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Abstract

Mixed Model Analysis of Trial History in Naming Experiments

by

Maximilian Michael Rabe

Submitted to the Examination Board in partial fulfilment of the requirements for the Bachelor

of Science in Psychology

University of Potsdam

September 4, 2015

Several authors highlighted that the time course of an experiment itself could have a substantial

influence on the interpretability of experimental effects. Since mixed effects modeling had en-

abled researchers to investigate more complex problems with more precision than before, two

naming experiments were conducted with college students, with and without non-words inter-

mixed, and analyzed with regard to frequency, quality, interactive and trial-history effects. The

present analyses build on and extend the Bates, Kliegl, Vasishth, and Baayen (2015) approach

in order to converge on a parsimonious model that accounts for autocorrelated errors caused by

trial history. For three of four cases, a history-sensitive model improved the model fit over a

history-naïve model and explained more deviance. In one of these cases, the herein presented

approach helped reveal an interaction between stimulus frequency and quality that was not sig-

nificant without a trial history account. Main and joint effects, limitations, as well as directions

for further research, are briefly discussed.

Keywords: Autocorrelations, Mixed Effects Modeling, Trial History, Reading Aloud
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Zusammenfassung

Mixed Model Analysis of Trial History in Naming Experiments

von

Maximilian Michael Rabe

Eingereicht beim Prüfungsamt als Abschlussarbeit für den Bachelor of Science in Psychologie

Universität Potsdam

4. September 2015

Verschiedene Autoren haben darauf aufmerksam gemacht, dass bereits der zeitliche Verlauf ei-

nes Experiments einen wesentlichen Einfluss auf die Interpretierbarkeit experimenteller Effekte

haben kann. Nachdem gemischte Modelle der Wissenschaft ermöglichten, komplexere Frage-

stellungen mit höherer Präzision als zuvor zu untersuchen, wurden zwei Naming-Experimente

mit Collegestudenten durchgeführt, je mit und ohne Pseudowörter, sowie hinsichtlich ihrer

Auftrittshäufigkeits-, Stimulusqualitäts-, Interaktions- und Experimentalverlaufseffekte unter-

sucht. Die vorliegenden Analysen beruhen auf dem Ansatz von Bates, Kliegl, Vasishth und

Baayen (2015) und erweitern diesen, um ein ParsimoniousModel zu bestimmen, welches durch

den Experimentalverlauf hervorgerufene Autokorrelationen berücksichtigt. In drei von vier Fäl-

len verbesserte die verlaufsabhängige Analyse die Modellanpassung gegenüber der gewöhnli-

chen verlaufsunabhängigen Variante und klärte somit mehr Abweichung auf. In einem dieser

Fälle half der Ansatz, eine Interaktion zwischen Auftrittshäufigkeit und Stimulusqualität auf-

zudecken, die ohne Berücksichtigung des Experimentalverlaufs nicht signifikant gewesen war.

Haupt- und Interaktionseffekte, Einschränkungen sowie Anregungen für weiterführende For-

schung werden kurz erörtert.

Schlüsselwörter: Autocorrelations, Mixed Effects Modeling, Trial History, Reading Aloud
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General Introduction

One of the most fascinating and popular topics in cognitive psychology is the exploration

and modeling of cognitive processes during reading. Sternberg (1969) introduced the general

assumption that two factors shown to have no significant interaction likely reflect an under-

lying process that occurs in distinct stages. Subsequently, the stimulus quality and frequency

(familiarity) of a word were found to be additive in lexical decision (Stanners, Jastrzembski,

& Westbrook, 1975; Yap & Balota, 2007) and naming tasks (Besner, O’Malley, & Robidoux,

2010; Bonin, Roux, Barry, & Canell, 2012; Carello, Lukatela, Peter, & Turvey, 1995; O’Malley

& Besner, 2008). Based on the Sternberg (1969) paradigm and missing evidence for an inter-

action –and thereby assumed additivity– of frequency and quality, many researchers conclude

that lexical processing in many cases occurs in stages, and that frequency and quality influence

each one of those stages (e.g., Borowsky & Besner, 1993, 2006). In both lexical decision and

naming tasks, low-frequency (less familiar) words as well as degraded (low stimulus quality)

words typically lead to slower reaction times (Besner et al., 2010; Carello et al., 1995; Masson

& Kliegl, 2013; O’Malley & Besner, 2008; Stanners et al., 1975).

Models of Interactive and Additive Effects

In the past decade, the joint effect of frequency and quality in naming experiments was

found to be modulated by the presence or absence of non-words in the item list (Besner et

al., 2010; O’Malley & Besner, 2008): In the condition where only words had been presented,

low-frequency words were less affected by stimulus quality; in the condition with non-words

intermixed, that joint effect was additive.

A quite successful computational model of lexical processing that was able to explain many

of those effects, is the new connectionist dual process model (CDP+ model) by Perry, Ziegler,

and Zorzi (2007) which predicts response times and error rates for the pronunciation of word

and non-word stimuli. According to this model, visual word recognition is conducted in two

independent processes. Whereas the lexical route has an unthresholded stimulus quality normal-

ization module and produces responses for word stimuli (known words), the nonlexical route is
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thresholded and produces responses for non-word stimuli (unknown words) more effectively.

The faster process generates the final response.

If non-words are present, this is thought to impair or deemphasize the lexical route which is

inefficient for non-words. Since this basically leaves the thresholded nonlexical route, differ-

ences in quality can be compromised at the letter level before being passed on. Under certain

circumstances this creates additivity of quality and frequency effects. This is typically seen in

naming experiments with non-words intermixed (Besner et al., 2010; Bonin et al., 2012; Carello

et al., 1995; O’Malley & Besner, 2008).

Mixed Effects Modeling

It should be noted that it is practically impossible to actually prove additivity because this

would premise to find evidence for the absence of a particular effect. On the contrary, there can

only be significant evidence for an effect but not against it. In real-life data, there is usually

always a joint effect between two effects to some degree. The actual question is: How likely

is the observed magnitude of said effect different from zero or is it more likely just due to

error? With the rise of improved statistical tools research has been enabled to study problems

of higher complexity with more precision and account for more sources of variance at once

instead of performing separate independent post-hoc analyses.

Making statistical sense of observations with the help of analysis of variance (ANOVA) had

been the status quo for many years until theories and evidence became so comprehensive that

more detailed analytical tools were needed. A major limitation of ANOVA is the restriction to

one random factor, typically Subject. Certainly subjects do differ in how they process informa-

tion and react to stimuli, but in certain fields such as psycholinguistics, also items have certain

individual characteristics that likely come into play when presented in an experimental setting.

Of course we expect that the material used for an experiment has an impact on the outcome

variable, e.g. number of distinctive features on detection time in visual search tasks (Treisman&

Gelade, 1980). However, when the stimuli presented do not differ in clearly contoured features

but are rather naturally composed like subjects, then Item indeed constitutes a second random

factor. That type of variance is not to be ignored and thus research has adapted this idea by
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introducing mixed-effects modeling which allows crossed random factors in one model (Bates,

Maechler, Bolker, & Walker, in press; Kliegl, Wei, Dambacher, Yan, & Zhou, 2010). Random

factors are mostly nominal and their levels are drawn directly from the population, which is

why they are not experimental factors in contrast to fixed factors that are manipulated by the

experimenter. In psycholinguistics these are usually Subject and Item.

Another advantage of mixed-effects modeling is that of shrinkage. By including the entire

dataset, estimates for coefficients are inherently more precise than standard linear regression

models (Baayen, 2008). This is achieved by estimating random effects for each level (i.e. Sub-

ject or Item) using the data of all available levels. The effect achieved thereby can be compared

to that of regression towards the mean in repeated experiments. Therefore mixed-effects models

offer a lot more statistical power than standard modeling techniques such as linear regression

or ANOVA, especially in unbalanced experimental designs (Baayen, 2008; Kliegl, Wei, et al.,

2010).

Model Fitting Strategy

A frequent approach of fitting linear mixed models is to use the maximal random effects

(MRE) model structure (Barr, Levy, Scheepers, & Tily, 2013), i.e. keeping the random ef-

fects structure maximal with all possible random slopes, interactions and correlations. Bates,

Kliegl, Vasishth, and Baayen (2015) disagree and argue that this approach is not useful for small

datasets like they typically occur in behavioral research and could lead to overparameterization

and thereby uninterpretable models. Bates, Kliegl, et al. (2015) offer a strategy to identify un-

interpretable models and iteratively reduce complexity of the random effects structure to arrive

at a parsimonious model for a given dataset.

The main diagnostic tool to identify uninterpretable models by checking dimensionality of

the random effects structure is a principal components analysis (PCA). If that analysis discovers

variance components to make aminimal contribution to the overall variance (less than 1%), then

the model is found to be overparameterized and therefore uninterpretable (Bates, Kliegl, et al.,

2015).
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The first step as suggested by Bates, Kliegl, et al. (2015) is to check whether the PCA of the

MRE model points to a degenerate model. In that case, the second step is to drop all correlation

parameters which in turn leads to a zero correlation parameter (ZCP) model. If the PCA of the

ZCP model points to overparameterization again (at least one component that contributes less

than 1% of the overall variance), then in a third step one by one the smallest variance component

is removed and once more the dimensionality of the resulting model is evaluated. This third

step is repeated until the model’s random effects structure is supported by its dimensionality.

By further dropping apparently negligible variance components, a model’s fit can be im-

proved with regard to the Akaike Information Criterion (AIC). An overparameterized model is

usually a better fit to the data, but is degenerate and uninterpretable (Bates, Kliegl, et al., 2015).

This is why a PCA should always precede and only models rendered interpretable should be

compared.

Bates, Kliegl, et al. (2015) also suggest a fourth step in which correlation parameters are

added to the model again. This step, however, is disregarded in the present analyses in order to

translate the best fit zero correlation parameter LMMs to generalized additive models (GAMs)1,

which are the basis for the later trial history analyses.

Trial History Effects

The joint effect of quality and frequency is possibly not only modulated by the presence

or absence of non-words. Masson and Kliegl (2013) found that in lexical decision tasks the

interaction is modulated by lag effects (i.e. quality and frequency of the previous stimulus)

and that an interaction could possibly be masked by trial history. Although particularly the

former finding was criticized by other authors (Balota, Aschenbrenner, & Yap, 2013; O’Malley

& Besner, 2013), it seems not far-fetched to consider that by aggregating data sets, the overall

time course of an experiment could systematically conceal an interaction between quality and

frequency in lexical processing. In addition to their finding that lag effects modulated that

interaction, Masson and Kliegl (2013) also found a higher-order interaction with trial number

1Generally, a zero correlation parameter linear mixed model (LMM) is perfectly translatable to a generalized

additive model (GAM) using the mgcv package in R. See General Discussion for remarks on the omission of

correlation parameters in the presented approach.
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when included as a covariate in the model. It is noteworthy that characteristics of previous trials,

or the overall time course of an experiment itself (Bates, Kliegl, et al., 2015; Taylor & Lupker,

2001), could modulate or introduce so much unaccounted variance that small interactions get

lost behind the noise. Modeling trial history effects, if there are any, might not only help to

find possibly significant main or interactive effects, but be actually necessary in order to ensure

the commonly required identical and independent distribution of the data (Bates, Kliegl, et al.,

2015; Bates, Maechler, Bolker, & Walker, 2015).

Bates, Kliegl, et al. (2015) show that autocorrelated errors can be efficiently accounted for

by yet another mixed-effects modeling technique, namely generalized additive models (GAMs,

Wood, 2006), a subclass of generalized linear models. This allows to include trial number as

wiggly fixed or random effects rather than assuming a linear function. Autocorrelation might

be due to many different reasons, most obviously fatigue, attentional fluctuation or learning

effects (Bates, Kliegl, et al., 2015; Taylor & Lupker, 2001), all of which are disadvantageous

for statistical analyses. Usually we assume that those disappear by aggregating large data sets

within and between subjects but if there is a systematic trend overall and/or within smaller

experimental units such as blocks, data aggregation will hardly be helpful to eliminate those

errors. Autocorrelation occurs when the value at a given point k correlates with the value at

t − k, k ≥ 1. If an autocorrelation plot shows a systematic trend, then clearly data aggregation

alone was not helpful enough to account for those time-related effects.

In the light of past research, the following analyses are to investigate the additive, interactive

and trial history effects of frequency and quality in naming experiments, both with and without

non-words in the stimulus list. To examine the effects of trial history in naming tasks, two

experiments were conducted in 2013 at the University of Victoria in Canada. Whereas the

first one contained both words and non-words as trials, only words were tested in the second

experiment. In addition to an examination of main and interactive effects in each experiment,

this setup additionally allows a comparison of the experimental condition absence vs. presence

of non-words.

With regard to trial history effects, all final LMMs are translated to GAMs as described

above. The nature of the added fixed and random effects is to be guided by the ostensible shape



TRIAL HISTORY IN NAMING 6

and constitution of a trial history plot (response times plotted over trial number). If the inclu-

sion of trial history in the model improves the goodness of fit (regarding deviance explained and

AIC), then the history-sensitive model is deemed advantageous over the history-naïve model.

If differences in the pattern of significant effects are discovered, this is not a criterion of rea-

sonableness of the presented approach, but rather a side effect of the approach that should be

carefully evaluated. It is hypothesized that history-sensitive models improve the goodness of

fit and clear up additional variance that can potentially mask small effects. A proposal for in-

vestigating trial history effects based on and partially including the Bates, Kliegl, et al. (2015)

approach is covered and applied hereinafter.

Experiment 1

Introduction

The two experiments were designed to examine the effects of quality and frequency on

reaction times in the presence or absence of non-words in the item list. Low-frequency and

degraded stimuli were expected to exert slower responses. Frequency and quality were expected

to exhibit additive effects for all contrasts as typically reported in the literature in the presence of

non-words in the item list (Besner et al., 2010; Bonin et al., 2012; Carello et al., 1995; O’Malley

& Besner, 2008). For this analysis, non-words were adopted as stimuli with zero frequency, i.e.

they conform to the English grammar but are expected to be unknown to the reader. In fact,

the experiment was designed to keep the participant unaware of the lexical status (word or non-

word) of the stimulus presented.

As several authors suggested, trial history is examined in the present analyses since it is

expected to affect response times under different conditions (Masson & Kliegl, 2013; Taylor

& Lupker, 2001). The central and rather explorative question is whether the inclusion of trial

history in the model helps reveal masked interactions, improves the fit or helps solve transfor-

mation issues.
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Method

Subjects. A total of 72 participants were recruited from psychology students at the Uni-

versity of Victoria (Victoria, British Columbia, Canada) in 2013 and tested for this experiment

to earn extra credit in an undergraduate psychology course.

Materials. High-frequency and low-frequency words (see Appendix B) were 4 to 5 char-

acters long and taken from the English Lexicon Project database2 (Balota et al., 2007). Non-

words were matched to words using theWuggy application3 (Keuleers &Brysbaert, 2010) based

on length, orthographic neighborhood and summed bigram frequency. All of the non-words

followed English orthography and none of them were pseudohomophones. There were 120

high-frequency, 120 low-frequency and 240 non-word trials. As every stimulus was presented

to each subject exactly once, in order to avoid possibly confounding effects of quality and Item,

stimulus assignment to conditions was counterbalanced across subjects: Each stimulus was

clear for one half of the subjects while being degraded for the other half. Degraded stimuli

were 65% white and clear stimuli were black (0% white) on a white screen.

Procedure. The experiment was run using SuperLab on MacPro computers. Subjects

were seated in front of the screen wearing a headset microphone to record the vocal response,

informed about the procedure and materials, and asked to respond to all following stimuli as

quickly and accurately as possible. For every subject 32 practice trials (50% non-word, 25%

high-frequency and 25% low-frequency trials) and 480 critical trials were conducted. At the

beginning of each trial a fixation cross (+) was shown in the center of the screen for 250 ms,

followed by a blank screen for another 250 ms and the target stimulus in uppercase letters in

the center of the screen until the subject made a vocal response. An experimenter scored the

response as either correct or error using a keyboard. Trials that were unsuitable for further sta-

tistical analyses (such as extraneous noises before the actual pronounced stimulus) were marked

as spoils and later removed from the dataset.

2The English Lexicon Project is available at http://elexicon.wustl.edu/
3The Wuggy application is available at http://crr.ugent.be/programs-data/wuggy

http://elexicon.wustl.edu/
http://crr.ugent.be/programs-data/wuggy


TRIAL HISTORY IN NAMING 8

Results

All following analyses and plots were done using R (R Core Team, 2014) with packages

ggplot2 (Wickham, 2009), plyr (Wickham, 2011), lme4 (Bates et al., 2015),MASS (Venables &

Ripley, 2002), RePsychLing (Baayen, Bates, Kliegl, & Vasishth, 2015), itsadug (Rij, Wieling,

Baayen, & Rijn, 2015), lattice (Sarkar, 2008) and mgcv (Wood, 2003, 2006, 2011). For R

implementations of relevant models and calculations see Appendix C. As it can be expected

that the nature of each item has a strong influence on the trial, mixed-model analyses were

performed in order to account for both Item and Subject variance at once. The model fitting

strategy described in the General Introduction section was applied.

Dependentmeasure. Sternberg (1969) postulated that when two factors are additive (non-

interactive) on reaction time, then the underlying cognitive process might run in stages. Ever

since then, one of the most popular dependent measures in cognitive psychology has been reac-

tion time (RT ). However, absence of evidence is not evidence of absence, so if two factors are

found to be additive, this might be due to processing in stages, but it could as well be due to a

masked interaction that is revealed only when using a more appropriate measure, experimental

design and/or analytical instrument.

A preliminary Box-Cox power transformation check of the dataset returns λ = −1.15 which

most closely corresponds to a reciprocal transformation on Tukey’s Ladder of Power Transfor-

mations (Box & Cox, 1964; Tukey, 1977; Venables & Ripley, 2002). Reciprocal reaction time

(RRT = −RT−1), or speed, has already been discussed as a noteworthy alternative for RT by

several authors in the past (e.g., Kinoshita, Mozer, & Forster, 2011; Kliegl, Masson, & Richter,

2010; Masson & Kliegl, 2013; Wainer, 1977) and more recently employed in analyses of

Masson and Kliegl (2013). By reciprocal transformation the unit of RRT is Hertz (1Hz = 1s−1),

a metric that is related to other absolutely valid measures in well-established disciplines, such as

rate in neuroscience or speed in physics. Some authors are skeptical towards transforming RT

because it might systematically produce more underadditive interactions (Balota et al., 2013).

Alternative procedures are briefly discussed in the General Discussion section.
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Figure 1. Q-Q plot of linear mixed-model residuals distributions using either RRT (left) or

untransformed RT (right) as the dependent measure. The line passes through the 1st and 3rd

quartiles.

Moreover, while raw RT may meet the requirements for many established analyses (e.g.

ANOVA) it is not suitable for mixed-effects modeling using Gaussian distributions because

residuals are usually not normally distributed but skewed (Kliegl, Masson, & Richter, 2010).

Residuals of RRTmixedmodels, however, have been found to fit a normal distribution relatively

well in lexical decision tasks (Kinoshita et al., 2011; Kliegl, Masson, & Richter, 2010; Masson

& Kliegl, 2013). Thus the same transformation was used for the present analyses and found to

fit the residuals to a normal distribution better than untransformed RT for naming as well (see

Figure 1).

Mixed-model structure. The 2 × 3 experimental design yields a grand mean (intercept)

and the two fixed factors quality with levels clear/degraded and frequency with levels non-

word/low-frequency/high-frequency. The fixed factors and their respective joint effects were

encoded as successive difference contrasts4 (Venables & Ripley, 2002), generating a degraded–

clear contrast for quality and a low-frequency–high-frequency and non-word–low-frequency

contrast for frequency. The interactions of the quality contrast with both frequency contrasts

(two interactions in total) were also included.

4Successive difference contrasts are specifically suited for ordered factors and do not require equal spacing

between levels.
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Table 1

Linear mixed-model variances and standard deviations for reciprocal RT (RRT) random effects

in Experiment 1

Random effects Variance SD

Items

Intercept 0.008 0.089
Quality 0.001 0.038
Subjects

Intercept 0.044 0.210
Frequency

LF-HF 0.001 0.037
NW-LF 0.003 0.055
Quality (D-C) 0.008 0.090
Frequency × Quality

(LF-HF) × (D-C) 0.001 0.025
(NW-LF) × (D-C) 0.001 0.031

Residuals 0.048 0.219
LF-HF = low-frequency‒high-frequency contrast; NW-LF = non-word‒low-frequency con-

trast; D-C = degraded‒clear contrast; SD = standard deviation

Random effects results. The MRE model comprised two random factors: Item and Sub-

ject. For the random factor Item there were intercept, the variance component for the within-

item effect quality and a parameter for the correlation of intercept and quality. The random

factor Subject included intercept, variance components for the within-subject effects of qual-

ity, both frequency contrasts and their respective interactions (one with quality per frequency

contrast), as well as correlation parameters for all possible correlations between intercept and

variance components (15 in total). Also taking into account the residual variance, there were 25

variance components and correlation parameters in the MRE model random effects structure.

Expectedly, a PCA rendered this model uninterpretable: For Subject five out of six dimensions

accounted for 100% of the variance explained, rendering the model degenerate.

Removing all correlation parameters from the initial MRE model leads to a ZCP model

whose dimensions support all of the initial variance components. This suggests that none of the

variance components need to be dropped from the ZCPmodel so that it is supported by the data.

The random effects structure described above is kept for the final LMM in the present analysis

with the exception of correlation parameters and contains a total of nine variance components,

including residual variance (see Table 1).
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Table 2

Linear mixed-model estimates of coefficients, standard errors, and t-values and generalized

additive model p-values for RRT fixed effects in Experiment 1

Fixed effects Coefficient SE t p

Intercept −1.428 0.025 −56.348 < 0.001
Frequency

LF-HF 0.052 0.013 4.069 < 0.001
NW-LF 0.118 0.012 9.573 < 0.001
Quality (D-C) 0.170 0.011 15.191 < 0.001
Frequency × Quality

(LF-HF) × (D-C) 0.011 0.009 1.251 0.211
(NW-LF) × (D-C) −0.040 0.008 −4.924 < 0.001

LF-HF = low-frequency‒high-frequency contrast; NW-LF = non-word‒low-frequency con-

trast; D-C = degraded‒clear contrast; SE = standard error

Table 3

Linear mixed-model estimates of coefficients, standard errors, and t-values and generalized

additive mixed model p-values for (untransformed) RT fixed effects in Experiment 1

Fixed effects Coefficient SE t p

Intercept 753.067 16.719 45.044 < 0.001
Frequency

LF-HF 33.046 10.047 3.289 < 0.002
NW-LF 85.640 11.731 7.300 < 0.001
Quality (D-C) 98.586 8.173 12.063 < 0.001
Frequency × Quality

(LF-HF) × (D-C) 17.982 7.175 2.506 0.012
(NW-LF) × (D-C) −5.095 8.613 −0.592 0.554

LF-HF = low-frequency‒high-frequency contrast; NW-LF = non-word‒low-frequency con-

trast; D-C = degraded‒clear contrast; SE = standard error

Fixed effects results. Table 2 shows the estimated coefficients along with standard errors,

t-values and significance levels for fixed effects in Experiment 1. As anticipated, main effects

for quality (t = 15.191, p < 0.001) and frequency (t = 4.069, p < 0.001 for LF-HF and t =

9.573, p < 0.001 for NW-LF) are significant. Trials were slower for degraded words and lower

word frequency. Interestingly, there seems to be an interaction between quality and frequency,

specifically between the non-word‒low-frequency contrast and quality for RRT: The quality

effect was smaller for non-words than for low-frequency words (see Figure 2, t = −4.924,

p < 0.001).
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Figure 2. Mean reciprocal reaction time (RRT) and response time (RT) as a function of fre-

quency and quality. Error bars are 95% within-subject confidence intervals appropriate for

comparing condition means within a specific quality condition

HF = high frequency, LF = low frequency, NW = non-word

As Balota et al. (2013) criticized that reciprocal RT transformations might artificially create

significant effects for some interactions, the data were fitted to another model using untrans-

formed RT as the dependent variable. Results for untransformed RT fixed effects are shown in

Table 3. Apparently, as visible in Figure 2, the underadditive effect from the RRT analysis is

no longer significant (t = −4.924, p < 0.001 for RRT vs. t = −0.592, p = 0.554 for RT) but

the previously additive joint effect is overadditive for RT (t = 1.251, p = 0.211 for RRT vs.

t = 2.506, p = 0.012 for RT) so that the quality effect is significantly smaller for low-frequency

than for high-frequency words. This was not an anticipated result. All other effects remain

significant.

Trial history analysis. As described earlier, autocorrelated errors can have a substantial

impact on the response. Especially in experimental settings such as the present one with a large

number of relatively similar trials (specifically 480 trials words and non-words to be read aloud),

it makes sense to include an account for autocorrelation in the model because learning effects

and fatigue are to be expected and indeed seem to be present in the data (see Figure 3). The

final zero correlation parameter LMM from above was used as the basis for fitting the data to a

generalized additive model (GAM) in order to account for trial history by adding wiggly fixed

and random effects. As suggested by Figure 3, there are two superimposed trial history curves:

one recurring curve that is relatively similar between blocks and one overall trend towards

slower responses. The fixed effect spline was incorporated as a thin-plate regression full tensor
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Figure 3. Mean speed (RRT) over trial history aggregated over subjects (left) and over subjects

and blocks (right)

product smooth with 1st derivatives (Wood, 2003, 2006). The tensor product was preferred over

a regular smooth to account not only for the block and overall within-block trend but also for

a possible interaction between block and within-block trial number because it seems plausible

that the within-block trend differs between blocks. Random splines were added as by-subject

factor smooths with thin-plate regression and 1st derivatives for within-block trial and for block.

It appeared neither possible nor plausible to model their interaction by Subject because every

participant was only tested once for each trial number (i.e. once for each unique combination

of block and within-block trial); the interaction is only between- but not within-subject and

therefore only a fixed but not a random effect.

The approach of including trial history splines in the model proved appropriate since all

smooth terms were estimated to be significant (ps < 0.001). Moreover, the resulting history-

sensitive model (df = 1213.34,AIC = −9681.44) explains 65.1% of the deviance, while the

earlier history-naïve model (df = 886.28,AIC = −5563.83) explains just 59.7%, because it

was able to remove most of the autocorrelation from the residuals (see Figure 4). Furthermore,

the shape of the fixed smoothing splines (see Figure A1) approximates the shape of the ac-

tual within-block mean speed (see Figure 3) extraordinarily well and composite splines of the

wiggly fixed and random effects per subject offer insight into each participant’s attentional fluc-

tuation and fatigue over trials (see Figure A3). Although being a significantly better fit, neither

coefficients nor t-values differ significantly from the previous model (compare Table 2 and 4).
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Figure 4. Autocorrelation function (ACF) plots for speed residuals by overall trial (top row)

and within-block trial number (bottom row), for the history-naïve LMM (left) and the history-

sensitive GAM (right)

Dashed lines are 95% confidence intervals

Table 4

Trial history GAM estimates of coefficients, standard errors, t-values and p-values for RRT

fixed effects in Experiment 1

Fixed effects Coefficient SE t p

Intercept −1.422 0.026 −55.429 < 0.001
Frequency

LF-HF 0.052 0.013 4.042 < 0.001
NW-LF 0.117 0.012 9.501 < 0.001
Quality (D-C) 0.170 0.011 15.223 < 0.001
Frequency × Quality

(LF-HF) × (D-C) 0.009 0.009 1.091 0.275
(NW-LF) × (D-C) −0.041 0.008 −5.023 < 0.001

LF-HF = low-frequency‒high-frequency contrast; NW-LF = non-word‒low-frequency con-

trast; D-C = degraded‒clear contrast; SE = standard error
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Discussion

It was not surprising that frequency and quality had significant main effects on response

time given present literature. Regarding the joint effects, however, there are some points that

should be highlighted. Firstly, the interaction between the non-word‒low-frequency contrast

and quality was previously found to be additive in naming experiments with non-words by

other authors (Besner et al., 2010; Bonin et al., 2012; Carello et al., 1995; O’Malley & Besner,

2008). In the present experiment, the effect of quality was smaller for non-words than for low-

frequency words. Between low-frequency and high-frequency words, there was no significant

difference in magnitude of the quality effect, which in turn is congruent with previous findings.

This suggests that stimulus quality affects lexical processing more for known words than for

unknown words.

Interestingly though, the pattern is somewhat different when analyzing untransformed RT.

In that case, the joint effect between the non-word‒low-frequency contrast and quality was addi-

tive. The low-frequency‒high-frequency contrast, however, interacted with quality so that high-

frequency words were less affected by stimulus quality than low-frequency words. So whereas

RRT analyses produce standard findings with regard to the low-frequency‒high-frequency by

quality interaction, RT analyses show unexpected results. This is an interesting example illus-

trating the necessity for a resolution of the dependent measure debate. Under the assumption

that RRT has better compliance with requirements, such as normal residual distribution, results

of the RT analyses should be treated with caution. A post-hoc analysis showed that this re-

sult also holds with an ANOVA (p < 0.01), which is why the finding cannot only be due to a

violation of the distribution requirements by untransformed RT.

Both the RRT and the RT result for the frequency-by-quality interaction suggest that fre-

quency and quality are not purely additive, not even in the presence of non-words. There are

some differences between the present experiment and previous studies that found additive ef-

fects. Firstly, although the onset of the stimulus was varied between previous studies, none

seem to have used a 250 + 250 ms (250 ms fixation cross + 250 ms blank screen) delay. A

longer delay between trials could imply more time for the word processor to be cleared. As
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Ziegler, Perry, and Zorzi (2009) had already argued that the activation of the lexical route could

critically depend on individual differences between readers, it seems plausible that the ratio of

activation between lexical and nonlexical route is reset between trials or blocks, sufficient time

given. An interaction between frequency and quality, as typically found in naming with words

only, could have emerged for that reason in the present case as well.

It was hypothesized that including trial history effects in the model could possibly reveal

interactive joint effects by accounting for some time-related variability (caused for example

by attention fluctuation, learning effects or fatigue). For Experiment 1, this was not the case

although the history-sensitive model was indeed a better fit to the data and did explain more

deviance than the history-naïve model. Nonetheless, that is not an argument for ignoring trial

history but rather supporting its inclusion. As apparent in Figure 3, there was a trend between

and within blocks but for this experiment, effects created by experimental manipulation were

simply strong enough to be detected without an account for trial history.

Experiment 2

Introduction

As the interaction of frequency and quality had been found to be modulated by the absence

or presence of non-words in the item list, another experiment without non-words was conducted.

Similarly to Experiment 1, low-frequency and degraded stimuli were expected to lead to slower

responses. In contrast to the first experiment, however, in Experiment 2 an interaction between

frequency and quality is expected as suggested by the literature (Besner et al., 2010; Bonin

et al., 2012; Carello et al., 1995). Moreover, for this experiment, which was based on the

experimental design of Experiment 1 but conducted independently, it is to examine whether

there are similar between- and within-block trial-history effects and if they mask or produce an

interaction between frequency and quality.

Method

Subjects. 76 psychology students from the University of Victoria (Victoria, BC, Canada)

participated in 2013 to earn extra credit in an undergraduate psychology course.
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Materials. Word items (low-frequency and high-frequency words) were identical to the

words used for Experiment 1. There were no non-words. That amounts to 120 high-frequency

and 120 low-frequency trials. The same item counterbalancing technique as for Experiment 1

was used: Each stimulus was clear for one half of the subjects while being degraded for the

other half. Degraded stimuli were 65% white and clear stimuli were black (0% white) on a

white screen and all stimuli were randomly intermixed.

Procedure. Hardware, software and instructions were identical to those for Experiment 1

except that subjects were only informed they would have to read aloud words (as there were no

non-words in this design). For every subject 16 practice trials (half high-frequency and half low-

frequency trials) and 240 critical trials were conducted. The rest of the experimental procedure

was also identical to Experiment 1. Trials that were unsuitable for further statistical analyses

(such as extraneous noises before the actual pronounced stimulus) were marked as spoils and

later removed from the dataset.

Results

For Experiment 2, the same analytical tools and model fitting strategy as for Experiment 1

were used. For R implementations of relevant models see Appendix D.

Dependent measure. A Box-Cox power transformation check was performed for the

dataset and returned λ = −1.19which also approximates a reciprocal transformation on Tukey’s

Ladder of Power Transformations (Box&Cox, 1964; Venables&Ripley, 2002). Thus it seemed

feasible to use RRT as the proper RT transformation for Experiment 2 as well.

Mixed-model structure. The 2 × 2 experimental design affords an intercept and the two

fixed factors quality with levels clear/degraded and frequency with levels low-frequency/high-

frequency. Both fixed factors were encoded as successive difference contrasts (Venables &

Ripley, 2002), generating a degraded–clear contrast for quality and a low-frequency–high-

frequency contrast for frequency. The interaction of quality and frequency was also included in

the model.

Random effects results. The MRE model random effects structure consisted of two ran-

dom factors: Item and Subject. For the random factor item there were intercept, the variance
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Table 5

Linear mixed-model variances and standard deviations for reciprocal RT (RRT) random effects

in Experiment 2

Random effects Variance SD

Items

Intercept 0.006 0.075
Subjects

Intercept 0.034 0.184
Frequency (LF-HF) 0.002 0.047
Quality (D-C) 0.006 0.080
Frequency (LF-HF) × Quality (D-C) 0.001 0.032
Residuals 0.041 0.204
LF-HF = low-frequency‒high-frequency contrast; D-C = degraded‒clear contrast; SD = stan-

dard deviation

component for the within-item effect quality and a correlation parameter for intercept and qual-

ity. The random factor Subject included intercept, variance components for the within-subject

effects of quality, frequency and their interaction, as well as correlation parameters for all pos-

sible correlations between intercept and variance components (six in total). There were 14

variance components and correlation parameters in the MRE model random effects structure,

including residuals. A PCA of the MRE model indicated overparameterization since some of

the dimensions contributed less than 1% to the deviance explained by their respective random

factor.

After removing all of the correlation parameters from the MRE model, the quality variance

component for the random factor Item still seemed to contribute a negligible amount of the

deviance explained and thus was dropped from the model. The final resulting mixed-model

random effects structure is shown in Table 5. Including residuals, there were a total of six

random intercepts and variance components in this model.

Fixed effects results. Coefficients, standard errors and t-values for this model are shown

in Table 6. As for Experiment 1, main effects for quality (t = 9.703, p < 0.001) and frequency

(t = 6.824, p < 0.001) are significant, but there is no evidence for an interaction between

those. This is contradictory to the expectation. A trial history analysis is performed to examine

whether that interaction is revealed after accounting for time-related fluctuation.
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Table 6

Linear mixed-model estimates of coefficients, standard errors, and t-values and generalized

additive model p-values for RRT fixed effects in Experiment 2

Fixed effects Coefficient SE t p

Intercept −1.802 0.022 −83.170 < 0.001
Frequency (LF-HF) 0.078 0.011 6.824 < 0.001
Quality (D-C) 0.094 0.010 9.703 < 0.001
Frequency (LF-HF) × Quality (D-C) 0.010 0.007 1.404 0.160
LF-HF = low-frequency‒high-frequency contrast; D-C = degraded‒clear contrast; SE = stan-

dard error

Table 7

Generalized additive model estimates of coefficients, standard errors, t-values and p-values for

RRT fixed effects in Experiment 2

Fixed effects Coefficient SE t p

Intercept −1.803 0.021 −84.540 < 0.001
Frequency (LF-HF) 0.077 0.009 6.770 < 0.001
Quality (D-C) 0.093 0.011 9.828 < 0.001
Frequency (LF-HF) × Quality (D-C) 0.012 0.006 1.979 0.048
LF-HF = low-frequency‒high-frequency contrast; D-C = degraded‒clear contrast; SE = stan-

dard error

Trial history analysis. The parsimonious linear mixed model from above was translated

to a GAM in order to include a fixed and by-subject random splines for trial history. The fixed

effect spline was added as a full tensor product smooth with thin-plate regression and 1st deriva-

tives and random splines were added as by-subject factor smooths with thin-plate regression and

1st derivatives for within-block trial and for block. In the history-sensitive model, the quality-

by-frequency interaction variance component for Subject was turned non-significant and thusly

dropped from the GAM specification. All remaining smooth terms, including the added wiggly

fixed and random effects for trial number, were estimated to be significant (ps < 0.001).

Coefficients, standard deviations and t-values did not change significantly for intercept

or main effects (see Table 7). However with the trial history splines included, the model

was a better fit, explained more deviance (58.1%, df = 710.39,AIC = −7222.91) than the

previous model (53.2%, df = 441.86,AIC = −5802.66) and could accordingly account for

some variability that presumably masked the expected frequency-by-quality interaction before

(t = 1.979, p < 0.05 vs. t = 1.404, p = 0.160 without trial history splines included). As visible



TRIAL HISTORY IN NAMING 20

in Figure A2, the fixed effect smooths were able to capture the between-block trend (difference

in spline means), and the typical within-block trend (spline average over blocks) plus by-block

characteristics, notably similar to the effects captured in Experiment 1.

Fitting the same data using untransformed RT instead of RRT reveals the anticipated effects

for quality (t = 6.039, p < 0.001) and frequency (t = 6.950, p < 0.001) as well as for their inter-

action (t = 2.520, p < 0.012). Including trial history in that model neither improves goodness

of fit nor changes t-values or coefficients significantly.

Discussion

The mean response times for Experiment 2 were faster than for Experiment 1, supporting

the idea that only the time-efficient lexical route is used for pronunciation. Analogous to Exper-

iment 1 and as anticipated, frequency and quality exerted significant main effects on response

time. Ignoring trial history in the model, the joint effect of quality and frequency was far from

significant (p = 0.160). As opposed to the previous experiment, however, in this case the

interaction was discovered to be significant (p = 0.048) after accounting for trial history. In

fact, there was a notably high increase in the t-value of the joint effect. This interaction was

actually anticipated by previous research but masked by the noise generated by time-related

fluctuation. The discovered interaction revealed high-frequency words to be more affected by

stimulus quality than low-frequency words, which is congruent with the expected result.

The RT analysis yielded the same results without an account for trial history. Including trial

history splines in the RT model decreased the goodness of fit and is therefore not recommended

for that particular case because it did not help explain more deviance. As residuals for this RT

model were not normally distributed either, its results are again to be interpreted with caution.

General Discussion

As far as the account for trial history in mixed-model analyses of RRT is concerned, in

both experiments the inclusion increased the goodness of fit. In one case it helped reveal an

anticipated interactive effect that was just too small in magnitude and thusly hidden by the vari-

ance explainable by a spline for trial number. Generally speaking, including fixed and random
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splines for trial history effects has been shown to be a valid way to explain more deviance and

possibly detect small effects. If the data do not suggest a clear trend that could be captured

with existing smoothing algorithms or if the resulting model does not improve the goodness of

fit, then trial history should be ignored. However, in all remaining cases trial history should

at least be briefly considered as a possible source of variance, especially in experiments where

small effects are anticipated and time-related variability cannot be definitely ruled out. The

time course of the experimental procedure has been shown to mask smaller effects. Critical

evaluation should therefore be given to the experimental design.

One considerable drawback of the proposed procedure is truncating the fourth step of the

Bates, Kliegl, et al. (2015) approach of model selection. Although in the presented cases models

did not improve by including correlation parameters again, it is not unlikely that other models

would. In order to include smoothing splines, however, correlation parameters have to be disre-

garded because the mgcv package does not support estimation of those (Wood, 2006, 2011). If

correlation parameters are strictly needed, the gamm4 package (Wood & Scheipl, 2014) should

be used instead. Fitting models with gamm4 allows estimation of correlation parameters but

is not as statistically robust as mgcv and should only be used if correlation parameters and

smoothing splines are needed for statistical assumptions or theoretical purposes.

In the present analyses, the interaction between frequency and quality was of particular in-

terest. Depending on the dependent measure used in Experiment 1, quality interacted with either

the low-frequency–high-frequency contrast or the non-word–low-frequency contrast. Neither

was expected given the present literature. On the contrary, frequency and quality are expected

to be additive if non-words are present in the item list. The same interaction was also found in

Experiment 2, where it was, however, anticipated. Particularly interesting is that the estimated

magnitude of the joint effect is relatively similar between the two experiments (see Table 4 and

7) but the variance of that particular effect in Experiment 1 is too large to safely distinguish

it from zero. As results of RRT analyses differed from RT analyses especially with regard to

significant interactions in Experiment 1, it is unclear if trial history is able to help resolve or

avoid RT transformation issues that had previously been brought to the attention of researchers.
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Garcia-Marques, Garcia-Marques, and Brauer (2014) recently pointed out that two-way in-

teractions, even if statistically significant, are ambiguous and thusly uninterpretable if their lines

do not cross over in an interaction plot. This is because these interactive patterns might be due

to their main effects and a non-linear relationship between the latent and observed outcome, or

due to an unmeasured mediator that has a non-linear relationship with the outcome variable.

Actually, “[t]he smallest effect in a 2 × 2 ANOVA is always uninterpretable” (Garcia-Marques

et al., 2014), be it main or interaction effect, and the same caution is to be taken with mixed-

effects modeling. None of the aforementioned joint effects cross over which is why one should

refrain from interpreting those as actual interactions. In the light of longer delays between items,

however, the reader’s word processor might be (partially) reset between trials and reactivate the

lexical route, allowing effects similar to those found in naming experiments with words only.

Even if the result is tentative, future research could address this question by selecting more

contrasting material or vary between-trial delays in order to elicit cross-over interactions.

Using mixed-effects modeling is a relatively new technique and the establishment of guide-

lines about their proper use is an ongoing process. Several authors recently raised doubts about

transforming response times for different reasons (e.g., Balota et al., 2013; Lo & Andrews,

2015; O’Malley & Besner, 2013). Most importantly, reciprocally transformed RT might sys-

tematically create more underadditive interactions than untransformed data. Lo and Andrews

(2015) proposed to use inverse Gaussian generalized linear mixed models with identity link and

untransformed RT instead of the herein applied Gaussian linear and generalized additive models

with identity link and reciprocal RT. Although RRT fits residuals better to a normal distribution

than any other known transformation (Lo & Andrews, 2015; Masson & Kliegl, 2013), inverse

Gaussian fitting of untransformed RT was demonstrated to be a considerably good fit as well

and, more importantly, allows direct inferences about mental chronometry. These inferences are

difficult to make when using RRT due to a lack of a theoretical rationale to transform RT. Lo

and Andrews (2015) argue that the selection of the DV should be guided by the research ques-

tion rather than merely by mathematical assumptions. Nevertheless, this discussion is per se

independent of the herein demonstrated advantage of trial history analyses since their potential

applies to any dependent variable that is recorded over time.
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Altogether trial history in all its facets is not to be ignored in statistical analyses. Manifested

as lag effects, fatigue, recovery or attentional fluctuation, serial effects and time can impact

the outcome of statistical analyses. Future research should address the question of how one

can capture that source of variance in an efficient manner and how it could be incorporated in

computational models such as CDP+. Taking all evidence into account, at least for now it seems

evident that trial history is not history yet.
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Appendix A

Spline figures
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Figure A1. Wiggly fixed effect splines of within-trial number and block number in Experiment 1
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Figure A2. Wiggly fixed effect splines of within-trial number and block number in Experiment 2
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Figure A3. Composite wiggly fixed and random effect splines as a function of overall trial

number and subject in Experiment 1
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Appendix B

Stimuli
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Appendix C

R Implementation of Experiment 1

Box-Cox Transformation Check

1 lambdaList <- boxcox(rt ~ Subj*Q*T, data=d)

2 (lambda <- lambdaList$x[which.max(lambdaList$y)])

Final LMM

3 s1 <- lmer(speed ~ 1 + f + n + q + f_q + n_q + (1 + f + n + q +

4 f_q + n_q || Subj) + (1 + q || Item), data=d, REML=FALSE)

5 print(summary(s1), corr=FALSE)

Principal Components Analysis (PCA)

6 (pca <- rePCA(s1))

7 pca$Item$sdev^2*100/sum(pca$Item$sdev^2)

8 pca$Subj$sdev^2*100/sum(pca$Subj$sdev^2)

Final LMM Translated to History-Naive GAM

9 g0 <- bam(speed ~ 1 + f + n + q + f_q + n_q +

10 s(Subj, bs="re") + s(Subj, f, bs="re") +

11 s(Subj, n, bs="re") + s(Subj, q, bs="re") +

12 s(Subj, f_q, bs="re") + s(Subj, n_q, bs="re") +

13 s(Item, bs="re") + s(Item, q, bs="re"),

14 data=d, method="ML")

15 print(summary(g0))

History-Sensitive GAM

16 g1xnc <- bam(speed ~ 1 + f + n + q + f_q + n_q +

17 te(block, btrial, m=1, k=c(3,39)) +

18 s(btrial, Subj, bs="fs", k=5, m=1) +

19 s(block, Subj, bs="fs", k=3, m=1) +

20 s(Subj, bs="re") + s(Subj, f, bs="re") +

21 s(Subj, n, bs="re") + s(Subj, q, bs="re") +

22 s(Subj, f_q, bs="re") + s(Subj, n_q, bs="re") +

(Appendix continues)
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23 s(Item, bs="re") + s(Item, q, bs="re"),

24 data=d, method="ML")

25 print(summary(g1xnc))

Appendix D

R Implementation of Experiment 2

The commands for the Box-Cox power transformation check and the PCA are identical to those

for Experiment 1 (see ll. 1–2, 6–8).

Final LMM

1 s2 <- lmer(speed ~ 1 + q*f + (1 + q*f || Subj) + (1 | Item),

2 data=d, REML=FALSE)

3 print(summary(s2), cor=FALSE)

Final LMM Translated to History-Naive GAM

4 g0 <- bam(speed ~ 1 + q*f + s(Subj, bs="re") +

5 s(Subj, q, bs="re") + s(Subj, f, bs="re") +

6 s(Subj, q_f, bs="re") + s(Item, bs="re"),

7 data=d, method="ML")

8 summary(g0)

History-Sensitive GAM

9 g2xnc <- bam(speed ~ 1 + q*f +

10 te(block, btrial, m=1, k=c(3,39)) +

11 s(btrial, Subj, bs="fs", k=5, m=1) +

12 s(block, Subj, bs="fs", k=3, m=1) +

13 s(Subj, bs="re") + s(Subj, q, bs="re") +

14 s(Subj, f, bs="re") + s(Item, bs="re"),

15 data=d, method="ML")

16 summary(g2xnc)
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