
335

Programming for Non-Programmers –
Fostering Comprehension Capabilities by

Employing a PRS

Rachel Or-Bach
The Max Stern Yezreel Valley College

Emek Yezreel 19300, Israel
orbach@yvc.ac.il

Abstract: The study reported in this paper involved the employment
of specific in-class exercises using a Personal Response System (PRS).
These exercises were designed with two goals: to enhance students’
capabilities of tracing a given code and of explaining a given code in
natural language with some abstraction. The paper presents evidence
from the actual use of the PRS along with students’ subjective impres-
sions regarding both the use of the PRS and the special exercises. The
conclusions from the findings are followed with a short discussion on
benefits of PRS-based mental processing exercises for learning pro-
gramming and beyond.

Keywords: Novice programmers, comprehension, tracing, personal
response systems

1	 Introduction

Throughout the short history of personal computers there have been attempts
to delineate possible benefits of teaching programming to non-programmers,
from children to higher education students. The potential benefits range from
motivation and creativity to logical thinking, problem solving skills and more
(diSessa, 2000; Kay, 1991; Papert, 1980). Teaching programming to students
who have no special interest or inclination towards programming and related
topics requires at least two things: providing students with some motivation
and carefully designing the instructional materials and strategies. A course ti-
tled “Design of computerized games and interactive stories” was developed to
address these requirements. A multimedia interactive development environ-
ment and a goal of designing a working game were chosen to enhance stu-

336

dents’ motivation. Special emphasis in the instructional materials was given to
the relationship between explaining, tracing and writing skills in introductory
programming (Lister, Fidge, Teague, 2009). A previous paper (Or-Bach, 2013)
dealt with the contribution of such a course to the development of higher or-
der cognitive skills and ICT competencies. The study reported in the present
paper involved the employment of specific in-class exercises using a Personal
Response System (PRS). These exercises were designed to enhance students’
ability to explain a given code in natural language with focus on abstracting
the goal of the code. This paper presents some evidence from the PRS use
along with students’ subjective impressions regarding the use of the PRS and
the special exercises.

2	 Related Work

2.1	 Learning to program – The role of comprehension exercises

A significant distinction in the literature (see for example Robins et al., 2003)
is between studies that explore program comprehension and those that focus
on program generation. No doubt that these two topics are correlated, as com-
prehension activities must be performed during development and debugging.
Lister et al. (2009), in an effort to build and refine the SOLO taxonomy for
programming learning, stress this issue and the use of assessment tasks of
“explain in plain English” that require the ability to grasp the overall goal or
meaning of the code. Studies they carried showed evidence of a relationship
between explaining, tracing and writing skills in introductory programming.
They claim with pedagogical implications that until students have acquired
minimal competence in tracing and explaining, it may be counterproductive
to have them write a great deal of code. Robins et al. (2003) identify the issue
of mental models as an important factor in learning and teaching program-
ming. They claim that writing a program involves maintaining different kinds
of “mental model”. They distinguish between the model of the program as was
intended, and the model of the program as it actually is that requires the ability
to trace code for predicting its behavior. In our study both skills of tracing and
explaining played a central role.

2.2	 Games, education and personal response systems

The use of computer games for learning is widely advocated. Computerized
games can provide a context for developing various skills, but constructing

337

such games seems to entails even wider educational benefits. Robertson and
Howells (2008) argue that authoring a game can engage students in authentic
rich tasks offering a good degree of learner autonomy. Vos et al. (2011) report
on a study where they compared using a game versus constructing a game. The
results suggest that constructing a game might be a better way to enhance stu-
dent motivation and deep learning than playing an existing game. Game design
is becoming a popular strategy for enhancing students’ interest and skills with
computer technology, deepening understanding of scientific principles, foster-
ing critical media literacy and more (Hayes et al, 2008). Personal Response
Systems (PRS) are technologies that facilitate interactivity with an audience.
Such systems enable participants to instantly respond to posed questions us-
ing some end user device. The system can receive participants’ responses and
can provide a representation (or several ones) of the collected data. Instruc-
tors in variety of disciplines are increasingly using audience response systems
to increase participation, engagement and learning (See for example, Beatty,
Gerace, 2009; Mareno et al., 2010). SMS-HIT (Kohen-Vax et al., 2012) is a
personal response system based on mobile devices for SMS and web response
provision. The system is designed for teaching purposes enabling instructors
to prepare and enact personal response activities in actual instructional setting
for any subject domain. Readymade activities are stored in a repository and
could be later on copied, modified and reused. The SMS-HIT system was used
in our study for several types of in-class activities, as will be described in the
next section.

3	 The Course – General characteristics of the course

The rationale for the “Design of computer-based games and interactive sto-
ries” course was to provide a motivating and engaging context for introducing
computer programming to students in the behavioral sciences departments in
our college. This elective course is already offered for several years and is
accompanied by an ongoing action research. The instructional approach, in-
termediate assignments and research tools were refined during the years. The
programming environment chosen for this course is Scratch, which is a visual
programming environment that lets users create interactive, media-rich pro-
jects (Resnick et al., 2009; Maloney et al. 2010). A key goal of Scratch is to
introduce programming to those with no previous programming experience.
Programming is done by snapping together command blocks to control sprites.
Specific blocks can be placed on top of a stack of blocks to trigger that stack

338

in response to some run-time event. Multiple stacks can run at the same time
to show simultaneous acts by different sprites. The programmer can watch
stacks in the scripting area high-lighted when the action unfolds on the stage
thus showing how the constructed scripts are interpreted by the computer. The
course final assignment is the implementation of a game or interactive story
using Scratch. Classwork consists of examples that students explore by “read-
ing” and/or by executing the program; as well as other examples where stu-
dents have to modify or construct a program in order to produce prescribed
outcomes. In the last semester a PRS was employed with specially designed
in-class exercises dealing with tracing and explaining Scratch scripts.

4	 The Study – Participants, setting and tools

During the semester when this study was conducted the course lasted 14 weeks
with a 2 hours session each week in a computer lab and 23 students partic-
ipated in the course. The SMS-HIT PRS was used in most of the sessions,
sometimes more than once but with an attempt not to use it too often. The
exercises were presented through our LMS and included a link to a site where
the response can be written or selected. The goal of the study was to investigate
the contribution of these specific exercises to the learning of Scratch program-
ming. Two types of questions were used: short free text (“What will be seen
on the screen after executing the following script?”), and multiple-choice ones
(“Do the two following scripts act the same? (Yes/No)”). The responses and
their relative frequency were presented to the class at the end of the activity for
further discussion and/or follow-up learning activities. A survey was adminis-
tered to the students at the end of the course to collect students’ impressions
from the use of the PRS. The survey included 10 Likert-type items and a free
text question regarding the special in-class exercises. An additional item dealt
with the student’s evaluation of his/her mastery of Scratch with relation to
the class. Two of the 10 items dealt with factors related to the use of PRS in
general (motivation and engagement) and the rest dealt with specific factors
of the PRS use that may contribute to the learning of Scratch programming
(requirement of mental processing, presentation of different answers, require-
ment to compare between scripts, discussions based on students’ answers etc.)
The scale for the Likert-type items was designed to obtain a finer resolution on
the positive side of the scale because a goal of the study was to distinguish be-
tween the contributions of the different factors and the instructor’s impression
was that students favored in general the PRS use. The resulted scale includ-

339

ed the following categories: Do not agree, Agree slightly, Agree moderately,
Agree, Agree strongly.

5	 Findings

The average response rate for the PRS based in-class exercises was 15 out of
23 course participants. The fact that not all the students provided responses
for these exercises might be because the chosen PRS allows anonymity (an-
onymity might also encourage participation). For most of the multiple-choice
questions, the frequency diagram that was produced and presented to the stu-
dents exhibited a distribution of opinions. Looking at the class results, students
were asked to re-examine their response by re-reading the code. Only then they
were asked to actually check the behavior of the script(s). It seemed that for
many students the combination of mental tracing along with the actual execu-
tion is required for the ultimate conviction. For exercises with free-text short
responses, the resulted variety of responses enabled discussions that dealt with
what answers are actually the same, what is correct, and what might be the
cause for other responses. These discussions were productive for stressing the
need for accuracy, for re-examining the various programming structures and
for presenting possible misconceptions. Twenty students (out of 23) completed
the survey. One item of the survey dealt with students’ perception about their
relative mastery of Scratch programming. It seemed important to check this
because over-confidence or under-confidence might give a different interpreta-
tion for the survey results. The results show that in general students felt good
about their mastery of Scratch programming. The averages for the different
survey items were in the range 3.4–3.95, indicating appreciation for the vari-
ous contributions of using the PRS. The standard deviation was around 1. The
highest average (3.95) was for item 5 – “Mental execution of a script helps to
deeply understand specific commands”. The lowest average (3.4) was for item
3 – “The fact that I saw additional answers made me re-think my answer”.
None of the students chose “Do not agree” for items 1 and 2 that dealt with
general contributions (motivation and engagement respectively). The averages
and the distribution for the survey items are quite similar, not showing differ-
ences between students’ perceived contributions for the various aspects of the
PRS use. Thus further analysis was carried out with regard to the students. It
turned out that the standard deviation for a student (across items) was around
0.5, while the standard deviation for an item was around 1. We also checked for
each student the differences between the average appreciation of using a PRS
(items 1 and 2) and the average appreciation for the specific use of a PRS for

340

learning programming (items 3–10). The differences ranged between -0.9 and
1.9, indicating that different students experienced the use of the PRS different-
ly (or interpreted it differently).

6	 Conclusions and Discussion

Investigating difficulties of non-programmers, as well as respective instruc-
tional strategies, can be informative also for CS educators. In this study we
tried to deal with the tracing and explanation skills, building on the evidence
that was found of the relationship between explaining, tracing and writing
skills in introductory programming (Lister et al., 2009). The general impres-
sion from the course, in comparison to previous years, is that the extensive use
of tracing and explanation exercises was productive for learning to program
with Scratch. From the instructor point of view, the in-class PRS-based activ-
ities were helpful for discovering students’ difficulties and addressing them
more effectively in class. The motivation and engagement provided by the
PRS cannot be separated from the experience. Students’ final submissions in-
dicate good mastery of programming in Scratch based on what was learned in
class and some self-learning. Results from the survey showed that in general
students felt good about their programming capabilities in relation to the class.
Results show that students had positive attitudes towards the PRS use during
the course. The item that dealt with the use of mental execution of scripts
for better understanding had the highest average and the highest number of
students choosing “agree strongly”. This fits well with the goals for the PRS-
based exercises design. The fact that the distribution for all the items is similar
might be because the various factors are highly correlated and students cannot
differentiate between them thus consolidating a general attitude. This might
explain also the fact that the variance among the students was much larger than
the variance among the survey items. The tracing and explanation exercises
can be beneficial also to the development of higher order cognitive skills relat-
ed to abstraction, reasoning and use of mental models. Exercising “mental pro-
cessing” seems important for current students that use technology extensively
and tend to solve problems by tinkering or by very short chains of reasoning.

341

References

Beatty, I. D., Gerace, W. J. (2009). Technology-enhanced formative assessment: A re-
search-based pedagogy for teaching science with classroom response technology.
Journal of Science Education and Technology, 18(2), 146–162.

diSessa, A. (2000). Changing Minds: Computers, Learning, and Literacy. Cambridge,
MA: MIT Press.

Hayes, E. R., Games, I. E., (2008). Making Computer Games and Design Thinking: A
Review of Current Software and Strategies. Games and Culture, 3(3–4), 309–332.

Kay, A. (1991). Computers, Networks and Education. Scientific American, 138–48.

Kohen-Vacs, D., Ronen, M., Bar-Ness, O. (2012). Integrating SMS Components into
CSCL Scripts. 7th IEEE International Conference on Wireless, Mobile & Ubiqui-
tous Technologies in Education (WMUTE 2012), Takamatsu, Japan.

Lister, R., Fidge, C., Teague, D. (2009). Further evidence of a relationship between ex-
plaining, tracing and writing skills in introductory programming. SIGCSE Bulletin.
41, 3 (July 2009), 161–165.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The Scratch
programming language and environment. ACM Transactions on Computing Edu-
cation, 10(4), 1–15.

Mareno, N., Bremner, M., Emerson, C. (2010). The use of audience response systems
in nursing education: best practice guidelines. International Journal of Nursing Ed-
ucation Scholarship, 7, 1–17.

Or-Bach, R. (2013). Higher Education – Educating for Higher Order Skills. Creative
Education, 4(7A2),17–21.

Papert, S. (1980). Mindstorms. New York: Basic Books.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan,
K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y. (2009). Scratch:
Programming for all. Communications of the ACM, 52(11), 60–67.

Robins, A., Rountree, J., Rountree, N. (2003). Learning and teaching programming: A
review and discussion. Computer Science Education, 13,137–172.

Vos, N., van der Meijden, H., Denessen, E. (2011). Effects of constructing versus play-
ing an educational game on student motivation and deep learning strategy use.
Computers & Education, 56, 127–137.

342

Biography

Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/3.0/

Rachel Or-Bach is a senior lecturer in the Information
Management Systems department in Yezreel Valley College.
She received her Ph.D. from the Technion. Her main research
interest is design of interactive learning environments:
representations, interactivity, and intelligent support and
adaptation. She publishes in journals of IT for education,
Science Education, Computer Science and Information Systems
Education, Informing Science etc.

	Programming for Non-Programmers – Fostering Comprehension Capabilities by Employing a PRS (Rachel Or-Bach)
	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning to program – The role of comprehension exercises
	2.2 Games, education and personal response systems

	3 The Course – General characteristics of the course
	4 The Study – Participants, setting and tools
	5 Findings
	6 Conclusions and Discussion
	References
	Biography

