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Abstract: In the project MoKoM, which is funded by the German 
Research Foundation (DFG) from 2008 to 2012, a test instrument 
measuring students’ competences in computer science was developed. 
This paper presents the results of an expert rating of the levels of 
students’ competences done for the items of the instrument.
At first we will describe the difficulty-relevant features that were 
used for the evaluation. These were deduced from computer science, 
psychological and didactical findings and resources. Potentials and 
desiderata of this research method are discussed further on. Finally 
we will present our conclusions on the results and give an outlook on 
further steps.
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1	 Introduction

As a result of the on-going discussion about educational standards, compe-
tence models were developed for many subjects. They structure the particu-
lar learning field into different dimensions and sub-dimensions. In the project 
MoKoM a competence model with main focus on system comprehension and 
object-oriented modeling was developed.
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This was done in several sub steps, which are shortly described in the fol-
lowing:

1.	 A theoretically derived competence model was created through the 
analysis of curricula and syllabi.

2.	 This model was refined with an empirical approach in terms of expert 
interviews, which were transcribed and analyzed.

3.	 On base of the empirically derived competence model a test instru-
ment was created which was applied in a study with more than 500 
students.

4.	 The evaluation results will be used to develop a competence level 
model that includes differentiated proficiency levels.

As a current research step, an expert rating for each item of our test instrument 
was done. The main research objectives for this are as follows:

1.	 To identify, describe, and examine empirically difficulty relevant 
features of the test items of a competence test of informatics compe-
tences 

2.	 To develop a basis for the derivation of a competence level model

2	 Difficulty-Relevant Features and Feature Levels

To identify and describe difficulty relevant features of the competency test we 
first defined difficulty relevant features of the competency test items. We de-
rived those features from the literature concerning difficulty relevant features 
of competency tests in general (e.g. Schaper et al., 2008). Furthermore we 
analysed the items concerning informatics specific difficulty facets and tried 
to define and grade them analogue to the more general features. On this basis 
altogether thirteen features were identified and defined. In this section we de-
scribe for each of the thirteen difficulty-relevant features their feature levels in 
computer science education (CSE).

2.1	 Addressed knowledge categories

In a first step we analysed the structure of the knowledge dimension of the 
revised taxonomy for learning, teaching, and assessing from Anderson and 
Krathwohl (Anderson, Krathwohl, 2001) as a possible difficulty relevant fea-
ture of the test items. We assumed that the knowledge categories, A. Factual 
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Knowledge, B. Conceptual Knowledge, C. Procedural Knowledge, D. Meta-
cognitive Knowledge and its usage for solving the test tasks, would differenti-
ate between different levels of difficulty concerning our test items. So we de-
rived the first difficulty-relevant feature with the following four feature levels:

•	 WI1: The successful solution of the task requires bare factual know-
ledge, and conceptual knowledge about the basic elements of compu-
ter science.

•	 WI2: The successful solution of the task requires basic and elaborated 
conceptual knowledge. The students recognize functional connections 
among basic elements of computer science within a bigger structure 
and task formulation.

•	 WI3: The successful solution of the task requires procedural know-
ledge. The students understand methods, rules and concepts to actively 
apply skills of computer science.

•	 WI4: The successful solution of the task requires meta-cognitive 
knowledge. The students know which cognitive requirements are nee-
ded for the available computer science task and how they can obtain 
and use the required contents to solve the task.

2.2	 Cognitive process dimensions

In a second step we analysed the structure of the cognitive process dimen-
sions of the revised taxonomy for learning, teaching, and assessing by An-
derson and Krathwohl (Anderson, Krathwohl, 2001). We could assume that 
these addressed process categories, 1. Remember, 2. Understand, 3. Apply, 4. 
Analyze, 5. Evaluate and 6. Create, would also differentiate the levels of our 
test items. So we got the second difficulty-relevant feature with the following 
six feature levels:

•	 KP1: The successful solution of the task requires a memory perfor-
mance. The students recall relevant knowledge contents from their 
memory.

•	 KP2: The successful solution of the task requires a comprehension 
perfor-mance. The students understand terms, concepts, and procedu-
res of computer science and can explain, present and give examples 
for them.
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•	 KP3: The successful solution of the task requires an application per-
formance. The students are able to implement known contents, con-
cepts and procedures within a familiar as well as an unfamiliar context.

•	 KP4: The successful solution of the task requires an analysis. The stu-
dents are able to differentiate between relevant and irrelevant contents, 
concepts and procedures. They choose the suitable procedures from a 
pool of available procedures.

•	 KP5: The successful solution of the task requires a rating (evaluation). 
The students are able to evaluate the suitability of concepts and proce-
dures of computer science for the solution of the task.

•	 KP6: The successful solution of the task requires a creation. The stu-
dents are able to develop a new computer science product by using 
concepts and procedures of computer science.

2.3	 Cognitive combination and differentiation capacities

In a third step we applied findings of developmental psychology, e.g. of Pia-
get (Piaget, 1983). We could assume that these addressed combinations, Re-
production, Application, Networked application, would differentiate between 
different levels of difficulty concerning our test items. So we derived the third 
difficulty-relevant feature with the following three feature levels:

•	 KV1: Reproduction of computer science knowledge and application of 
single, elemental terms, concepts and procedures of computer science 
in close contexts (no cognitive combination capacities required).

•	 KV2: Application of single terms, concepts and procedures of compu-
ter science in bigger contexts, whereas an argumentative and/or intel-
lectual consideration between competitive terms, concepts and proce-
dures (approaches) for example has to be made.

•	 KV3: Networked Application of terms, concepts and procedures of 
computer science in different, especially bigger scenarios, whereas 
an argumentative and/or intellectual consideration between competi-
tive terms, concepts and procedures (approaches) for example has to 
be made (multiple challenging cognitive combination capacities re-
quired).
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2.4	 Cognitive stress

In a fourth step we applied findings of cognitive psychology, e.g. of Jerome 
Bruner (Bruner, 1960). We assumed that these abstraction levels would dif-
ferentiate the levels of difficulty concerning our test items. So we derived the 
fourth difficulty-relevant feature with the following three feature levels:

•	 KB1: For the successful solution of the task little, consecutive proces-
sing steps and no transfer performances are required: The degree of 
abstraction is very low.

•	 KB2: For the successful solution of the task many, consecutive proces-
sing steps and average transfer performances are required: The degree 
of abstraction is medium.

•	 KB3: For the successful solution of the task very many, consecutive 
processing steps and huge transfer performances are required: The de-
gree of abstraction is very low.

2.5	 Scope of tasks (necessary materials, reading effort and 
understanding)

In a fifth step we applied findings of educational psychology, e.g. of Benjamin 
Bloom (Bloom, Engelhart, Furst, Hill, Krathwohl, 1956). In this case we as-
sumed that the addressed scope levels would differentiate between the levels 
of our test items. 

So we derived the fifth difficulty-relevant feature with the following three 
feature levels:

•	 UM1: The task is formulated very short. No additional materials are 
required.

•	 UM2: The task is formulated extensive, only less material is required 
and the reading effort is kept within limits.

•	 UM3: The task is formulated very extensive. A high reading effort 
(quantitative and/or qualitative) and extensive materials (e.g. in the 
form of descriptions, APIs, overviews) are required for the solution 
of the task.

2.6	 Inner vs. outer computational task formulation

In a sixth step we applied findings of didactics of informatics, e.g. of Debo-
rah Seehorn (The CSTA Standards Task Force, 2011). We assumed that these 
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addressed relation between inner and outer computational task formulation 
would differentiate the levels of competence concerning our test items. So we 
derived the sixth difficulty-relevant feature with the following two feature le-
vels:

•	 IA1: For the successful processing of the task, no translation in an 
inner-computational format has to take place. The task is already pre-
sent in a determined computational format.

•	 IA2: For the successful processing of the task, a translation in an inner-
computational format has to take place. The task is already present in 
a determined computational format.

Aspects of demands of computer science
For aspects concerning special demands in computer science tasks we utilized 
dimension K4 of our competency model as a feature. This dimension covers 
the complexity of systems (Linck et al., 2013).

2.7	 Number of components

The amount of components is a feature for the complexity of systems. This 
does apply to the understanding as well as the development of these. It is im-
portant to understand the effects and modes of operations in existing systems. 
The more components interact together, the more interactions have to be con-
sidered. When transferring this to the development of systems it is extended by 
the decision which components are needed and which tasks they fulfil.

2.8	 Level of connectedness

As it might appear at first, the level of connectedness is not restricted to a 
concrete connection between systems (i.e. a network connection). It also re-
fers to the connection of information used like the handling of data organized 
in a database. The more connectedness is required to fulfil the task, the more 
complex it is.

2.9	 Stand-alone vs. distributed system

When dealing with distributed systems knowledge of the interaction of com-
ponents and the connectedness of these is needed. This introduces a further 
level of abstraction since this involves different systems, which more or less 
multiplies the elements or parts that have to be considered. 
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2.10	 Level of Human-Computer-Interaction (HCI)

The level of HCI needed is not necessarily given in the definition of the task, 
but can also be a part of the solution or the path to the solution. In this case 
learners should be able to decide which level is appropriate to fulfil the re-
quirements. This also includes a decision based on the actual target group, e.g. 
it is depending on the user of software if it should be implemented as a simple 
command-line tool or a GUI.

2.11	 Combinatorial complexity (mathematical)

The combinatorial complexity addresses the area of software tests with the 
creation of test cases as the main purpose. This is relevant not only for the 
actual testing process but also for the development of algorithms, where re-
quirements have to be defined first and then verified. This can only be done by 
the development of suitable software tests.

2.12	 Level of the necessary understanding of systems of computer 
science

This aspect describes the level of in-depth knowledge of computer science. It 
starts with a basic knowledge level, which can be build up through an everyday 
experience with computer science systems. It does not require a lengthy lear-
ning process. This aspect transitions through an interim level up to the need of 
fundamental ideas and concepts in computer science education. Furthermore 
for these tasks an independent evaluation of the system is needed.

2.13	 Level of the necessary modelling competence of computer science

Computer science tasks often require modelling skills, which are covered by 
this difficulty feature. The feature varies from the basic illustration of tasks 
with a pseudo code to a complex transition with different UML-diagrams.

3	 Research Methodology of Expert Rating

The experts were asked to rate each item of the competence test with reference 
to the thirteen difficulty features. Therefore a rating scheme and instruction 
was designed.
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Furthermore, to conduct the expert ratings the measurement instrument 
was split into four parts of roughly equal size. To test the rating process one 
of these parts was used in a preliminary rating with hessian computer science 
teachers in the course of a teachers’ workshop. The discussions during this test 
resulted in the addition of a “not relevant” rating level for all features, since 
the teachers thought some features inapplicable for some of the items. Each of 
the four instrument parts – including solutions for all items – was presented 
to two selected experts in the field of didactics of informatics, along with an 
explanation of each feature and its rating levels. The experts were asked to 
answer each item on their own, compare the solution with the given sample 
solution and then rate the item for each of the features. In addition, the experts 
had to give a subjective rating of the item difficulty on a scale from one to ten.

The resulting two ratings for each item were compared and treated in three 
ways: 1. Exact matches between the ratings were considered final, 2. Items 
with big differences for one or more features were transferred to a new rating 
booklet and 3. Every other rating was discussed within the project group to 
decide upon a final rating. A “big” difference was considered to be a substantial 
disagreement in the experts opinion, e.g. one expert rated the feature SG “not 
relevant” (SG0) for an item while the other saw the need to use high levels of 
modelling skills (SG3) to solve it. An example for a small difference would be 
the differentiation between “high levels of modelling activities” and “medium 
levels of modelling intensity”.

After that the new rating booklet was given to two new experts together 
with the ratings of both previous experts. Then they were asked to go through 
the same process as the other experts to rate the items. Though they had the 
two previous ratings for each feature available for orientation, they could rate 
each item independently from them. The results from this second rating were 
compared in the same way as explained above. This time all differences in the 
new ratings were discussed by the members of the project team in order to 
decide upon a final rating for each item and feature. 

The group was composed of seven researchers with background in compu-
ter science, computer science education and psychology. Since the group had 
to thoroughly discuss every feature, the process was done in two sittings. Af-
terwards each item had been assigned to a distinct rating level for each feature.

4	 Results of the Expert Rating

The rating process resulted in a classification of 74 items concerning each of 
the de-scribed features. The rating levels for each feature were coded as in-
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creasing numbers, e.g. coding WI1 as 1 and WI2 as 2. For every feature the 
“not relevant” rating was coded as 0. This way, we ended up with 13 nominal 
variables with n+1 categories for a feature with n levels. For almost all features 
it was reasonable to assume a ranking of the levels in the order they are descri-
bed above. The assumption is that a higher level correlates with a higher item 
diffi culty. Thus, the variables are considered to have an ordinal scale. Though 
this presumption does not necessarily have to be true, the order will be review-
ed through the analysis of the rating data. This was done using descriptive and 
explorative methods to determine the relevant features that infl uence the item 
diffi culty.

Comparing the number of times a feature was rated as “not relevant” for an 
item implies that the experts hold some features to be less useful in determi-
ning the diffi culty of an item. Especially the features derived from the fourth 
competence dimension K4 Dealing with system Complexity were mostly con-
sidered to be inapplicable by the experts. The number of times each feature 
was deemed not relevant can be seen in fi gure 1. Interestingly the two features 
not derived from K4 with the highest number of “not relevant” ratings were in-
ner vs. outer computational task formulation (IA) and the degree of necessary 
modelling competence (SG).

Figure 1: Each feature was rated for 77 items in two to six categories (in brackets) 
plus the “not relevant” (dark grey) rating.
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The ratings for the feature IA suggest that the differentiation between inner and 
outer computational formats is not that easy in computer science tasks. The ex-
perts rated the majority of items as already being in an inner computational for-
mat. Judging by this, the feature might not be well suited to differentiate item 
difficulties. The SG feature was derived from the competence dimension K3 
System Development, which represents an important part of the competence 
model. The experts saw no relevance of this feature for 24 items, over 30 % of 
the instrument. This actually could be expected, since each item was designed 
with exactly one competence profile in mind. Looking at the items with a rele-
vant SG rating, they include almost all of the items designed for K3. Therefore 
the rating suggests that the test items were well constructed with regards to 
their competence profiles. On the other hand though, this raises the question 
why the feature SV, derived from K2 System Comprehension, was considered 
relevant for all but 4 items, since the items intended to measure these compe-
tences were constructed the same way as those for K3. An explanation for this 
is the need to comprehend system functions on an external and internal level, 
before being able to design and construct such systems. This is why items that 
refer to K3 often times also require some form of system comprehension. Figu-
re 1 shows the number of ratings for each category of each feature.

The overall difficulty of the test instrument was subjectively rated by the 
experts with a mean of 4.2 on a ten-point scale. The distribution of difficulty 
estimates shows a tendency to the lower ratings, suggesting that the overall 
item pool might be marginally too easy (see figure 2). Ideally the difficulty 
ratings would be distributed normally, showing the most items in the medium 
difficulty range and an equal amount of easy and hard items. Though these 
ratings are subjective estimates by the experts they substantially correlate with 
the estimates from the IRT analysis (r(72) = .553, p < .001) and thus can be 
seen as an indicator for the validity of the expert ratings. 
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Figure 2: Histogram of subjective diffi culty ratings on a ten-point scale.

4.1 Regression analysis

To determine which features have the most infl uence on the item diffi culty, 
the expert ratings were related to the empirical diffi culty estimates that were 
calculated by means of the Item Response Theory (IRT) (Moosbrugger, 2008; 
Rost, 2004). The utilization of the IRT allowed for the application of a matrix 
design, in which not all test subjects have to work on every item (Hartig, Jude, 
Wagner, 2008). The test instrument was partitioned into six booklets with only 
parts of the tasks. All together the booklets were distributed to 538 computer 
science students in upper German high school education. The analysis of the 
returned data was done with ACER ConQuest, applying a 1PL partial credit 
model to estimate the item diffi culties (Wu, Adams, Wilson, Haldane, 2007). 
The estimated parameters had a mean of -3.405 and standard deviation of 1.25.

To be able to use regression methods each ordinal variable of n levels had 
to be dummy coded into n-1 dichotomous variables. Each dummy variable i 
would be 1 if the ordinal variable had the value I. The “not relevant” rating was 
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coded as all dummy variables being 0. The dummy coding for the feature IA 
can be seen in table 1.

Table 1: Dummy coding for IA

Since for some features one of the rating levels never was assigned to any 
item (e.g. “not relevant” for WI) the number of levels for those effectively was 
reduced by one. Thus, for these features another rating level had to be omitted 
from the dummy coding. The resulting 32 variables were used as the explana-
tory variables in a linear regression analysis with the difficulty estimate from 
the IRT analysis as the dependent variable (Hartig, 2007; Moosbrugger, 2008; 
Schaper, Ulbricht, Hochholdinger, 2008; Watermann, Klieme, 2002).

To evaluate the regression model the coefficient of determination can be 
examined. A value of 1.0 indicates that the item difficulty is completely explai-
ned by the analysed features, a value of 0.0 means that there is no link between 
the features and the empirical item parameters (Bortz, Schuster, 2010; Hartig, 
2007). The analysed features significantly predict about 71 % of the differences 
in the item difficulties (R2 = 0.717, F(32,42) = 3.241, p < .001). Though this is a 
good result, due to the high number of explanatory variables, this value might 
be overestimated. The adjusted R2 takes the number of variables into account 
and takes a value of R2adj = 0.496. Table 2 shows the regression coefficients, 
t-values and significance for the regression model.

The significance of the results is low for most of the features. The rating 
levels with the most significant influence on the item difficulty are AK2, HCI2 
and SV3, with the last having the most substantial impact on the difficulty, 
increasing it by b = 6.37 points if the third level of the feature SV was assigned 
to an item (Hartig, 2007). The number of assignments for all three rating levels 
was very low (9, 2 and 1 times) respectively, but the features might still be 
valuable to differentiate item difficulties. The features AK and HCI stem from 
the competence dimension K4. As mentioned above, those features were con-
sidered “not relevant” for large parts of the items. Despite this, they still seem 
to be relevant for the estimation of item difficulties. 

IA IA1 IA2
0 0 0
1 1 0
2 0 1



211

Table 2: Results of the regression analysis

As a consequence from the results, the regression model was modified to get 
a minimal model that adequately could predict item difficulties. Features with 
low significance and low impact on the item difficulty can be dropped from the 

First regression model Second regression model
b t p b t p

Constant -6,470 -4,746 < .001 -6,574 -5,265 < .001
WI2 -0,358 -0,926 0,3598 -0,274 -0,765 0,4482
WI3 -0,232 -0,416 0,6797 -0,143 -0,283 0,7786
WI4 -3,732 -2,626 0,0121 -3,792 -2,827 0,0069
KV1 1,647 1,406 0,1673 1,892 1,796 0,0791
KV2 1,218 1,074 0,2890 1,390 1,368 0,1780
KB2 0,403 0,857 0,3966 0,314 0,753 0,4554
KB3 -0,196 -0,152 0,8796 - - -
UM2 -0,511 -1,385 0,1735 -0,466 -1,450 0,1538
UM3 0,682 0,887 0,3801 0,576 0,944 0,3503
KP2 1,134 2,514 0,0160 1,138 2,658 0,0108
KP3 1,310 2,316 0,0256 1,433 2,733 0,0089
KP4 0,599 1,079 0,2868 0,601 1,209 0,2327
KP5 -0,044 -0,048 0,9621 0,050 0,058 0,9540
KP6 2,410 2,052 0,0466 2,360 2,127 0,0388
IA1 0,077 0,16 0,8737 - - -
IA2 0,633 0,745 0,4607 - - -
AK1 0,130 0,301 0,7651 - - -
AK2 2,899 3,59 0,0009 2,927 4,088 0,0002
GV1 -0,010 -0,023 0,9816 - - -
GV2 -1,747 -2,162 0,0365 -1,853 -2,648 0,0111
VT1 0,740 1,684 0,0997 0,705 1,917 0,0615
VT2 -1,494 -2,615 0,0124 -1,567 -3,024 0,0041
HCI1 -1,916 -4,229 0,0001 -1,746 -4,360 0,0001
HCI2 -4,797 -3,969 0,0003 -4,411 -4,076 0,0002
KK1 0,499 1,48 0,1466 0,461 1,717 0,0927
KK2 0,877 1,153 0,2554 0,889 1,247 0,2187
SV1 0,220 0,377 0,7083 0,187 0,338 0,7369
SV2 0,839 1,392 0,1714 0,863 1,584 0,1200
SV3 6,376 3,75 0,0005 6,170 3,904 0,0003
SG1 0,542 1,67 0,1026 0,515 1,715 0,0931
SG2 0,820 1,345 0,1859 0,888 1,811 0,0766
SG3 2,020 1,03 0,3089 2,278 1,330 0,1901



212

model. Furthermore, signifi cant differences in the rating levels can be assessed 
by a one-way analysis of variance.

For this reason, the feature IA was removed. Both rating levels have low 
signifi cance and the regressions coeffi cient of IA1 is fairly (IA1: b = .077, 
r(42) = .16, p = 0.87; IA2: b = .633, r(42) = .75, p = .46). Additionally, no 
signifi cant differences between the three rating levels could be assessed. The 
rating levels of the feature KB showed a signifi cant difference between KB1 
and KB2, but not between KB2 and KB3. For this reason, the upper two rating 
levels were combined. Though the feature AK seems to differentiate well on 
the level AK2, the difference between AK0 and AK1 is not signifi cant, which 
lead to the combination of those two rating levels. The distinction between 
“no”, “few” and “many” system components can be reduced to “few or none” 
and “many” components. The same is true for the feature GV, now only diffe-
rentiating between “low or none degree of connectedness” and “large degree 
of connectedness”. Figure 3 shows the boxplots for the mentioned features.

Figure 3: Boxplots for the features IA, KB, AK and GV

The newly evaluated regression model is still signifi cant with a slightly lower 
coeffi cient of determination (R2 = 0.707, F(27,46) = 4.114, p < .001) and an 
increased R2adj = .535. To get to a minimal model with only signifi cant rating 
levels, the insignifi cant variables can be stepwise removed and the model re-
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valuated. By doing so, the features AK, VT, HCI, SV and SG remained in a 
significant model (R2 = 0.48, F(8, 65) = 7.504, p < .001). These features can 
explain about 48 % of the item difficulties.

5	 Conclusion

The analysis of the results of the expert ratings shows that most of the variance 
in item difficulties can be explained by the selected features. By reducing the 
features to the most significant ones, item difficulties can still be predicted 
an amount of 48 % variance determination. To allow for a feature-oriented 
interpretation of the IRT results, the next step will be to use the significant 
features to calculate the expected difficulty of items, rated with certain combi-
nations of the features. These combinations will define appropriate thresholds 
between the proficiency levels (Beaton, Allen, 1992; Hartig, 2007; Schaper 
et al., 2008). The selection of suitable combinations of the features has to be 
based on theoretical and empirical sound decisions. For example the profici-
ency levels should be appropriately spaced and include items that define them, 
by satisfying the selected features. Moreover, the features should be useful to 
give meaningful explanations of the expected abilities in each proficiency level 
(Hartig, 2007; Watermann, Klieme, 2002).

If the a-priori rating of items yields no appropriate features to reasonably 
explain the difficulty of the items, it might be necessary to utilize post-hoc 
analysis methods used in other large-scale assessments like TIMSS III and 
PISA 2000 (Helmke, Hosenfeld, 2004; Schaper et al., 2008). With this method, 
distinctive items, characterized by certain thresholds in the item difficulties, 
are analysed for features that can be used to describe the proficiency levels. 
This approach has the disadvantage though, that the description for each level 
is dependent on the items used in the competence assessment.
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