
217

BugHunt – A Motivating Approach to
Self-Directed Problem-solving in

Operating Systems

Simone Opel, Matthias Kramer, Michael Trommen, Florian Pottbäcker,
Youssef Ilaghef

University of Duisburg-Essen
D-45127 Essen

{simone.opel, matthias.kramer, michael.trommen, florian.pottbaecker,
youssef.ilaghef}@uni-due.de

Abstract: Competencies related to operating systems and computer
security are usually taught systematically. In this paper we present
a different approach, in which students have to remove virus-like
behaviour on their respective computers, which has been induced by
software developed for this purpose. They have to develop appropriate
problem-solving strategies and thereby explore essential elements of
the operating system. The approach was implemented exemplarily in
two computer science courses at a regional general upper secondary
school and showed great motivation and interest in the participating
students.

Keywords: Educational software, operating system, student activation,
problem-solving, interactive course, interactive workshop, edutainment,
secondary computer science education

1	 Introduction

The effective and efficient use of modern digital technologies has become a
key competency in today’s society (OECD, 2005), for both the private and the
professional sector. In 2013, the Educational Testing Service (ETS) published
an analysis (Burrus et al., 2013) on the most important 21st century workforce
competencies by comparing three international 21st century skill frameworks,
namely ATC21S, Finegold & Notabartolo and P21. A key component identi-
fied in view of the working requirements is “information processing” with the
leading variable “computers and electronics”. Students are being introduced to

218

the underlying principles of such electronic systems in the context of computer
science education. This should enable them to use this technology in a quali-
fied way and further developing it in the future.

In Germany, recommendations for national educational standards for lower
secondary computer science (Brinda et al., 2009) were developed by a task
force of the German Informatics association (GI), and most current German
computer science school curricula published since then are oriented on the-
se recommendations. In these educational standards, informatics systems are
established as one of five school-relevant content areas. Therefore, students
of all ages are to understand the basics of the structure of informatics systems
and their underlying working principles with the aim to apply these systems in
an effective and efficient way and to be able to learn and to understand further
systems. The process of identifying school-relevant topics focuses on long-
lasting computer science concepts and principles (Schwill, 1994), particularly
as specific products as key aspect have also been criticised, because products
evolve and only little transferable knowledge can be developed from them. Ne-
vertheless, an essential aspect in the educational process is to link such product
knowledge with conceptual knowledge (Hartmann et al., 2006).

Although more and more people use mobile devices such as tablets, tradi-
tional computers and laptops are still of great importance. Their qualified usa-
ge requires conceptual and product knowledge of the software needed (e.g. to
solve a given problem) and of the underlying operating system software. This
is also supported by international curricula such as the ACM K12-Curriculum
(Tucker et al., 2003), or the IFIP Curriculum (van Weert, Tinsley, 2000), which
list knowledge on operating systems and file management as their desired out-
comes.

There are numerous systematic approaches to teach the use of software in
full width (such as courses preparing for the European Computer Driving Li-
cense (ECDL), (ECDL, 2013a, 2013b)). However, such offers are rarely made
for secondary school students and also do not focus on presenting content in a
motivating and explorative way.

At a project course for student teachers of computer science at the Uni-
versity of Duisburg-Essen, Germany, during the summer term of 2013, the
students (split in small groups) designed motivating computer science learning
units for secondary school students. One of these teams (the last three au-
thors of this paper) developed the idea of using special “educational viruses”
(“bugs”) to stimulate students to explore the underlying operating system. Stu-
dents should deal with undesired system behaviour produced by these bugs
and solve the arisen problems. In this paper, we (course tutors and students)

219

present the educational concept, the design and implementation of the learning
software for the “BugHunt” project as well as first results and experiences with
its use in two computer science classes at a regional general secondary school.

2	 Related Work

To find ideas on how to explore an operating system combined with the foste-
ring of problem-solving skills, existing approaches in this field were analysed.
It soon became clear that ideas for this approach were very rare, if not unique.
Although universities teach courses in virus programming (e.g. Aycock, 2013),
it does not seem probable that they are used with educative intention, least of
all in secondary education.

In a first step, international curricula were reviewed. According to the ACM
curriculum (Tucker et al., 2003), students should gain a conceptual understan-
ding of principles of computer organisation and its major components, such
as storage or the operating system. The “IFIP-Unesco: ICT Curriculum for
Secondary Schools” (van Weert, Tinsley, 2000), appendix A1, contains the de-
mand that “students should understand how computers and the basic operating
system work and demonstrate that the computer is under their control”. Ap-
pendix A8 demands “[that] students are expected to understand basic concepts
such as […] computer security (theft, hacking, and viruses)”. Another modu-
larised ICT curriculum and course offer is the “European Computer Driving
License” (ECDL), which contains learning modules on “computer essentials”
(DLGI, 2013a) and “IT-Security” (DLGI, 2013b). Specific educational objecti-
ves are being listed, such as “understanding how to use an operating system to
organize drives, folders and files in a hierarchical structure” or “knowing how
malware can be hidden in the system”.

Based on these overall objectives, in the second step it was necessary to
theoretically establish the competencies needed to successfully complete the
planned learning unit in a second step. Within the framework of the MoKoM
project (Linck et al., 2013), a competence model for informatics modelling and
system comprehension was theoretically derived and empirically refined. The
final model consisted of the five dimensions system application (K1), system
comprehension (K2), system development (K3), dealing with system comple-
xity (K4) and non-cognitive skills (K5), with several competencies subsumed
under each dimension. In detail, the model provides competence goals such as
“systematically explore system functions (K1.2.1)”, “independently explore
systems (K2.3)” or “know & analyse architecture & organization (K2.5)” to
which the educational concept of the BugHunt project intends to contribute.

220

In a third step, reports on existing approaches were reviewed. Tulodziecki
(2000) wrote on how computer-based media can be used to teach not only
computer science, but all kinds of subjects. He stated that exercises were more
effective when having a personal relevance for the students (such as occurring
in their everyday life), and when the problem was on the one hand not sol-
vable with the current knowledge, but on the other hand not too sophisticated.
Westram (2006) described the importance of the subject “IT security” and de-
manded that it should be compulsory in secondary education. In her opinion,
questions like what viruses, worms or Trojan horses are and how to deal with
them is something computer science education has to convey. To promote the-
se goals, teachers have to be provided with the necessary teaching materials.
Schlüter (2006) gave an example of how a unit on internet risks could be struc-
tured. She proposed that in a first lesson the students should have a look on the
topic “computer viruses”. As the unit progresses, the students reflect on the
behaviour and risks of viruses as well as an appropriate behaviour in case of a
virus attack. This is just one possibility for students to increase their awareness
on dealing with a malware situation in general.

In summary, it can be stated that operating systems and security aspects
as well as the understanding of the underlying computer science concepts and
principles are relevant educational goals to which teaching approaches have
been described, but not in the integrated way suggested in this work.

3	 Requirement Analysis

Starting point of the development was the idea to create a motivating learning
unit in which students can explore selected aspects of different versions of the
operating system Microsoft Windows in a short period of time. The basic idea
was to place special “educational viruses” (“bugs”), which cause undesired
system behaviour, as a motivating element in a protected environment on the
computers. To remove the undesired system behaviour, the students should
explore the settings of the operating system on their own and with the help of
a particular text book. Due to possible safety concerns in school or university
networks, the operating system should be run in a virtual machine, although
the software leaves no undesired system behaviour in the operating system
after its termination and should not need any network or internet access.

The so-called “BugHunt” learning unit should be designed for group sizes
of up to 30 students (working in pairs) and a duration of 90 minutes. The course
should be implementable both in traditional teaching at a secondary school as
well as in the context of university courses, so the software should include dif-

221

ferent levels of difficulty. In order to create real experience, it is necessary to
provide the students not only with an operating system simulation, but to bring
the undesired, virus-like system behaviour (such as slowing down the system
or executing undesired functions) to the real system. Each student team should
be provided with appropriate tasks (“bugs”) and have to try to deal with them
as independently as possible. This requires a variety of bugs in varying degrees
of difficulty to support an internal differentiation of the learning group. Moreo-
ver, the undesired system behaviour should be reflected in clearly recognisable
symptoms that can be identified easily and directly. Furthermore, an additional
teaching text should be provided in which the symptoms of the induced unde-
sired system behaviour are linked with hints to an appropriate problem-solving
strategy. To ensure that the students have to remove the bugs following the
given instructions, the software must be secured against unauthorized termi-
nation. For this reason, there must not be any loopholes or workarounds the
students could use to terminate the bugs without solving the actual problem.
Therefore, the teacher must be able to start the controlling software, configure
the level of difficulty and the quantity of bugs and to terminate it separately
from the actual bug programme. By processing the tasks, the students should
build up or enhance computer science competencies as they have been descri-
bed for example in the MoKoM project (Linck et al., 2013). For example, the
students should systematically explore system functions (K1.2.1) and know
and analyse architecture and organization (K2.5) of an operating system. They
should learn by exploring the operating system independently (K2.3) and not
by being taught the solutions and techniques in traditional teacher-oriented
lessons. Being confronted with a series of problems on a running operating
system, they should know about and evaluate consequences of informatics sy-
stems (K5.1.1.5) and finding solutions to the arisen problems in a self-directed
way, we hope to increase their affinity and enthusiasm (K5.1.2.1) and make
them willing to improve their informatics abilities and knowledge (K5.3.2.1).
In order to prevent the students from copying the solutions from other teams,
the sequence of released bugs must be randomized.

To minimize the preparation time of such a course, the teacher or univer-
sity tutor should only have to prepare the computers by activating the softwa-
re on each computer without the necessity of an installation process. During
the course, the teacher should be able to configure the difficulty level and the
selection of bugs provided to a student team. After showing the students how
to use the software and the teaching material, the teacher should not need to
give any further assistance except for answering questions or solving general
technical problems.

222

Finally, the software should be executable on any computer or laptop with
one of the operating systems Windows 8, 7, Vista, XP, 2000 installed and not
require any special resources. It should be developed modularly for an easy
extension by more or improved bugs.

4 Design and Implementation

According to the requirements, the software should be set up with minimal
effort and without an installation process or any necessary runtime environ-
ment. At fi rst, we had to decide which language should be used to implement
the software. We decided to use AutoIt, a Basic like programming language,
which provides access to the Microsoft Windows API by using C++ syntax
in dll-calls (Aristides de Fez Laso, 2013; Petzold, 2013). Using this techno-
logy enables easy access to every input device and the desktop environment.
Thus it was possible to develop bugs, which would be able to take control of
the mouse cursor, the keyboard, the fi le system and the most common system
functions. To secure the software against manipulation by students, it is deve-
loped to run in only one hidden process with a single thread. Other advantages
of this solution are that the software needs just a small amount of system re-
sources and that its tasks can hardly be recognised.

The Software is split into three parts: The BugHuntMaster, the BugHunt main
process and the BugHunt recovery process (cf. Fig.1).

Figure 1: Sketch of the BugHunt architecture

The BugHuntMaster.exe runs portable from the BugHunt USB device. It ensu-
res the teacher’s control over the bugs. Each bug is programmed in a separate
fi le, which contains the polled function of the bugs and its global variables.

223

The simple GUI (cf. Fig. 2) is built by an algorithm, which scans for imple-
mented bugs during compilation, and is configured dynamically.

Figure 2: BugHuntMaster.exe GUI

The desired bugs can be activated individually or as a whole difficulty group
by checking or unchecking the box on top of the column.

The main process runs the bug functions, which are arranged in three levels
of difficulty. The bugs are not separate applications, but different functions in
the main process. Despite this architecture, more than one bug can run simulta-
neously. The BugHunt main process executable is copied to the system by the
BugHuntMaster.exe. That main process executable contains the bug functions
along with a random bug activation algorithm according to the written configu-
ration. Only one bug of each difficulty level can be active at the same time to
prevent an unsolvable scenario. The main process simulates the symptoms and
decides whether a bug has been solved or is still active. Furthermore, it alerts
the student in case of success. The main process also ensures that the recovery
process is running.

The recovery process monitors the main process in a 10ms interval and
keeps it running. Moreover, it restores the BugHunt system files which may
be deleted due to manipulation or system failure. If the main process is being
terminated, the recovery process will start it again. In case of missing BugHunt
files, it automatically restores them from backup files. This virus-like beha-
viour is to challenge the students to systematically explore possible problem-
solving approaches without giving them the opportunity to simply stop the task
and delete the BugHunt programme.

224

Despite those security features, the teacher should be able to stop all bugs
immediately at any given time. Both BugHunt processes scan for the BugHunt
USB device at the beginning of every iteration. If the device is being detected,
both loops will terminate immediately. So the teacher can easily start the Bug-
HuntMaster again and change the configuration or stop the programme.

5	 The Bughunt Software

The teacher has to connect the BugHunt USB device to a computer. The Bug-
Hunt-Master.exe, which has to be executed, is located in the root directory of
the BugHunt device. When the “RELEASE” button (cf. Fig. 2) is clicked, the
BugHuntMaster.exe copies all BugHunt files to a hidden directory and creates
two hidden backup copies of all BugHunt files at different locations. The Bug-
HuntMaster.exe resides on the USB device and is never copied to the system.
Thus, it is unreachable after the device has been removed. After the BugHunt
configuration is written to the system, a message box will appear asking to dis-
connect the BugHunt USB device and click “OK”. When the device has been
disconnected the BugHunt main and the BugHunt recovery process (cf. Fig. 1)
will be invoked after a short time of 10 seconds.

The “CLEAN” button stops each running BugHunt action. Additionally, it
deletes all files from the system and resets all changes, which have been done.
The software is fully removed in less than one second by only one click.

Exemplary “Bugs”

Subsequently, we describe the induced behaviour of selected bugs and the lear-
ning objectives to be achieved by their removal.

The GTC Bug (General Terms and Conditions Bug, category “easy”) shows
a dialog box, which asks the student to click “YES“ to remove unwanted soft-
ware (apparently the bug itself). There is an obligatory checkbox at the bottom
of this dialog box, which is already checked to accept the terms and conditions.
This common situation postulates the student to know and evaluate conse-
quences of informatics systems (K5.1.1.5). If the student just clicks “YES“
without at least having a quick view at the information, a random number of
folders named “WASHING MACHINE MODEL_XYZ“ will be created on the
desktop. The dialog box will be shown again after a few seconds. If the student
decides to read the information, he will notice that he just has to uncheck the
terms and conditions box to remove the bug. Accepting all given terms without
reading the text itself is a common but careless behaviour for most computer

225

users – not only for school students. This bug should encourage the students
to reconsider their own behaviour and to learn how to act in a reasonable way.

The Slow Bug (category “easy”) slows down the whole system. It is desi-
gned to simulate the well-known effect that hidden processes consume lots of
resources without being identified as the root of the problem. To ensure that
the bug is being noticed even on very powerful systems, the mouse cursor
movement judders due to cursor manipulation by this bug. The student has
to systematically explore system functions (K1.2.1) to find and open the task
manager. All CPUs will show a usage of 100 %. The bug is removed by closing
all “Slow Bug” processes, which are in the list.

Figure 3: Bug description in the textbook, category “easy”

The Swap Bug (category “medium”) makes the mouse cursor move in a ran-
dom interval between 15 and 30 seconds. The movement of the cursor is not
random; it always follows the same path. The student has to independently
explore the system (K2.3) to find suitable graphic editing software. The path
can be made visible by clicking and holding the mouse in a drawing area.
The cursor will draw the letters “Ctrl B U G“. The student has to identify the
output as hotkey combination. The written capital letters must be identified as
a combination of upper case characters. Hence, the actual hotkeys are “ctrl +

226

shift + character”. The bug will be solved when the three hotkey combinati-
ons are pressed in order of appearance. Since the students can hardly control
the mouse cursor, they have to use the keyboard to find and open the graphic
software. Although all modern computers have mice or other graphical input
devices, students become acquainted with an efficient way to use their compu-
ter by removing this bug.

The Key Bug (category “hard”) encrypts the keyboard with a random Cae-
sar cipher. Encryption in general is a fundamental concept in computer science
and computer security, which is modelled by this bug. A text document called
“Message from Key Bug.txt” will appear on the desktop. It contains an encryp-
ted text, which in its decrypted version says “Who should I be afraid of?”. The
correct answer (“julius caesar” or “alan turing”) has to be written to the file
with the keyboard still being encrypted. The “bug identification textbook” con-
tains some basic information about the bug and the idea of the Caesar cipher.
The student has to identify the decryption and write the correct answer into the
file to remove the bug. That means that the student has to understand and use
decryption as well as encryption to solve the problem.

6	 Implementation and Evaluation of the Learning Unit

6.1	 Implementation of the learning unit

The course was carried out twice with 10th grade students at ages between 14
and 17 years of two elective computer science classes of the same general
upper secondary school (“Gymnasium”) in a computer room supplied with
personal computers and laptops. The students were divided into pairs with one
pc or laptop per group. The pcs and laptops were prepared by creating a new
user account on the operating systems for the course. On these accounts, the
“BugHunt” software was started and easy bugs were chosen for every group
to begin with. At the beginning of the course, an additional teaching text (the
“bug identification textbook”, cf. Fig. 3) was given to each group. After that,
the students got a short introduction on how to use the book. We explained the
different levels of difficulty and the general handling of the software. Then the
students were asked to solve the problems caused by the bugs. They should
first try to identify the type of the active bug and after that they should remove
it, using the information given in the textbook. Afterwards, the students started
to work. Since some questions were asked repeatedly, additional hints were
written on the board. After about half of the time, several groups finished all
bugs from the easy category and started with the medium bugs. Other groups

227

however had difficulties with different bugs from the easy category, so they
removed only these easy bugs.

6.2	 Evaluation

Since a main component of the concept was to motivate the students and to
interest them in operating system issues, the participating students were inter-
viewed using a questionnaire after the implementation of the learning unit. For
this purpose, we developed a questionnaire consisting of three parts to explore
the motivation and interest of the students in partaking in this course.

In the first part we asked for personal information such as age and sex as
well as experience in computer science lessons and career aspirations of the
students.

The second part consisted of questions about their attitudes towards the
course (six items) and their personal interests (four items). Exemplary items
are “the course was exciting and interesting” or “I am interested in solving
difficult problems”. We used a 4-point scale answering format with the options
“yes” (4), “generally yes” (3), “generally no” (2) and “no” (1). The items are
not standardised. For this reason, the internal consistency of the questionnaire
about attitudes is only α = .641 and about interest α = .800.

In the third part, we used the questionnaire on subjectively perceived bore-
dom in mathematics at elementary schools by Sparfeldt et al. (2009). Todt
(1990) describes boredom as the opposite of interest (Todt, 1990), beyond that
a highly negative correlation between interest and boredom has been identified
(Lohrmann, 2008; Pekrun et al., 1998). Whereas interest and school grades
are highly correlated, no correlation has been found between boredom and
school grades (e.g. Dickhäuser, Stiensmeier-Pelster, 2003; Todt, 2000). Thus,
perceived boredom seems to be a reasonable predictor to evaluate the interest
of the students in partaking in the developed course. This part of the question-
naire consisted of 14 items and used a 5-point scale format from “never” (1)
to “always” (5). The original questionnaire had a reliability of α = .957. We
modified this questionnaire for the purposes of the BugHunt course (α = .959)
by replacing “mathematics” with “this course”. Exemplary items are “In my
opinion, the course was boring” or “During the course, I looked out of the
window because I was bored”.

228

6.3	 Results

As reported before, we performed this learning unit in two elective compu-
ter science courses (10th grade) of the same general upper secondary school
(“Gymnasium”) with 20 students each. 38 of these students participated in
the course. Two-sided t-tests showed that both courses originated from the
same population. For that reason, both courses have been evaluated as one.
The courses consisted of 30 boys and eight girls at ages between 14 and 17
(M = 15.47, median = 15). Only 16 students related that they had had elective
computer science lessons in former school years.

The students reported a positive attitude towards the course (M = 3.265;
SD = 0.413). In particular, the students related that they would like to have
more similar courses, also on other topics from computer sciences. The stu-
dents were mostly interested in computer science (M = 2.906; SD = 0.723).

Although the second part of the evaluation had a low internal consistency,
it nevertheless confirmed the results of the questionnaire about the perceived
boredom: The students reported only little boredom during the course (M =
1.705; SD = 0.845). These findings were also confirmed by several annotations
on the evaluation sheets: “It was cool, completely different!“, “The course was
very interesting and informative. Surely, it would be possible to cover different
problems, too” or “Very cool, it would be nice if you visited us again!”. The
most astonishing feedback was that one of the students encrypted his statement
by using a Caesar cipher.

Furthermore, our study confirmed the findings of Pekrun & Hoffmann
(1999) and Lohrmann (2008). We also found a negative correlation between
perceived boredom and interest in computer science (r = -.567; p < .001) and
between perceived boredom and attitudes towards the course (r = -.599; p <
.001). This result was also confirmed by informal feedback and observation of
the behaviour of the students during the course.

The previous knowledge of the students about operating systems was quite
diverse. For this reason, the students began with very different approaches.

A few groups with advanced experience with the operating system tried
to terminate the whole software by terminating the tasks in the task manager.
Being unsuccessful, they attempted to figure out how the BugHunt software
works by using all skills they had. After that, these groups started to solve
the bugs the designated way. Generally, these groups approached all bugs by
trying different strategies on their own and rarely by reading the “bug identi-
fication textbook”.

229

Students with fewer previous skills mostly started with trial-and-error stra-
tegies to solve the problems caused by the bugs, but during the course they
managed to develop more useful strategies, e.g. “first describe the problem,
then read the identification textbook, after that start working by interpreting
the given instructions”. Following these rules, they were able to remove at
least all easy bugs.

While observing the students, we noticed increasing problem-solving stra-
tegies. Furthermore, some students found creative ways to solve the given pro-
blems. For instance, to fix one of the bugs, it is necessary to freeze the picture
by making a screenshot. Several students did not know how to do this, so two
of them used their smartphones to take a photo of the screen. Even though this
was not the intended way to solve the problem, it was a very creative solution.

All things considered, most students seemed to work in a motivated and
interested way on the different given problems. The groups were very focused
during the course. There was much intra-group and cross-group communica-
tion. At the end of the time, most of the groups reached the medium category.
There were only a few groups who started the bugs from the hard category and
also those who did not finish the easy one.

7	 Summary and Outlook

In this paper, we have described a differing approach to operating systems and
other computer science concepts that is based on the hypothesis that remo-
ving virus-like behaviour on the computer is motivating for students. For this
purpose, a special learning aid, the BugHunt software, was designed which
induces the system behaviour required on the respective computer. The process
of removing the bugs required individual problem-solving strategies and made
the students explore various computer science concepts. A written survey af-
ter an exemplary implementation showed that the students worked with great
interest and motivation on the tasks and would wish for more such concepts.
Although these results are very encouraging, is it necessary to evaluate and
improve this concept with more students of different age.

Of course, we are aware that the induction of virus-like behaviour on
school computers can be discussed controversially with regard to safety. For
this reason, we recommend to run the software in a virtual machine, although
it is safe to run it on a real computer.

The approach presented here does not claim to be a systematic approach to
operating systems concepts, but it can be used to support corresponding tea-
ching sequences and to promote the motivation of the students. The software

230

has been designed in a way that the integration of other bugs is easily pos-
sible. More information on the BugHunt project can be found on the website
http://udue.de/bughunt.

231

References

Aristides de Fez Laso, E. (2013). Instant AutoIt Scripting. Birmingham: Packt Pub-
lishing.

Aycock, John (2013). CPSC 527 – Computer Viruses and Malware. University of Cal-
gary, Department of Computer Science. Retrieved February 10, 2014 from http://
pages.cpsc.ucalgary.ca/~aycock/virus-info.html

Brinda, T., Puhlmann, H., Schulte, C. (2009). Bridging ICT and CS – Educational
Standards for Computer Science in Lower Secondary Education. Proceedings of
the 14th annual ACM SIGCSE conference on Innovation and technology in com-
puter science education (ITiCSE’09), 288–292.

Burrus, J., Jackson, T., Xi, N., Steinberg, J. (2013). Identifying the Most Important 21st
Century Workforce Competencies: An Analysis of the Occupational Information
Network (O*NET). Educational Testing Service: Princeton.

Claus, V., Schwill, A. (2006). Duden Informatik A–Z. Mannheim: Dudenverlag.

Dickhäuser, O., Stiensmeier-Pelster, J. (2003). Wahrgenommene Lehrereinschätzungen
und das Fähigkeitsselbstkonzept von Jungen und Mädchen in der Grundschule.
Psychologie in Erziehung und Unterricht, 50, 182–190.

Dienstleistungsgesellschaft für Informatik – DLGI (2013a). ECDL / ICDL Computer-
Grundlagen. Retrieved February 10, 2014 from http://www.ecdl.de/fileadmin/reda-
ktion/Syllabi/ECDL_new/ECDL_Computer-Grundlagen_2013.pdf

Dienstleistungsgesellschaft für Informatik – DLGI (2013b). ECDL / ICDL IT-Sicher-
heit. Retrieved February 10, 2014 from http://www.ecdl.de/fileadmin/redaktion/
Syllabi/ECDL_new/ECDL_IT-Sicherheit_2013.pdf

Hartmann, W., Näf, M., Reichert, R. (2006). Informatikunterricht planen und durch-
führen. Berlin: Springer.

Linck, B., Ohrndorf, L., Nelles, W., Neugebauer, J., Magenheim, J., Schaper, N., Schu-
bert, S., Stechert, P. (2013). Competence model for informatics modelling and sys-
tem comprehension. Proceedings of the 4th global engineering education confer-
ence, IEEE EDUCON 2013, 85–93.

Lohrmann, K. (2008). Langeweile im Unterricht. Münster: Waxmann.

Nussbaum, M., Infante, C. (2013). Guidelines for Educational Software Design That
Consider the Interests and Needs of Teachers and Students. Proceedings of the 13th
International Conference on Advanced Learning Techniques, IEEE ICALT 2013,
243–247.

OECD (2005). The Definition and Selection of Key Competencies. Retrieved February
10, 2014 from http://www.oecd.org/pisa/35070367.pdf

Pekrun, R. (1998). Schüleremotion und ihre Förderung: Ein blinder Fleck der Unter-
richtsforschung. Psychologie in Erziehung und Unterricht, 44, 230–248.

232

Pekrun, R., Hoffmann, H. (1999). Lern- und Leistungsemotionen: Erste Befunde eines
Forschungsprogramms. In Jerusalem, M., Pekrun, R. (Eds.), Emotion, Motivation
und Leistung (pp. 247-268). Göttingen: Hogrefe.

Petzold, C. (2013). Programming Windows: 6th Edition. Redmond: Microsoft Press.

Schlüter, K. (2006). Gefahren im Internet. LOG IN – Informatische Bildung in der
Schule, 140, 35–44.

Schwill, A. (1994). Fundamental ideas of computer science. Bulletin of the European
Association for Theoretical Computer Science, 53, 274–295.

Sparfeldt, J., Buch, S., Schwarz, F., Jachmann, J., Rost, D. (2009). Rechnen ist lang-
weilig – Langeweile in Mathematik bei Gundschülern (German). Psychologie in
Erziehung und Unterricht, 1, 16–26.

Todt, E. (1990). Entwicklung des Interesses. In Hetzer, H., Todt, E., Seiffge-Krenke,
I., Arbinger, R. (Eds.), Angewandte Entwicklungspsychologie des Kindes- und
Jugendalters (2. Aufl.) (pp. 213–264), Heidelberg: Quelle & Mayer.

Todt, E. (2000). Geschlechtsspezifische Interessen – Entwicklungen und Möglichkeiten
der Modifikation. Empirische Pädagogik, 14, 215–254.

Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C., Verno, A (2003). A Mod-
el Curriculum for K-12 Computer Science: Final Report of the ACM K-12 Task
Force Curriculum Committee. Retrieved February 10, 2014 from https://csta.acm.
org/Curriculum/sub/CurrFiles/K-12ModelCurr2ndEd.pdf

Tulodziecki, G. (2000). Computerbasierte Medien. LOG IN – Informatische Bildung in
der Schule, 5/2000, 8–12.

van Weert, T., Tinsley, D. (eds.) (2000). Information and Communication Technology in
Secondary Education – A Curriculum for Schools. Paris: UNESCO.

Westram, H. (2006): IT-Sicherheit im Unterricht. LOG IN – Informatische Bildung in
der Schule, 140, 20–24.

Biographies
Simone Opel studied Information Technology at the University
of Applied Sciences of Nuremberg and Vocational Education
for Electrical Engineering and Computer Science at the Uni-
versity of Erlangen-Nuremberg. She worked as a trainer for
computer science and teacher at several vocational schools.
Since 2010, she is working as a scientist in the “Didactics of
Informatics” groups at the Universities of Erlangen-Nuremberg
(until Oct. 2012) and Duisburg-Essen (since Nov. 2012).

233

Matthias Kramer studied Computer Science and Mathemat-
ics for grammar schools at the Friedrich-Schiller-University in
Jena. He completed his internship of teaching practice in Janu-
ary 2013. Since April 2013, he has been working as a research
assistant at the chair of “Didactics of Informatics” at the Uni-
versity of Duisburg-Essen.

Michael Trommen took his O-Level at the Gymnasium Rhe-
inkamp in 2001 and got his apprenticeship diploma as IT sys-
tem technician in 2005. He took his high school diploma (Abi-
tur) at the Abendgymnasium Duisburg in 2010. Since 2010 he
is studying Computer Science and Mathematics for grammar
schools at the University of Duisburg-Essen.

Florian Pottbäcker took his high school diploma (Abitur) at
the Krupp-Gymnasium grammar school in Duisburg (in June
2009). Since October 2010 he is studying Computer Science
and Mathematics for grammar schools at the University of
Duisburg-Essen.

Youssef Jlaghef got his high school diploma (Abitur) in June
2006 at the Mercator Berufskolleg in Moers. He is studying
Computer Science and Mathematics for grammar schools at the
University of Duisburg-Essen since October 2010.

Copyright
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0
Unported License. To view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/3.0/

	BugHunt – A Motivating Approach to Self-Directed Problem-solving in Operating Systems (Simone Opel, Matthias Kramer, Michael Trommen, Florian Pottbäcker, Youssef Ilaghef)
	Abstract
	1 Introduction
	2 Related Work
	3 Requirement Analysis
	4 Design and Implementation
	5 The Bughunt Software
	6 Implementation and Evaluation of the Learning Unit
	6.1 Implementation of the learning unit
	6.2 Evaluation
	6.3 Results

	7 Summary and Outlook
	References
	Biographies

