with a means to create
tactile content, the device has no means of creating tactile output itself.

Personal Fabrication for Visually Impaired Originally, personal fabrication tools
were developed as a means for rapid prototyping. However, the output created by
personal fabrication machines, such as 3D printers and laser cutters is inherently
tangible, giving it relevance to the visually impaired community. Physical visualiza-
tions of data that display multi-dimensional data [12], for example, result in a type
of display that is accessible to blind users.

Recently, 3D printers have been proposed as a means to generate tactile output for
blind users: VizTouch [1] for instance, generates 3D printed graphs and data plots
by extracting contours from a 2D input image. ABC and 3D [2]. 3D print geometric
objects that allow visually impaired students to tactilely interact with their math
curriculum. Kane et al. [5] 3D print tactile representations of debugging output to
make programming more accessible to the blind.

Tactile Picture Books [6] are books for blind children that contain 3D printed
objects instead of 2D images.

6 Software Implementation

Linespace’s software is written in Python 3. It uses the PrintrRun library for control-
ling the printer and several Inkscape extensions for simplifying path geometry.

We use an event driven architecture for sending and receiving events between
different components of the system, such as when users select a printed part via
touch or when users query information via a voice command. Events are sent to
the app manager component and then propagated to the respective apps and their
widgets.

For organizing the widgets in apps, we provide various layout containers, such as
a stack container and a docking container. These enable system developers to specify
how the widgets are distributed in an app.

Converting vector files to 3D printing g-code Linespace automatically imports
and converts .svg files that specify the tactile paths for an application into a set of
lines. An arc, for instance, is converted into lines using the cubic subdivide method

219

Thijs Roumen: Linespace: A Sensemaking Platform for the Blind

of the Inkscape API. Linespace then stores these lines as internal geometric objects
to enable geometry operations such as resizing the content based on the available
space on the print bed.

When the tactile paths are queried for printing, the corresponding internal geomet-
ric objects are converted to 3D printer instructions in GCODE. We take the beginning
and end point of each line for the print head travel commands (e.g. G1 X0 Y0, then
G1 X10 Y0 draws a horizontal line). We use three different travel speeds: moving
(F3600), printing (F1200), and erasing (F2400). Finally, linespace also computes how
much material should be extruded while moving along a path. For this, linespace
uses a fixed extrusion amount per unit, which is defined by the number of stepper
steps to push the filament through the nozzle while moving along a certain distance
(e.g. printing a length of 1cm requires the extruder stepper motor to make 5 steps,
GCODE: E5).

Figure 6: removal of g-code generation

Generating GCODE for removing outdated content To effectively remove lines,
we move the scratching pin along the zigzag pattern shown in Figure 6b. To generate
the GCODE for the print head movement, we first segment a shape into lines, then
offset the start point of each line either towards the normal of the line or the reverse
normal. Beside the horizontal pin movement, linespace also generates the GCODE
for moving the pin up and down via the solenoid. We drive the solenoid directly
from the PrintrBot microcontroller. For this, we connected the solenoid to the pin
that is normally used to control the heated print bed. To activate and deactivate the
solenoid, we set the voltage of the pin accordingly (M42 S255 P14 vs. M42 S0 P14).

Tracking user input via the camera To translate the camera coordinates to print
bed coordinates, we perform a homography on all camera images. After this, we
threshold the HSV values from the camera image to track the input color markers
on users’ fingers.

Audio output and speech input For both speech input recognition and speech
output, linespace uses the Microsoft Speech Platform SDK 11.

220

7 Conclusion

7 Conclusion

We presented linespace, an interactive system that allows visually impaired users to
interact with spatial contents. By basing our design on a 3D printer, we were able
to extend the display area to 140× 100 cm. The increased interaction space allowed
us to eliminate the necessity for many types of display updates, such as panning
and zooming, thus allowing blind users to always stay within their spatial reference
system.

As future work, we plan to examine how linespace can be extended to help blind
users with more complex sense making tasks. We are also planning on creating a
mobile version.

References

[1] C. Brown and A. Hurst. “VizTouch: Automatically Generated Tactile Visual-
izations of Coordinate Spaces”. In: Proceedings of the Sixth International Confer-
ence on Tangible, Embedded and Embodied Interaction. TEI ’12. Kingston, Ontario,
Canada: ACM, 2012, pages 131–138. doi: 10.1145/2148131.2148160.

[2] E. Buehler, S. K. Kane, and A. Hurst. “ABC and 3D: Opportunities and Ob-
stacles to 3D Printing in Special Education Environments”. In: Proceedings of
the 16th International ACM SIGACCESS Conference on Computers & Accessibil-
ity. ASSETS ’14. Rochester, New York, USA: ACM, 2014, pages 107–114. doi:
10.1145/2661334.2661365.

[3] C. Colwell, H. Petrie, D. Kornbrot, A. Hardwick, and S. Furner. “Haptic Virtual
Reality for Blind Computer Users”. In: Proceedings of the Third International ACM
Conference on Assistive Technologies. Assets ’98. Marina del Rey, California, USA:
ACM, 1998, pages 92–99. doi: 10.1145/274497.274515.

[4] A. Crossan and S. Brewster. “Multimodal Trajectory Playback for Teaching
Shape Information and Trajectories to Visually Impaired Computer Users”. In:
ACM Trans. Access. Comput. 1.2 (Oct. 2008), 12:1–12:34. doi: 10.1145/1408760.
1408766.

[5] S. K. Kane and J. P. Bigham. “Tracking @Stemxcomet: Teaching Programming
to Blind Students via 3D Printing, Crisis Management, and Twitter”. In: Pro-
ceedings of the 45th ACM Technical Symposium on Computer Science Education.
SIGCSE ’14. Atlanta, Georgia, USA: ACM, 2014, pages 247–252. doi: 10.1145/
2538862.2538975.

[6] J. Kim and T. Yeh. “Toward 3D-Printed Movable Tactile Pictures for Children
with Visual Impairments”. In: Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems. CHI ’15. Seoul, Republic of Korea: ACM,
2015, pages 2815–2824. doi: 10.1145/2702123.2702144.

221

http://dx.doi.org/10.1145/2148131.2148160
http://dx.doi.org/10.1145/2661334.2661365
http://dx.doi.org/10.1145/274497.274515
http://dx.doi.org/10.1145/1408760.1408766
http://dx.doi.org/10.1145/1408760.1408766
http://dx.doi.org/10.1145/2538862.2538975
http://dx.doi.org/10.1145/2538862.2538975
http://dx.doi.org/10.1145/2702123.2702144

Thijs Roumen: Linespace: A Sensemaking Platform for the Blind

[7] M. Kurze. “TDraw: A Computer-based Tactile Drawing Tool for Blind People”.
In: Proceedings of the Second Annual ACM Conference on Assistive Technologies.
Assets ’96. Vancouver, British Columbia, Canada: ACM, 1996, pages 131–138.
doi: 10.1145/228347.228368.

[8] M. Kurze. “TGuide: A Guidance System for Tactile Image Exploration”. In:
Proceedings of the Third International ACM Conference on Assistive Technologies.
Assets ’98. Marina del Rey, California, USA: ACM, 1998, pages 85–91. doi:
10.1145/274497.274514.

[9] B. Plimmer, A. Crossan, S. A. Brewster, and R. Blagojevic. “Multimodal Collab-
orative Handwriting Training for Visually-impaired People”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’08. Flo-
rence, Italy: ACM, 2008, pages 393–402. doi: 10.1145/1357054.1357119.

[10] D. Prescher, G. Weber, and M. Spindler. “A Tactile Windowing System for Blind
Users”. In: Proceedings of the 12th International ACM SIGACCESS Conference on
Computers and Accessibility. ASSETS ’10. Orlando, Florida, USA: ACM, 2010,
pages 91–98. doi: 10.1145/1878803.1878821.

[11] C. Ramstein. “Combining Haptic and Braille Technologies: Design Issues and
Pilot Study”. In: Proceedings of the Second Annual ACM Conference on Assistive
Technologies. Assets ’96. Vancouver, British Columbia, Canada: ACM, 1996,
pages 37–44. doi: 10.1145/228347.228355.

[12] S. Swaminathan, C. Shi, Y. Jansen, P. Dragicevic, L. A. Oehlberg, and J.-D.
Fekete. “Supporting the Design and Fabrication of Physical Visualizations”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
CHI ’14. Toronto, Ontario, Canada: ACM, 2014, pages 3845–3854. doi: 10.1145/
2556288.2557310.

222

http://dx.doi.org/10.1145/228347.228368
http://dx.doi.org/10.1145/274497.274514
http://dx.doi.org/10.1145/1357054.1357119
http://dx.doi.org/10.1145/1878803.1878821
http://dx.doi.org/10.1145/228347.228355
http://dx.doi.org/10.1145/2556288.2557310
http://dx.doi.org/10.1145/2556288.2557310

Cluster-based Sorted Neighborhoods for Deduplication

Ahmad Samiei

Information Systems Group
Hasso-Plattner-Institut

Ahmad.Samiei@hpi.uni-potsdam.de

Deduplication intends to detect multiple and different syntactical representations
of the real-world entities in a dataset. The naïve way of deduplication entails a
quadratic number of pair-comparisons using an expensive similarity measure
to identify the duplicates. This number of comparisons even for an average size
dataset might take hours to perform. As today’s databases are growing very fast,
different selection methods, such as Sorted Neighborhood, blocking, canopy clus-
tering and their variations, address this problem by shrinking the comparison
space. Volume of data and velocity of change, make us to find faster methods
to tackle this problem. The current report describes my research on incremental
deduplication during last year in the context of the HPI Research School on Service-
oriented Systems Engineering and also outlines my future research directions.

1 Duplicate Detection

Databases play an important role in IT-based companies nowadays, and many indus-
tries, business’ and government organizations rely on accuracy of data to perform
their operations. Unfortunately, the data are not always clean: for instance, real-world
entities have multiple different syntactical representations, which could be due to
erroneous data entry, data evolution, data integration, etc. This in turn introduces
so-called duplicate records into the databases. Deduplication intends to identify and
ultimately eliminate these multiple representations of entities in a database. Entities,
such as customers, publications, bibliographical citations, etc., are examples with
high interest for deduplication. Another and recent application of deduplication
with growing interest is to identify and compare duplicate products from different
online shops.

Deduplication has been the topic of research for many years under different names
such as purge and merge [10], record linkage [7, 14, 15], deduplication [17], etc. The
naïve way of duplicate detection imposes quadratic number of record pair com-
parisons which is time expensive task even for an average size database (e.g., in a
database of size 106 naïve way of duplicate detection has to execute 1012 pair com-
parisons). As a result, many different methods, such as the Sorted Neighborhood
method and its variants [6, 9, 10], blocking [7, 18], canopy clustering [4, 11], has been
proposed to tackle this problem by eliminating candidate pairs which are less likely
to generate duplicates from this quadratic search space.

Wide spreading of internet and online devices have increased the speed of gener-
ating the digital data in an unprecedented rate. Majority of this data are produced
by sensors or inserted into database from different sources and are inherently dirty.

223

mailto:Ahmad.Samiei@hpi.uni-potsdam.de

Ahmad Samiei: Cluster-based Sorted Neighborhoods for Deduplication

However already existing deduplication methods perform good, these sheer amount
of dirty and noisy data require ever faster methods of data cleansing and deduplica-
tions. In this report, we propose a novel deduplication approach based on traditional
Sorted Neighborhood method. It uses a light-weight internal attribute similarity mea-
sure to cluster attribute values and leveraging the clustered attributes to reduce the
number of candidate pair comparisons by disqualifying less likely candidate pairs.

The main contributions of this paper:

• We introduce a new variant for the Sorted Neighborhood method based on
attribute value clustering.

• The proposed approach ingests input data incrementally that makes it favor-
able for many new applications with high velocity of change in the dataset.

• We evaluate performance, quality and runtime, of our approach over three
different datasets and compare the result with existing methods.

2 Related Work

Duplicate detection algorithms are broadly categorized in three different categories,
namely blocking, canopy clustering, and sorted neighborhood methods. The block-
ing is a traditional way of record deduplication. It basically partitions the dataset
to some non-overlapping partitions, and does the record comparisons just for the
records inside each partition. As a result, it reduces the number of the record com-
parisons.

The canopy clustering is a rather new category of the record deduplication algo-
rithms. For instance, Monge and Elkan transform the problem of finding matching
records to the problem of finding connected components of an undirected graph
based on the assumption that record matching is a transitive operation [12]. They
efficiently cluster the connected subgraphs using a union-find structure, and finally
use only a representative of each subgraph to compare in future steps which results
in reduction of number of the comparisons.

Mccallum et al. also utilize canopies to expedite the deduplication process [11].
In the first step, using a cheap comparison metric, they partition dataset to some
overlapping partitions. Then they use a more expensive similarity metric for record
comparison. Cohen et al. also use a Tf-idf similarity metric as a canopy similarity
metric [4], Gravano et al. use the string length and number of q-grams of the two
string as a canopy similarity metric [8].

The Sorted Neighborhood Method (SNM) was first presented by Hernandez et
al. [9, 10]. Its basic idea is to sort the records according to a sorting key and move a
window with a fixed length over the sorted list, while comparing all pairs of records
within the windows. The main deficiency of this method is that it uses a fixed win-
dow size. That means if the window size is chosen too small it might not cover all
sufficiently similar records in one window. Therefore it does not generate enough

224

3 Attribute cluster based Incremental SNM

candidate pairs to cover all of the duplicates. On the other hand, choosing a too large
window size generates many irrelevant candidate pairs and imposes a high runtime.
Another drawback of this method is sensitivity to typographical errors in the sorting
keys. To this end, Hernandez et al. have proposed the multi-pass approach, which
simply executes SNM multiple times with different sorting keys and finally applies
the transitive closure over all discovered duplicates.

Different variants of the SNM have been proposed to deal with the mentioned
deficiencies. Christen introduces an extension to the traditional SNM in order to
address the problem of fixed window size by the help of an inverted index [3]. In
the proposed method he uses a list of unique values of sorting keys and stores the
identifiers of the records with the same sorting key values in one row of the inverted
index. While this approach is successful in resolving the problem of a fixed window
size, it suffers from a new deficiency. The inverted index generates large blocks,
which dominate the dataset and thus yield many irrelevant candidate pairs.

Another alternative method that attempts to deal with the problem of fixed win-
dow sizes is that of adaptive windows. Such methods enlarge or reduce the window
size based on some dynamic criterion, such as the similarity of the records. For
instance, Draisbach et al. propose a novel adaptive approach for the Sorted Neigh-
borhood method called Duplicate Count Strategy. The idea behind their method is if
any record in the window has a duplicate within the window, it is more likely to have
further duplicates within adjacent windows. The algorithm starts with a fixed initial
windows size. If the average number of duplicates in the window exceeds a specific
threshold, the algorithm extends the current window size by w − 1. It was shown
that that method is at least as efficient as SNM and typically reduces the number of
comparisons significantly.

Progressive duplicate detection is another kind of extension for SNM. This cate-
gory of algorithms are useful especially when execution time is limited. Progressive
algorithms try to reduce the average time of discovering a duplicate by identifying
most of the duplicate pairs in early stages [16].

Our method is a new extension to the Sorted Neighborhood method. In our ap-
proach before using a full similarity measure for a pair record comparison, we use
a similarity measure for clustering a subset of attributes and utilizes the clustering
attributes to cut down the number of potential candidate pairs. Apart from that
our algorithm ingests the input records in an incremental manner, which makes it
suitable for many use cases with incremental nature.

3 Attribute cluster based Incremental SNM

The naïve way of duplicate detection entails a quadratic number of pair comparisons.
The main goal of all traditional de-duplication methods is to reduce number of
redundant and unproductive pair comparisons. While these methods are successful
in achieving their goal to some extent, there remains room for improvement. In this
report, we introduce a novel de-duplication algorithm based on traditional sorted
neighborhood method. Our approach named ciSNM is an attribute cluster-based

225

Ahmad Samiei: Cluster-based Sorted Neighborhoods for Deduplication

extension of standard SNM. In contrast to the conventional SNM, it uses a window
of size 2 ⋅w and is able to ingest records incrementally. It leverages a light-weight
similarity measure for attribute similarity calculation and with the help of attribute
clustering reduces the number of irrelevant candidate pair comparisons.

We consider the similarity measure for pair comparison as a black box, which
returns a similarity value in the interval [0, 1] for every input record pair. Of course
the similarity threshold of the algorithm to separate a duplicate from non-duplicate
is influenced by the internal similarity measure in the black box; this aspect is not
the topic of this paper – we assume the same settings for all approaches used in
evaluation section.

Similar to the traditional SNM, ciSNM consists of three phases. The first phase
generates sorting keys. As in SNM, the general idea behind sorting records is to
bring similar records closer to each other so that they appear within a small window.
Using attributes (or attribute combinations) that have many distinct values (or value
combinations) perform better than those with few distinct values [13]. The second
phase of the traditional SNM sorts the records based on the already generated sorting
key in the first phase.

In the batch approaches, such as SNM, all of the data is available prior to executing
de-duplication. As a result, sorting can be done in one run with the time complexity
of O(n log n). In contrast to SNM, ciSNM does not assume to have access to complete
dataset at once. Records arrive incrementally and must be placed in correct sort-order
among those records that have arrived earlier. Thus, we need to use incremental
sorting methods, which do not work well on the typical list-type data structures. In
order to achieve the same time complexity as SNM during the sorting phase, ciSNM
uses a B-tree data structure. Insertion into the (sorted) B-tree has a time complexity of
O(log n). Considering n records in the dataset, the upper bound of time complexity
of sorting is again O(n log n), which satisfies our need.

The third phase of ciSNM generates candidate pairs for similarity calculation. Con-
sidering the size of the sliding window w, the traditional SNM generates n ⋅ (w − 1)
candidate pairs. Taking into account the assumption of receiving the input records
as a stream of data, and inserting records to the de-duplicated dataset incremen-
tally, our ciSNM algorithm has to compare each newly arrived record with 2 ⋅ (w− 1)
records (i.e., within two windows of size w). That is because we cannot know in
advance, in which direction the record set will grow. In an extreme case, all further
records are sorted to only one side of the record thus the more generous window.
The first window contains records with a greater value in their sorting key, the sec-
ond window those with smaller value. However, this number of candidate pairs and
comparisons is almost twice as the number of the comparison in the SNM and is un-
desirable1. It guarantees at least the same recall of the result as SNM. To address this
issue, ciSNM leverages a value-clustering scheme using an additional light-weight
attribute similarity measure. Its third phase comprises of three following sub-steps

1In fact the number of comparison is less than 2 ⋅ (w − 1) if the new record is inserted to
either ends of the sorted list or when the list size is still shorter than 2 ⋅ (w − 1).

226

3 Attribute cluster based Incremental SNM

that intend to further reduce the number of candidate pairs for which the expensive
similarity measure is invoked:

Figure 1: Attribute clustering

1. Attribute clustering

2. Candidate selection

3. Similarity calculation

The attribute clustering step, clusters attribute values of a preselected subset of
attributes based on their similarities by utilizing a light-weight similarity measure.
The clustering is done while inserting every newly arrived record into the proper
order-position in the sorted list. Algorithm determines the most similar value to the
attribute values of the inserted record. It compares each attribute value of the new
record with the values of the corresponding attribute of the adjacent records in the
ordered list. Two windows of size s, as depicted in the Figure 1, are considered for
this purpose.

The first attribute of each sorting key is chosen for clustering. Due to this selection
similar values are brought close to one another, therefore suitable cluster for the new
attribute value can be found even without necessity of comparing it with all of the
attribute values in the specified windows. In case of detecting an exact match, the
algorithm assigns the new attribute value to the same cluster and stops, otherwise
it continues to find an attribute value with the highest similarity value and at the
same time greater value than the threshold. Finally, if it was not successful to find a
suitable cluster it creates a new cluster and assigns the new attribute value to that.

The ciSNM algorithm exploits these attribute cluster results to filter out candidate
pairs which are less likely to end up to a duplicate in its candidate selection step.
This is done by applying a simple threshold on the number of matches among the
cluster Id’s of the two records. Applying this condition eliminates many irrelevant
candidate pairs, and keeps those with higher probability of yielding a duplicate pair
for the last step of the algorithm, similarity calculation.

227

Ahmad Samiei: Cluster-based Sorted Neighborhoods for Deduplication

4 Evaluation

We evaluate the performance of the proposed approach from two aspects, quality and
runtime, and compare it with the traditional SNM and one more recent algorithm
ASNM presented in [6]. we test the behavior of the new algorithm choosing datasets
from different sizes and characteristics.

4.1 Datasets and experimental setup

To evaluate our algorithm, we use three datasets Cora, Febrl, and Person. The Cora
dataset, citations of research papers, contains 1,879 records with a gold standard
that contains 64,578 duplicate pairs. It has been widely used by research papers
to evaluate duplicate detection algorithms [1, 5, 6]. The Febrl dataset is a synthetic
dataset that contains personal data and is generated by the Febrl data generator [2].
It contains about 300k records and 100k duplicate pairs. The third dataset is Person,
which contains over one million records. Every record consists of 12 attributes of
personal data and address and is polluted with noise and duplicates artificially.
This dataset is used by an industry partner as a duplicate detection benchmark. A
summary of the datasets is in Table 1, showing that they have quite some differences
in number of the cluster with size greater than two and maximum cluster size.

To perform our evaluation we use a PC with an i5 processor with 3.2 GHz, 8 GB
of RAM, and running Windows 7. In addition to our algorithm ciSNM, we imple-
mented standard SNM and adaptive window Sorted Neighborhood introduced by
Draisbach et al. called ASNM [6], one of the most recent algorithms in order to com-
pare our results. For the quality measure we used precision, recall and F-measure
(the harmonic mean of precision and recall).

Table 1: Evaluation Datasets

Dataset #Records #Duplicate Pair Clusters≥ 2
Records in
Clusters≥ 2

Maximum
Cluster Size

Cora 1,879 64,578 118 1,815 238
Febrl 300,009 101,153 7,301 37,301 10
Person 1,039,779 89,784 44,892 89,784 2

4.2 Experimental results— quality

We implemented our own similarity measure for the Febrl and Person datasets and
used the similarity measure implemented by Draisbach et al. [6] for the Cora dataset.
Meanwhile, we used the same similarity function, similarity threshold and three
sorting keys for executing different algorithms over each dataset. We ran a multi
pass version of all algorithms. For internal similarity measures of ciSNM, we chose a

228

4 Evaluation

similarity threshold that produces at least the same accuracy as the better algorithm
between other two algorithms, SNM and ASNM on the same dataset. However,
choosing a very low value for this threshold yields higher accuracy imposes higher
runtime. This contradicts our goal, reducing the number of the pointless compar-
isons.

The Figures 2, 3, and 4 depict the three evaluation measures for the three dif-
ferent algorithms on the three datasets, Cora, Febrl, and Person, respectively. In our
experiments we varied the window size from the minimum 2 to the value after which
F-measure no longer changes significantly.

As Figure 2 illustrates for the Cora dataset, precision starts from 0.95 for ciSNM,
0.94 for ASNM, and 0.92 for SNM, and in all cases slightly decreases with increasing
size of the sliding window; more comparisons give more opportunity for incorrect
decisions. Recall starts from 0.96 for SNM, 0.95 for ASNM and ciSNM. It reaches
0.99 for SNM and ASNM and 0.98 for ciSNM as we increase the window size to 30.
All of the algorithms achieve very close F-measure values for all different window
sizes, and ciSNM outperforms other two algorithm with a small margin between 1 %
to 2 %. This improvement is due to selecting pairs from a bigger window size.

In case of the Febrl dataset, Figure 3 depicts a result very similar to the Cora
dataset. Precision starts from 0.99 for SNM and ASNM, and 1 for ciSNM for the
smallest window size. Precision remains almost constant for all different window
sizes in ciSNM, it degrades only 1 %, but it shows a 4 % decrease in the other two
algorithms. The SNM starts with the lowest value in recall, 0.74 for the smallest
window size. ASNM and ciSNM both start with higher value in recall and these
effects are reflected in their F-measure. Both of the algorithms, ASNM and ciSNM
achieve higher F-measure than SNM.

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20 25 30

window size

Cora Dataset

SNM Recall ASNM Recall
ciSNM Recall SNM Precision
ASNM Precision ciSNM Precision
SNM F‐measure ASNM F‐measure
ciSNM F‐measure

Figure 2: Quality on Cora dataset

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40 50
window size

Febrl Dataset

SNM Recall ASNM Recall
ciSNM Recall SNM Precision
ASNM Precision ciSNM Precision
SNM F‐measure ASNM F‐measure
ciSNM F‐measure

Figure 3: Quality on Febrl dataset

For the Persons dataset, which is our biggest dataset, we can make similar observa-
tions in Figure 4. All of the algorithms produce the same and almost steady precision.
They start with 0.99 for the smallest window size and show one percent decrease
for the largest window. Similar to the other two datasets, here SNM and ASNM
start with the lower value in recall and F-measure and ciSNM achieves greater value

229

Ahmad Samiei: Cluster-based Sorted Neighborhoods for Deduplication

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40
window size

Person Dataset

SNM Recall ASNM Recall
ciSNM Recall SNM Precision
ASNM Precision ciSNM Precision
SNM F‐measure ASNM F‐measure
ciSNM F‐measure

Figure 4: Quality on Person dataset

0

20

40

60

80

100

120

140

160

180

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30

Co
m
pa

ris
on

s
Th

ou
sa
nd

Ru
nt
im

e

Window size

Cora Dataset

SNM Time ASNM Time
ciSNM Time SNM comparison
ASNM comparison ciSNM comparisonM

ill
is
ec
on

d

Figure 5: Runtime on Cora dataset

in F-measure for smaller window sizes and in general outperforms the other two
algorithms.

4.3 Experimental results— runtime

Figures 5, 6, and 7 depict runtimes and the number of pair-comparisons of the algo-
rithms for different sliding window sizes. As can be seen in the Figure 5, the ciSNM
algorithm generates the fewest number of pair comparisons among all algorithms for
the Cora dataset for each window size. It generates fewer pair comparisons (between
30 % to 50 % fewer than ASNM), and its average runtime improvement for the Cora
dataset is 22 % in comparison with ASNM. Its runtime improvement varies from
4 % to 54 %. In contrast with the other two datasets this gap is bigger for the small
window sizes which is due to heavy usage of transitive closure operator in ASNM
algorithm and by increasing the size of the sliding window this gap becomes nar-
rower as more duplicate discoveries happen in normal pair comparison. This results
in less usage of transitive closure. While this gap becomes smaller by growing the
size of the sliding window, it remains for all of the window sizes.

Figures 6 and 7 show an average reduction ratio of about 50 % over Febrl and 74 %
over Person in the number of pair-comparisons for ciSNM in comparison with ASNM.
As a result of this reduction, the runtime of ciSNM drops significantly, namely 25 %
improvement for the Febrl dataset and 26 % for the Persons dataset. Interestingly by
increasing the size of the sliding window, our runtime improvement also grows.

The ciSNM algorithm easily outperforms standard SNM in quality and runtime in
all of our datasets, which have different sizes and different kinds of data (real-world
or synthetic datasets). It also outperforms ASNM by reducing the number of the pair-
comparisons and also improving quality and runtime. The improvement over Cora
is not very large and constant as other algorithms due to its special characteristics.
As it can be seen in Table 1, Cora dataset has the largest clusters, and the highest ratio
of records belong to clusters of size greater than two. Although this special property
makes this dataset favorable for ASNM, ciSNM performs well even here and slightly
improves runtime.

230

5 Conclusion and future work

0

10

20

30

40

50

60

0

50

100

150

200

250

300

350

0 10 20 30 40 50

Co
m
pa

ris
on

s
M
ill
io
n

Ru
nt
im

e
Se
co
nd

Window size

Febrl Dataset

SNM Time ASNM Time
ciSNM Time SNM comparison
ASNM comparison ciSNM comparison

Figure 6: Runtime on Febrl dataset

0

20

40

60

80

100

120

140

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

1 6 11 16 21 26 31 36 41

Co
m
pa

ris
on

s
M
ill
io
n

Ru
nt
im

e

Window size

Person Dataset

SNM Time ASNM Time
ciSNM Time SNM comparison
ASNM comparison ciSNM comparison

se
co
nd

Figure 7: Runtime on Person dataset

Application of ciSNM on different sizes of datasets shows that it performs better
on the larger datasets due to diminishing the effect of the clustering overhead. This
in turn makes it more favorable for current trends of ever increasing database sizes.

5 Conclusion and future work

The proposed approach improves efficiency of deduplication on different kinds of
datasets, real-world or synthetic datasets, by reducing number of pair comparisons in
the search space. This reduction is result of filtering those pairs which are less likely
to produce a duplicate pair. The ciSNM shows its strength especially for the larger
datasets which is our need. The application of this approach is straight forward,
because it does not need any extra parameter with a need to a complicated process to
choose a value for. In addition to that it does not require any new similarity metric. It
uses the same similarity metric used in the similarity function as an internal attribute
similarity measure.
In the Big data era, volume of the data and velocity of it’s changes make using
distributed platform inevitable. In my future work, I would like to investigate on
parallelization of the incremental deduplication algorithms in the platforms namely
Flink and learn more about it and compare it with other existing platforms such as
Hadoop and spark in the context of incremental record deduplication.

References

[1] M. Bilenko and R. J. Mooney. “Adaptive Duplicate Detection Using Learnable
String Similarity Measures”. In: Proceedings of the International Conference on
Knowledge discovery and data mining (SIGKDD). 2003.

[2] P. Christen. “Probabilistic Data Generation for Deduplication and Data Link-
age”. In: Proceedings of the International Conference on Intelligent Data Engineering
and Automated Learning (IDEAL). Springer-Verlag, 2005.

231

Ahmad Samiei: Cluster-based Sorted Neighborhoods for Deduplication

[3] P. Christen. Towards parameter-free blocking for scalable record linkage. Technical
report. Faculty of Engineering and Information Technology The Australian
National University Canberra, 2007.

[4] W. W. Cohen and J. Richman. “Learning to Match and Cluster Large High-
dimensional Data Sets for Data Integration”. In: Proceedings of the International
Conference on Knowledge discovery and data mining (SIGKDD). ACM, 2002.

[5] X. Dong, A. Halevy, and J. Madhavan. “Reference Reconciliation in Complex
Information Spaces”. In: Proceedings of the International Conference on Manage-
ment of Data (SIGMOD). ACM, 2005.

[6] U. Draisbach, F. Naumann, S. Szott, and O. Wonneberg. “Adaptive Windows
for Duplicate Detection”. In: Proceedings of the International Conference on Data
Engineering (ICDE). 2012.

[7] I. Fellegi and A. Sunter. “A Theory for Record Linkage”. In: Journal of the
American Statistical Association 64 (1969).

[8] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava. “Approximate String Joins in a Database (Almost) for Free”. In:
Proceedings of the International Conference on Very Large Databases (VLDB). 2001.

[9] M. A. Hernández and S. J. Stolfo. “Real-world Data is Dirty: Data Cleansing
and The Merge/Purge Problem”. In: Data Mining and Knowledge Discovery
(1998).

[10] M. A. Hernández and S. J. Stolfo. “The Merge/Purge Problem for Large
Databases”. In: Proceedings of the International Conference on Management of Data
(SIGMOD). ACM, 1995.

[11] A. McCallum, K. Nigam, and L. H. Ungar. “Efficient Clustering of High-
dimensional Data Sets with Application to Reference Matching”. In: Pro-
ceedings of the International Conference on Knowledge discovery and data mining
(SIGKDD). ACM, 2000.

[12] A. Monge and C. Elkan. “An Efficient Domain-Independent Algorithm for
Detecting Approximately Duplicate Database Records”. In: Data Mining and
Knowledge Discovery (1997).

[13] F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Synthesis
Lectures on Data Management. Morgan and Claypool Publishers, 2010.

[14] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. “Automatic
Linkage of Vital Records”. In: Science (1959).

[15] H. B. Newcombe and J. M. Kennedy. “Record Linkage: Making Maximum Use
of the Discriminating Power of Identifying Information”. In: Communications
of the ACM (1962).

[16] T. Papenbrock, A. Heise, and F. Naumann. “Progressive Duplicate Detection”.
In: IEEE Transactions on Knowledge and Data Engineering (2015).

232

References

[17] S. Sarawagi and A. Bhamidipaty. “Interactive Deduplication Using Active
Learning”. In: Proceedings of the International Conference on Knowledge discov-
ery and data mining (SIGKDD). ACM, 2002.

[18] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. 1996.

233

Time-travel Queries for Omniscient Database Debuggers

Arian Treffer

Enterprise Platform and Integration Concepts
Hasso-Plattner-Institut

arian.treffer@hpi.de

Omniscient debuggers can greatly improve developer productivity. Not only do
they allow for more efficient navigation in the execution of a program, they can
be used as a foundation for dynamic analyses that further help the developer
to identify relevant parts of code. Much work has been done on debugging and
analyzing object-oriented code.

We present an approach of bringing omniscient debugging and advanced anal-
ysis algorithms to stored procedures. Our prototype allows omniscient debugging
of SQLScript that handles large amounts of data, while creating only a small over-
head by using an insert-only approach. Furthermore, we show an extension to SQL
that allows the developer to express questions that cover a period of execution
time.

1 Introduction

The debugger is one of the most important of a software developer. It allows to
observe and inspect a program’s execution and is useful for many purposes, such as
bug detection and code comprehension. Studies found that developers spend up to
50 % of their time debugging.

The usage of a debugger usually follows the same pattern: First, the developer
forms a hypothesis about the workings of a specific part of the program. Then, she
sets a breakpoint inside or before the code of interest. If the control flow through the
program is not certain, multiple breakpoints can be used. Once the debugger halts
the execution, the program’s state can be examined. The execution is continued in
small or larger steps, e.g., using step instructions or more breakpoints. If unexpected
values or behavior are observed, the hypothesis is adapted. This process is repeated
until the developer’s hypothesis is sufficiently confirmed.

Alas, with commonly used debuggers, this approach has several problems. To
find good locations for setting breakpoints, extensive knowledge is often necessary.
If the hypothesis is changed, other parts of the program may become of interest. If
these parts have already been executed, the debug session has to be restarted. This
is particularly common in bug hunting, where the infection chain has to be followed
from the failure to the code defect, backwards in time. Furthermore, navigation
errors such as stepping over a method call instead of into it often make restarting
the debug session necessary.

The remainder of the report is structured as follows: The next section gives a brief
introduction to omniscient debuggers and presents our previous work on debugging
and slicing Java applications. Section 3 shows our ongoing work of adapting these

235

mailto:arian.treffer@hpi.de

Arian Treffer: Time-travel Queries for Omniscient Database Debuggers

concepts to SQLScript and describes an extension to SQL that allows to compare the
database at different points in time. A history of omniscient debugging and other
related work is presented in section 4, before we conclude in section 5.

2 Omniscient Debugging

A Backwards Debugger is a debugger that allows to step not only forwards, but also
backwards in the execution. As an extension, an Omniscient Debugger is a debugger
that knows every state of the program, in the past and future of the current point in
time.

Working backwards debuggers have been implemented for several programming
languages [7, 11, 12, 13]. Many of them internally work like omniscient debuggers,
but do not reveal this to the user.

2.1 Slicing

According to Weiser [18], a (static) slice S is a subset of the statements of a program
P on a slicing criterion C, so that for any input I, S and P produce state trajectories
equivalent with respect to C. A typical example for a slicing criterion would be a
variable in a given line. Then, all statements that can never impact the value of that
variable can be removed from the slice. Dynamic slices are defined similarly, but
have to produce the equivalent state trajectories only for specific inputs [10].

It has been shown that slicing represents how programmers naturally think about
problems in programming [18] and has many applications, including, but not limited
to, debugging [1] and program comprehension [4].

Typically, static and dynamic slicing algorithms focus on finding statements be-
longing to a slice. However, in many cases statements are executed multiple times in
a single program run and not all executions are relevant for the slice. Therefore, our
work focuses on state-changing events, i.e., actual executions of statements, instead
of the statements themselves.

Augmenting our previous work on more efficient and customizable slicing al-
gorithms, we developed a new view on the program that allows the developer to
control both the debugger and the slicing back-end.

2.2 The Slice Navigator

The purpose of the slice navigator is to aid the developer’s short-term memory. It
provides a quick overview over previous and upcoming events, and how they relate
to the current instruction. Figure 1 shows a screenshot of the slice navigator with the
execution of the example test-case halted on the return instruction of getArea() in
line 6. “Previous Steps” lists all past events that the curent or future events depend
on. Likewise, “Next Steps” shows all events that depend on the current or previous
events. Events that are not directly related to the current step are shown in gray.

236

3 Debugging Stored Procedures

Figure 1: The slice navigator view for a program that computes the volume of a
pyramid

Using this event list, the developer can obtain different kinds of information about
the current state of the execution, such as the immediate context of the current in-
struction, the relevant program state, and the dependencies to previous instructions.

Different dependency types are indicated by their icons. Value dependencies occur
when the the value of an instruction is derived from another instruction’s value. In
the slice navigator, they are represented with a red equality sign. Instructions that
determine if another instruction can be reached are reachability dependencies, indi-
cated by a yellow arrow. Typically, these are method invocations and instruction in
conditional statements. Sometimes, a value depends on only one of multiple candi-
date values. A control dependency determines which of these candidates is used. More
formally, control dependencies are reachability dependencies of value candidates
that are not also reachability dependencies of all other candidates. In the navigator,
they are indicated by a blue “X”.

The developer can now combine these different dependency types to adjust the
slice for specific purposes. Clicking on an event’s dependency symbol brings up
a dialog that allows to choose which dependencies of that event to include. This
way the developer can, for instance, put a focus on how a value was computed or
how an instruction was reached. It is also possible to remove all dependencies of an
event, for instance if it is known to be correct and its history is not of interest, thereby
moving the focus of the slice to less well-understood parts of the program. Whenever
a slicing criterion is modified, the slice is updated instantly, without locking the user
interface or resetting the current debug session. the current instruction are added
first.

3 Debugging Stored Procedures

Many large and complex applications use a database to persist large amounts of data.
However, with the advance of in-memory databases and the decline of RAM cost,

237

Arian Treffer: Time-travel Queries for Omniscient Database Debuggers

the database is no longer seen as a simple data provider [14]. For maximum perfor-
mance, more and more business logic is moved away from the so-called application
layer, which is typically coded in some high-level object-oriented language, into the
database, where it has to be rewritten in SQL queries and stored procedures (mostly
SQLScript). The increasing complexity of database routines brings an increased need
for tool support for debugging.

Regular debuggers for stored procedures already exist. They allow to set break-
points and to inspect variables and tables, as one would expect. However, often they
can not be used as efficiently as debuggers for other languages. It is common for a
stored procedure to run several seconds or even minutes, which increases the cost
for restarting a debug session. Furthermore, the large amounts of data that can be
processed in a single call can make it impossible for the developer to gain a complete
understanding of the program state.

Both problems can be solved by testing with minimal example data. However, if
the nature of a bug is not yet known, creating such an example may be impossible.
In this section, we show how an omniscient debugger for stored procedures can be
realized and discuss specific problems such a debugger has to face. A prototypical
implementation is currently being developed.

3.1 Tracing and Omniscient Debugging

An omniscient debugger also suffers from the large amounts of data. Our Java debug-
ger traces every field and variable access. Tracing every tuple of a table would create
a dramatic overhead. Using an even-bigger database, just to manage a single debug
session, is not feasible. Instead, we take advantage of the same that makes stored
procedures so powerful in the first place: the declarative nature of SQL queries.

Unlike in object-oriented programs, where almost every behavior can be changed
by virtual method calls, it is not possible to change the behavior of a where-clause.
Furthermore, SQL queries are well defined so that it is not necessary to analyze the
internal workings to allow an analysis of the overall behavior.

Instead, we only need to trace variable assignments to be able to reproduce the
program execution. Queries don’t have to be traced at all, although for some purposes
it will be helpful to record some meta information, such as the execution time or
the number of results. However, we need to be able to reproduce the query results,
otherwise the debugger would be quite useless.

3.2 Reproducing Query Results

By tracing all variables, the debugger has enough information available to re-execute
any query. However, the query will only yield the same results as long as the under-
lying data has not changed.

In general, one can expect that debugging will take place on a development ma-
chine where no other data manipulation occurs. However, in cases where this as-
sumption doesn’t hold, the debugger might end up showing wrong or misleading
data the developer, which can make the tool outright harmful. Furthermore, the

238

3 Debugging Stored Procedures

debugged stored procedure itself may change the data, which will cause a query to
return different results at different points in time.

In systems that are relevant to accounting, such as ERP, finance, and CRM systems,
data is never deleted. Such behavior often even is a legal requirement. If we require
for all tables that data can never be changed or deleted and annotate all tuples with
timestamps of when they have been created and invalidated, we can reconstruct the
state of the database of any point in time.

Especially in in-memory databases, the overhead can be less than expected due to
compression, and it may even improve the performance as inserts can be faster than
updates or deletes. Finally, adding timestamp filters to select queries does not cause
a significant slowdown. Our prototype was built using this approach.

3.3 Time-travel Queries

In our set-up, the debugger trying to recreate intermediate results of a stored proce-
dure is just a special use case for the ability to submit arbitrary queries against the
database of any previous point in time.

The query shown in listing 1 selects the total of open orders for previously selected
projects. We will use it as an example to demonstrate how time-traveling queries are
handled by our system.

Listing 1: Example for a time-travel query: select the current total of open orders for
previously selected projects

 SELECT pr.id, pr.name, pr.budget, SUM(po.total)
FROM :selected_projects pr
JOIN PurchaseOrders po ON po.project_id = pr.id
WHERE po.status = 'open'

 GROUP BY pr.id, pr.name, pr.budget
AT STEP 1623

The last line shows an extension to SQL that can be used by the developer to explic-
itly query a point in time, with 1623 being an instruction ID that was obtained from
the debugger UI. If omitted, the current step can be derived from the context from
which the query is submitted, such as an SQL console that is associated with a spe-
cific point in time or the current debug step. The parameter :selected_projects
refers to a variable from the current debug session and will be populated with its
current value, independently of the value of the step-clause.

When submitted, our debugger applies two changes to the query before it can
be submitted to the database. First, all parameters are replaced with corresponding
views. When a stored procedure is debugged for the first time, the debugger auto-
matically creates a view for each query in the procedure. These views are identified
by the target variable name and the line number and expect a step identifier and

239

Arian Treffer: Time-travel Queries for Omniscient Database Debuggers

all parameters that the actual query takes. In our example, :selected_projects
might be replaced with VAR_selected_projects_7(1055, ’Research’) when
it was last set at step 1055 in code line 7 and called with the respective argument.

Second, a time-stamp filter is added for all tables that are referenced in the query.
In our example,

po.createdOn < 1623 AND (pr.validTo IS NULL OR pr.validTo >
Ç 1623)

would be added to the Where-clause.
Now, the query can be submitted to the database and the result is subsequently

presented to the user.

3.4 Time-diff Queries

To get a better overview about what happened in a piece of code, the developer might
want to query multiple points in time at once and see the difference in the query
result. For this example, she debugs a stored procedure that processes the payments
for projects, but sometimes allows projects to go over budget. By stepping into the
procedure, she has three defined points in time: before, at the beginning of the
procedure; now, at the current instruction; and after, at the end of the execution.

Now she wants to compose a query that selects all projects that will go over budget
and the orders that were processed. The query is shown in listing 2. Like before, the
AT STEP clause does not have to be explicitly typed in the query, but can also be
derived from the context. A language extension allows to add filter conditions that
only apply to specific points in time. Table 1 shows a possible result for this query,
with one project that goes over budget and two associated purchases, of which one
was already processed.

To produce this result, the query has to be executed three times, once for each
point in time, without the time-specific filter conditions. Then, to prepare the diffing
of the results, they are outer-joined on the primary keys and the time-specific filters

Listing 2: Example of a time-diff query: “Select all projects that will go over budget
and their respective purchase orders”

 SELECT pr.id, pr.name, pr.budget, SUM(po.total), po2.id, po2.status,
Ç po2.total

FROM :selectedProjects pr
JOIN PurchaseOrders po ON po.project_id = pr.id
JOIN PurchaseOrders po2 ON po2.project_id = pr.id

 WHERE po.status = 'open'
AND now!pr.budget > 0 AND after!pr.budget < 0
AND before!po2.status != after!po2.status

GROUP BY pr.id, pr.name, pr.budget, po2.id, po2.status, po2.total
AT STEP before=817, now=1623, after=2043

240

3 Debugging Stored Procedures

Table 1: Result of a time-diff query, with multiple values in some
columns

pr.id pr.name pr.budget total po2.id po2.status po2.total

1200 1500 open
1 Project 1 200 500 1 paid 1000

-300 0

1200 1500
1 Project 1 200 500 2 open 500

-300 0 paid

are applied. For performance reasons, all of this happens inside a single SQL query,
as shown in listing 3. The execution of the sub-queries is indicated in line 6, 7, and
10, the time-specific filters can be found in the Where-condition of line 15 and 16.

Listing 3: Parts of the time-diff query after transformation

 SELECT COALESCE(__before."pr.id", ...) AS "pr.id",
COALESCE(__before."po.id", ...) AS "po.id",
__before.createdOn as _step_0,
__before."pr_name" AS "pr_name_0", ...,

 ...
FROM (SELECT ... AT STEP before) __before
FULL OUTER JOIN (SELECT ... AT STEP now) __now

ON __before."pr.id" = __now."pr.id"
AND __before."po.id" = __now."po.id"

 FULL OUTER JOIN (SELECT ... AT STEP after) __after
ON (__before."pr.id" = __after."pr.id"

AND __before."po.id" = __after."po.id")
OR (__now."pr.id" = __after."pr.id"

AND __now."po.id" = __after."po.id")
 WHERE __now."pr.budget" > 0 AND __after."pr.budget" < 0

AND __before."po.status" != __after."po.status"

For the final result, the key attributes are coalesced while the other attributes are
selected from each point in time. Furthermore, for each tuple its creation step is
selected. This value is needed for two reasons: first, it is necessary to distinguish
between tuples with NULL values and tuples completely missing from the result;
second, it allows the debugger to know when the value was created or changed.

In the UI, the before and after values are only shown if they differ from the now
value. Clicking on value allows the developer to jump to the UPDATE or INSERT
statement that caused the change.

241

Arian Treffer: Time-travel Queries for Omniscient Database Debuggers

3.5 Limitations

Currently, our approach has two major limitations.
First, time-diff queries can only be executed on tables that have clearly defined

primary keys, for key attributes are required to track a tuple’s versions over time. For
a query like “Sum budgets per project category”, it has to be clear that categories are
the entities that keep their identity over time. Here, an additional syntax extension
could be used to convey this kind of information.

Second, it is currently not possible to use time qualifiers outside of the WHERE
clause.

4 Related work

An omniscient debugger is a debugger that immediately knows about every event
in the execution of a program [11]. While reversible execution for debugging pur-
poses has been researched earlier [5], the first omniscient debugger was presented by
Lewis [11]. The debugger supported several ways to jump through points-of-interest
in the execution, but had no slicing capabilities. Subsequent work in the area fo-
cused mostly on memory aspects, for instance by developing a specialized event
database [15] or allowing garbage-collection of unreachable past events [13].

The concept of slicing has first been introduced by Weiser, along with a first static
slicing algorithm [18]. Korel and Laski, and Agrawal and Horgan later extended the
idea to include runtime information to produce more precise slices [2, 10]. Further-
more, Agrawal et al. presented a debugger for C programs with dynamic slicing
capabilities [1]. Since then, different slicing algorithms have been proposed and ana-
lyzed [3, 8, 19].

For Java, dynamic slicing has been implemented for byte-code traces [16, 17]. JS-
lice [17] and JavaSlicer [6] are available tools. Ko and Myers used a combination of
techniques similar to static and dynamic slicing to automatically answer causality
questions [9].

5 Conclusion and Future Work

We have shown how omniscient debuggers can increase developer productivity
by allowing backwards navigation and providing fast advanced dynamic analyses.
While these techniques can be applied to all imperative programming languages, a
prototype for SQLScript has revealed that the database debuggers require additional
tools to help understand the underlying data.

Future work will consist of developing omniscience-based algorithms for analyz-
ing stored procedure, and evaluating them with regards to required tracing overhead
and performance.

242

References

References

[1] H. Agrawal, R. A. Demillo, and E. H. Spafford. “Debugging with dynamic
slicing and backtracking”. In: Software: Practice and Experience 23.6 (1993), pa-
ges 589–616. doi: 10.1002/spe.4380230603.

[2] H. Agrawal and J. R. Horgan. “Dynamic Program Slicing”. In: Proceedings
of the ACM SIGPLAN 1990 Conference on Programming Language Design and
Implementation. PLDI ’90. New York, NY, USA: ACM, 1990, pages 246–256. doi:
10.1145/93542.93576.

[3] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Á. Kiss, and B. Korel. “Theoret-
ical foundations of dynamic program slicing”. In: Theoretical Computer Science
360.1–3 (2006), pages 23–41. doi: http://dx.doi.org/10.1016/j.tcs.2006.01.012.

[4] A. De Lucia. “Program slicing: methods and applications”. In: First IEEE Inter-
national Workshop on Source Code Analysis and Manipulation, 2001. Proceedings.
2001, pages 142–149. doi: 10.1109/SCAM.2001.972675.

[5] S. I. Feldman and C. B. Brown. “IGOR: a system for program debugging via
reversible execution”. In: Proceedings of the 1988 ACM SIGPLAN and SIGOPS
workshop on Parallel and distributed debugging. PADD ’88. New York, NY, USA:
ACM, 1988, pages 112–123. doi: 10.1145/68210.69226.

[6] C. Hammacher. Design and Implementation of an Efficient Dynamic Slicer for Java.
Published: Bachelor’s Thesis. Saarland University, Nov. 2008.

[7] C. Hofer, M. Denker, and S. Ducasse. “Design and implementation of a
backward-in-time debugger”. In: NODe 2006 (2006), pages 17–32.

[8] T. Hoffner. Evaluation and comparison of program slicing tools. Citeseer, 1995.
[9] A. J. Ko and B. A. Myers. “Debugging reinvented: asking and answering why

and why not questions about program behavior”. In: Proceedings of the 30th
international conference on Software engineering. ICSE ’08. New York, NY, USA:
ACM, 2008, pages 301–310. doi: 10.1145/1368088.1368130.

[10] B. Korel and J. Laski. “Dynamic slicing of computer programs”. In: Journal
of Systems and Software 13.3 (Nov. 1990), pages 187–195. doi: 10 . 1016 / 0164 -
1212(90)90094-3.

[11] B. Lewis. “Debugging backwards in time”. In: Computing Research Repository
cs.SE/0310016 (2003).

[12] H. Lieberman. “Reversible Object-Oriented Interpreters”. In: ECOOP’ 87 Euro-
pean Conference on Object-Oriented Programming. Volume 276. Lecture Notes in
Computer Science. Springer Berlin/Heidelberg, 1987, pages 11–19.

[13] A. Lienhard, T. Gîrba, and O. Nierstrasz. “Practical Object-Oriented Back-in-
Time Debugging”. In: ECOOP 2008 – Object-Oriented Programming. Edited by
J. Vitek. Lecture Notes in Computer Science 5142. Springer Berlin Heidelberg,
Jan. 2008, pages 592–615.

[14] H. Plattner and A. Zeier. In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer, 2011.

243

http://dx.doi.org/10.1002/spe.4380230603
http://dx.doi.org/10.1145/93542.93576
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2006.01.012
http://dx.doi.org/10.1109/SCAM.2001.972675
http://dx.doi.org/10.1145/68210.69226
http://dx.doi.org/10.1145/1368088.1368130
http://dx.doi.org/10.1016/0164-1212(90)90094-3
http://dx.doi.org/10.1016/0164-1212(90)90094-3

Arian Treffer: Time-travel Queries for Omniscient Database Debuggers

[15] G. Pothier, É. Tanter, and J. Piquer. “Scalable omniscient debugging”. In: Pro-
ceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented program-
ming systems and applications. OOPSLA ’07. New York, NY, USA: ACM, 2007,
pages 535–552. doi: 10.1145/1297027.1297067.

[16] A. Szegedi and T. Gyimothy. “Dynamic slicing of Java bytecode programs”.
In: Fifth IEEE International Workshop on Source Code Analysis and Manipulation,
2005. Sept. 2005, pages 35–44. doi: 10.1109/SCAM.2005.8.

[17] T. Wang and A. Roychoudhury. “Dynamic Slicing on Java Bytecode Traces”.
In: ACM Trans. Program. Lang. Syst. 30.2 (Mar. 2008), 10:1–10:49. doi: 10.1145/
1330017.1330021.

[18] M. Weiser. “Programmers use slices when debugging”. In: Commun. ACM 25.7
(July 1982), pages 446–452. doi: 10.1145/358557.358577.

[19] X. Zhang, R. Gupta, and Y. Zhang. “Precise dynamic slicing algorithms”. In:
25th International Conference on Software Engineering, 2003. Proceedings. May
2003, pages 319–329. doi: 10.1109/ICSE.2003.1201211.

244

http://dx.doi.org/10.1145/1297027.1297067
http://dx.doi.org/10.1109/SCAM.2005.8
http://dx.doi.org/10.1145/1330017.1330021
http://dx.doi.org/10.1145/1330017.1330021
http://dx.doi.org/10.1145/358557.358577
http://dx.doi.org/10.1109/ICSE.2003.1201211

Video Classification with Convolutional Neural Network

Cheng Wang

Internet Technologies and Systems
Hasso-Plattner-Institut

Cheng.Wang@hpi.de

This report summaries my research activities of the past six months in the HPI Re-
search School on Service Oriented Systems Engineer. In this report, I will introduce
our work in video classification with deep learning. An automatic video classifier is
trained based on the spatial and temporal information. We also proposed a fusion
network for combining spatial and temporal information and further improved
classification accuracy.

1 Introduction

With the rapid increasing Internet technology, tremendous amount of videos are
uploaded to World Wide Web every day. Statistics1 shows that 300 hours of video
are uploaded to YouTube every minute. It is hard for a human to go through them
all and find videos of interest. One possible way to narrow the choice is to look for
video according to category or label information. But, most videos do not contain
semantic meta data and the video platforms are left clueless about the contents.
Thus, classifying video according to their content is important to video search and
retrieval.

Video classification is a challenging task which attracts much attention recently.
Inspired by the recent advance of deep learning, many efforts have been made to
enhance the understanding of video, for example, video action recognition with
convolutional neural network. One commonly used approach for video classification
is based on classifying the key frames that extracted from videos. Recent work [17]
proved that temporal clues can provide additional information for improving video
classification performance. In this work, we firstly train spatial and temporal model
with Convolutional Neural Network (CNN) separately. Since fusing multiple feature
such as text-image fusion, audio-video fusion has provided a promising results
for video classification, we also focus on the exploration the fusion approach for
combining spatial and temporal.

Our system builds on the latest results in the video classification domain. Those
latest results are listed and summarized in Section 2. To create our neural network
we used the UCF101 [18] dataset. The data set and corresponding preprocessing is
explained in detail in Section 3. Our resulting neural network architecture consists of
a two-stream neural network architecture. The first stream is a spatial convolutional
neural network, which is responsible for processing the individual key frame that

1https://www.youtube.com/yt/press/en-GB/statistics.html (last accessed 2015-10-01)

245

mailto:Cheng.Wang@hpi.de
https://www.youtube.com/yt/press/en-GB/statistics.html

Cheng Wang: Video Classification with Convolutional Neural Network

extracted from given video. It is explained in detail in Section 3.2. The second stream
is temporal convolutional neural network that processing the optical flow of a video
and is presented in Section 3.3 The two neural networks are merged into a third
fusion network (Section 3.4). Then we report our experimental result in Section 4.
Finally we conclude this work in Section 5.

2 Related work

Previous video recognition research has been focused on obtaining video descriptors
which encode motion information and appearances in order to achieve state-of-art
results. The research in this area has also been driven by advances in image recogni-
tion methods which can be adapted and reused for video processing tasks. Systems
employing video descriptors rely on handcrafted features, intensive analysis and pro-
longed feature preparation. An example for an approach using motion information
captured in local spatio-temporal features is called Histogram of Oriented Gradi-
ents [5]. Variations include the Histogram of oriented Optical Flow (HOOF) [4] or Mo-
tion Boundary Histograms (MBH) [6] around different kinds of trajectories [8]. Those
features can be used to encode a video using a bag of words (BoW) approach [14] or
Fisher vector based encodings [20]. In a later work [21] it was also shown that using
local features instead of sparse interest points is beneficial. The creation of features
can be further improved by using global camera motion reduction techniques [9, 13,
20].

There are also a number of attempts to develop a deep architecture for video recog-
nition. Several approaches use 3D-convolution over short video clips to learn motion
features from the raw image data [2, 11, 12]. This can be rather challenging as indi-
cated by Karpathy et al. [12] and in [10] an HMAX architecture for video recognition
with pre-defined spatial-temporal filters in the first layer is suggested. In [15, 19] con-
volutional restricted boltzmann machines (RBM) were used for unsupervised feature
learning before getting plugged into discriminative models for action recognition.

Another approach by Simonyan et al. [17] directly incorporates motion information
from optical flows. Although, this improves prediction quality compared to the
naive approach of classifying individual frames, it still only uses information of
10 consecutive frames and can therefore still be considered a local classification
approach. Building on those optical flow results Ng et al. [16] and Donahue et al. [7]
introduce Long Short Term Memory layers into their networks. This results in an
aggregation of strong CNN image features over long periods of a video. The work
results in state of the art performance and is superior to the work of Baccouche et
al. [1] because of the use of optical flow features.

246

3 Methodology

3 Methodology

This section introduces our architecture, and describes how we process video data
for spatial and temporal model training.

Figure 1: Architecture. Each input video is preprocessed to key frames and two-
direction (X-direction and Y-direction) flow images. The input size for each image
is 224×224. The features of spatial and temporal are extracted from the first fully
connected layer.

3.1 Architecture

We adopted Caffe2 framework for training spatial and temporal model. As shown in
Figure 1, Our framework comprises of three components: the spatial, flow and fusion
nets respectively. Based on pre-train models, we extracted the features of the first
fully connected layer from each CNNs. And then, we impose a fusion layer which
consists of two fully connected layers to combine the features from different streams.

The spatial CNN part is processing the single frames of a video in order to recognize
objects and structures in frames. The flow CNN part captures the motion of actions by
learning the optical flow images. To combine the information of both parts, spatial and
flow. We propose to adopt additional fusion layer to fuse the features we extracted
from different CNNs. The fusion feature then is applied to give the final predictions.
Hence the final overall prediction is a combination of the two-streams.

2http://caffe.berkeleyvision.org/ (last accessed 2015-10-01)

247

http://caffe.berkeleyvision.org/

Cheng Wang: Video Classification with Convolutional Neural Network

3.2 Spatial CNN

The first preprocessing step needs to convert the given video files into key-frame
images. We extracted the frame data from the videos with the FFmpeg3 tool. As
output, we chose JPEG files. Finding the correct frame rate for the frame extraction
was challenging. High frame rates, such as 30 frames per second (FPS), often lead
to two adjacent frames being exactly identical. This is a problem for the optical
flow extraction, since there will be almost no measurable difference between the
images and the optical flow is reported as empty. Especially for classes, where a lot
of movement and characteristic optical flow is expected (such as Archery or Juggling
Balls), this turned out to be problematic. The problem of identical images does not
exist for lower frame rates, e.g. 5 frames per second. However in this case we create
less overall training data and less details, especially for optical flow extraction. A
variable frame rate extraction is not feasible, as the optical flow must be comparable
between different video types, i.e. the time between two frames must be identical. In
this work, we utilized two fps value for key-frame extraction: 30 FPS and 15 FPS.

3.3 Optical CNN

Optical flow is computed to capture the movement in a video sequence and is always
based on two immediate consecutive grey-scale frames. We used the optical flow
algorithm from Brox et al [3], an accepted standard in the research community. We
were able to apply the out of the box OpenCV algorithm4 and benefited from its
GPU computation, leading to faster flow extraction. Optical flow can be computed
both along X and Y axis, as shown in Figure 1. Therefore there are two optical flow
images for each pair of consecutive frames, resulting in 2 ∗ (N − 1) optical flows for
N frames. To training optical flow CNN, we adopted CNN_M network [17]. We stack
each group of multiple optical flow images as input in Caffe framework.

4 Experiments

This section reports the experimental results and discussion for three parts respec-
tively.

Our spatial CNN is fine-tuned on VGG_19, which has 16 convolutional layers and
3 fully connected layers. From Table 1, we can see the number of fine-tuned layers
and FPS are sightly effect the accuracy. By using 30 FPS for key frame extraction
and fine tuning the last 5 year achieved the best result on spatial based classification.
We also found that increasing the number of fine-tuning layers cannot consistently
improve the classification accuracy.

3http://www.ffmpeg.org (last accessed 2015-10-01)
4http://docs.opencv.org/modules/gpu/doc/video.html#gpu-broxopticalflow (last accessed 2015-

10-01)

248

http://www.ffmpeg.org
http://docs.opencv.org/modules/gpu/doc/video.html#gpu-broxopticalflow

4 Experiments

Table 1: Spatial CNN fine tuning on VGG_19

layers involved FPS Accuracy

last 5 layers 30 75.3 %
last 6 layers 30 74.9 %
last 4 layers 15 74.8 %
last 7 layers 15 74.1 %
last 3 layers 30 73.1 %

Our optical flow CNN is trained based CNN_M architecture. We found that if we
use the model for predicting directly, the accuracy is 44 %. We fine-tuned the last 3
layers and achieved the 66.4 % result. It did not show better performance when we
fine-tuned all layers.

Table 2: Optical CNN fine tuning based on CNN_M

layers involved Accuracy

last 3 layers 66.4 %
all layers 63.1 %

last 4 layers 62.5 %
none 44.3 %

As mentioned before, our fusion net is consists of two fully connected layer. In
this work, adopted early fusion strategy. It means we fuse the two steams at feature
level. We extracted the features (4096-D) from the first fully connected layer for each
CNNs. And then combine the two feature vector by using linear combination into a
long vector which is 8192-D. In our fusion experiments, we fixed batch size at 128,
and based learning rate is set as 0.001. The results of our fusion training is described
in Figure 2. We note that after 20000 iterations, the training tend to be stable and
finally ended with 83.6 %. The summary of each model accuracy is shown in Table
3, our fusion layer improved from spatial by 8.3 % and flow by 17.2 %. It confirms
the previous work that one modality can complement other modalities.

Table 3: Fusion result

Stream Accuracy

Spatial 75.3 %
Flow 66.4 %

Fusion 83.6 %

249

Cheng Wang: Video Classification with Convolutional Neural Network

Figure 2: Fusion training

5 Conclusion and outlook

In this report, we proposed an unified framework for video classification. This frame-
work consider the spatial and motion clues, and combine the feature we extracted
from the two stream by using early fusion with neural network. Our experiments
proved that the combination of different streams is beneficial for improving the final
prediction results.

Our future work will focus on the exploration of more sophisticated fusion meth-
ods. On the other hand, we will also consider data augmentation methods to further
spatial and flow model accuracy.

References

[1] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. “Action classi-
fication in soccer videos with long short-term memory recurrent neural net-
works”. In: Artificial Neural Networks–ICANN 2010. Springer, 2010, pages 154–
159.

[2] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt. “Sequential deep
learning for human action recognition”. In: Human Behavior Understanding.
Springer, 2011, pages 29–39.

250

References

[3] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. “High accuracy optical flow
estimation based on a theory for warping”. In: Computer Vision-ECCV 2004.
Springer, 2004, pages 25–36.

[4] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal. “Histograms of ori-
ented optical flow and binet-cauchy kernels on nonlinear dynamical systems
for the recognition of human actions”. In: Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009, pages 1932–1939.

[5] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detec-
tion”. In: Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on. Volume 1. IEEE. 2005, pages 886–893.

[6] N. Dalal, B. Triggs, and C. Schmid. “Human detection using oriented his-
tograms of flow and appearance”. In: Computer Vision–ECCV 2006. Springer,
2006, pages 428–441.

[7] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual
recognition and description. Technical report UCB/EECS-2014-180. Electrical
Engineering and Computer Sciences, University of California at Berkeley, 2014.
arXiv: 1411.4389 [cs.CV].

[8] M. A. Goodale and A. D. Milner. “Separate visual pathways for perception
and action”. In: Trends in neurosciences 15.1 (1992), pages 20–25.

[9] M. Jain, H. Jégou, and P. Bouthemy. “Better exploiting motion for better action
recognition”. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on. IEEE. 2013, pages 2555–2562.

[10] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. “A biologically inspired system
for action recognition”. In: Computer Vision, 2007. ICCV 2007. IEEE 11th Inter-
national Conference on. Ieee. 2007, pages 1–8.

[11] S. Ji, W. Xu, M. Yang, and K. Yu. “3D convolutional neural networks for hu-
man action recognition”. In: Pattern Analysis and Machine Intelligence, IEEE
Transactions on 35.1 (2013), pages 221–231.

[12] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei.
“Large-scale video classification with convolutional neural networks”. In: Com-
puter Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE. 2014,
pages 1725–1732.

[13] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. “HMDB: a large
video database for human motion recognition”. In: Computer Vision (ICCV),
2011 IEEE International Conference on. IEEE. 2011, pages 2556–2563.

[14] I. Laptev, M. Marszałek, C. Schmid, and B. Rozenfeld. “Learning realistic hu-
man actions from movies”. In: Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE. 2008, pages 1–8.

251

http://arxiv.org/abs/1411.4389

Cheng Wang: Video Classification with Convolutional Neural Network

[15] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. “Learning hierarchical invariant
spatio-temporal features for action recognition with independent subspace
analysis”. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Con-
ference on. IEEE. 2011, pages 3361–3368.

[16] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. “Beyond short snippets: Deep networks for video classification”.
In: Computer Vision and Pattern Recognition. 2015. arXiv: 1503.08909 [cs.CV].

[17] K. Simonyan and A. Zisserman. “Two-stream convolutional networks for ac-
tion recognition in videos”. In: Advances in Neural Information Processing Sys-
tems. 2014, pages 568–576.

[18] K. Soomro, A. R. Zamir, and M. Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. Technical report CRCV-TR-12-01. Center for Re-
search in Computer Vision, University of Central Florida, 2012. arXiv: 1212.0402
[cs.CV].

[19] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. “Convolutional learning
of spatio-temporal features”. In: Computer Vision–ECCV 2010. Springer, 2010,
pages 140–153.

[20] H. Wang and C. Schmid. “Action recognition with improved trajectories”.
In: Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE. 2013,
pages 3551–3558.

[21] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid. “Evaluation of
local spatio-temporal features for action recognition”. In: BMVC 2009-British
Machine Vision Conference. BMVA Press. 2009, pages 124.1–124.11. doi: 10.5244/
C.23.124.

252

http://arxiv.org/abs/1503.08909
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1212.0402
http://dx.doi.org/10.5244/C.23.124
http://dx.doi.org/10.5244/C.23.124

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

99 978-3-86956-339-8 Efficient and scalable graph view
maintenance for deductive graph
databases based on generalized
discrimination networks

Thomas Beyhl, Holger Giese

98 978-3-86956-333-6 Inductive invariant checking
with partial negative application
conditions

Johannes Dyck, Holger Giese

97 978-3-86956-334-3 Parts without a whole? : The
current state of Design Thinking
practice in organizations

Jan Schmiedgen, Holger
Rhinow, Eva Köppen,
Christoph Meinel

96 978-3-86956-324-4 Modeling collaborations in self-
adaptive systems of systems :
terms, characteristics,
requirements and scenarios

Sebastian Wätzoldt, Holger
Giese

95 978-3-86956-324-4 Proceedings of the 8th Ph.D.
retreat of the HPI research school
on service-oriented systems
engineering

Christoph Meinel, Hasso
Plattner, Jürgen Döllner,
Mathias Weske, Andreas
Polze, Robert Hirschfeld, Felix
Naumann, Holger Giese,
Patrick Baudisch

94 978-3-86956-319-0 Proceedings of the Second HPI
Cloud Symposium “Operating
the Cloud” 2014

Sascha Bosse, Esam Mohamed,
Frank Feinbube, Hendrik
Müller (Hrsg.)

93 978-3-86956-318-3 ecoControl : Entwurf und
Implementierung einer Software
zur Optimierung heterogener
Energiesysteme in
Mehrfamilienhäusern

Eva‐Maria Herbst, Fabian
Maschler, Fabio Niephaus,
Max Reimann, Julia Steier,
Tim Felgentreff, Jens Lincke,
Marcel Taeumel, Carsten Witt,
Robert Hirschfeld

92 978-3-86956-317-6 Development of AUTOSAR
standard documents at Carmeq
GmbH

Regina Hebig, Holger Giese,
Kimon Batoulis, Philipp
Langer, Armin Zamani
Farahani, Gary Yao, Mychajlo
Wolowyk

91 978-3-86956-303-9 Weak conformance between
process models and synchronized
object life cycles

Andreas Meyer, Mathias
Weske

90 978-3-86956-296-4 Embedded Operating System
Projects

Uwe Hentschel, Daniel
Richter, Andreas Polze

89 978-3-86956-291-9 openHPI: 哈索•普拉特纳研究院的
MOOC（大规模公开在线课）计划

Christoph Meinel, Christian
Willems

Technische Berichte Nr. 100

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

Proceedings of the 9th
Ph. D. Retreat of the
HPI Research School
on Service-oriented
Systems Engineering
Christoph Meinel, Hasso Plattner, Jürgen Döllner,
Mathias Weske, Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese, Patrick Baudisch,
Tobias Friedrich (Hrsg.)

ISBN 978-3-86956-345-9
ISSN 1613-5652

	Title
	Imprint

	Contents
	Preface
	Towards Analysis of Public Social Data to Improve Situational Awareness
	1 Introduction
	2 Public Data Analyzing
	2.1 Data
	2.2 Application
	2.3 Clustering

	3 Conclusion
	References

	Optimization of Decision Making in Business Processes
	1 Introduction
	2 Extracting Control-Flow Based Decision Logic from Process Models
	2.1 Motivation and Exemplary Extraction of Decision Logic from Process Models
	2.2 Adaptation of Input Process Model

	3 Extracting Control-Flow and Event Log Based Decision Logic from Process Models
	3.1 Motivation and Exemplary Extration of Decision Logic from both Process Models an Execution Data
	3.2 Output Decision Model and Adaptation of Input Process Model

	4 Conclusions and Planned Work
	5 Publications Summer Term 2015
	References

	Model Synchronization for Complex Industrial Systems
	1 Introduction
	2 Case Studies
	3 Current Work
	3.1 Current Issues
	3.2 A Debugger for Story Diagrams
	3.3 Currently Explored Pattern Matching Approaches

	4 Future Work
	4.1 Reuse of Model Elements
	4.2 Usability Improvements
	4.2.1 Structure of TGGs
	4.2.2 Query Languages

	4.3 Verification/Validation of TGGs

	5 Other Research Activities
	5.1 Publications
	5.2 PhD Thesis Jury
	5.3 Committees
	5.4 Master Projects

	6 Conclusion
	References

	Runtime data-driven software evolution in enterprise software ecosystems
	1 Introduction
	2 Reporting on conducted interviews
	2.1 Development cycle
	2.2 Question properties

	3 Conclusion and outlook
	References

	See-Through Lenses for Massive 3D Point Clouds
	1 Introduction
	2 Overview
	2.1 Priority Levels
	2.2 Interactive and View-Dependent See-Through Lenses
	2.2.1 Blueprints
	2.2.2 Halos
	2.2.3 Interactive See-Through Lenses

	3 Compatibility to Existing Point-Based Rendering Approaches
	4 Conclusion and Outlook
	5 Acknowledgements
	References

	Formal Approaches and Failure Cause Models for Software Dependability
	1 Introduction
	2 Static Analysis
	3 Software Model Checking
	3.1 Verifying Concurrent Systems
	3.2 Partial Order Reduction
	3.3 Compositional Approaches

	4 Test Case Generation and Fault Injection
	5 Program Synthesis
	6 Fault Injection and Software Failure Cause Models
	References

	Checks and Balances: Object-Constraints Without Surprises
	1 Introduction
	2 Background
	3 Solution Overview
	3.1 Object Structure
	3.2 Object Identity
	3.3 Structural and Identity Determinism with Stay Constraints

	4 Evaluation
	5 Application to Related Work
	6 Conclusion and Future Work
	References

	Towards Efficient Processing of Multi-Temporal 3D Point Clouds: Refactoring the Processing Workflow
	1 Introduction
	2 Modular Architecture for Processing 3D Point Clouds
	2.1 Importing & Exporting Tasks
	2.2 Transforming Tasks
	2.3 Analysing Tasks
	2.3.1 Data Filtering

	2.4 General Attribute Generation
	2.5 Difference Analysis

	3 Case Study
	4 Conclusions and Outlook
	References

	Utility-Driven Modularized MAPE-K loop architectures for Self-adaptive systems
	1 Introduction
	2 Backround
	2.1 Basics in self-adaptive systems
	2.2 Goals and utility in search-based self-adaptive systems
	2.3 Options for utility optimization
	2.4 Modularization

	3 Approach
	3.1 graph architecture
	3.2 Goal conformance vs. Utility optimization
	3.3 Modular utility-driven adaption
	3.3.1 State-based vs. event-based adaptation
	3.3.2 General Formalization

	4 Planed Experiments
	4.1 Experimental setting
	4.2 None incremental state-based adaptation
	4.3 Type-incremental event-based adaptation
	4.4 Incremental event-based adaptation

	5 Conclusion and Outlook
	References

	Editing Metamaterials, Creating Mechanisms
	1 Introduction
	2 Editing Metamaterials, Creating Mechanisms
	3 Related Work
	3.1 Personal fabrication and User Interaction
	3.2 Compliant mechanisms and flexures
	3.3 Mechanical Metamaterials

	4 Editing Metamaterials— in 2D
	4.1 Grayscale: Localized Compliance
	4.2 Color: Anisotropic Cells allow Making Mechanisms
	4.3 The Four-Bar Cell Shears
	4.4 Rotation: Hinges based on Four-bars

	5 Editing Metamaterials— in 3D
	5.1 Importing 3D Objects
	5.2 Anisotropic 3D Metamaterials Based on Color

	6 Extending to Meshes from Related Work
	7 System Implementation
	7.1 Import and Voxelize
	7.2 Voxels to Layered Bitmaps
	7.3 Image processing using Photoshop’s tools
	7.4 Generating the metamaterial’s internal structure
	7.4.1 Interpret color and create beams
	7.4.2 Completing border cells
	7.4.3 Generate a printable file

	8 Conclusions and Future Work
	8.1 Publications

	References

	Profiling the Web of Data
	1 Problem Statement
	2 Related Work
	3 Large Scale Data Profiling
	3.1 Multi-query optimization for Apache Pig
	3.2 Evaluation

	4 Uniqueness, Density, and Keyness of Data
	5 Graph Structures in Linked Datasets
	6 Reflections and Conclusion
	References

	BottlePrint: Scaling Personal Fabrication by Embedding Ready-Made Objects
	1 Introduction
	2 BottlePrint
	2.1 Workflow

	3 Contribution, Benefits, and Limitations
	4 Implementation
	4.1 BottlePrint editor
	4.2 BottlePrint Converter
	4.3 BottlePrint Hub Generator
	4.4 3D Printing

	5 Related Work
	5.1 Scaling Fabrication with Larger Printers
	5.2 Scaling Fabrication with Existing Objects
	5.3 Scaling Fabrication with Construction Kit

	6 Conclusion and Outlook
	References

	Robustness of Estimation of Distribution Algorithms to Noise
	1 Introduction
	2 Backround
	3 Results
	4 Conclusion and Outlook
	References

	Impacto: Simulating Physical Impact by Combining Tactile Stimulation with Electrical Muscle Stimulation
	1 Introduction
	2 Impacto: electrical muscle & tactile stimuli
	2.1 Impacto’s two components are mutually beneficial
	2.2 Benefits and Contribution

	3 Application Examples
	3.1 Being hit— Boxing
	3.2 Feeling Impact on Props— Baseball

	4 Related Work
	4.1 Tactile Stimulation
	4.2 Force feedback
	4.3 Force feedback using electrical muscle stimulation
	4.4 Transmitting impact through handheld props

	5 Implementation Details
	5.1 Impacto’s Hardware
	5.2 VR Simulators and Tracking
	5.3 Measuring latency
	5.4 Measuring loss at the 90° lever

	6 User Study
	6.1 Apparatus
	6.2 Interface conditions
	6.3 Task and Procedure
	6.4 Participants
	6.5 Results
	6.6 Participants’ feedback after the experience
	6.7 Discussion

	7 Conclusion and Outlook
	7.1 Publications
	7.2 Leading a Workshop

	References

	Integrating Complex Event Processing to Case Management
	1 Introduction
	2 Background
	2.1 Complex Event Processing
	2.2 Case Management

	3 Motivating Scenario
	4 Interaction between CEP and CM
	4.1 Triggering Fragment
	4.2 Aborting Fragment
	4.3 Updating Data Object

	5 Challenges and Current Approach
	5.1 Types of events
	5.2 Realization of Fragments
	5.3 Role of data object
	5.4 Requirements for integration

	6 Conclusion
	References

	Exploring Latent Factors in Code Artifacts
	1 Introduction
	2 Background
	2.1 Probabilistic Models
	2.2 Discriminative and Generative Models
	2.3 Topic Models
	2.4 Probabilistic Context-free Grammars

	3 Related Work
	3.1 Aspect Mining
	3.2 LDA on Code
	3.3 HDTM on Code

	4 Explaining Code
	4.1 Limitations and Possible Extensions of NLP Models
	4.2 Use Cases

	5 Conclusion
	References

	Adaptive Data Structure Optimization for Evolving Dynamic Programming Languages
	1 Introduction
	2 Background
	3 Adaptive Data Structure Optimizations
	3.1 Approach
	3.1.1 Shapes and Recognition
	3.1.2 Compaction
	3.1.3 Transparent Field Access

	3.2 Implementation and Results
	3.3 Fast Enough jits for Meta-level

	4 Related Work
	5 Outlook
	References

	Trading Something In for an Increased Availability
	1 Introduction
	2 Background
	2.1 Consistency
	2.2 Flexible, Imprecise, and Resilient Computation
	2.2.1 Flexible Computation
	2.2.2 Imprecise Computation
	2.2.3 Resilient Computation

	2.3 Criteria of Optimality

	3 Case Studies
	3.1 DB Systel— Relaxed Consistency Guarantees
	3.2 Mobility-as-a-Service— Flexible & Imprecise Computation

	4 Conclusion and Outlook
	References

	Analysis of Distributed Algorithms on Scale-free Networks
	1 Introduction
	2 Background
	2.1 Scale-Free Networks
	2.2 Load Balancing

	3 Related Work
	4 Results
	5 Conclusion and Outlook
	References

	Linespace: A Sensemaking Platform for the Blind
	1 Introduction
	2 Design Principles
	3 Demo Applications
	3.1 Minesweeper
	3.2 Homefinder
	3.3 Drawing application
	3.4 App manager

	4 Contribution, Benefits, Limitations
	5 Related Work
	6 Software Implementation
	7 Conclusion
	References

	Cluster-based Sorted Neighborhoods for Deduplication
	1 Duplicate Detection
	2 Related Work
	3 Attribute cluster based Incremental SNM
	4 Evaluation
	4.1 Datasets and experimental setup
	4.2 Experimental results— quality
	4.3 Experimental results— runtime

	5 Conclusion and future work
	References

	Time-travel Queries for Omniscient Database Debuggers
	1 Introduction
	2 Omniscient Debugging
	2.1 Slicing
	2.2 The Slice Navigator

	3 Debugging Stored Procedures
	3.1 Tracing and Omniscient Debugging
	3.2 Reproducing Query Results
	3.3 Time-travel Queries
	3.4 Time-diff Queries
	3.5 Limitations

	4 Related work
	5 Conclusion and Future Work
	References

	Video Classification with Convolutional Neural Network
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Architecture
	3.2 Spatial CNN
	3.3 Optical CNN

	4 Experiments
	5 Conclusion and outlook
	References

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

